JP5353078B2 - Electrophotographic photosensitive member and image forming apparatus using compound having enamine skeleton - Google Patents

Electrophotographic photosensitive member and image forming apparatus using compound having enamine skeleton Download PDF

Info

Publication number
JP5353078B2
JP5353078B2 JP2008153597A JP2008153597A JP5353078B2 JP 5353078 B2 JP5353078 B2 JP 5353078B2 JP 2008153597 A JP2008153597 A JP 2008153597A JP 2008153597 A JP2008153597 A JP 2008153597A JP 5353078 B2 JP5353078 B2 JP 5353078B2
Authority
JP
Japan
Prior art keywords
resin
layer
electrophotographic
photoreceptor
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008153597A
Other languages
Japanese (ja)
Other versions
JP2009020504A (en
Inventor
瑞 趙
光幸 三森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2008153597A priority Critical patent/JP5353078B2/en
Publication of JP2009020504A publication Critical patent/JP2009020504A/en
Application granted granted Critical
Publication of JP5353078B2 publication Critical patent/JP5353078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor containing in a photosensitive layer a compound suitable for use in a photosensitive layer of an electrophotographic photoreceptor and having good solubility, high charge mobility and excellent electrical characteristics, and also to provide an image-forming apparatus using the photoreceptor. <P>SOLUTION: The electrophotographic photoreceptor has the photosensitive layer on a conductive support, wherein the photosensitive layer contains at least one enamine compound represented by a general formula [I]. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、電子写真感光体用の光導電材料として好適に用いることができるアリールアミン骨格を有する化合物を含有する感光層を有する電子写真感光体及び画像形成装置に関する。   The present invention relates to an electrophotographic photoreceptor and an image forming apparatus having a photosensitive layer containing a compound having an arylamine skeleton that can be suitably used as a photoconductive material for an electrophotographic photoreceptor.

電子写真技術は、即時性に優れ且つ高品質の画像が得られること等から、複写機、各種プリンター、印刷機等の分野で広く使われている。電子写真技術の中核となる電子写真感光体として、無公害で成膜が容易、製造が容易である等の利点を有する有機系の光導電材料を使用した電子写真感光体(以下、単に「感光体」ともいう。)が使用されている。   The electrophotographic technique is widely used in the fields of copiers, various printers, printing machines, etc. because it is excellent in immediacy and provides high-quality images. As an electrophotographic photoreceptor that is the core of electrophotographic technology, an electrophotographic photoreceptor using an organic photoconductive material (hereinafter simply referred to as “photosensitive material”) that has advantages such as non-pollution, easy film formation, and easy manufacture. Also referred to as "body").

有機系の光導電材料を使用した電子写真感光体としては、光導電性微粉末をバインダ樹脂中に分散させた、いわゆる分散型の単層型感光体や、電荷発生層及び電荷輸送層を積層した積層型感光体が知られている。積層型感光体は、それぞれ効率の高い電荷発生物質及び電荷輸送物質を別々の層に分けて最適なものを組み合わせることにより高感度かつ安定な感光体が得られること、材料選択範囲が広く特性の調整が容易な感光体が得られること、また、感光層を塗布により容易に形成可能で生産性が高く、コスト面でも有利なこと、等の理由から感光体の主流であり、多く使用されている。   As an electrophotographic photoreceptor using an organic photoconductive material, a so-called dispersion type single-layer photoreceptor in which a photoconductive fine powder is dispersed in a binder resin, a charge generation layer and a charge transport layer are laminated. A laminated type photoconductor is known. Multilayer photoconductors can be obtained by combining highly efficient charge generation materials and charge transport materials in separate layers, and combining them with high sensitivity and stability. Photoconductors that are easy to adjust are obtained, and the photosensitive layer can be easily formed by coating, has high productivity, and is advantageous in terms of cost. Yes.

一方、単層型感光体は、電気特性面では積層型感光体に比べてやや劣ると共に材料選択の自由度もやや小さいが、感光体表面近傍で電荷を発生させることができるので、高解像度化が可能であり、また、厚膜にしても画像ボケしないことから厚膜化による高耐刷化が可能であるという利点がある。また、単層型感光体は、塗布工程が少なくて済むこと、及び導電性支持体由来の干渉縞や素管欠陥に対して有利であり、無切削管等の安価基体を使用できること等の理由から、低コスト化が可能であるという利点がある。   On the other hand, the single-layer type photoconductor is slightly inferior to the multilayer type photoconductor in terms of electrical characteristics and the degree of freedom of material selection is somewhat small, but it can generate charges near the surface of the photoconductor, so it has high resolution. In addition, there is an advantage that a high printing durability can be achieved by increasing the thickness of the film because the image is not blurred even if the thickness is increased. In addition, the single-layer type photoreceptor is advantageous in that the coating process is small, and it is advantageous for interference fringes and tube defects derived from the conductive support, and an inexpensive substrate such as a non-cutting tube can be used. Therefore, there is an advantage that the cost can be reduced.

また、電子写真感光体は、電子写真プロセス、すなわち帯電、露光、現像、転写、クリーニング、除電等のサイクルで繰り返し使用されるため、その間様々なストレスを受け劣化する。このうち、化学的劣化としては、例えば帯電器として普通用いられるコロナ帯電器から発生する強酸化性のオゾンやNOxが感光層にダメージを与えることが挙げられ、繰り返し使用する場合に、帯電性の低下や残留電位の上昇等の電気的安定性の悪化、及びそれに伴う画像不良が起きることがある。これらは、感光層中に多く含まれる電荷輸送物質の化学的劣化に由来するところが大きい。   Further, since the electrophotographic photosensitive member is repeatedly used in an electrophotographic process, that is, a cycle such as charging, exposure, development, transfer, cleaning, and static elimination, it is deteriorated by various stresses during that time. Among these, as chemical deterioration, for example, strong oxidizing ozone or NOx generated from a corona charger usually used as a charger may damage the photosensitive layer. Deterioration in electrical stability such as a decrease or increase in residual potential, and accompanying image defects may occur. These are largely derived from chemical deterioration of charge transport materials contained in the photosensitive layer in a large amount.

さらには、近年の電子写真プロセスの高速化に伴い、電子写真感光体の高感度化及び高速応答化が必須となっている。このうち、高感度化のためには、電荷発生物質の最適化だけでなく、それとのマッチングの良好な電荷輸送物質の開発が必要であり、高速応答化のためには、高移動度、高感度、かつ露光時に十分な低残留電位を示す電荷輸送物質の開発が必要である。   Furthermore, with the recent speeding up of the electrophotographic process, it is essential to increase the sensitivity and speed of the electrophotographic photosensitive member. Of these, in order to achieve high sensitivity, it is necessary not only to optimize charge generation materials, but also to develop charge transport materials with good matching with them. There is a need to develop charge transport materials that exhibit sensitivity and a sufficiently low residual potential upon exposure.

従来の技術として、エナミン系化合物が電子写真感光体用の光導電材料として使用可能であることが知られている。例えば特許文献1と2に記載されたエナミン系化合物群が電荷輸送物質として使用できると提案されている。このような化合物群は、移動度が比較的遅く、電気特性にも改善すべき点があった。また、感光体の作製時における溶媒への溶解性、塗布液の安定性に難点があったため、感光体市場において未だ満足されていないのが実状である。   As a conventional technique, it is known that an enamine compound can be used as a photoconductive material for an electrophotographic photoreceptor. For example, it has been proposed that the enamine compounds described in Patent Documents 1 and 2 can be used as charge transport materials. Such a group of compounds had relatively low mobility, and there was a point that should improve electric characteristics. Further, since there are difficulties in the solubility in a solvent and the stability of the coating solution at the time of production of the photoconductor, the actual situation is not yet satisfied in the photoconductor market.

本発明者らは、上記問題点を改善するため鋭意検討した結果、アリールアミン骨格を有する化合物の窒素原子に直結したアリール基に、置換基を導入することによって、光感度、残留電位、電荷移動度などの特性を著しく改善し、感光体の作製時における溶媒への溶解性も、大幅に改良することができることを見出した。また、このような化合物を電子写真感光体の感光層に用いた場合に、光感度、残留電位、電荷移動度、耐久時の電位安定性、環境安定性などに優れた特性を示すことを見出した。
特開平7−146574号公報 特許公報第2653080号
As a result of diligent studies to improve the above problems, the present inventors have introduced a substituent into an aryl group directly connected to a nitrogen atom of a compound having an arylamine skeleton, thereby improving photosensitivity, residual potential, and charge transfer. It has been found that the properties such as the temperature can be remarkably improved, and the solubility in a solvent at the time of production of the photoreceptor can be greatly improved. In addition, when such a compound is used in the photosensitive layer of an electrophotographic photoreceptor, it has been found that it exhibits excellent characteristics such as photosensitivity, residual potential, charge mobility, potential stability during durability, and environmental stability. It was.
Japanese Patent Laid-Open No. 7-146574 Japanese Patent Publication No. 2653080

本発明は、かかる現状に鑑みてなされたものであって、その目的は、電子写真感光体の感光層に好適に用いることが可能な、良好な溶解性を持ち、電荷移動度が高く、しかも優れた電気特性を有する化合物を感光層に含有する電子写真感光体、及び該感光体を用いた画像形成装置を提供することにある。   The present invention has been made in view of the present situation, and its purpose is to have good solubility, high charge mobility, which can be suitably used for a photosensitive layer of an electrophotographic photosensitive member, and An object of the present invention is to provide an electrophotographic photoreceptor containing a compound having excellent electrical characteristics in a photosensitive layer, and an image forming apparatus using the photoreceptor.

本発明者らは、アリールアミン骨格を有する化合物の窒素原子に直結したアリール基に、置換基を導入することによって、光感度、残留電位、電荷移動度などの特性が著しく改善され、感光体の作製時における溶媒への溶解性も、大幅に改良されることを見出した。また、このような化合物を電子写真感光体の感光層に用いた場合に、光感度、残留電位、電荷移動度、耐久時の電位安定性、環境安定性などに優れた特性を示すことを見出し、以下の本発明を完成するに至った。   By introducing a substituent into the aryl group directly connected to the nitrogen atom of the compound having an arylamine skeleton, the present inventors have remarkably improved characteristics such as photosensitivity, residual potential, and charge mobility. It has been found that the solubility in a solvent at the time of production is also greatly improved. In addition, when such a compound is used in the photosensitive layer of an electrophotographic photoreceptor, it has been found that it exhibits excellent characteristics such as photosensitivity, residual potential, charge mobility, potential stability during durability, and environmental stability. The present invention has been completed.

第1の本発明は、導電性支持体の上に、感光層を有する電子写真感光体において、該感光層が、一般式[I]で表されるエナミン系化合物を少なくとも一種含有することを特徴とする、電子写真感光体である。   The first present invention is an electrophotographic photosensitive member having a photosensitive layer on a conductive support, wherein the photosensitive layer contains at least one enamine compound represented by the general formula [I]. And an electrophotographic photosensitive member.

Figure 0005353078
(式[I]中、Ar〜Arは、同一または異なっていてもよく、それぞれ置換基を有していてもよいアリール基を表し、nは2以上の整数を表し、Zは一価の有機残基を表し、mは0〜4の整数を表す。ただし、Ar〜Arのうち、少なくとも一つは、置換基を有するアリール基である。)。
Figure 0005353078
(In Formula [I], Ar 1 to Ar 6 may be the same or different and each represents an aryl group which may have a substituent, n represents an integer of 2 or more, and Z represents a monovalent group. M represents an integer of 0 to 4, provided that at least one of Ar 1 to Ar 2 is an aryl group having a substituent.

第2の本発明は、第1の本発明の電子写真感光体、該電子写真感光体を帯電させる帯電部、帯電した該電子写真感光体に露光を行い静電潜像を形成する露光部、および、露光により該電子写真感光体上に形成された静電潜像をトナーを用いて現像する現像部、を備えてなる画像形成装置である。   The second aspect of the present invention is an electrophotographic photosensitive member according to the first aspect of the present invention, a charging unit that charges the electrophotographic photosensitive member, an exposure unit that exposes the charged electrophotographic photosensitive member to form an electrostatic latent image, And an image forming apparatus including a developing unit that develops the electrostatic latent image formed on the electrophotographic photosensitive member by exposure using toner.

本発明に係る化合物は、優れた溶解性を持ち、電荷移動度が高く、しかも優れた電気特性を有するため、電子写真感光体の感光層に含有させた場合に、電子写真感光体を繰り返し使用する場合でも、電気特性の安定性が良く、応答性が速く、高感度、かつ低残留電位を示す電子写真感光体、及びそれを備えた画像形成装置を提供することが可能となる。   The compound according to the present invention has excellent solubility, high charge mobility, and excellent electrical characteristics. Therefore, when it is included in the photosensitive layer of an electrophotographic photoreceptor, the electrophotographic photoreceptor is repeatedly used. Even in this case, it is possible to provide an electrophotographic photosensitive member that has good electrical characteristics stability, quick response, high sensitivity, and low residual potential, and an image forming apparatus including the same.

以下、本発明を実施するための最良の形態について詳細に説明するが、本発明は、以下の実施の形態に限定されるものではなく、その趣旨の範囲内で種々変形して実施することができる。
本発明の電子写真感光体は、導電性支持体上に感光層を有するものであって、該感光層が、下記式[I]で表される化合物を含有する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiment, and various modifications can be made within the scope of the present invention. it can.
The electrophotographic photoreceptor of the present invention has a photosensitive layer on a conductive support, and the photosensitive layer contains a compound represented by the following formula [I].

Figure 0005353078
(式[I]中、Ar〜Arは、同一または異なっていてもよく、それぞれ置換基を有していてもよいアリール基を表し、nは2以上の整数を表し、Zは一価の有機残基を表し、mは0〜4の整数を表す。ただし、Ar〜Arのうち、少なくとも一つは、置換基を有するアリール基である。)
Figure 0005353078
(In Formula [I], Ar 1 to Ar 6 may be the same or different and each represents an aryl group which may have a substituent, n represents an integer of 2 or more, and Z represents a monovalent group. And m represents an integer of 0 to 4. However, at least one of Ar 1 to Ar 2 is an aryl group having a substituent.)

前記式[I]中、Ar〜Arは置換基を有していてもよいアリール基を示し、それぞれ同一でも異なっていても良い。中でも6〜20の炭素原子を有するアリール基が好ましく、より好ましくは6〜12の炭素原子を有するアリール基である。具体的には、例えば、フェニル基、ナフチル基、フルオレニル基、アントリル基、フェナントリル基、ピレニル基が挙げられ、好ましくは、フェニル基、ナフチル基、フルオレニル基が挙げられる。製造コストの面で、フェニル基、ナフチル基のような6〜10の炭素原子を有するアリール基が特に好ましい。さらに、置換基を有する場合、該置換基としては、1〜10の炭素原子を有し、かつHammett則における置換基定数σpが0.20以下である置換基が好ましい。 In the formula [I], Ar 1 to Ar 6 represent aryl groups which may have a substituent, and may be the same or different. Among them, an aryl group having 6 to 20 carbon atoms is preferable, and an aryl group having 6 to 12 carbon atoms is more preferable. Specific examples include a phenyl group, a naphthyl group, a fluorenyl group, an anthryl group, a phenanthryl group, and a pyrenyl group, and a phenyl group, a naphthyl group, and a fluorenyl group are preferable. From the viewpoint of production cost, an aryl group having 6 to 10 carbon atoms such as a phenyl group and a naphthyl group is particularly preferable. Further, when it has a substituent, the substituent is preferably a substituent having 1 to 10 carbon atoms and having a substituent constant σp of 0.20 or less according to Hammett's rule.

ここで、Hammett則は、芳香族化合物における置換基が芳香環の電子状態に与える効果を説明するために用いられる経験則であって、置換ベンゼンの置換基定数σpは、置換基の電子供与/吸引の程度を定量化した値といえる。σp値が正であれば置換安息香酸の方が無置換のものより酸性が強い、つまり電子吸引性置換基となる。逆にσp値が負であると電子供与性置換基となる。表1は、代表的な置換基のσp値である(日本化学会編、「化学便覧 基礎編II 改訂4版」、丸善株式会社、平成5年9月30日発行、p.364〜365)。   Here, Hammett's rule is an empirical rule used to explain the effect of a substituent in an aromatic compound on the electronic state of an aromatic ring, and the substituent constant σp of the substituted benzene is the electron donation / It can be said that this is a value obtained by quantifying the degree of suction. If the σp value is positive, the substituted benzoic acid is more acidic than the unsubstituted one, that is, an electron-withdrawing substituent. Conversely, when the σp value is negative, an electron donating substituent is formed. Table 1 shows σp values of representative substituents (The Chemical Society of Japan, “Chemical Handbook, Basic Edition II, 4th revised edition”, Maruzen Co., Ltd., published on September 30, 1993, p.364-365). .

Figure 0005353078
Figure 0005353078

そうした置換基としては、例えば、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、炭素数2〜10のアルキルアミノ基、炭素数6〜10のアリール基などが挙げられ、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、N,N−ジメチルアミノ基、N,N−ジエチルアミノ基、フェニル基、4−トリル基、4−エチルフェニル基、4−プロピルフェニル基、4−ブチルフェニル基、ナフチル基などが挙げられる。中でも、電気特性の面から、炭素数1〜4のアルキル基が好ましく、特には、メチル基、エチル基が好ましい。   Examples of such a substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkylamino group having 2 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and the like. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, methoxy group, ethoxy group, propoxy group, butoxy group, N, N-dimethylamino group N, N-diethylamino group, phenyl group, 4-tolyl group, 4-ethylphenyl group, 4-propylphenyl group, 4-butylphenyl group, naphthyl group and the like. Among these, from the viewpoint of electrical characteristics, an alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group and an ethyl group are particularly preferable.

前記式[I]中、nは、本発明に係る電子写真感光体の電気特性を向上させるという点で、通常2以上の整数であり、電気特性に悪影響を与えない限り特に上限はないが、5以下の整数が好ましく、3以下の整数がより好ましい。感光層に対する相溶性や製造コストなどの観点から総合的に考えると、nは、2または3が好ましく、n=2の場合が特に好ましい。   In the formula [I], n is an integer of usually 2 or more in terms of improving the electrical characteristics of the electrophotographic photoreceptor according to the present invention, and there is no particular upper limit as long as the electrical characteristics are not adversely affected. An integer of 5 or less is preferable, and an integer of 3 or less is more preferable. From the viewpoint of compatibility with the photosensitive layer and production cost, n is preferably 2 or 3, particularly preferably n = 2.

前記式[I]中、一価の有機残基Zとしては、例えば、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数2〜4のアルキルアミノ基、炭素数6〜10のアリール基等が挙げられ、具体的には、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、tert−ブチル、メトキシ、エトキシ、プロポキシ、ブトキシ、N,N−ジメチルアミノ、N,N−ジエチルアミノ、フェニル、4−トリル、4−エチルフェニル、4−プロピルフェニル、4−ブチルフェニル、ナフチル等が挙げられる。中でも、電気特性の面から、炭素数1〜4のアルキル基が特に好ましい。
前記一般式[1]中、mとしては、0〜1の整数が好ましいが、製造コストの観点から考え、m=0の場合が特に好ましい。
In the formula [I], examples of the monovalent organic residue Z include, for example, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkylamino group having 2 to 4 carbon atoms, and 6 carbon atoms. -10 aryl groups and the like, specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, methoxy, ethoxy, propoxy, butoxy, N, N-dimethylamino, N, N-diethylamino, phenyl, 4-tolyl, 4-ethylphenyl, 4-propylphenyl, 4-butylphenyl, naphthyl and the like can be mentioned. Among these, an alkyl group having 1 to 4 carbon atoms is particularly preferable from the viewpoint of electrical characteristics.
In the general formula [1], m is preferably an integer of 0 to 1, but is preferably m = 0 from the viewpoint of production cost.

式[I]で表される化合物の代表例として、以下の例示化合物CT−1〜CT−14が挙げられる。ただし、本発明に係る式[I]で表される化合物はこれらの化合物に限定されるものではない。   As typical examples of the compound represented by the formula [I], the following exemplified compounds CT-1 to CT-14 may be mentioned. However, the compound represented by the formula [I] according to the present invention is not limited to these compounds.

Figure 0005353078
Figure 0005353078

Figure 0005353078
Figure 0005353078

Figure 0005353078
Figure 0005353078

Figure 0005353078
Figure 0005353078

Figure 0005353078
Figure 0005353078

Figure 0005353078
Figure 0005353078

Figure 0005353078
Figure 0005353078

Figure 0005353078
Figure 0005353078

Figure 0005353078
Figure 0005353078

Figure 0005353078
Figure 0005353078

Figure 0005353078
Figure 0005353078

Figure 0005353078
Figure 0005353078

Figure 0005353078
Figure 0005353078

Figure 0005353078
Figure 0005353078

これらの化合物は、公知の方法により容易に合成することができる。例えば、本発明の例示化合物CT−1は、次の反応式に従って製造することができる。   These compounds can be easily synthesized by known methods. For example, exemplary compound CT-1 of this invention can be manufactured according to the following reaction formula.

Figure 0005353078
Figure 0005353078

ジアリールアミン誘導体(α)を、p−トルエンスルホン酸などの酸触媒の存在下で、ジアリールアセトアルデヒド(β)と還流脱水することによって縮合させ、目的物である電荷輸送材(CT−1)を得ることができる。   The diarylamine derivative (α) is condensed by reflux dehydration with diarylacetaldehyde (β) in the presence of an acid catalyst such as p-toluenesulfonic acid to obtain the target charge transport material (CT-1). be able to.

以下に、本発明に係わる電子写真感光体の構成について説明する。本発明に係わる電子写真感光体は、導電性支持体上に、上述した式[I]で表される化合物を含有する感光層を設けたものであれば、その構造は特に制限されないが、電荷発生層と、電荷輸送層が積層された積層型の感光体が好ましく、特には電荷輸送層が、該化合物を含有することが好ましい。   The structure of the electrophotographic photosensitive member according to the present invention will be described below. The structure of the electrophotographic photosensitive member according to the present invention is not particularly limited as long as the photosensitive layer containing the compound represented by the formula [I] described above is provided on a conductive support. A layered photoreceptor in which a generation layer and a charge transport layer are stacked is preferable, and it is particularly preferable that the charge transport layer contains the compound.

<導電性支持体>
導電性支持体について特に制限は無いが、例えばアルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料や、金属、カーボン、酸化錫などの導電性粉体を添加して導電性を付与した樹脂材料や、アルミニウム、ニッケル、ITO(酸化インジウム酸化錫)等の導電性材料をその表面に蒸着又は塗布した樹脂、ガラス、紙等が主として使用される。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。導電性支持体の形態としては、ドラム状、シート状、ベルト状などのものが用いられる。更には、金属材料の導電性支持体の上に、導電性・表面性などの制御や欠陥被覆のために、適当な抵抗値を有する導電性材料を塗布したものを用いても良い。
<Conductive support>
There is no particular limitation on the conductive support, but for example, metal materials such as aluminum, aluminum alloy, stainless steel, copper, and nickel, and conductive powder such as metal, carbon, and tin oxide are added to impart conductivity. A resin material, a resin, glass, paper, or the like on which a conductive material such as aluminum, nickel, or ITO (indium tin oxide) is deposited or applied on the surface is mainly used. These may be used alone or in combination of two or more in any combination and ratio. As a form of the conductive support, a drum form, a sheet form, a belt form or the like is used. Further, a conductive material having an appropriate resistance value may be used on a conductive support made of a metal material in order to control conductivity and surface properties and to cover defects.

また、導電性支持体としてアルミニウム合金等の金属材料を用いた場合、陽極酸化被膜を施してから用いても良い。陽極酸化被膜を施した場合には、公知の方法により封孔処理を施すのが望ましい。
導電性支持体表面は、平滑であっても良いし、特別な切削方法を用いたり、研磨処理を施したりすることにより、粗面化されていても良い。また、導電性支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものでも良い。また、安価化のためには、切削処理を施さず、引き抜き管をそのまま使用することも可能である。
Moreover, when using metal materials, such as an aluminum alloy, as an electroconductive support body, you may use, after giving an anodic oxide film. When an anodized film is applied, it is desirable to perform a sealing treatment by a known method.
The surface of the conductive support may be smooth, or may be roughened by using a special cutting method or performing a polishing treatment. Further, it may be roughened by mixing particles having an appropriate particle diameter with the material constituting the conductive support. In order to reduce the cost, it is possible to use the drawing tube as it is without performing the cutting process.

<下引き層>
導電性支持体と後述する感光層との間には、接着性・ブロッキング性等の改善のため、下引き層を設けても良い。下引き層としては、樹脂、樹脂に金属酸化物等の粒子を分散したものなどが用いられる。
下引き層に用いる金属酸化物粒子の例としては、酸化チタン、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1種の金属元素を含む金属酸化物粒子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子などが挙げられる。これらは一種類の粒子を単独で用いても良いし、複数の種類の粒子を混合して用いても良い。これらの金属酸化物粒子の中で、酸化チタン及び酸化アルミニウムが好ましく、特に酸化チタンが好ましい。酸化チタン粒子は、その表面に、酸化錫、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、又はステアリン酸、ポリオール、シリコン等の有機物による処理を施されていても良い。酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファスのいずれも用いることができる。また、複数の結晶状態のものが含まれていても良い。
<Underlayer>
An undercoat layer may be provided between the conductive support and the photosensitive layer described later for improving adhesion and blocking properties. As the undercoat layer, a resin, a resin in which particles such as a metal oxide are dispersed, or the like is used.
Examples of metal oxide particles used for the undercoat layer include metal oxide particles containing one metal element such as titanium oxide, aluminum oxide, silicon oxide, zirconium oxide, zinc oxide, iron oxide, calcium titanate, titanium Examples thereof include metal oxide particles containing a plurality of metal elements such as strontium acid and barium titanate. One kind of these particles may be used alone, or a plurality of kinds of particles may be mixed and used. Among these metal oxide particles, titanium oxide and aluminum oxide are preferable, and titanium oxide is particularly preferable. The surface of the titanium oxide particles may be treated with an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide, or silicon oxide, or an organic substance such as stearic acid, polyol, or silicon. As the crystal form of the titanium oxide particles, any of rutile, anatase, brookite, and amorphous can be used. Moreover, the thing of a several crystal state may be contained.

また、金属酸化物粒子の粒径としては種々のものが利用できるが、中でも特性及び液の安定性の面から、平均一次粒径として10nm以上100nm以下が好ましく、特に好ましいのは、10nm以上50nm以下である。   Various particle diameters of the metal oxide particles can be used. Among these, from the viewpoint of characteristics and liquid stability, the average primary particle diameter is preferably 10 nm or more and 100 nm or less, and particularly preferably 10 nm or more and 50 nm. It is as follows.

下引き層は、金属酸化物粒子をバインダ樹脂に分散した形で形成するのが望ましい。下引き層に用いられるバインダ樹脂としては、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリイミド樹脂、塩化ビニリデン樹脂、ポリビニルアセタール樹脂、塩化ビニル−酢酸ビニル共重合体、ポリビニルアルコール樹脂、ポリウレタン樹脂、ポリアクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピロリドン樹脂、ポリビニルピリジン樹脂、水溶性ポリエステル樹脂、ニトロセルロース等のセルロースエステル樹脂、セルロースエーテル樹脂、カゼイン、ゼラチン、ポリグルタミン酸、澱粉、スターチアセテート、アミノ澱粉、ジルコニウムキレート化合物、ジルコニウムアルコキシド化合物等の有機ジルコニウム化合物、チタニルキレート化合物、チタンアルコキシド化合物等の有機チタニル化合物、シランカップリング剤などの公知のバインダ樹脂が挙げられる。これらは単独で用いても良く、あるいは2種以上を任意の組み合わせ及び比率で併用しても良い。また、硬化剤とともに硬化した形で使用してもよい。中でも、アルコール可溶性の共重合ポリアミド、変性ポリアミド等は、良好な分散性、塗布性を示すことから好ましい。   The undercoat layer is preferably formed in a form in which metal oxide particles are dispersed in a binder resin. The binder resin used for the undercoat layer is epoxy resin, polyethylene resin, polypropylene resin, acrylic resin, methacrylic resin, polyamide resin, vinyl chloride resin, vinyl acetate resin, phenol resin, polycarbonate resin, polyurethane resin, polyimide resin, chloride Cellulose esters such as vinylidene resin, polyvinyl acetal resin, vinyl chloride-vinyl acetate copolymer, polyvinyl alcohol resin, polyurethane resin, polyacryl resin, polyacrylamide resin, polyvinyl pyrrolidone resin, polyvinyl pyridine resin, water-soluble polyester resin, nitrocellulose Resin, cellulose ether resin, casein, gelatin, polyglutamic acid, starch, starch acetate, amino starch, zirconium chelate compound, zirconium Rukokishido compounds such as organic zirconium compounds of titanyl chelate compounds, organic titanyl compounds such as titanium alkoxide compounds include known binder resins, such as silane coupling agent. These may be used alone or in combination of two or more in any combination and ratio. Moreover, you may use with the hardening | curing form with the hardening | curing agent. Among these, alcohol-soluble copolymerized polyamides, modified polyamides, and the like are preferable because they exhibit good dispersibility and coatability.

下引き層に用いられるバインダ樹脂に対する無機粒子の使用比率は任意に選ぶことが可能であるが、分散液の安定性、塗布性の観点から、通常は10質量%以上、500質量%以下の範囲で使用することが好ましい。
下引き層の膜厚は、任意に選ぶことができるが、感光体特性及び塗布性を向上させる観点から、通常は0.1μm以上、20μm以下の範囲が好ましい。
下引き層には、公知の酸化防止剤等を混合しても良い。画像欠陥防止などを目的として、顔料粒子、樹脂粒子等を含有させ用いても良い。
The use ratio of the inorganic particles to the binder resin used in the undercoat layer can be arbitrarily selected, but is usually in the range of 10% by mass or more and 500% by mass or less from the viewpoint of the stability of the dispersion and the coating property. Is preferably used.
The thickness of the undercoat layer can be selected arbitrarily, but is usually preferably in the range of 0.1 μm or more and 20 μm or less from the viewpoint of improving the photoreceptor characteristics and applicability.
A known antioxidant or the like may be mixed in the undercoat layer. For the purpose of preventing image defects, pigment particles, resin particles and the like may be contained and used.

<感光層>
感光層の形式としては、電荷発生物質と電荷輸送物質とが同一層に存在し、バインダ樹脂中に分散された単層型と、電荷発生物質がバインダ樹脂中に分散された電荷発生層及び電荷輸送物質がバインダ樹脂中に分散された電荷輸送層の二層からなる機能分離型(積層型)とが挙げられるが、いずれの形式であってもよい。
また、積層型感光層としては、導電性支持体側から電荷発生層、電荷輸送層をこの順に積層して設ける順積層型感光層と、逆に導電性支持体側から電荷輸送層、電荷発生層の順に積層して設ける逆積層型感光層とがあり、いずれを採用することも可能であるが、最もバランスの取れた光導電性を発揮できる順積層型感光層が好ましい。
<Photosensitive layer>
As a type of the photosensitive layer, a charge generation material and a charge transport material are present in the same layer and are dispersed in a binder resin, a charge generation layer in which a charge generation material is dispersed in a binder resin, and a charge. A function separation type (laminated type) composed of two layers of a charge transport layer in which a transport material is dispersed in a binder resin can be mentioned, but any type may be used.
In addition, as the laminated photosensitive layer, a charge-generating layer and a charge transport layer are laminated in this order from the conductive support side, and conversely, a charge transport layer and a charge generation layer are formed from the conductive support side. There are reverse laminated photosensitive layers provided in order, and any of them can be adopted, but a forward laminated photosensitive layer that can exhibit the most balanced photoconductivity is preferable.

<積層型感光層>
・電荷発生層
積層型感光体(機能分離型感光体)の場合、電荷発生層は、電荷発生物質をバインダ樹脂で結着することにより形成される。
電荷発生物質としては、セレン及びその合金、硫化カドミウム等の無機系光導電材料と、有機顔料等の有機系光導電材料とが挙げられるが、有機系光導電材料の方が好ましく、特に有機顔料が好ましい。有機顔料としては、例えば、フタロシアニン顔料、アゾ顔料、ジチオケトピロロピロール顔料、スクアレン(スクアリリウム)顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、アントアントロン顔料、ベンズイミダゾール顔料等が挙げられる。これらの中でも、特にフタロシアニン顔料又はアゾ顔料が好ましい。電荷発生物質として有機顔料を使用する場合、通常はこれらの有機顔料の微粒子を、各種のバインダ樹脂で結着した分散層の形で使用する。
<Laminated photosensitive layer>
-Charge generation layer In the case of a multilayer type photoreceptor (function separation type photoreceptor), the charge generation layer is formed by binding a charge generation material with a binder resin.
Examples of the charge generation material include inorganic photoconductive materials such as selenium and its alloys, cadmium sulfide, and organic photoconductive materials such as organic pigments, but organic photoconductive materials are preferred, especially organic pigments. Is preferred. Examples of organic pigments include phthalocyanine pigments, azo pigments, dithioketopyrrolopyrrole pigments, squalene (squarylium) pigments, quinacridone pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, anthanthrone pigments, and benzimidazole pigments. . Among these, phthalocyanine pigments or azo pigments are particularly preferable. When organic pigments are used as the charge generation material, usually, fine particles of these organic pigments are used in the form of a dispersion layer bound with various binder resins.

電荷発生物質として無金属フタロシアニン化合物、金属含有フタロシアニン化合物を用いた場合は比較的長波長のレーザー光、例えば780nm近辺の波長を有するレーザー光に対して高感度の感光体が得られ、またモノアゾ、ジアゾ、トリスアゾ等のアゾ顔料を用いた場合には、白色光、又は660nm近辺の波長を有するレーザー光、もしくは比較的短波長のレーザー光(例えば380〜500nmの範囲の波長を有するレーザー光)に対して十分な感度を有する感光体を得ることができる。   When a metal-free phthalocyanine compound or a metal-containing phthalocyanine compound is used as the charge generation material, a photosensitive member having a high sensitivity to a laser beam having a relatively long wavelength, for example, a laser beam having a wavelength around 780 nm, is obtained. When an azo pigment such as diazo or trisazo is used, white light, laser light having a wavelength around 660 nm, or relatively short wavelength laser light (for example, laser light having a wavelength in the range of 380 to 500 nm) Thus, a photoreceptor having sufficient sensitivity can be obtained.

電荷発生物質として有機顔料を使用する場合、特にフタロシアニン顔料又はアゾ顔料が好ましい。フタロシアニン顔料は、比較的長波長のレーザー光に対して高感度の感光体が得られる点で、また、アゾ顔料は、白色光及び比較的短波長のレーザー光(例えば380〜500nmの範囲の波長を有するレーザー光)に対し十分な感度を持つ点で、それぞれ優れている。   When an organic pigment is used as the charge generating material, a phthalocyanine pigment or an azo pigment is particularly preferable. The phthalocyanine pigment provides a highly sensitive photoreceptor with respect to a relatively long wavelength laser beam, and the azo pigment includes white light and a relatively short wavelength laser beam (for example, a wavelength in the range of 380 to 500 nm). Each of them is excellent in that it has sufficient sensitivity to a laser beam.

電荷発生物質としてフタロシアニン顔料を使用する場合、具体的には無金属フタロシアニン、銅、インジウム、ガリウム、スズ、チタン、亜鉛、バナジウム、シリコン、ゲルマニウム、アルミニウムなどの金属又はその酸化物、ハロゲン化物、水酸化物、アルコキシドなどの配位したフタロシアニン類の各結晶型を持ったもの、酸素原子等を架橋原子として用いたフタロシアニンダイマー類などが使用される。特に、感度の高い結晶型であるX型、τ型無金属フタロシアニン、A型(別称β型)、B型(別称α型)、D型(別称Y型)等のチタニルフタロシアニン(別称:オキシチタニウムフタロシアニン)、バナジルフタロシアニン、クロロインジウムフタロシアニン、ヒドロキシインジウムフタロシアニン、II型等のクロロガリウムフタロシアニン、V型等のヒドロキシガリウムフタロシアニン、G型、I型等のμ−オキソ−ガリウムフタロシアニン二量体、II型等のμ−オキソ−アルミニウムフタロシアニン二量体が好適である。   When using a phthalocyanine pigment as a charge generation material, specifically, metal-free phthalocyanine, copper, indium, gallium, tin, titanium, zinc, vanadium, silicon, germanium, aluminum or other metal or oxide thereof, halide, water Those having crystal forms of coordinated phthalocyanines such as oxides and alkoxides, and phthalocyanine dimers using oxygen atoms as bridging atoms are used. In particular, titanyl phthalocyanines (also known as oxytitanium) such as X-type, τ-type metal-free phthalocyanine, A-type (also known as β-type), B-type (also known as α-type), and D-type (also known as Y-type), which are highly sensitive crystal types Phthalocyanine), vanadyl phthalocyanine, chloroindium phthalocyanine, hydroxyindium phthalocyanine, chlorogallium phthalocyanine such as type II, hydroxygallium phthalocyanine such as type V, μ-oxo-gallium phthalocyanine dimer such as type G and type I, type II, etc. The [mu] -oxo-aluminum phthalocyanine dimer is preferred.

また、これらフタロシアニンの中でも、A型(別称β型)、B型(別称α型)、及び粉末X線回折の回折角2θ(±0.2゜)が27.1゜、もしくは27.3゜に明瞭なピークを示すことを特徴とするD型(Y型)チタニルフタロシアニン、II型クロロガリウムフタロシアニン、及び28.1゜にもっとも強いピークを有すること、また26.2゜にピークを持たず28.1゜に明瞭なピークを有し、かつ25.9゜の半値幅Wが0.1゜≦W≦0.4゜であることを特徴とするV型ヒドロキシガリウムフタロシアニン、G型μ−オキソ−ガリウムフタロシアニン二量体等が特に好ましい。   Among these phthalocyanines, A-type (also known as β-type), B-type (also known as α-type), and powder X-ray diffraction angle 2θ (± 0.2 °) are 27.1 ° or 27.3 °. D-type (Y-type) titanyl phthalocyanine, type II chlorogallium phthalocyanine, which has a clear peak at 28.1 °, and no peak at 26.2 ° V-type hydroxygallium phthalocyanine, G-type μ-oxo, having a clear peak at 1 ° and a half-width W of 25.9 ° of 0.1 ° ≦ W ≦ 0.4 ° -Gallium phthalocyanine dimer and the like are particularly preferable.

フタロシアニン化合物は単一の化合物のものを用いてもよいし、幾つかの混合又は混晶状態のものを用いてもよい。ここでのフタロシアニン化合物ないしは結晶状態における混合状態としては、それぞれの構成要素を後から混合したものを用いてもよいし、合成、顔料化、結晶化等のフタロシアニン化合物の製造・処理工程において混合状態を生じさせたものでもよい。このような処理としては、酸ペースト処理・磨砕処理・溶剤処理等が知られている。混晶状態を生じさせるためには、特開平10−48859号公報記載のように、2種類の結晶を混合後に機械的に磨砕、不定形化した後に、溶剤処理によって特定の結晶状態に変換する方法が挙げられる。
電荷発生物質としてアゾ顔料を使用する場合には、各種ビスアゾ顔料、トリスアゾ顔料が好適に用いられる。好ましいアゾ顔料の例を下記に示す。
The phthalocyanine compound may be a single compound or several mixed or mixed crystal states. As the mixed state in the phthalocyanine compound or crystal state here, those obtained by mixing the respective constituent elements later may be used, or the mixed state in the production / treatment process of the phthalocyanine compound such as synthesis, pigmentation, crystallization, etc. It may be the one that gave rise to. As such treatment, acid paste treatment, grinding treatment, solvent treatment and the like are known. In order to generate a mixed crystal state, as described in JP-A-10-48859, two types of crystals are mixed, mechanically ground and made amorphous, and then converted into a specific crystal state by solvent treatment. The method of doing is mentioned.
When an azo pigment is used as the charge generation material, various bisazo pigments and trisazo pigments are preferably used. Examples of preferred azo pigments are shown below.

Figure 0005353078
Figure 0005353078

Figure 0005353078
Figure 0005353078

Figure 0005353078
Figure 0005353078

電荷発生物質として、上記例示の有機顔料を用いる場合には、1種を単独で用いてもよいが、2種類以上の顔料を混合して用いてもよい。この場合、可視域と近赤域の異なるスペクトル領域で分光感度特性を有する2種類以上の電荷発生物質を組み合わせて用いることが好ましく、中でもジスアゾ顔料、トリスアゾ顔料とフタロシアニン顔料とを組み合わせて用いることがより好ましい。   When the organic pigments exemplified above are used as the charge generation material, one kind may be used alone, or two or more kinds of pigments may be mixed and used. In this case, it is preferable to use a combination of two or more kinds of charge generating materials having spectral sensitivity characteristics in different spectral regions of the visible region and the near red region. Among them, a disazo pigment, a trisazo pigment and a phthalocyanine pigment are preferably used in combination. More preferred.

電荷発生層に用いるバインダ樹脂は特に制限されないが、例としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールや、アセタール等で変性された部分アセタール化ポリビニルブチラール樹脂等のポリビニルアセタール系樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、変性エーテル系ポリエステル樹脂、フェノキシ樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリビニルピリジン樹脂、セルロース系樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコーン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、カゼインや、塩化ビニル−酢酸ビニル共重合体、ヒドロキシ変性塩化ビニル−酢酸ビニル共重合体、カルボキシル変性塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体等の塩化ビニル−酢酸ビニル系共重合体、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、スチレン−アルキッド樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂等の絶縁性樹脂や、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルペリレン等の有機光導電性ポリマーなどが挙げられる。これらのバインダ樹脂は、いずれか1種を単独で用いても良く、2種類以上を任意の組み合わせで混合して用いても良い。   The binder resin used for the charge generation layer is not particularly limited, but examples include polyvinyl butyral resin, polyvinyl formal resin, polyvinyl acetal type such as partially acetalized polyvinyl butyral resin in which part of butyral is modified with formal, acetal, or the like. Resin, Polyarylate resin, Polycarbonate resin, Polyester resin, Modified ether type polyester resin, Phenoxy resin, Polyvinyl chloride resin, Polyvinylidene chloride resin, Polyvinyl acetate resin, Polystyrene resin, Acrylic resin, Methacrylic resin, Polyacrylamide resin, Polyamide Resin, polyvinyl pyridine resin, cellulose resin, polyurethane resin, epoxy resin, silicone resin, polyvinyl alcohol resin, polyvinyl pyrrolidone resin, casein, vinyl chloride -Vinyl acetate-vinyl acetate copolymers such as vinyl acetate copolymers, hydroxy-modified vinyl chloride-vinyl acetate copolymers, carboxyl-modified vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinyl acetate-maleic anhydride copolymers, etc. Insulating resins such as polymers, styrene-butadiene copolymers, vinylidene chloride-acrylonitrile copolymers, styrene-alkyd resins, silicone-alkyd resins, phenol-formaldehyde resins, poly-N-vinylcarbazole, polyvinylanthracene, polyvinyl And organic photoconductive polymers such as perylene. Any one of these binder resins may be used alone, or two or more thereof may be mixed and used in any combination.

電荷発生層は、具体的に、上述のバインダ樹脂を有機溶剤に溶解した溶液に、本発明のハロゲン置換インジウムフタロシアニン及び場合によって用いられるその他の電荷発生物質を分散させて塗布液を調整し、これを導電性支持体上に(下引き層を設ける場合は下引き層上に)塗布することにより形成される。   Specifically, the charge generation layer is prepared by dispersing the halogen-substituted indium phthalocyanine of the present invention and other charge generation materials used in some cases in a solution obtained by dissolving the above binder resin in an organic solvent. Is applied on a conductive support (or an undercoat layer when an undercoat layer is provided).

塗布液の作製に用いられる溶剤としては、バインダ樹脂を溶解させるものであれば特に制限されないが、例えば、ペンタン、ヘキサン、オクタン、ノナン等の飽和脂肪族系溶媒、トルエン、キシレン、アニソール等の芳香族系溶媒、クロロベンゼン、ジクロロベンゼン、クロロナフタレン等のハロゲン化芳香族系溶媒、ジメチルホルムアミド、N−メチル−2−ピロリドン等のアミド系溶媒、メタノール、エタノール、イソプロパノール、n−ブタノール、ベンジルアルコール等のアルコール系溶媒、グリセリン、ポリエチレングリコール等の脂肪族多価アルコール類、アセトン、シクロヘキサノン、メチルエチルケトン、4−メトキシ−4−メチル−2−ペンタノン等の鎖状又は環状ケトン系溶媒、ギ酸メチル、酢酸エチル、酢酸n−ブチル等のエステル系溶媒、塩化メチレン、クロロホルム、1,2−ジクロロエタン等のハロゲン化炭化水素系溶媒、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,4−ジオキサン、メチルセルソルブ、エチルセルソルブ等の鎖状又は環状エーテル系溶媒、アセトニトリル、ジメチルスルホキシド、スルホラン、ヘキサメチルリン酸トリアミド等の非プロトン性極性溶媒、n−ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン、トリエチルアミン等の含窒素化合物、リグロイン等の鉱油、水などが挙げられる。これらはいずれか1種を単独で用いても良く、2種以上を併用して用いてもよい。なお、上述の下引き層を設ける場合には、この下引き層を溶解しないものが好ましい。   The solvent used for preparing the coating solution is not particularly limited as long as it dissolves the binder resin. For example, saturated aliphatic solvents such as pentane, hexane, octane, and nonane, and aromatics such as toluene, xylene, and anisole. Group solvents, halogenated aromatic solvents such as chlorobenzene, dichlorobenzene, chloronaphthalene, amide solvents such as dimethylformamide, N-methyl-2-pyrrolidone, methanol, ethanol, isopropanol, n-butanol, benzyl alcohol, etc. Alcohol solvents, aliphatic polyhydric alcohols such as glycerin and polyethylene glycol, chain or cyclic ketone solvents such as acetone, cyclohexanone, methyl ethyl ketone, 4-methoxy-4-methyl-2-pentanone, methyl formate, ethyl acetate, N-butyl acetate Ester solvents such as methylene chloride, chloroform, 1,2-dichloroethane and other halogenated hydrocarbon solvents, diethyl ether, dimethoxyethane, tetrahydrofuran, 1,4-dioxane, methyl cellosolve, ethyl cellosolve, etc. Or a cyclic ether solvent, aprotic polar solvent such as acetonitrile, dimethyl sulfoxide, sulfolane, hexamethyl phosphate triamide, nitrogen-containing compounds such as n-butylamine, isopropanolamine, diethylamine, triethanolamine, ethylenediamine, triethylenediamine, triethylamine , Mineral oil such as ligroin, water and the like. Any one of these may be used alone, or two or more of these may be used in combination. In addition, when providing the above-mentioned undercoat layer, what does not melt | dissolve this undercoat layer is preferable.

電荷発生層において、バインダ樹脂と電荷発生物質との配合比(質量)は、バインダ樹脂100質量部に対して電荷発生物質が通常10質量部以上、好ましくは30質量部以上、また、通常1000質量部以下、好ましくは500質量部以下の範囲であり、その膜厚は通常0.1μm以上、好ましくは0.15μm以上、また、通常10μm以下、好ましくは0.6μm以下の範囲である。電荷発生物質の比率が高過ぎると、電荷発生物質の凝集等により塗布液の安定性が低下するおそれがある一方、電荷発生物質の比率が低過ぎると、感光体としての感度の低下を招くおそれがある。   In the charge generation layer, the blending ratio (mass) of the binder resin and the charge generation material is usually 10 parts by mass or more, preferably 30 parts by mass or more, and usually 1000 parts by mass with respect to 100 parts by mass of the binder resin. Part or less, preferably 500 parts by mass or less, and the film thickness is usually 0.1 μm or more, preferably 0.15 μm or more, and usually 10 μm or less, preferably 0.6 μm or less. If the ratio of the charge generation material is too high, the stability of the coating solution may be reduced due to aggregation of the charge generation material, while if the ratio of the charge generation material is too low, the sensitivity as a photoreceptor may be decreased. There is.

電荷発生物質を分散させる方法としては、ボールミル分散法、アトライター分散法、サンドミル分散法等の公知の分散法を用いることができる。この際、粒子を0.5μm以下、好ましくは0.3μm以下、より好ましくは0.15μm以下の範囲の粒子サイズに微細化することが有効である。   As a method for dispersing the charge generation material, a known dispersion method such as a ball mill dispersion method, an attritor dispersion method, or a sand mill dispersion method can be used. At this time, it is effective to refine the particles to a particle size in the range of 0.5 μm or less, preferably 0.3 μm or less, more preferably 0.15 μm or less.

・電荷輸送層
積層型感光体の電荷輸送層は、電荷輸送物質を含有するとともに、通常はバインダ樹脂と、必要に応じて使用されるその他の成分とを含有する。このような電荷輸送層は、具体的には、例えば電荷輸送物質等とバインダ樹脂とを溶剤に溶解又は分散して塗布液を作製し、これを順積層型感光層の場合には電荷発生層上に、また、逆積層型感光層の場合には導電性支持体上に(下引き層を設ける場合は下引き層上に)塗布、乾燥して得ることができる。
-Charge transport layer The charge transport layer of the multilayer photoconductor contains a charge transport material and usually contains a binder resin and other components used as necessary. Specifically, such a charge transport layer is prepared by, for example, preparing a coating solution by dissolving or dispersing a charge transport material or the like and a binder resin in a solvent. In addition, in the case of a reverse lamination type photosensitive layer, it can be obtained by coating and drying on a conductive support (or on the undercoat layer when an undercoat layer is provided).

電荷輸送物質としては、本発明に係る式[I]で表される化合物を用いることが好ましい。本発明に係る式[I]で表される化合物は、1種を単独で用いてもよく、複数種のものを任意の組み合わせ及び比率で用いてもよい。   As the charge transport material, it is preferable to use a compound represented by the formula [I] according to the present invention. As the compound represented by the formula [I] according to the present invention, one type may be used alone, or a plurality of types may be used in any combination and ratio.

また、本発明に係る式[I]で表される化合物に加えて、公知の他の電荷輸送物質を併用してもよい。他の電荷輸送物質を併用する場合、その種類は特に制限されないが、例えばカルバゾール誘導体、ヒドラゾン化合物、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体及びこれらの誘導体が複数結合されたものが好ましい。更に具体的には、特開平2‐230255号、特開昭63‐225660号、特開昭58‐198043号、特公昭58‐32372号、及び特公平7‐21646号の各公報に記載の化合物が好ましく使用される。これらの電荷輸送物質は、いずれか1種を単独で用いても良く、複数種のものを任意の組み合わせで併用しても良い。なお、本発明に係る式[I]で表される化合物と、公知の他の電荷輸送物質とを併用する場合は、併用する電荷輸送物質の電荷輸送物質全量における含有比率(質量%)は、特に制限されないが、50%以下であることが好ましく、1〜20%の範囲内であることがより好ましい。本発明に係る化合物の役割をより著しく果たすために、3〜10%の範囲内であることが特に好ましい。   In addition to the compound represented by the formula [I] according to the present invention, other known charge transport materials may be used in combination. When other charge transport materials are used in combination, the kind thereof is not particularly limited. For example, carbazole derivatives, hydrazone compounds, aromatic amine derivatives, stilbene derivatives, butadiene derivatives, and those obtained by bonding a plurality of these derivatives are preferable. More specifically, compounds described in JP-A-2-230255, JP-A-63-225660, JP-A-58-198043, JP-B-58-32372, and JP-B-7-21646 Are preferably used. Any one of these charge transport materials may be used alone, or a plurality of types may be used in any combination. When the compound represented by the formula [I] according to the present invention is used in combination with another known charge transport material, the content ratio (% by mass) of the charge transport material to be used in the total amount of the charge transport material is: Although not particularly limited, it is preferably 50% or less, and more preferably in the range of 1 to 20%. In order to more significantly fulfill the role of the compound according to the present invention, it is particularly preferably within the range of 3 to 10%.

電荷輸送層を結着させるのに用いるバインダ樹脂としては、例えばブタジエン樹脂、スチレン樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、アクリル酸エステル樹脂、メタクリル酸エステル樹脂、ビニルアルコール樹脂、エチルビニルエーテル等のビニル化合物の重合体及び共重合体、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、部分変性ポリビニルアセタール、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリアミド樹脂、ポリウレタン樹脂、セルロースエステル樹脂、フェノキシ樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、ポリ−N−ビニルカルバゾール樹脂等が挙げられる。中でも、ポリカーボネート樹脂、ポリアリレート樹脂が好ましい。これらのバインダ樹脂は、適当な硬化剤を用いて熱、光等により架橋させて用いることもできる。これらのバインダ樹脂は、いずれか1種を単独で用いても良く、2種以上を任意の組み合わせで用いても良い。   Examples of the binder resin used for binding the charge transport layer include vinyl compounds such as butadiene resin, styrene resin, vinyl acetate resin, vinyl chloride resin, acrylic ester resin, methacrylic ester resin, vinyl alcohol resin, and ethyl vinyl ether. Polymers and copolymers, polyvinyl butyral resin, polyvinyl formal resin, partially modified polyvinyl acetal, polycarbonate resin, polyester resin, polyarylate resin, polyamide resin, polyurethane resin, cellulose ester resin, phenoxy resin, silicone resin, silicone-alkyd Resin, poly-N-vinylcarbazole resin and the like. Of these, polycarbonate resins and polyarylate resins are preferred. These binder resins can also be used after being crosslinked by heat, light or the like using an appropriate curing agent. Any one of these binder resins may be used alone, or two or more thereof may be used in any combination.

バインダ樹脂と電荷輸送物質との割合は、バインダ樹脂100質量部に対して電荷輸送物質を20質量部以上の比率で使用する。中でも、残留電位低減の観点から30質量部以上が好ましく、更には、繰り返し使用した際の安定性や電荷移動度の観点から40質量部以上がより好ましい。一方、感光層の熱安定性の観点から、電荷輸送物質を通常は150質量部以下の比率で使用する。中でも、電荷輸送物質とバインダ樹脂との相溶性の観点から110質量部以下が好ましく、耐刷性の観点から80質量部以下がより好ましく、耐傷性の観点から70質量部以下が最も好ましい。   The ratio of the binder resin to the charge transport material is such that the charge transport material is used in a ratio of 20 parts by mass or more with respect to 100 parts by mass of the binder resin. Among these, 30 parts by mass or more is preferable from the viewpoint of residual potential reduction, and 40 parts by mass or more is more preferable from the viewpoint of stability and charge mobility when repeatedly used. On the other hand, from the viewpoint of thermal stability of the photosensitive layer, the charge transport material is usually used at a ratio of 150 parts by mass or less. Among these, 110 parts by mass or less is preferable from the viewpoint of compatibility between the charge transport material and the binder resin, 80 parts by mass or less is more preferable from the viewpoint of printing durability, and 70 parts by mass or less is most preferable from the viewpoint of scratch resistance.

電荷輸送層の膜厚は特に制限されないが、長寿命、画像安定性の観点、更には高解像度の観点から、通常5μm以上、好ましくは10μm以上、また、通常50μm以下、好ましくは45μm以下、更には30μm以下の範囲とする。   The thickness of the charge transport layer is not particularly limited, but is usually 5 μm or more, preferably 10 μm or more, and usually 50 μm or less, preferably 45 μm or less, from the viewpoint of long life, image stability, and high resolution. Is in the range of 30 μm or less.

<単層型感光層>
単層型感光層は、電荷発生物質と電荷輸送物質に加えて、積層型感光体の電荷輸送層と同様に、膜強度確保のためにバインダ樹脂を使用して形成する。具体的には、電荷発生物質と電荷輸送物質と各種バインダ樹脂とを溶剤に溶解又は分散して塗布液を作製し、導電性支持体上(下引き層を設ける場合は下引き層上)に塗布、乾燥して得ることができる。
電荷輸送物質及びバインダ樹脂の種類並びにこれらの使用比率は、積層型感光体の電荷輸送層について説明したものと同様である。これらの電荷輸送物質及びバインダ樹脂からなる電荷輸送媒体中に、さらに電荷発生物質が分散される。
<Single layer type photosensitive layer>
The single-layer type photosensitive layer is formed by using a binder resin in order to ensure film strength, in the same manner as the charge transport layer of the multilayer photoconductor, in addition to the charge generation material and the charge transport material. Specifically, a charge generation material, a charge transport material, and various binder resins are dissolved or dispersed in a solvent to prepare a coating solution, and on a conductive support (or an undercoat layer when an undercoat layer is provided). It can be obtained by coating and drying.
The types of the charge transport material and the binder resin and the use ratios thereof are the same as those described for the charge transport layer of the multilayer photoreceptor. A charge generating material is further dispersed in a charge transport medium comprising these charge transport materials and a binder resin.

電荷発生物質は、積層型感光体の電荷発生層について説明したものと同様のものが使用できる。但し、単層型感光体の感光層の場合、電荷発生物質の粒子径を充分に小さくする必要がある。具体的には、通常1μm以下、好ましくは0.5μm以下の範囲とする。   As the charge generation material, the same materials as those described for the charge generation layer of the multilayer photoreceptor can be used. However, in the case of a photosensitive layer of a single-layer type photoreceptor, it is necessary to sufficiently reduce the particle size of the charge generating material. Specifically, the range is usually 1 μm or less, preferably 0.5 μm or less.

単層型感光層内に分散される電荷発生物質の量は、少な過ぎると充分な感度が得られない一方で、多過ぎると帯電性の低下、感度の低下などの弊害があることから、単層型感光層全体に対して通常0.5質量%以上、好ましくは1質量%以上、また、通常50質量%以下、好ましくは20質量%以下の範囲で使用される。   If the amount of the charge generating material dispersed in the single-layer type photosensitive layer is too small, sufficient sensitivity cannot be obtained, but if it is too large, there are adverse effects such as a decrease in chargeability and a decrease in sensitivity. It is used in the range of usually 0.5% by mass or more, preferably 1% by mass or more, and usually 50% by mass or less, preferably 20% by mass or less based on the whole layer-type photosensitive layer.

また、単層型感光層におけるバインダ樹脂と電荷発生物質との使用比率は、バインダ樹脂100質量部に対して電荷発生物質が通常0.1質量部以上、好ましくは1質量部以上、また、通常30質量部以下、好ましくは10質量部以下の範囲とする。
単層型感光層の膜厚は、通常5μm以上、好ましくは10μm以上、また、通常100μm以下、好ましくは50μm以下の範囲である。
The use ratio of the binder resin to the charge generating substance in the single-layer type photosensitive layer is such that the charge generating substance is usually 0.1 parts by mass or more, preferably 1 part by mass or more, and usually 100 parts by mass of the binder resin. It is 30 mass parts or less, Preferably it is set as the range of 10 mass parts or less.
The film thickness of the single-layer type photosensitive layer is usually 5 μm or more, preferably 10 μm or more, and usually 100 μm or less, preferably 50 μm or less.

<その他の機能層>
積層型感光体、単層型感光体ともに、感光層又はそれを構成する各層には、成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性などを向上させる目的で、周知の酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、レベリング剤、可視光遮光剤などの添加物を含有させても良い。
また、積層型感光体、単層型感光体ともに、上記手順により形成された感光層を最上層、即ち表面層としてもよいが、その上に更に別の層を設け、これを表面層としてもよい。
例えば、感光層の損耗を防止したり、帯電器等から発生する放電生成物等による感光層の劣化を防止・軽減する目的で、保護層を設けても良い。
<Other functional layers>
For the purpose of improving film forming properties, flexibility, coating properties, contamination resistance, gas resistance, light resistance, etc., in both the photosensitive layer and the layers constituting the photosensitive layer, both of the multilayer type photosensitive member and the single layer type photosensitive member. Additives such as well-known antioxidants, plasticizers, ultraviolet absorbers, electron-withdrawing compounds, leveling agents, and visible light shielding agents may be included.
Further, in both the laminated type photoreceptor and the single layer type photoreceptor, the photosensitive layer formed by the above procedure may be the uppermost layer, that is, the surface layer, but another layer may be provided on the photosensitive layer and used as the surface layer. Good.
For example, a protective layer may be provided for the purpose of preventing the photosensitive layer from being worn out or preventing or reducing the deterioration of the photosensitive layer due to discharge products generated from a charger or the like.

保護層は、導電性材料を適当なバインダ樹脂中に含有させて形成するか、特開平9−190004号公報に記載のトリフェニルアミン骨格等の電荷輸送能を有する化合物を用いた共重合体を用いることができる。
保護層に用いる導電性材料としては、TPD(N,N’−ジフェニル−N,N’−ビス−(m−トリル)ベンジジン)等の芳香族アミノ化合物、酸化アンチモン、酸化インジウム、酸化錫、酸化チタン、酸化錫−酸化アンチモン、酸化アルミ、酸化亜鉛等の金属酸化物などを用いることが可能であるが、これに限定されるものではない。
The protective layer is formed by containing a conductive material in a suitable binder resin, or a copolymer using a compound having a charge transporting ability such as a triphenylamine skeleton described in JP-A-9-190004. Can be used.
Examples of the conductive material used for the protective layer include aromatic amino compounds such as TPD (N, N′-diphenyl-N, N′-bis- (m-tolyl) benzidine), antimony oxide, indium oxide, tin oxide, and oxide. Metal oxides such as titanium, tin oxide-antimony oxide, aluminum oxide, and zinc oxide can be used, but are not limited thereto.

保護層に用いるバインダ樹脂としては、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリケトン樹脂、ポリカーボネート樹脂、ポリビニルケトン樹脂、ポリスチレン樹脂、ポリアクリルアミド樹脂、シロキサン樹脂等の公知の樹脂を用いることができ、また、特開平9−190004号公報に記載のトリフェニルアミン骨格等の電荷輸送能を有する骨格と上記樹脂の共重合体を用いることもできる。   As the binder resin used for the protective layer, known resins such as polyamide resin, polyurethane resin, polyester resin, epoxy resin, polyketone resin, polycarbonate resin, polyvinyl ketone resin, polystyrene resin, polyacrylamide resin, and siloxane resin can be used. Also, a copolymer of the above resin and a skeleton having a charge transporting ability such as a triphenylamine skeleton described in JP-A-9-190004 can be used.

保護層の電気抵抗は、通常10Ω・cm以上、1014Ω・cm以下の範囲とする。電気抵抗が前記範囲より高くなると、残留電位が上昇しカブリの多い画像となってしまう一方、前記範囲より低くなると、画像のボケ、解像度の低下が生じてしまう。また、保護層は像露光の際に照射される光の透過を実質上妨げないように構成されなければならない。
また、感光体表面の摩擦抵抗や、摩耗を低減、トナーの感光体から転写ベルト、紙への転写効率を高める等の目的で、フッ素系樹脂、シリコーン樹脂、ポリエチレン樹脂等、又はこれらの樹脂からなる粒子や無機化合物の粒子を、表面層に含有させても良い。あるいは、これらの樹脂や粒子を含む層を新たに表面層として形成しても良い。
The electrical resistance of the protective layer is usually in the range of 10 9 Ω · cm to 10 14 Ω · cm. If the electric resistance is higher than the above range, the residual potential is increased, resulting in an image with much fog. On the other hand, if the electric resistance is lower than the above range, the image is blurred and the resolution is reduced. Further, the protective layer must be configured so as not to substantially prevent transmission of light irradiated during image exposure.
In addition, for the purpose of reducing the frictional resistance and wear on the surface of the photosensitive member, and increasing the transfer efficiency of the toner from the photosensitive member to the transfer belt, paper, etc., fluorine resin, silicone resin, polyethylene resin, etc. The surface layer may contain particles or inorganic compound particles. Alternatively, a layer containing these resins and particles may be newly formed as a surface layer.

<各層の形成方法>
これらの感光体を構成する各層は、含有させる物質を溶剤に溶解又は分散させて得られた塗布液を、導電性支持体上に浸漬塗布、スプレー塗布、ノズル塗布、バーコート、ロールコート、ブレード塗布等の公知の方法により、各層ごとに順次塗布・乾燥工程を繰り返すことにより形成される。
<Method for forming each layer>
Each layer constituting these photoreceptors is formed by immersing, spraying, nozzle coating, bar coating, roll coating, blade coating on a conductive support obtained by dissolving or dispersing a substance to be contained in a solvent. It is formed by repeating a coating / drying step sequentially for each layer by a known method such as coating.

塗布液の作製に用いられる溶媒又は分散媒に特に制限は無いが、具体例としては、メタノール、エタノール、プロパノール、2−メトキシエタノール等のアルコール類、テトラヒドロフラン、1,4−ジオキサン、ジメトキシエタン等のエーテル類、ギ酸メチル、酢酸エチル等のエステル類、アセトン、メチルエチルケトン、シクロヘキサノン、4−メトキシ−4−メチル−2−ペンタノン等のケトン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、テトラクロロエタン、1,2−ジクロロプロパン、トリクロロエチレン等の塩素化炭化水素類、n−ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン等の含窒素化合物類、アセトニトリル、N−メチルピロリドン、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤類等が挙げられる。また、これらは1種を単独で用いてもよいし、2種以上を任意の組み合わせで併用してもよい。   There are no particular restrictions on the solvent or dispersion medium used in the preparation of the coating solution, but specific examples include alcohols such as methanol, ethanol, propanol and 2-methoxyethanol, tetrahydrofuran, 1,4-dioxane, dimethoxyethane and the like. Ethers, esters such as methyl formate and ethyl acetate, acetone, methyl ethyl ketone, cyclohexanone, ketones such as 4-methoxy-4-methyl-2-pentanone, aromatic hydrocarbons such as benzene, toluene, xylene, dichloromethane, Chlorinated hydrocarbons such as chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,1,1-trichloroethane, tetrachloroethane, 1,2-dichloropropane, trichloroethylene, n-butylamine, isopropanolamine, Diethyla Emissions, triethanolamine, ethylenediamine, nitrogen-containing compounds such as triethylenediamine, acetonitrile, N- methylpyrrolidone, N, N- dimethylformamide, aprotic polar solvents such as dimethyl sulfoxide and the like. Moreover, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations.

溶媒又は分散媒の使用量は特に制限されないが、各層の目的や選択した溶媒・分散媒の性質を考慮して、塗布液の固形分濃度や粘度等の物性が所望の範囲となるように適宜調整するのが好ましい。
例えば、単層型感光体、及び機能分離型感光体の電荷輸送層の場合には、塗布液の固形分濃度を通常5質量%以上、好ましくは10質量%以上、また、通常40質量%以下、好ましくは35質量%以下の範囲とする。また、塗布液の粘度を使用時の温度において通常10mPa・s以上、好ましくは50mPa・s以上、また、通常500mPa・s以下、好ましくは400mPa・s以下の範囲とする。
The amount of the solvent or dispersion medium used is not particularly limited, but considering the purpose of each layer and the properties of the selected solvent / dispersion medium, it is appropriate so that the physical properties such as solid content concentration and viscosity of the coating liquid are within a desired range. It is preferable to adjust.
For example, in the case of a charge transport layer of a single layer type photoreceptor or a function separation type photoreceptor, the solid content concentration of the coating solution is usually 5% by mass or more, preferably 10% by mass or more, and usually 40% by mass or less. The range is preferably 35% by mass or less. In addition, the viscosity of the coating solution is usually 10 mPa · s or higher, preferably 50 mPa · s or higher, and usually 500 mPa · s or lower, preferably 400 mPa · s or lower, at the temperature during use.

また、積層型感光体の電荷発生層の場合には、塗布液の固形分濃度は、通常0.1質量%以上、好ましくは1質量%以上、また、通常15質量%以下、好ましくは10質量%以下の範囲とする。また、塗布液の粘度は、使用時の温度において通常0.01mPa・s以上、好ましくは0.1mPa・s以上、また、通常20mPa・s以下、好ましくは10mPa・s以下の範囲とする。   In the case of a charge generation layer of a multilayer photoreceptor, the solid content concentration of the coating solution is usually 0.1% by mass or more, preferably 1% by mass or more, and usually 15% by mass or less, preferably 10% by mass. % Or less. In addition, the viscosity of the coating solution is usually 0.01 mPa · s or higher, preferably 0.1 mPa · s or higher, and usually 20 mPa · s or lower, preferably 10 mPa · s or lower, at the temperature during use.

塗布液の塗布方法としては、浸漬コーティング法、スプレーコーティング法、スピナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、エアーナイフコーティング法、カーテンコーティング法等が挙げられるが、他の公知のコーティング法を用いることも可能である。
塗布液の乾燥は、室温における指触乾燥後、通常30℃以上、200℃以下の温度範囲で、1分から2時間の間、静止又は送風下で加熱乾燥させることが好ましい。また、加熱温度は一定であってもよく、乾燥時に温度を変更させながら加熱を行っても良い。
Examples of the coating method include a dip coating method, a spray coating method, a spinner coating method, a bead coating method, a wire bar coating method, a blade coating method, a roller coating method, an air knife coating method, and a curtain coating method. Other known coating methods can also be used.
The coating solution is preferably dried by touching at room temperature, followed by heating or drying in a temperature range of usually 30 ° C. or more and 200 ° C. or less for 1 minute to 2 hours, while still or blowing. Further, the heating temperature may be constant, or heating may be performed while changing the temperature during drying.

<画像形成装置>
次に、本発明の電子写真感光体を用いた画像形成装置(本発明の画像形成装置)の実施の形態について、装置の要部構成を示す図1を用いて説明する。但し、実施の形態は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない限り任意に変形して実施することができる。
図1に示すように、画像形成装置は、電子写真感光体1、帯電装置2、露光装置3及び現像装置4を備えて構成され、更に、必要に応じて転写装置5、クリーニング装置6及び定着装置7が設けられる。
<Image forming apparatus>
Next, an embodiment of an image forming apparatus using the electrophotographic photosensitive member of the present invention (an image forming apparatus of the present invention) will be described with reference to FIG. However, the embodiment is not limited to the following description, and can be arbitrarily modified without departing from the gist of the present invention.
As shown in FIG. 1, the image forming apparatus includes an electrophotographic photosensitive member 1, a charging device 2, an exposure device 3, and a developing device 4, and further, a transfer device 5, a cleaning device 6, and a fixing device as necessary. A device 7 is provided.

電子写真感光体1は、上述した本発明の電子写真感光体であれば特に制限はないが、図1ではその一例として、円筒状の導電性支持体の表面に上述した感光層を形成したドラム状の感光体を示している。この電子写真感光体1の外周面に沿って、帯電装置2、露光装置3、現像装置4、転写装置5及びクリーニング装置6がそれぞれ配置されている。
帯電装置2は、電子写真感光体1を帯電させるもので、電子写真感光体1の表面を所定電位に均一帯電させる。帯電装置としては、コロトロンやスコロトロン等のコロナ帯電装置、電圧印加された直接帯電部材を感光体表面に接触させて帯電させる直接帯電装置(接触型帯電装置)などがよく用いられる。直接帯電装置の例としては、帯電ローラ、帯電ブラシなどが挙げられる。なお、図1では、帯電装置2の一例としてローラ型の帯電装置(帯電ローラ)を示している。直接帯電手段として、気中放電を伴う帯電、あるいは気中放電を伴わない注入帯電いずれも可能である。また、帯電時に印可する電圧としては、直流電圧だけの場合、及び直流に交流を重畳させて用いることもできる。
The electrophotographic photoreceptor 1 is not particularly limited as long as it is the above-described electrophotographic photoreceptor of the present invention, but in FIG. 1, as an example, a drum in which the above-described photosensitive layer is formed on the surface of a cylindrical conductive support. The photoconductor is shown. A charging device 2, an exposure device 3, a developing device 4, a transfer device 5, and a cleaning device 6 are arranged along the outer peripheral surface of the electrophotographic photoreceptor 1.
The charging device 2 charges the electrophotographic photosensitive member 1 and uniformly charges the surface of the electrophotographic photosensitive member 1 to a predetermined potential. As the charging device, a corona charging device such as corotron or scorotron, a direct charging device (contact type charging device) in which a direct charging member to which voltage is applied is brought into contact with the surface of the photosensitive member and charged is often used. Examples of the direct charging device include a charging roller and a charging brush. In FIG. 1, a roller-type charging device (charging roller) is shown as an example of the charging device 2. As the direct charging means, either charging with air discharge or injection charging without air discharge is possible. Moreover, as a voltage applied at the time of charging, it is possible to use only a direct current voltage or to superimpose an alternating current on a direct current.

露光装置3は、電子写真感光体1に露光を行って電子写真感光体1の感光面に静電潜像を形成することができるものであれば、その種類に特に制限はない。具体例としては、ハロゲンランプ、蛍光灯、半導体レーザーやHe−Neレーザー等のレーザー、LEDなどが挙げられる。また、感光体内部露光方式によって露光を行うようにしてもよい。露光を行う際の光は任意であるが、例えば波長が780nmの単色光、波長600nm〜700nmのやや短波長寄りの単色光、波長380nm〜500nmの短波長の単色光などで露光を行えばよい。   The type of the exposure apparatus 3 is not particularly limited as long as it can expose the electrophotographic photoreceptor 1 to form an electrostatic latent image on the photosensitive surface of the electrophotographic photoreceptor 1. Specific examples include halogen lamps, fluorescent lamps, lasers such as semiconductor lasers and He—Ne lasers, LEDs, and the like. Further, exposure may be performed by a photoreceptor internal exposure method. The light used for the exposure is arbitrary. For example, the exposure may be performed using monochromatic light having a wavelength of 780 nm, monochromatic light having a wavelength of 600 nm to 700 nm, slightly short wavelength, or monochromatic light having a wavelength of 380 nm to 500 nm. .

現像装置4は、その種類に特に制限はなく、カスケード現像、一成分絶縁トナー現像、一成分導電トナー現像、二成分磁気ブラシ現像などの乾式現像方式や、湿式現像方式などの任意の装置を用いることができる。図1では、現像装置4は、現像槽41、アジテータ42、供給ローラ43、現像ローラ44、及び、規制部材45からなり、現像槽41の内部にトナーTを貯留している構成となっている。また、必要に応じ、トナーTを補給する補給装置(図示せず。)を現像装置4に付帯させてもよい。この補給装置は、ボトル、カートリッジなどの容器からトナーTを補給することが可能に構成される。   The type of the developing device 4 is not particularly limited, and an arbitrary device such as a dry development method such as cascade development, one-component insulating toner development, one-component conductive toner development, or two-component magnetic brush development, or a wet development method is used. be able to. In FIG. 1, the developing device 4 includes a developing tank 41, an agitator 42, a supply roller 43, a developing roller 44, and a regulating member 45, and has a configuration in which toner T is stored inside the developing tank 41. . Further, a replenishing device (not shown) for replenishing toner T may be attached to the developing device 4 as necessary. The replenishing device is configured to be able to replenish toner T from a container such as a bottle or a cartridge.

供給ローラ43は、導電性スポンジ等から形成される。現像ローラ44は、鉄、ステンレス鋼、アルミニウム、ニッケルなどの金属ロール、又はこうした金属ロールにシリコーン樹脂、ウレタン樹脂、フッ素樹脂などを被覆した樹脂ロールなどからなる。この現像ローラ44の表面には、必要に応じて、平滑加工や粗面加工を加えてもよい。   The supply roller 43 is formed from a conductive sponge or the like. The developing roller 44 is made of a metal roll such as iron, stainless steel, aluminum, or nickel, or a resin roll obtained by coating such a metal roll with a silicone resin, a urethane resin, a fluorine resin, or the like. The surface of the developing roller 44 may be smoothed or roughened as necessary.

現像ローラ44は、電子写真感光体1と供給ローラ43との間に配置され、電子写真感光体1及び供給ローラ43に各々当接している。供給ローラ43及び現像ローラ44は、回転駆動機構(図示せず。)によって回転される。供給ローラ43は、貯留されているトナーTを担持して、現像ローラ44に供給する。現像ローラ44は、供給ローラ43によって供給されるトナーTを担持して、電子写真感光体1の表面に接触させる。   The developing roller 44 is disposed between the electrophotographic photoreceptor 1 and the supply roller 43 and is in contact with the electrophotographic photoreceptor 1 and the supply roller 43, respectively. The supply roller 43 and the developing roller 44 are rotated by a rotation drive mechanism (not shown). The supply roller 43 carries the stored toner T and supplies it to the developing roller 44. The developing roller 44 carries the toner T supplied by the supply roller 43 and contacts the surface of the electrophotographic photosensitive member 1.

規制部材45は、シリコーン樹脂やウレタン樹脂などの樹脂ブレード、ステンレス鋼、アルミニウム、銅、真鍮、リン青銅などの金属ブレード、又はこうした金属ブレードに樹脂を被覆したブレード等により形成されている。この規制部材45は、現像ローラ44に当接し、ばね等によって現像ローラ44側に所定の力で押圧(一般的なブレード線圧は5g/cm〜500g/cm)される。必要に応じて、この規制部材45に、トナーTとの摩擦帯電によりトナーTに帯電を付与する機能を具備させてもよい。   The regulating member 45 is formed of a resin blade such as silicone resin or urethane resin, a metal blade such as stainless steel, aluminum, copper, brass, phosphor bronze, or a blade obtained by coating such metal blade with resin. The regulating member 45 abuts on the developing roller 44 and is pressed against the developing roller 44 side with a predetermined force by a spring or the like (general blade linear pressure is 5 g / cm to 500 g / cm). If necessary, the regulating member 45 may be provided with a function of imparting charging to the toner T by frictional charging with the toner T.

アジテータ42は、回転駆動機構によってそれぞれ回転されており、トナーTを攪拌するとともに、トナーTを供給ローラ43側に搬送する。アジテータ42は、羽根形状、大きさ等を違えて複数設けてもよい。
トナーTの種類は任意であり、粉砕トナーのほか、懸濁重合法や乳化重合法などを用いた重合トナーなどを用いることができる。特に重合トナーが好ましく、中でも径が3μm〜8μm程度の小粒径のものが好ましい。また、トナー粒子の形状も球状に近いものからポテト状の球形から外れたものまで様々に使用することができる。特に、帯電均一性、転写性、クリーニング性の観点から、乳化重合凝集法により製造される重合トナーを用いることが好ましい。
The agitator 42 is rotated by a rotation driving mechanism, and agitates the toner T and conveys the toner T to the supply roller 43 side. A plurality of agitators 42 may be provided with different blade shapes and sizes.
The type of the toner T is arbitrary, and besides the pulverized toner, a polymerized toner using a suspension polymerization method, an emulsion polymerization method, or the like can be used. In particular, a polymerized toner is preferable, and a toner having a small particle diameter of about 3 μm to 8 μm is particularly preferable. Also, the toner particles can be used in a variety of shapes, from a nearly spherical shape to a toner particle that is out of the potato shape. In particular, from the viewpoint of charging uniformity, transferability, and cleaning properties, it is preferable to use a polymerized toner produced by an emulsion polymerization aggregation method.

転写装置5は、その種類に特に制限はなく、コロナ転写、ローラ転写、ベルト転写などの静電転写法、圧力転写法、粘着転写法など、任意の方式を用いた装置を使用することができる。ここでは、転写装置5が電子写真感光体1に対向して配置された転写チャージャー、転写ローラ、転写ベルト等から構成されるものとする。この転写装置5は、トナーTの帯電電位とは逆極性で所定電圧値(転写電圧)を印加し、電子写真感光体1に形成されたトナー像を記録紙(用紙、媒体)Pに転写するものである。   The type of the transfer device 5 is not particularly limited, and an apparatus using an arbitrary system such as an electrostatic transfer method such as corona transfer, roller transfer, or belt transfer, a pressure transfer method, or an adhesive transfer method can be used. . Here, it is assumed that the transfer device 5 includes a transfer charger, a transfer roller, a transfer belt, and the like disposed so as to face the electrophotographic photoreceptor 1. The transfer device 5 applies a predetermined voltage value (transfer voltage) having a polarity opposite to the charging potential of the toner T, and transfers the toner image formed on the electrophotographic photosensitive member 1 to a recording paper (paper, medium) P. Is.

クリーニング装置6について特に制限はなく、ブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、磁気ローラクリーナー、ブレードクリーナーなど、任意のクリーニング装置を用いることができる。クリーニング装置6は、感光体1に付着している残留トナーをクリーニング部材で掻き落とし、残留トナーを回収するものである。但し、感光体表面に残留するトナーが少ないか、殆ど無い場合には、クリーニング装置6は無くても構わない。   There is no restriction | limiting in particular about the cleaning apparatus 6, Arbitrary cleaning apparatuses, such as a brush cleaner, a magnetic brush cleaner, an electrostatic brush cleaner, a magnetic roller cleaner, a blade cleaner, can be used. The cleaning device 6 is for scraping off residual toner adhering to the photoreceptor 1 with a cleaning member and collecting the residual toner. However, when there is little or almost no toner remaining on the surface of the photoreceptor, the cleaning device 6 may be omitted.

定着装置7は、上部定着部材(定着ローラ)71及び下部定着部材(定着ローラ)72から構成され、定着部材71又は72の内部には加熱装置73が備えられている。なお、図1では、上部定着部材71の内部に加熱装置73が備えられた例を示す。上部及び下部の各定着部材71、72は、ステンレス鋼、アルミニウムなどの金属素管にシリコーンゴムを被覆した定着ロール、更にテフロン(登録商標)樹脂で被覆した定着ロール、定着シートなど公知の熱定着部材を使用することができる。更に、各定着部材71、72は、離型性を向上させるためにシリコーンオイル等の離型剤を供給する構成としてもよく、バネ等により互いに強制的に圧力を加える構成としてもよい。   The fixing device 7 includes an upper fixing member (fixing roller) 71 and a lower fixing member (fixing roller) 72, and a heating device 73 is provided inside the fixing member 71 or 72. FIG. 1 shows an example in which a heating device 73 is provided inside the upper fixing member 71. The upper and lower fixing members 71 and 72 are known heat fixings such as a fixing roll in which a metal base tube such as stainless steel or aluminum is coated with silicone rubber, a fixing roll in which Teflon (registered trademark) resin is coated, or a fixing sheet. A member can be used. Further, each of the fixing members 71 and 72 may be configured to supply a release agent such as silicone oil in order to improve releasability, or may be configured to forcibly apply pressure to each other by a spring or the like.

記録紙P上に転写されたトナーは、所定温度に加熱された上部定着部材71と下部定着部材72との間を通過する際、トナーが溶融状態まで熱加熱され、通過後冷却されて記録紙P上にトナーが定着される。
なお、定着装置についてもその種類に特に限定はなく、ここで用いたものをはじめ、熱ローラ定着、フラッシュ定着、オーブン定着、圧力定着など、任意の方式による定着装置を設けることができる。
When the toner transferred onto the recording paper P passes between the upper fixing member 71 and the lower fixing member 72 heated to a predetermined temperature, the toner is heated to a molten state and cooled after passing through the recording paper. Toner is fixed on P.
The type of the fixing device is not particularly limited, and a fixing device of any type such as heat roller fixing, flash fixing, oven fixing, pressure fixing, etc. can be provided including those used here.

以上のように構成された電子写真装置では、次のようにして画像の記録が行われる。即ち、まず感光体1の表面(感光面)が、帯電装置2によって所定の電位(例えば−600V)に帯電される。この際、直流電圧により帯電させても良く、直流電圧に交流電圧を重畳させて帯電させてもよい。   In the electrophotographic apparatus configured as described above, an image is recorded as follows. That is, first, the surface (photosensitive surface) of the photoreceptor 1 is charged to a predetermined potential (for example, −600 V) by the charging device 2. At this time, charging may be performed by a DC voltage, or charging may be performed by superimposing an AC voltage on the DC voltage.

続いて、帯電された感光体1の感光面を、記録すべき画像に応じて露光装置3により露光し、感光面に静電潜像を形成する。そして、その感光体1の感光面に形成された静電潜像の現像を、現像装置4で行う。
現像装置4は、供給ローラ43により供給されるトナーTを、規制部材(現像ブレード)45により薄層化するとともに、所定の極性(ここでは感光体1の帯電電位と同極性であり、負極性)に摩擦帯電させ、現像ローラ44に担持しながら搬送して、感光体1の表面に接触させる。
Subsequently, the photosensitive surface of the charged photoreceptor 1 is exposed by the exposure device 3 according to the image to be recorded, and an electrostatic latent image is formed on the photosensitive surface. The developing device 4 develops the electrostatic latent image formed on the photosensitive surface of the photoreceptor 1.
The developing device 4 thins the toner T supplied by the supply roller 43 with a regulating member (developing blade) 45 and has a predetermined polarity (here, the same polarity as the charging potential of the photosensitive member 1) and the negative polarity. ), And conveyed while being carried on the developing roller 44 to be brought into contact with the surface of the photoreceptor 1.

現像ローラ44に担持された帯電トナーTが感光体1の表面に接触すると、静電潜像に対応するトナー像が感光体1の感光面に形成される。そしてこのトナー像は、転写装置5によって記録紙Pに転写される。この後、転写されずに感光体1の感光面に残留しているトナーが、クリーニング装置6で除去される。
トナー像の記録紙P上への転写後、定着装置7を通過させてトナー像を記録紙P上へ熱定着することで、最終的な画像が得られる。
When the charged toner T carried on the developing roller 44 comes into contact with the surface of the photoreceptor 1, a toner image corresponding to the electrostatic latent image is formed on the photosensitive surface of the photoreceptor 1. This toner image is transferred onto the recording paper P by the transfer device 5. Thereafter, the toner remaining on the photosensitive surface of the photoreceptor 1 without being transferred is removed by the cleaning device 6.
After the transfer of the toner image onto the recording paper P, the final image is obtained by passing the fixing device 7 and thermally fixing the toner image onto the recording paper P.

なお、画像形成装置は、上述した構成に加え、例えば除電工程を行うことができる構成としても良い。除電工程は、電子写真感光体に露光を行うことで電子写真感光体の除電を行う工程であり、除電装置としては、蛍光灯、LED等が使用される。また除電工程で用いる光は、強度としては露光光の3倍以上の露光エネルギーを有する光である場合が多い。
また、画像形成装置は更に変形して構成してもよく、例えば、前露光工程、補助帯電工程などの工程を行うことができる構成としたり、オフセット印刷を行う構成としたり、更には複数種のトナーを用いたフルカラータンデム方式の構成としてもよい。
In addition to the above-described configuration, the image forming apparatus may be configured to perform, for example, a static elimination process. The neutralization step is a step of neutralizing the electrophotographic photosensitive member by exposing the electrophotographic photosensitive member, and a fluorescent lamp, an LED, or the like is used as the neutralizing device. In addition, the light used in the static elimination process is often light having an exposure energy that is at least three times that of exposure light.
Further, the image forming apparatus may be further modified and configured, for example, a configuration capable of performing processes such as a pre-exposure process and an auxiliary charging process, a structure performing offset printing, and a plurality of types. A full-color tandem system configuration using toner may be used.

なお、電子写真感光体1を、帯電装置2、露光装置3、現像装置4、転写装置5、クリーニング装置6、及び定着装置7のうち1つ又は2つ以上と組み合わせて、一体型のカートリッジ(以下適宜「電子写真感光体カートリッジ」という。)として構成し、この電子写真感光体カートリッジを複写機やレーザービームプリンタ等の電子写真装置本体に対して着脱可能な構成にしてもよい。この場合、例えば電子写真感光体1やその他の部材が劣化した場合に、この電子写真感光体カートリッジを画像形成装置本体から取り外し、別の新しい電子写真感光体カートリッジを画像形成装置本体に装着することにより、画像形成装置の保守・管理が容易となる。   The electrophotographic photosensitive member 1 is combined with one or more of the charging device 2, the exposure device 3, the developing device 4, the transfer device 5, the cleaning device 6, and the fixing device 7 to form an integrated cartridge ( The electrophotographic photosensitive member cartridge may be configured to be detachable from an electrophotographic apparatus main body such as a copying machine or a laser beam printer. In this case, for example, when the electrophotographic photosensitive member 1 and other members are deteriorated, the electrophotographic photosensitive member cartridge is removed from the main body of the image forming apparatus, and another new electrophotographic photosensitive member cartridge is mounted on the main body of the image forming apparatus. This facilitates maintenance and management of the image forming apparatus.

以下、製造例、実施例及び比較例を挙げて、本発明を更に詳細に説明する。なお、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその趣旨に反しない限り以下の実施例に限定されるものではない。
<アリールアミン骨格を有する化合物の製造>
(製造例1:例示化合物CT−1の製造)
窒素雰囲気下、還流管、Dean−stark分水器を順次に反応器にセットし、N,N´−ジ(m−トリル)ベンジジン7.29g(20mmol)、ジフェニルアセトアルデヒド8.63g(44mmol)、p−トルエンスルホン酸一水和物0.20gをそれぞれ反応器に仕込み、撹拌をしながら、キシレン50mlに溶解した。その後、140℃を維持しながら、2時間還流脱水し、室温まで冷却した。反応液とトルエン/脱塩水(v/v=1:1)を混合撹拌し、分液した。得られた有機層を1NNaOHの水溶液で洗浄、分液し、さらに有機層を脱塩水2〜3回で洗浄、分液した。得られた有機層の溶媒を減圧留去し、フラッシュカラムクロマトグラフィー(シリカゲル400g、展開溶媒:トルエン/ヘキサン=1/2)に通し、さらにメタノールによる再沈で精製した。真空乾燥した後、上記の例示化合物CT−1を黄色い粉末として得た(収量10.81g、収率75%、純度99.5%)。なお、純度は、高速液体クロマトグラフィーのチャートの単純面積比率値から算出した。この化合物のIRスペクトル(JASCO FT/IR−350spectrophotometer)を図2に示す。
Hereinafter, the present invention will be described in more detail with reference to production examples, examples and comparative examples. In addition, the following examples are shown in order to explain the present invention in detail, and the present invention is not limited to the following examples unless it is contrary to the gist thereof.
<Production of compound having arylamine skeleton>
(Production Example 1: Production of exemplary compound CT-1)
Under a nitrogen atmosphere, a reflux tube and a Dean-stark water separator were sequentially set in the reactor, and 7.29 g (20 mmol) of N, N′-di (m-tolyl) benzidine, 8.63 g (44 mmol) of diphenylacetaldehyde, Each reactor was charged with 0.20 g of p-toluenesulfonic acid monohydrate and dissolved in 50 ml of xylene while stirring. Thereafter, the mixture was reflux dehydrated for 2 hours while maintaining 140 ° C., and cooled to room temperature. The reaction solution and toluene / demineralized water (v / v = 1: 1) were mixed and stirred and separated. The obtained organic layer was washed with 1N NaOH aqueous solution and separated, and the organic layer was further washed with demineralized water 2-3 times and separated. The solvent of the obtained organic layer was distilled off under reduced pressure, passed through flash column chromatography (silica gel 400 g, developing solvent: toluene / hexane = 1/2), and further purified by reprecipitation with methanol. After vacuum drying, the exemplified compound CT-1 was obtained as a yellow powder (yield 10.81 g, yield 75%, purity 99.5%). The purity was calculated from the simple area ratio value on the high performance liquid chromatography chart. The IR spectrum (JASCO FT / IR-350 spectrophotometer) of this compound is shown in FIG.

(製造例2:例示化合物CT−2の製造)
N,N´−ジ(p−トリル)ベンジジンを原料として使用した以外は、製造例1と同様な操作で、例示化合物CT−2を黄色い粉末として得た。この化合物のIRスペクトル(JASCO FT/IR−350 spectrophotometer)を図3に示す。
(Production Example 2: Production of Exemplified Compound CT-2)
Exemplified compound CT-2 was obtained as a yellow powder in the same manner as in Production Example 1, except that N, N′-di (p-tolyl) benzidine was used as a raw material. An IR spectrum (JASCO FT / IR-350 spectrophotometer) of this compound is shown in FIG.

(製造例3:例示化合物CT−3の製造)
N,N´−ジ[(3,4−ジメチル)フェニル]ベンジジンを原料として使用した以外は、製造例1と同様な操作で、例示化合物CT−3を黄色い粉末として得た。この化合物のIRスペクトル(JASCO FT/IR−350 spectrophotometer)を図4に示す。
(Production Example 3: Production of Exemplified Compound CT-3)
Exemplified compound CT-3 was obtained as a yellow powder in the same manner as in Production Example 1, except that N, N′-di [(3,4-dimethyl) phenyl] benzidine was used as a raw material. FIG. 4 shows the IR spectrum (JASCO FT / IR-350 spectrophotometer) of this compound.

(製造例4:例示化合物CT−4の製造)
N,N´−ジ[(2,4−ジメチル)フェニル]ベンジジンを原料として使用した以外は、製造例1と同様な操作で、例示化合物CT−4を黄色い粉末として得た。この化合物のIRスペクトル(JASCO FT/IR−350 spectrophotometer)を図5に示す。
(Production Example 4: Production of Exemplified Compound CT-4)
Exemplified compound CT-4 was obtained as a yellow powder in the same manner as in Production Example 1, except that N, N′-di [(2,4-dimethyl) phenyl] benzidine was used as a raw material. FIG. 5 shows the IR spectrum (JASCO FT / IR-350 spectrophotometer) of this compound.

(製造例5:例示化合物CT−5の製造)
N,N´−ジ[(2,5−ジメチル)フェニル]ベンジジンを原料として使用した以外は、製造例1と同様な操作で、例示化合物CT−5を黄色い粉末として得た。この化合物のIRスペクトル(JASCO FT/IR−350 spectrophotometer)を図6に示す。
(Production Example 5: Production of Exemplified Compound CT-5)
Exemplified compound CT-5 was obtained as a yellow powder in the same manner as in Production Example 1, except that N, N′-di [(2,5-dimethyl) phenyl] benzidine was used as a raw material. FIG. 6 shows the IR spectrum (JASCO FT / IR-350 spectrophotometer) of this compound.

(製造例6:例示化合物CT−12の製造)
下記化合物を原料として使用した以外は、製造例1と同様な操作で、例示化合物CT−12を黄色い粉末として得た。この化合物のIRスペクトル(JASCO FT/IR−350 spectrophotometer)を図7に示す。
(Production Example 6: Production of exemplary compound CT-12)
Exemplified compound CT-12 was obtained as a yellow powder in the same manner as in Production Example 1, except that the following compound was used as a raw material. FIG. 7 shows the IR spectrum (JASCO FT / IR-350 spectrophotometer) of this compound.

Figure 0005353078
Figure 0005353078

<電子写真感光体の作製>
(実施例1:電子写真感光体A1)
二軸延伸ポリエチレンテレフタレート樹脂フィルム(厚み75μm)の表面にアルミニウム蒸着層(厚み70nm)を形成した導電性支持体を用い、その導電性支持体のアルミニウム蒸着層上に、以下の下引き層用分散液をバーコーターにより、乾燥後の膜厚が1.25μmとなるように塗布し、乾燥させ下引き層を形成した。
<Production of electrophotographic photoreceptor>
(Example 1: Electrophotographic photoreceptor A1)
Using a conductive support in which an aluminum vapor-deposited layer (thickness 70 nm) is formed on the surface of a biaxially stretched polyethylene terephthalate resin film (thickness 75 μm), the following undercoat layer dispersion is formed on the aluminum vapor-deposited layer of the conductive support The liquid was applied by a bar coater so that the film thickness after drying was 1.25 μm and dried to form an undercoat layer.

下引き層用分散液の調製は以下の手法で行った。即ち、平均一次粒子径40nmのルチル型酸化チタン(石原産業社製「TTO55N」)と、該酸化チタンに対して3質量%のメチルジメトキシシラン(東芝シリコーン社製「TSL8117」)とを、高速流動式混合混練機(カワタ社製「SMG300」)に投入し、回転周速34.5m/秒で高速混合して得られた表面処理酸化チタンを、メタノール/1−プロパノールのボールミルにより分散させることにより、疎水化処理酸化チタンの分散スラリーとした。該分散スラリーと、メタノール/1−プロパノール/トルエンの混合溶媒、及び、ε−カプロラクタム[下記式(A)で表される化合物]/ビス(4−アミノ−3−メチルシクロヘキシル)メタン[下記式(B)で表される化合物]/ヘキサメチレンジアミン[下記式(C)で表される化合物]/デカメチレンジカルボン酸[下記式(D)で表される化合物]/オクタデカメチレンジカルボン酸[下記式(E)で表される化合物]の組成モル比率が、60%/15%/5%/15%/5%からなる共重合ポリアミドのペレットとを加熱しながら撹拌、混合してポリアミドペレットを溶解させた後、超音波分散処理を行うことにより、メタノール/1−プロパノール/トルエンの質量比が7/1/2で、疎水性処理酸化チタン/共重合ポリアミドを質量比3/1で含有する、固形分濃度18.0%の下引き層分散液とした。   The undercoat layer dispersion was prepared by the following method. That is, a rutile type titanium oxide having an average primary particle size of 40 nm (“TTO55N” manufactured by Ishihara Sangyo Co., Ltd.) and 3% by mass of methyldimethoxysilane (“TSL8117” manufactured by Toshiba Silicone Co., Ltd.) with respect to the titanium oxide were flowed at high speed. By dispersing the surface-treated titanium oxide obtained by mixing at high speed at a rotational peripheral speed of 34.5 m / sec with a ball mill of methanol / 1-propanol. A dispersion slurry of hydrophobized titanium oxide was obtained. The dispersion slurry, a mixed solvent of methanol / 1-propanol / toluene, and ε-caprolactam [compound represented by the following formula (A)] / bis (4-amino-3-methylcyclohexyl) methane [the following formula ( Compound represented by B)] / hexamethylenediamine [compound represented by the following formula (C)] / decamethylene dicarboxylic acid [compound represented by the following formula (D)] / octadecamethylene dicarboxylic acid [following formula The compound represented by (E)] has a composition molar ratio of 60% / 15% / 5% / 15% / 5% and is agitated and mixed with pellets of copolymerized polyamide to dissolve the polyamide pellets. Then, ultrasonic dispersion treatment is performed, so that the mass ratio of methanol / 1-propanol / toluene is 7/1/2, and the hydrophobically treated titanium oxide / copolymerized polyamid. Which contained a weight ratio 3/1 was undercoat layer dispersion having a solid concentration of 18.0%.

Figure 0005353078
Figure 0005353078

別に、A型オキシチタニウムフタロシアニン(CuKa特性X線に対するX線回折スペクトルにおいてブラッグ角(2θ±0.2°)の9.3°、10.6°、26.3°に回折ピークを示す。)10質量部を、4−メトキシ−4−メチル−2−ペンタノン150質量部に加え、サンドグラインドミルにて1時間粉砕分散処理を行った。その後、バインダ樹脂としてポリビニルブチラール(電気化学工業社製「デンカブチラール #6000C」)の5質量%1,2−ジメトキシエタン溶液100質量部、及び、フェノキシ樹脂(ユニオンカーバイト社製「PKHH」)の5質量%1,2−ジメトキシエタン溶液100質量部を加えて、電荷発生層用塗布液を調整した。この電荷発生層用塗布液を、上記の導電性支持体の下引き層上に、乾燥後の膜厚が0.4μmとなるようにバーコーターにより塗布し、乾燥させて電荷発生層を形成した。   Separately, type A oxytitanium phthalocyanine (diffraction peaks are shown at 9.3 °, 10.6 °, and 26.3 ° of the Bragg angle (2θ ± 0.2 °) in the X-ray diffraction spectrum for CuKa characteristic X-ray) 10 parts by mass was added to 150 parts by mass of 4-methoxy-4-methyl-2-pentanone, and pulverized and dispersed in a sand grind mill for 1 hour. Thereafter, 100 parts by mass of 5% by weight 1,2-dimethoxyethane solution of polyvinyl butyral (“Denkabutyral # 6000C” manufactured by Denki Kagaku Kogyo Co., Ltd.) as a binder resin, and phenoxy resin (“PKHH” manufactured by Union Carbide) A charge generation layer coating solution was prepared by adding 100 parts by mass of a 5 mass% 1,2-dimethoxyethane solution. The charge generation layer coating solution was applied onto the undercoat layer of the conductive support with a bar coater so that the film thickness after drying was 0.4 μm, and dried to form a charge generation layer. .

また、別に、電荷輸送物質として上記製造例1にて得られた例示化合物CT−1を40質量部、バインダ樹脂100質量部、及び、レベリング剤としてシリコーンオイル0.03質量部をテトラヒドロフラン/トルエン(質量比8/2)混合溶媒640質量部に溶解させて電荷輸送層用塗布液を調整した。なお、バインダ樹脂としては、以下に示す2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパンを芳香族ジオール成分とする繰り返し単位A51モル%と、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタンを芳香族ジオール成分とする繰り返し単位B49モル%とからなり、p−t−ブチルフェノールに由来する末端構造を有するポリカーボネート樹脂(粘度平均分子量30000)を用いた。   Separately, 40 parts by mass of the exemplified compound CT-1 obtained in Production Example 1 as a charge transport material, 100 parts by mass of a binder resin, and 0.03 parts by mass of silicone oil as a leveling agent were added in tetrahydrofuran / toluene ( (Mass ratio 8/2) A charge transport layer coating solution was prepared by dissolving in 640 parts by mass of a mixed solvent. In addition, as binder resin, the repeating unit A51 mol% which uses the following 2, 2-bis (4-hydroxy-3-methylphenyl) propane as an aromatic diol component, and 1,1-bis (4-hydroxyphenyl) are shown. ) A polycarbonate resin (viscosity average molecular weight 30000) having a terminal structure derived from pt-butylphenol, comprising 49 mol% of a repeating unit B having 1-phenylethane as an aromatic diol component.

Figure 0005353078
Figure 0005353078

Figure 0005353078
Figure 0005353078

電荷輸送層用塗布液を、前記電荷発生層上に、乾燥後の膜厚が20μmとなるようにフィルムアプリケーターにより塗布し、乾燥させて電荷輸送層を形成して、積層型感光層を有する電子写真感光体A1を製造した。   The charge transport layer coating solution is applied onto the charge generation layer with a film applicator so that the film thickness after drying is 20 μm, and is dried to form a charge transport layer. Photoreceptor A1 was produced.

(実施例2:電子写真感光体A2)
例示化合物CT−1に代え、CT−2を電荷輸送物質として使用した以外は、実施例1と同様にして、実施例としての電子写真感光体A2を得た。
(Example 2: Electrophotographic photoreceptor A2)
An electrophotographic photoreceptor A2 as an example was obtained in the same manner as in Example 1 except that CT-2 was used as a charge transport material instead of the exemplified compound CT-1.

(実施例3:電子写真感光体A3)
例示化合物CT−1に代え、CT−3を電荷輸送物質として使用した以外は、実施例1と同様にして、実施例としての電子写真感光体A3を得た。
(Example 3: Electrophotographic photoreceptor A3)
An electrophotographic photoreceptor A3 as an example was obtained in the same manner as in Example 1 except that CT-3 was used as the charge transport material instead of the exemplified compound CT-1.

(実施例4:電子写真感光体A4)
例示化合物CT−1に代え、CT−4を電荷輸送物質として使用した以外は、実施例1と同様にして、実施例としての電子写真感光体A4を得た。
(Example 4: Electrophotographic photoreceptor A4)
An electrophotographic photoreceptor A4 as an example was obtained in the same manner as in Example 1 except that CT-4 was used as a charge transport material instead of the exemplified compound CT-1.

(実施例5:電子写真感光体A5)
例示化合物CT−1に代え、CT−5を電荷輸送物質として使用した以外は、実施例1と同様にして、実施例としての電子写真感光体A5を得た。
(Example 5: electrophotographic photoreceptor A5)
An electrophotographic photoreceptor A5 as an example was obtained in the same manner as in Example 1 except that CT-5 was used as a charge transport material instead of the exemplified compound CT-1.

(実施例6:電子写真感光体A6)
例示化合物CT−1に代え、CT−12を電荷輸送物質として使用した以外は、実施例1と同様にして、実施例としての電子写真感光体A6を得た。
(Example 6: electrophotographic photoreceptor A6)
An electrophotographic photoreceptor A6 as an example was obtained in the same manner as in Example 1 except that CT-12 was used as a charge transport material instead of the exemplified compound CT-1.

(比較例1:電子写真感光体P1)
例示化合物CT−1に代えて、特許文献1に例示された下記の電荷輸送物質(a)を使用した以外は、実施例1と同様にして、比較例としての電子写真感光体P1を得た。
(Comparative Example 1: Electrophotographic photoreceptor P1)
An electrophotographic photoreceptor P1 as a comparative example was obtained in the same manner as in Example 1 except that the following charge transport material (a) exemplified in Patent Document 1 was used instead of the exemplified compound CT-1. .

Figure 0005353078
Figure 0005353078

(比較例2:電子写真感光体P2)
例示化合物CT−1に代えて、特許文献2に例示された下記の電荷輸送物質(b)を使用した以外は、実施例1と同様にして、比較例としての電子写真感光体P2を得た。
(Comparative Example 2: Electrophotographic photoreceptor P2)
An electrophotographic photosensitive member P2 as a comparative example was obtained in the same manner as in Example 1 except that the following charge transport material (b) exemplified in Patent Document 2 was used in place of the exemplified compound CT-1. .

Figure 0005353078
Figure 0005353078

(比較例3:電子写真感光体P3)
例示化合物CT−1に代えて、特許文献2に例示された下記の電荷輸送物質(c)を使用した以外は、実施例1と同様にして、比較例としての電子写真感光体P3を作ったところ、バインダ樹脂との相溶性が悪く、濁りのある塗布液を得た。その後、感光体の塗布時に、さらに結晶が析出し、特性の測定に至らなかった。
(Comparative Example 3: Electrophotographic photoreceptor P3)
An electrophotographic photosensitive member P3 as a comparative example was prepared in the same manner as in Example 1 except that the following charge transport material (c) exemplified in Patent Document 2 was used in place of the exemplified compound CT-1. However, the compatibility with the binder resin was poor and a cloudy coating solution was obtained. Thereafter, further crystals were precipitated during the application of the photoreceptor, and the measurement of the characteristics was not achieved.

Figure 0005353078
Figure 0005353078

<電子写真感光体の電気特性評価>
得られた電子写真感光体A1〜A6、P1〜P3の電子写真特性を、感光体評価装置(シンシア−55、ジェンテック社製)を用いて、スタティック方式でそれぞれ以下のようにして測定した。
まず、暗所でスコロトロン帯電器により、電子写真感光体を表面電位が、約−700Vになるよう放電を行い、一定速度(125mm/sec)で電子写真感光体を通過させて帯電させ、その帯電圧を測定し、初期帯電圧(V)を求めた。その後、2.5秒間放置したときの電位低下(DDR)を測定した。次に、強度1.0μW/cmの780nm単色光を照射し、感光体表面電位が、−550Vから−275Vになるまでに要した半減露光エネルギーE1/2(μJ/cm)と、照射10秒後の残留電位(Vr)を求めた。
各電子写真感光体A1〜A6、P1〜P3の評価結果を表2に示す。
<Evaluation of electrical characteristics of electrophotographic photoreceptor>
The electrophotographic characteristics of the obtained electrophotographic photoreceptors A1 to A6 and P1 to P3 were measured by the static method as follows using a photoreceptor evaluation apparatus (Cynthia-55, manufactured by Gentec Corporation).
First, the electrophotographic photosensitive member is discharged with a scorotron charger in a dark place so that the surface potential is about −700 V, charged through the electrophotographic photosensitive member at a constant speed (125 mm / sec), The voltage was measured and the initial charging voltage (V 0 ) was determined. Thereafter, the potential drop (DDR) was measured when left for 2.5 seconds. Next, irradiation with 780 nm monochromatic light having an intensity of 1.0 μW / cm 2 , irradiation with half-exposure energy E1 / 2 (μJ / cm 2 ) required until the photoreceptor surface potential is changed from −550 V to −275 V, and irradiation The residual potential (Vr) after 10 seconds was determined.
Table 2 shows the evaluation results of the electrophotographic photoreceptors A1 to A6 and P1 to P3.

Figure 0005353078
Figure 0005353078

表2に示すように、電子写真感光体A1〜A6は電子写真感光体P1〜P2に比べ、半減露光エネルギーがいずれも低い値でより高感度なものであって、しかも露光光照射10秒後の残留電圧Vrが、いずれも低い値でより好ましいものであった。したがって、本発明に係る式[I]で表される化合物である例示化合物CT−1、CT−2、CT−3、CT−4、CT−5、CT−12を電荷輸送物質として用いた電子写真感光体A1〜A6は、類似の構造を有するか、または幾何異性体である電荷輸送物質a、bを用いた電子写真感光体より、電気特性の面で、電子写真機器に好適である。また、公知のエナミン系電荷輸送物質cに比べ、本発明に係る式[I]で表される化合物は良好な溶解性を示すことがわかる。   As shown in Table 2, the electrophotographic photoconductors A1 to A6 are more sensitive than the electrophotographic photoconductors P1 and P2 with a low half-exposure energy, and 10 seconds after exposure light irradiation. The residual voltage Vr was more preferable at a low value. Therefore, an electron using the exemplary compounds CT-1, CT-2, CT-3, CT-4, CT-5, CT-12, which are compounds represented by the formula [I] according to the present invention, as a charge transport material The photographic photoreceptors A1 to A6 are more suitable for electrophotographic devices in terms of electrical characteristics than the electrophotographic photoreceptors using the charge transport materials a and b having a similar structure or geometric isomers. Moreover, it turns out that the compound represented by the formula [I] according to the present invention exhibits better solubility than the known enamine charge transport material c.

<応答性の評価>
得られた電子写真感光体A1〜A6、P1〜P2について、電荷輸送層の電界強度E=2.0+5E(V/cm)、温度21℃下におけるホールドリフト移動度をTOF法により測定した。各電子写真感光体A1〜A6、P1〜P2のホールドリフト移動度を表3に示す。
<Evaluation of responsiveness>
With respect to the obtained electrophotographic photoreceptors A1 to A6 and P1 to P2, the electric field strength E = 2.0 + 5E (V / cm) of the charge transport layer and the hole drift mobility at a temperature of 21 ° C. were measured by the TOF method. Table 3 shows the hole drift mobilities of the electrophotographic photoreceptors A1 to A6 and P1 to P2.

Figure 0005353078
Figure 0005353078

表3に示すように、電子写真感光体A1〜A6は電子写真感光体P1〜P2と比べ、ホールドリフト移動度が速い。したがって、本発明に係る式[I]で表される化合物である例示化合物CT−1、CT−2、CT−3、CT−4、CT−5、CT−12を電荷輸送物質として用いた電子写真感光体A1〜A6は、類似の構造を有するか、または幾何異性体である電荷輸送物質a、bを用いた電子写真感光体より、応答性の面で、電子写真機器に好適である。   As shown in Table 3, the electrophotographic photoreceptors A1 to A6 have a higher hole drift mobility than the electrophotographic photoreceptors P1 to P2. Therefore, an electron using the exemplary compounds CT-1, CT-2, CT-3, CT-4, CT-5, CT-12, which are compounds represented by the formula [I] according to the present invention, as a charge transport material The photographic photoreceptors A1 to A6 are more suitable for an electrophotographic apparatus in terms of responsiveness than the electrophotographic photoreceptors using the charge transport materials a and b having a similar structure or geometric isomers.

<画像形成試験、及び感光体の安定性・耐久性試験>
(実施例7〜8)
表面を陽極酸化し、封孔処理を施した直径3cm、長さ25.4cmのアルミニウムチューブ上に、電子写真感光体A4、A6と同様に作製した電荷発生層及び電荷輸送層用塗布液を浸漬塗布法により順次塗布、乾燥して、膜厚が電荷発生層0.3μm、電荷輸送層20μmの電子写真感光体ドラムを、実施例7〜8として、それぞれ作製した。これらの電子写真感光体ドラムを、ヒューレットパッカード社製レーザープリンタ、レーザージェット4(LJ4)に搭載し画像試験を行ったところ、いずれも画像欠陥やノイズの無い、良好な画像が得られた。次いで、1万枚連続プリントを行ったが、いずれもゴースト、カブリ、黒ポチ等の画像劣化は見られず、安定していた。
<Image formation test and photoreceptor stability / durability test>
(Examples 7 to 8)
The coating solution for the charge generation layer and the charge transport layer prepared in the same manner as the electrophotographic photoreceptors A4 and A6 is immersed in an aluminum tube having a diameter of 3 cm and a length of 25.4 cm, which is anodized and sealed. The electrophotographic photosensitive drums having a film thickness of 0.3 μm and a charge transport layer of 20 μm were prepared as Examples 7 to 8, respectively, by coating and drying sequentially by a coating method. When these electrophotographic photosensitive drums were mounted on a laser printer, Laser Jet 4 (LJ4) manufactured by Hewlett-Packard Co., and an image test was performed, good images without any image defects or noise were obtained. Subsequently, 10,000 sheets were continuously printed, and all of them were stable with no image deterioration such as ghost, fog, and black spots.

(比較例4〜5)
電荷輸送層塗布液として電子写真感光体P1、P2と同様に作製したものをそれぞれ用いた以外は、実施例7〜8と同様の手順で、比較例4〜5として、電子写真感光体ドラムを作製し、画像試験を行ったところ、いずれも画像欠陥やノイズの無い、良好な画像が得られたが、次いで、1万枚連続プリントを行ったところ、比較例4において、カブリ欠陥が見られ、比較例5において、ゴーストに変化は著しく見られた。
(Comparative Examples 4-5)
The electrophotographic photosensitive drum was used as Comparative Examples 4 to 5 in the same procedure as in Examples 7 to 8, except that those prepared in the same manner as the electrophotographic photosensitive members P1 and P2 were used as the charge transport layer coating solution. When produced and subjected to an image test, good images without image defects and noise were obtained. However, when 10,000 sheets were continuously printed, fogging defects were observed in Comparative Example 4. In Comparative Example 5, the ghost was significantly changed.

実施例7〜8及び比較例4〜5から、公知のエナミン系化合物a、bを用いた電子写真感光体においては、繰り返し特性に課題があり、使用が難しいが、本発明に係る式[I]で表される化合物を用いた電子写真感光体は、優れた繰り返し特性を有することが確認された。   From Examples 7 to 8 and Comparative Examples 4 to 5, the electrophotographic photosensitive member using the known enamine compounds a and b has a problem in repetitive characteristics and is difficult to use, but the formula [I It was confirmed that the electrophotographic photosensitive member using the compound represented by the above formula has excellent repetitive characteristics.

以上、現時点において、もっとも、実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う電子写真感光体および画像形成装置もまた本発明の技術的範囲に包含されるものとして理解されなければならない。   While the present invention has been described in connection with embodiments that are presently the most practical and preferred, the present invention is not limited to the embodiments disclosed herein. The electrophotographic photosensitive member and the image forming apparatus accompanying such changes are also within the technical scope of the present invention, and can be appropriately changed without departing from the spirit or concept of the invention that can be read from the claims and the entire specification. Must be understood as encompassed by.

本発明は、電機写真感光体を必要とする任意の分野で実施することができ、例えば複写機、プリンター、印刷機などに好適に用いられる。   The present invention can be carried out in any field that requires an electrophotographic photoreceptor, and is suitably used for, for example, a copying machine, a printer, a printing machine, and the like.

本発明の画像形成装置の一実施態様の要部構成を示す概略図である。1 is a schematic diagram illustrating a main configuration of an embodiment of an image forming apparatus of the present invention. 本発明の例示化合物CT−1のIRスペクトルである。It is IR spectrum of exemplary compound CT-1 of this invention. 本発明の例示化合物CT−2のIRスペクトルである。It is IR spectrum of exemplary compound CT-2 of this invention. 本発明の例示化合物CT−3のIRスペクトルである。It is IR spectrum of exemplary compound CT-3 of this invention. 本発明の例示化合物CT−4のIRスペクトルである。It is IR spectrum of exemplary compound CT-4 of this invention. 本発明の例示化合物CT−5のIRスペクトルである。It is IR spectrum of exemplary compound CT-5 of this invention. 本発明の例示化合物CT−12のIRスペクトルである。It is IR spectrum of exemplary compound CT-12 of this invention.

符号の説明Explanation of symbols

1 感光体(電子写真感光体)
2 帯電装置(帯電ローラ;帯電部)
3 露光装置(露光部)
4 現像装置(現像部)
5 転写装置
6 クリーニング装置
7 定着装置
41 現像槽
42 アジテータ
43 供給ローラ
44 現像ローラ
45 規制部材
71 上部定着部材(定着ローラ)
72 下部定着部材(定着ローラ)
73 加熱装置
T トナー
P 記録紙(用紙,媒体)
1 Photoconductor (Electrophotographic photoconductor)
2 Charging device (charging roller; charging unit)
3 Exposure equipment (exposure section)
4 Development device (development unit)
DESCRIPTION OF SYMBOLS 5 Transfer apparatus 6 Cleaning apparatus 7 Fixing apparatus 41 Developing tank 42 Agitator 43 Supply roller 44 Developing roller 45 Control member 71 Upper fixing member (fixing roller)
72 Lower fixing member (fixing roller)
73 Heating device T Toner P Recording paper (paper, medium)

Claims (2)

導電性支持体の上に、感光層を有する電子写真感光体において、該感光層が、一般式[I]で表されるエナミン系化合物を少なくとも一種含有することを特徴とする、電子写真感光体。
Figure 0005353078
(式[I]中、Ar〜Arは、同一または異なっていてもよく、それぞれ、1〜10の炭素原子を有し且つHammett則における置換基定数σpが0.20以下である置換基を有していてもよいアリール基を表し、nは2又は3の整数を表し、Zは一価の有機残基を表し、mは0〜4の整数を表す。ただし、Ar〜Arのうち、少なくとも一つは、1〜10の炭素原子を有し且つHammett則における置換基定数σpが0.20以下である置換基を有するアリール基である。)。
An electrophotographic photosensitive member having a photosensitive layer on a conductive support, wherein the photosensitive layer contains at least one enamine compound represented by the general formula [I]. .
Figure 0005353078
(In the formula [I], Ar 1 to Ar 6 may be the same or different, each having 1 to 10 carbon atoms and a substituent constant σp in the Hammett rule of 0.20 or less. And n represents an integer of 2 or 3 , Z represents a monovalent organic residue, and m represents an integer of 0 to 4. However, Ar 1 to Ar 2 Among them, at least one is an aryl group having a substituent having 1 to 10 carbon atoms and having a substituent constant σp of 0.20 or less in Hammett's rule .
請求項1に記載の電子写真感光体、該電子写真感光体を帯電させる帯電部、帯電した該電子写真感光体に露光を行い静電潜像を形成する露光部、および、露光により該電子写真感光体上に形成された静電潜像をトナーを用いて現像する現像部、を備えてなる画像形成装置。 2. The electrophotographic photosensitive member according to claim 1, a charging unit for charging the electrophotographic photosensitive member, an exposure unit for exposing the charged electrophotographic photosensitive member to form an electrostatic latent image, and the electrophotography by exposure. An image forming apparatus comprising: a developing unit that develops an electrostatic latent image formed on a photoreceptor using toner.
JP2008153597A 2007-06-11 2008-06-11 Electrophotographic photosensitive member and image forming apparatus using compound having enamine skeleton Active JP5353078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008153597A JP5353078B2 (en) 2007-06-11 2008-06-11 Electrophotographic photosensitive member and image forming apparatus using compound having enamine skeleton

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007154380 2007-06-11
JP2007154380 2007-06-11
JP2008153597A JP5353078B2 (en) 2007-06-11 2008-06-11 Electrophotographic photosensitive member and image forming apparatus using compound having enamine skeleton

Publications (2)

Publication Number Publication Date
JP2009020504A JP2009020504A (en) 2009-01-29
JP5353078B2 true JP5353078B2 (en) 2013-11-27

Family

ID=40360141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008153597A Active JP5353078B2 (en) 2007-06-11 2008-06-11 Electrophotographic photosensitive member and image forming apparatus using compound having enamine skeleton

Country Status (1)

Country Link
JP (1) JP5353078B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6168905B2 (en) * 2012-09-28 2017-07-26 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6354184B2 (en) * 2013-02-07 2018-07-11 三菱ケミカル株式会社 Electrophotographic photosensitive member, electrophotographic process cartridge, and image forming apparatus
JP2015052734A (en) * 2013-09-09 2015-03-19 三菱化学株式会社 Electrophotographic photoreceptor and image forming device
JP6489824B2 (en) * 2014-01-31 2019-03-27 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2653080B2 (en) * 1988-01-29 1997-09-10 ミノルタ株式会社 Photoconductor
JPH06348045A (en) * 1993-06-03 1994-12-22 Mitsubishi Paper Mills Ltd Electrophotographic electrophotoreceptor
JPH11305462A (en) * 1998-04-21 1999-11-05 Mitsubishi Chemical Corp Electrophotographic photoreceptor
JP2003167364A (en) * 2001-11-30 2003-06-13 Sharp Corp Electrophotographic photoreceptor and image forming apparatus using the same
JP4245181B2 (en) * 2006-12-29 2009-03-25 シャープ株式会社 Electrophotographic photosensitive member and image forming apparatus

Also Published As

Publication number Publication date
JP2009020504A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP4957136B2 (en) Electrophotographic photosensitive member and image forming apparatus
WO2014021341A1 (en) Electrophotographic photo-receptor, electrophotographic photo-receptor cartridge, image-forming device, and triarylamine compound
JP2007320925A (en) Triarylamine-based compound and electrophotographic photosensitizer using the same and image-forming device
JP2009169023A (en) Electrophotographic photoreceptor and image forming apparatus
JP2008107649A (en) Electrophotographic photoreceptor and image forming apparatus using the photoreceptor
JP5353078B2 (en) Electrophotographic photosensitive member and image forming apparatus using compound having enamine skeleton
JP5636728B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP2008083105A (en) Electrophotographic photoreceptor, process cartridge for image forming apparatus, and image forming apparatus
JP4997755B2 (en) Electrophotographic photosensitive member and image forming apparatus using bishydrazone compound having triarylamine skeleton
JP5803743B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP4983066B2 (en) Amine compound, electrophotographic photoreceptor, image forming method and image forming apparatus
JP5590202B2 (en) Electrophotographic photosensitive member, novel enamine compound, electrophotographic photosensitive member cartridge, and image forming apparatus
JP5509732B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, image forming apparatus, and novel stilbene-based compound containing the novel stilbene-based compound
JP5407249B2 (en) Enamine compound, electrophotographic photoreceptor using the compound, and image forming apparatus
JP5803744B2 (en) Charge transport material, electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP5152300B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP2008216559A (en) Electrophotographic photoreceptor and image forming device using the photoreceptor
JP5103949B2 (en) Hydrazone compound, electrophotographic photoreceptor and image forming apparatus
WO2012121176A1 (en) Charge-transporting substance, electrophotographic photosensitive body, electrophotographic photosensitive body cartridge, and imaging device
JP4793218B2 (en) Electrophotographic photoreceptor and image forming apparatus using the photoreceptor
JP6102639B2 (en) Electrophotographic photosensitive member, electrophotographic cartridge, and image forming apparatus
JP5712858B2 (en) Electrophotographic photosensitive member containing triarylamine compound, electrophotographic photosensitive member cartridge, and image forming apparatus
JP5391665B2 (en) Electrophotographic photosensitive member, novel enamine compound, electrophotographic photosensitive member cartridge, and image forming apparatus
JP6387649B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP5369736B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge and image forming apparatus containing novel enamine compound

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5353078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350