JP5352787B2 - Two-dimensional photonic crystal thermal radiation source - Google Patents

Two-dimensional photonic crystal thermal radiation source Download PDF

Info

Publication number
JP5352787B2
JP5352787B2 JP2006230128A JP2006230128A JP5352787B2 JP 5352787 B2 JP5352787 B2 JP 5352787B2 JP 2006230128 A JP2006230128 A JP 2006230128A JP 2006230128 A JP2006230128 A JP 2006230128A JP 5352787 B2 JP5352787 B2 JP 5352787B2
Authority
JP
Japan
Prior art keywords
slab
light
refractive index
point
dimensional photonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006230128A
Other languages
Japanese (ja)
Other versions
JP2008053134A (en
Inventor
進 野田
卓 浅野
敬太 望月
均 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd, Kyoto University filed Critical Alps Electric Co Ltd
Priority to JP2006230128A priority Critical patent/JP5352787B2/en
Publication of JP2008053134A publication Critical patent/JP2008053134A/en
Application granted granted Critical
Publication of JP5352787B2 publication Critical patent/JP5352787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat radiation light source, capable of providing light of a wavelength of a specific narrow band. <P>SOLUTION: Two-dimensional photonic crystals are formed on a slab 21 having a quantum well structure obtained by alternately laminating a first semiconductor layer 211 and a second semiconductor layer 212 having partially overlapped electron band gaps by periodically forming pores 22 therein. A photonic band gap related to TM polarization as it includes a transition energy between a plurality of sub-bands of the quantum well is formed by appropriately arranging the pores 22. A spot-like defect 23 having a defect level corresponding to the energy width and a form asymmetric to the direction vertical to the slab is disposed within the slab 21. When this light source is heated, light of a wavelength corresponding to the transition between sub-bands is generated, and this light is taken through the defect 23 in the direction vertical to the slab 21. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、熱輻射により発光する光源であって、特に特定の狭い帯域の波長の光を高効率で発光する熱輻射光源に関する。   The present invention relates to a light source that emits light by heat radiation, and more particularly to a heat radiation light source that emits light of a specific narrow band of wavelengths with high efficiency.

熱輻射光源は、熱輻射体に電力を供給することにより生じるジュール熱により発光させることができる他、電力に依存することなく熱輻射体に熱を与えることにより発光を得ることができるいう点で、適用できる利用範囲が広い。例えば、赤外線を用いてエンジンの排ガス中の成分を分析するための排ガスセンサにおいて、エンジンの廃熱で熱輻射体を加熱することにより、別途電源や熱源を用いることなく熱輻射体から赤外線を発生させ、赤外線源として利用することができると期待される。   In addition to being able to emit light by Joule heat generated by supplying power to the heat radiator, the heat radiation light source can obtain light emission by applying heat to the heat radiator without depending on the power. Wide application range. For example, in an exhaust gas sensor used to analyze components in engine exhaust gas using infrared rays, infrared rays are generated from the heat radiator without using a separate power source or heat source by heating the heat radiator with engine waste heat. Expected to be used as an infrared source.

熱輻射体が発する光は広い波長範囲に亘るスペクトルを有する。例えば熱輻射体を数十℃〜数百℃に加熱した場合、その発光波長範囲は数μm〜数十μmとなる。しかし、前述の排ガスセンサを含む赤外線センサでは一般に所定の波長の光のみを利用するため、このような熱輻射光源を用いると所定波長以外の発光が無駄となり光の利用効率が低い。また、所定波長以外の波長の光が測定に悪影響を及ぼすおそれもある。   The light emitted by the heat radiator has a spectrum over a wide wavelength range. For example, when the heat radiator is heated to several tens of degrees Celsius to several hundreds of degrees Celsius, the emission wavelength range is several μm to several tens of μm. However, since infrared sensors including the above-described exhaust gas sensor generally use only light of a predetermined wavelength, if such a heat radiation light source is used, light emission other than the predetermined wavelength is wasted and the light use efficiency is low. In addition, light having a wavelength other than the predetermined wavelength may adversely affect the measurement.

特許文献1には、照明用の可視光源としての利用効率を高めるために、カットオフ波長よりも長波長の赤外光を反射する赤外反射手段を熱輻射体の表面に設けることが記載されている。この構成に依れば、照明等に使用することができない赤外光が外部に輻射されることを防ぐことができ、光の利用効率を高めることができる。しかし、この構成ではカットオフ波長よりも短い波長の光は全て熱輻射体から輻射されてしまうため、前述のように所定波長のみを利用したい場合には光の利用効率の点で問題が残る。   Patent Document 1 describes that an infrared reflecting means for reflecting infrared light having a wavelength longer than the cutoff wavelength is provided on the surface of the heat radiator in order to increase the utilization efficiency as a visible light source for illumination. ing. According to this configuration, infrared light that cannot be used for illumination or the like can be prevented from being radiated to the outside, and the light utilization efficiency can be increased. However, in this configuration, all light having a wavelength shorter than the cut-off wavelength is radiated from the heat radiator. Therefore, when only a predetermined wavelength is desired as described above, there remains a problem in terms of light utilization efficiency.

特開平09-139193号公報([0008]〜[0011], 図1)JP 09-139193 A ([0008] to [0011], FIG. 1)

本発明が解決しようとする課題は、所定波長の周辺の狭い波長帯域の光を効率よく得ることができる熱輻射光源を提供することである。   The problem to be solved by the present invention is to provide a thermal radiation light source capable of efficiently obtaining light in a narrow wavelength band around a predetermined wavelength.

上記課題を解決するために成された本発明に係る熱輻射光源は、
複数種の半導体を積層して成る量子井戸構造を有するスラブと
前記スラブを加熱する熱源とを備え、
前記スラブ内に、
a) 前記量子井戸の複数のサブバンドの間の遷移エネルギーを含むような、TM偏波に対するフォトニックバンドギャップが形成されるように周期的に多数配置された、前記複数種の半導体と異なる屈折率を有する異屈折率領域と、
b) 前記異屈折率領域の周期的配置の点状欠陥から成り前記遷移エネルギーに対応する波長の光が内部に存在可能な点状欠陥と
を備えることを特徴とする2次元フォトニック結晶熱輻射光源である。
また、本発明に係る熱輻射光源の他の態様のものは、
複数種の半導体を積層して成る量子井戸構造を有するスラブを備え、
前記スラブ内に、
a) 前記量子井戸の複数のサブバンドの間の遷移エネルギーを含むような、TM偏波に対するフォトニックバンドギャップが形成されるように周期的に多数配置された、前記複数種の半導体と異なる屈折率を有する異屈折率領域と、
b) 前記異屈折率領域の周期的配置の点状欠陥から成り前記遷移エネルギーに対応する波長の光が内部に存在可能な点状欠陥と
を備え、
前記スラブが加熱されて前記遷移エネルギーに対応するエネルギーがスラブに供給されることにより、該遷移エネルギーに対応する波長の発光が生じることを特徴とする2次元フォトニック結晶熱輻射光源である。
The thermal radiation light source according to the present invention made to solve the above problems is
A slab having a quantum well structure formed by stacking a plurality of types of semiconductors ;
A heat source for heating the slab ,
In the slab,
a) Refraction different from the plurality of types of semiconductors, which are periodically arranged in a large number so as to form a photonic band gap with respect to TM polarization, including transition energy between a plurality of subbands of the quantum well. A refractive index region having a refractive index;
b) A two-dimensional photonic crystal thermal radiation characterized by comprising a point-like defect consisting of point-like defects having a periodic arrangement in the different refractive index region and having a wavelength corresponding to the transition energy. Light source.
Moreover, the thing of the other aspect of the thermal radiation light source which concerns on this invention is
A slab having a quantum well structure formed by laminating a plurality of types of semiconductors,
In the slab,
a) Refraction different from the plurality of types of semiconductors, which are periodically arranged in a large number so as to form a photonic band gap with respect to TM polarization, including transition energy between a plurality of subbands of the quantum well. A refractive index region having a refractive index;
b) consisting of point-like defects with periodic arrangement of the different refractive index regions, and point-like defects in which light having a wavelength corresponding to the transition energy can exist inside
With
When the slab is heated and energy corresponding to the transition energy is supplied to the slab, light emission having a wavelength corresponding to the transition energy is generated.

以下、この2次元フォトニック結晶熱輻射光源の構成について詳しく説明する。
(1) 量子井戸構造
上記量子井戸構造について、図1を用いて説明する。電子のエネルギーに関する第1バンドギャップ131を有する第1半導体121と、第1バンドギャップ131よりも幅が狭く第1バンドギャップ131の一部と重複する第2バンドギャップ132を有する第2半導体122を交互に積層したスラブ11を形成する。これにより、第2半導体122の第2バンドギャップ132よりも上側(高エネルギー側)にある伝導バンド15の下端付近であって第1バンドギャップ131に挟まれた領域14内では、第1バンドギャップ131の上端と第2バンドギャップ132の上端の差HA及び第2半導体122の厚さHBにより定まる離散的なエネルギー準位のみを取り得る。同様に、第2半導体122の第2バンドギャップ132よりも下側(低エネルギー側)にある価電子バンド16にも離散的なエネルギー準位が形成される。このようなエネルギー準位はサブバンドと呼ばれる。なお、ここでは2種類の半導体(第1半導体と第2半導体)を積層した場合を例に説明したが、量子井戸構造及びサブバンドは3種類以上の半導体を積層することにより形成することもできる。
Hereinafter, the configuration of the two-dimensional photonic crystal thermal radiation light source will be described in detail.
(1) Quantum well structure The above quantum well structure will be described with reference to FIG. A first semiconductor 121 having a first band gap 131 relating to the energy of electrons, and a second semiconductor 122 having a second band gap 132 that is narrower than the first band gap 131 and overlaps a part of the first band gap 131. The alternately stacked slabs 11 are formed. As a result, in the region 14 near the lower end of the conduction band 15 above (high energy side) the second band gap 132 of the second semiconductor 122 and sandwiched between the first band gaps 131, the first band gap is obtained. Only discrete energy levels determined by the difference H A between the upper end of 131 and the upper end of the second band gap 132 and the thickness H B of the second semiconductor 122 can be taken. Similarly, discrete energy levels are also formed in the valence band 16 on the lower side (low energy side) of the second band gap 132 of the second semiconductor 122. Such energy levels are called subbands. Here, the case where two types of semiconductors (first semiconductor and second semiconductor) are stacked has been described as an example. However, the quantum well structure and the subband can be formed by stacking three or more types of semiconductors. .

何らかの方法で低エネルギー側のサブバンドに電子又は正孔を供給したうえで、スラブを加熱してサブバンド間のエネルギー差に対応するエネルギーをスラブに供給することにより、そのサブバンド間で電子又は正孔の遷移が生じ、このエネルギー差に対応する波長の発光が生じる。電子や正孔は、例えば量子井戸を作製する際にいずれかの半導体に不純物をドーピングすることにより供給することができる。あるいは、加熱により価電子バンドから伝導バンドに励起される電子又は正孔(真性キャリア)をサブバンドに供給することもできる。   After supplying electrons or holes to sub-bands on the low energy side by some method, the slab is heated and energy corresponding to the energy difference between the sub-bands is supplied to the slab. Hole transition occurs, and light emission having a wavelength corresponding to this energy difference occurs. Electrons and holes can be supplied, for example, by doping impurities in any of the semiconductors when producing quantum wells. Alternatively, electrons or holes (intrinsic carriers) excited from the valence band to the conduction band by heating can be supplied to the subband.

サブバンド間遷移により得られる光は、電界がスラブに垂直な方向に、磁界がスラブに平行な方向に、それぞれ振動するTM(Transverse Magnetic)偏波となる。このようなTM偏波の光はスラブに平行な方向に進行し、ほぼスラブの端面からのみ放出されるため、発光効率が低い。そこで本発明では、従来の輻射体のようにスラブ表面の広い面積から発光させるため、次に述べる2次元フォトニック結晶及び点状欠陥を用いる。   The light obtained by the intersubband transition becomes TM (Transverse Magnetic) polarized light that vibrates in a direction perpendicular to the slab and in a direction parallel to the slab. Such TM-polarized light travels in a direction parallel to the slab and is emitted almost only from the end face of the slab, so the luminous efficiency is low. Therefore, in the present invention, the following two-dimensional photonic crystal and point defects are used in order to emit light from a large area of the slab surface like a conventional radiator.

(2) 2次元フォトニック結晶及び点状欠陥
スラブ11内に、そのスラブの材料である第1半導体及び第2半導体とは異なる屈折率を有する領域(異屈折率領域)を多数、周期的に配置する。これにより、光のエネルギーに関するバンド構造が形成され、スラブ内を光が伝播することが不可能となるエネルギー範囲(波長範囲、周波数範囲)が形成される。このようなエネルギー範囲はフォトニックバンドギャップ(Photonic Band Gap:PBG)と呼ばれる。このPBGは、結晶内に原子が周期的に配置されていることにより形成される電子のバンドギャップに対応するものであることから、上述のように異屈折率領域が周期的に配置されたものはフォトニック結晶と呼ばれ、特に、異屈折率領域がスラブ内に配置されたものは2次元フォトニック結晶と呼ばれる。
(2) Two-dimensional photonic crystal and point-like defects In the slab 11, a large number of regions (different refractive index regions) having different refractive indexes from the first semiconductor and the second semiconductor that are the materials of the slab are periodically formed. Deploy. As a result, a band structure relating to light energy is formed, and an energy range (wavelength range, frequency range) in which light cannot propagate through the slab is formed. Such an energy range is called a photonic band gap (PBG). This PBG corresponds to the band gap of electrons formed by the periodic arrangement of atoms in the crystal, so that the different refractive index regions are periodically arranged as described above. Is called a photonic crystal, and in particular, one in which a different refractive index region is arranged in a slab is called a two-dimensional photonic crystal.

PBGは、TM偏波に関してのみ形成される場合、TE偏波(電界がスラブに平行な方向に振動する偏波)に関してのみ形成される場合、及びTE偏波とTM偏波の双方に関して形成される場合がある。これらは異屈折率領域の形状や配置等による。上述のようにサブバンド間遷移により得られる光はTM偏波であることから、本発明では少なくともTM偏波に関してPBGが形成される2次元フォトニック結晶を用いる。そのようなPBGが形成される2次元フォトニック結晶の例として、特開2004-294517号公報に記載の正三角形の異屈折率領域を三角格子状に配置したものや、特開2005-099672号公報に記載のC3vの対称性(3回回転対称性を有し、鏡映面を3面有する対称性)を有する異屈折率領域を三角格子状に配置したものが挙げられる。
なお、異屈折率領域は、スラブとは屈折率が異なる何らかの部材を埋め込むことによって形成してもよいし、スラブに空孔を設けることにより形成してもよい。後者の方が作製が容易であり、スラブとの屈折率の差も十分に大きくすることができるため望ましい。
PBG is formed only for TM polarized waves, formed only for TE polarized waves (polarized waves whose electric field vibrates in a direction parallel to the slab), and formed for both TE polarized waves and TM polarized waves. There is a case. These depend on the shape and arrangement of the different refractive index regions. As described above, since light obtained by intersubband transition is TM polarization, a two-dimensional photonic crystal in which PBG is formed at least with respect to TM polarization is used in the present invention. Examples of two-dimensional photonic crystals on which such PBGs are formed include those in which equilateral triangular different refractive index regions described in JP-A-2004-294517 are arranged in a triangular lattice pattern, or JP-A-2005-099672 Examples are those in which different refractive index regions having C3v symmetry (symmetry having three-fold rotational symmetry and three mirror surfaces) described in the publication are arranged in a triangular lattice pattern.
The different refractive index region may be formed by embedding some member having a refractive index different from that of the slab, or may be formed by providing a hole in the slab. The latter is preferable because it is easier to manufacture and the difference in refractive index from the slab can be sufficiently increased.

このスラブ11内の異屈折率領域の周期的配置に、点状の欠陥を設ける。この点状欠陥により、PBG中にエネルギー準位(欠陥準位)が形成される。これにより、その欠陥準位に対応する波長の光が(欠陥以外の部分ではTM偏波に関するPBGが形成されているため存在することができないのに対して)点状欠陥内に存在することができるようになる。欠陥準位は異屈折率領域の形状や周期等のパラメータに依存する(例えば特開2001-272555号公報を参照)ため、これらのパラメータを調整することにより欠陥準位をサブバンド間の遷移エネルギー(エネルギー差)に一致させ、そのサブバンド間での電子又は正孔の遷移により放出される光を点状欠陥内にのみ存在させることができる。   Point-like defects are provided in the periodic arrangement of the different refractive index regions in the slab 11. Due to the point defects, energy levels (defect levels) are formed in the PBG. As a result, light having a wavelength corresponding to the defect level may exist in a point defect (as opposed to the fact that PBG related to TM polarization is formed in a portion other than the defect). become able to. Since the defect level depends on parameters such as the shape and period of the different refractive index region (see, for example, JP-A-2001-272555), by adjusting these parameters, the defect level can be converted into the transition energy between subbands. The light emitted by the transition of electrons or holes between the subbands can be made to exist only in the point defect.

このような点状欠陥は本発明において以下の2つの役割を有する。
第1の役割は共振効果により共振波長(欠陥準位に対応する波長)の発光強度を増強することにある。一般に熱輻射においては、光が発光体から放出されるまでに通過する平均長さと吸収係数の積が大きくなるほど、発光強度は理論限界である黒体の発光強度に最も近づく。本発明の光源では、点状欠陥に共振している光は他の波長の光に比べて長い時間点状欠陥内にとどまるため、通過長さと吸収係数の積が大きくなる。
吸収係数は量子井戸構造の電子(正孔)密度により調整することができ、電子(正孔)密度を上げると吸収係数が大きくなる。上記の通り、電子(正孔)密度を上げてゆくと、共振波長の光は他の波長の光よりも低い電子(正孔)密度で発光強度が黒体輻射の強度に近づいて飽和するが、電子(正孔)密度を更に上げると、他の波長の光の強度も増加してしまう。そこで、量子井戸構造の電子(正孔)密度を、共振光の強度(これは、本輻射光源からの放射光の強度にほぼ等しい)が飽和する最小限の値とすることにより、共振波長の光を理論限界に近い発光強度とし、かつそれ以外の波長の光を十分に弱いままとすることができる。なお、電子(正孔)密度と共振波長の発光強度の関係は、実験又は理論計算により求めることができる。
Such a point defect has the following two roles in the present invention.
The first role is to enhance the emission intensity at the resonance wavelength (wavelength corresponding to the defect level) by the resonance effect. In general, in heat radiation, as the product of the average length of light passing through the light emitter and the absorption coefficient increases, the light emission intensity approaches the light emission intensity of a black body, which is the theoretical limit. In the light source of the present invention, the light resonating with the spot-like defect stays in the spot-like defect for a longer time than the light of other wavelengths, so that the product of the passage length and the absorption coefficient is increased.
The absorption coefficient can be adjusted by the electron (hole) density of the quantum well structure, and the absorption coefficient increases as the electron (hole) density is increased. As described above, when the electron (hole) density is increased, the light of the resonance wavelength is saturated with the emission intensity approaching the intensity of blackbody radiation at a lower electron (hole) density than the light of other wavelengths. If the electron (hole) density is further increased, the intensity of light of other wavelengths also increases. Therefore, by setting the electron (hole) density of the quantum well structure to a minimum value at which the intensity of the resonant light (which is approximately equal to the intensity of the emitted light from the present radiation source) is saturated, It is possible to make the light emission intensity close to the theoretical limit and to keep light of other wavelengths sufficiently weak. The relationship between the electron (hole) density and the emission intensity at the resonance wavelength can be obtained by experiment or theoretical calculation.

第2の役割は、サブバンド間遷移により生じたスラブ内の光をスラブに垂直な方向に放出させることである。即ち、点状欠陥内に存在することができる欠陥準位に対応した波長を有する光は、2次元フォトニック結晶が形成されていることによりスラブに平行な方向には伝播することができず、点状欠陥からスラブに垂直な方向に放出される。これにより、サブバンド間遷移により生じた光をスラブの表面からから発光させることができる。   The second role is to emit light in the slab generated by intersubband transition in a direction perpendicular to the slab. That is, light having a wavelength corresponding to a defect level that can exist in a point-like defect cannot propagate in a direction parallel to the slab because the two-dimensional photonic crystal is formed, It is emitted from the point defect in the direction perpendicular to the slab. Thereby, the light generated by the intersubband transition can be emitted from the surface of the slab.

更に、点状欠陥はスラブに垂直な方向に関して非対称な形状とすることが望ましい。この非対称性により、点状欠陥内の光に(TM偏波では0となる)スラブに平行な電界の成分が生成され、これによりその光はスラブに垂直な方向に放出され易くなる。このような形状の点状欠陥には、例えば上述の特開2001-272555号公報に記載の円錐状のものや、スラブの上面と下面で面積が異なりスラブに垂直な断面が階段状のもの等がある。
なお、このような非対称性のない点状欠陥においてもスラブと外部(空気)の界面の影響によりスラブに平行な電界の成分がわずかに生成されるが、点状欠陥の形状を非対称にすることによりその成分を大きくすることができる。
Further, it is desirable that the point defect has an asymmetric shape with respect to the direction perpendicular to the slab. Due to this asymmetry, an electric field component parallel to the slab (which is 0 for TM polarization) is generated in the light within the point-like defect, which makes it easier for the light to be emitted in a direction perpendicular to the slab. Examples of such a point defect include a conical shape described in the above-mentioned JP-A-2001-272555, and a slab having a step-like cross section perpendicular to the slab with different areas on the upper and lower surfaces of the slab. There is.
Even in such a point defect without asymmetry, a slight electric field component parallel to the slab is generated due to the influence of the interface between the slab and the outside (air), but the shape of the point defect is made asymmetric. The component can be enlarged by.

サブバンド間遷移により得られる光を効率よく波長選択すると共に、輻射体のようにスラブの表面の広い範囲から発光させるために、点状欠陥は1枚のスラブに多数設けることが望ましい。但し、点状欠陥の数が多すぎると異屈折率領域の配置の周期性を損ない、PBGの形成を困難にする。また、点状欠陥同士が結合し、それにより共振波長の拡がりが生じるため波長選択性が低下する。そのため、点状欠陥は互いに、異屈折率領域の周期で6周期以上離れるように配置することが望ましい。   In order to efficiently select the wavelength of light obtained by intersubband transition and emit light from a wide range of the surface of the slab like a radiator, it is desirable to provide a large number of point defects on one slab. However, if the number of point-like defects is too large, the periodicity of the arrangement of the different refractive index regions is impaired, and the formation of PBG becomes difficult. In addition, the point defects are coupled to each other, which causes the resonance wavelength to broaden, so that the wavelength selectivity is lowered. Therefore, it is desirable to arrange the point defects so as to be separated from each other by 6 cycles or more in the period of the different refractive index region.

2次元フォトニック結晶のPBGがTM偏波に関してのみ形成されている場合には、上記点状欠陥において生じるスラブに平行な方向の電界成分を持つ光が2次元フォトニック結晶内に漏れてしまう。そのため、前記サブバンド間の遷移エネルギー(エネルギー差)において、TM偏波とTE偏波の双方に関するPBGが形成されていることが望ましい。このようなPBGは完全PBGと呼ばれており、上述の正三角形の異屈折率領域を三角格子状に配置した2次元フォトニック結晶や、C3vの対称性を有する異屈折率領域を三角格子状に配置した2次元フォトニック結晶等において形成される。この完全PBGにより、点状欠陥内に生じたスラブに平行な方向の電界成分を持つ光も2次元フォトニック結晶内を伝播することができなくなり、光の漏れを防ぐことができる。   When the PBG of the two-dimensional photonic crystal is formed only with respect to the TM polarization, light having an electric field component in a direction parallel to the slab generated in the point-like defect leaks into the two-dimensional photonic crystal. Therefore, it is desirable that a PBG for both TM polarization and TE polarization is formed in the transition energy (energy difference) between the subbands. Such a PBG is called a complete PBG. The two-dimensional photonic crystal in which the above-mentioned equilateral triangular different refractive index regions are arranged in a triangular lattice shape, or a different refractive index region having C3v symmetry is formed in a triangular lattice shape. Formed in a two-dimensional photonic crystal or the like. With this complete PBG, light having an electric field component in a direction parallel to the slab generated in the point defect can no longer propagate through the two-dimensional photonic crystal, and light leakage can be prevented.

(3) 3方向傾斜異屈折率領域を有する2次元フォトニック結晶
次に、本発明の2次元フォトニック結晶熱輻射光源の好適な一構成について述べる。その2次元フォトニック結晶熱輻射光源は上述の構成において、
前記異屈折率領域が前記スラブの一方の表面である第1表面において三角格子状に、且つ各格子点に関して少なくとも3回回転対称性を持つように配置されており、
また、該異屈折率領域が前記スラブの他方の表面である第2表面において前記第1表面の三角格子に対して相補的な位置にある三角格子状に、且つ各格子点に関して少なくとも3回回転対称性を持つように配置されており、
前記第1表面の各格子点から該格子点に最隣接である前記第2表面の3個の格子点に向けてそれぞれ該異屈折率領域の柱が延びている、
ことを特徴とする。
(3) Two-dimensional photonic crystal having a three-direction tilted different refractive index region Next, a preferred configuration of the two-dimensional photonic crystal thermal radiation light source of the present invention will be described. The two-dimensional photonic crystal thermal radiation light source has the above-described configuration.
The different refractive index regions are arranged in a triangular lattice shape on the first surface, which is one surface of the slab, and so as to have at least three-fold rotational symmetry with respect to each lattice point;
Further, the different refractive index region is rotated in at least three times with respect to each lattice point in the form of a triangular lattice in a position complementary to the triangular lattice on the first surface on the second surface which is the other surface of the slab. Arranged so as to have symmetry,
Columns of the different refractive index regions extend from the respective lattice points on the first surface toward the three lattice points on the second surface that are closest to the lattice point.
It is characterized by that.

ここで、第2表面の三角格子が第1表面の三角格子に対して相補的な位置にあるとは、第2表面の三角格子の各格子点が、第1表面の三角格子の格子点から成る三角形の重心の位置に配置されていることをいう。
本願では、このような形状に形成された異屈折率領域を「3方向傾斜異屈折率領域」と呼ぶ。なお、3方向傾斜異屈折率領域を有する2次元フォトニック結晶については、2006年春季第53回応用物理学関係連合講演会講演予稿集第3分冊、講演番号22a-L-11(著者:北川均 他)に記載されている。
Here, the fact that the triangular lattice on the second surface is in a position complementary to the triangular lattice on the first surface means that each lattice point of the triangular lattice on the second surface is from the lattice point of the triangular lattice on the first surface. It is arranged at the position of the center of gravity of the triangle.
In the present application, the different refractive index region formed in such a shape is referred to as a “three-direction inclined different refractive index region”. For the two-dimensional photonic crystal with a three-direction tilted different refractive index region, the third volume of the 2006 Spring 53rd Joint Conference on Applied Physics, Lecture No. 22a-L-11 (Author: Kitagawa) Etc.).

3方向傾斜異屈折率領域を有する2次元フォトニック結晶は、上述のC3vの対称性を有する2次元フォトニック結晶の1種であり、完全PBGを形成することができる。この2次元フォトニック結晶は正三角形の異屈折率領域を有する2次元フォトニック結晶よりも広い完全PBGを持つという特長を有する。また、異屈折率領域の一部を欠損させること、言い換えれば一部の異屈折率領域を形成しないことにより、スラブに垂直な方向に関して非対称な形状の点状欠陥を形成することができる点も、3方向傾斜異屈折率領域を有する2次元フォトニック結晶の特長である。   A two-dimensional photonic crystal having a three-direction tilted different refractive index region is one type of the above-described two-dimensional photonic crystal having C3v symmetry, and can form a complete PBG. This two-dimensional photonic crystal has a feature that it has a larger complete PBG than a two-dimensional photonic crystal having a regular refractive index region. In addition, a point defect having an asymmetric shape with respect to the direction perpendicular to the slab can be formed by deleting a part of the different refractive index region, in other words, by not forming a part of the different refractive index region. This is a feature of a two-dimensional photonic crystal having a three-direction tilted different refractive index region.

本発明に係る2次元フォトニック結晶熱輻射光源によれば、従来の熱輻射光源では得ることができなかった、所定の波長にのみ強い強度を有する光を得ることができる。すなわち、所定波長の光のみを選択的に、高効率で取り出すことができる。更に、従来の熱輻射光源と同様に、この光を輻射体の表面の広い範囲から発光させることができる。   According to the two-dimensional photonic crystal thermal radiation light source according to the present invention, it is possible to obtain light having a strong intensity only at a predetermined wavelength, which cannot be obtained with a conventional thermal radiation light source. That is, only light of a predetermined wavelength can be selectively extracted with high efficiency. Further, like the conventional heat radiation light source, this light can be emitted from a wide range of the surface of the radiator.

また、本発明の2次元フォトニック結晶熱輻射光源は、単に加熱するだけで、所定波長でのみ強い強度を有する光を得ることができるため、エンジンの排ガス中の成分を分析するための排ガスセンサ等のように、熱源が存在する環境で使用する赤外線センサ等への応用に特に有効である。   In addition, the two-dimensional photonic crystal thermal radiation light source of the present invention can obtain light having a strong intensity only at a predetermined wavelength simply by heating, so that an exhaust gas sensor for analyzing components in engine exhaust gas. As described above, the present invention is particularly effective for application to an infrared sensor used in an environment where a heat source exists.

本発明に係る2次元フォトニック結晶熱輻射光源の一実施形態を図2〜図5を用いて説明する。図2は本実施形態の熱輻射光源の斜視図である。本実施形態の熱輻射光源は、AlxGa1-xAsから成る第1半導体層211とGaAsから成る第2半導体層212が交互に170層ずつ積層したスラブ21から成る。本実施形態では、x=0.27とし、 第1半導体層211及び第2半導体層212の厚さはそれぞれ15nm及び7.5nmとした。第1半導体層211のバンドギャップの上端と第2半導体層212のバンドギャップの上端のエネルギー差HAは0.27eVである。また、サブバンドのうち最もエネルギーが低い第1サブバンドと、その次にエネルギーが低い第2サブバンドの間のエネルギー差は0.12eVである。GaAsには、Gaの一部をSiに置換することにより、サブバンド間遷移に寄与させるための電子が注入されている。電子の濃度については後述する。 An embodiment of a two-dimensional photonic crystal thermal radiation light source according to the present invention will be described with reference to FIGS. FIG. 2 is a perspective view of the thermal radiation light source of this embodiment. The thermal radiation light source of this embodiment includes a slab 21 in which first semiconductor layers 211 made of Al x Ga 1-x As and second semiconductor layers 212 made of GaAs are alternately stacked. In this embodiment, x = 0.27, and the thicknesses of the first semiconductor layer 211 and the second semiconductor layer 212 are 15 nm and 7.5 nm, respectively. The upper end of the band gap of the first semiconductor layer 211 is the energy difference H A of the upper end of the band gap of the second semiconductor layer 212 is 0.27 eV. The energy difference between the first subband with the lowest energy among the subbands and the second subband with the next lowest energy is 0.12 eV. GaAs is injected with electrons to contribute to intersubband transition by replacing part of Ga with Si. The electron concentration will be described later.

スラブ21内に、スラブ21の法線に対して傾斜した方向に延びる空孔22から成る3方向傾斜異屈折率領域を周期的に配置する。本実施形態で用いた3方向傾斜異屈折率領域の構成を図3に示す。図3(a)はスラブ21の上面(図中に実線で示したもの)及び下面(破線で示したもの)における異屈折率領域の形状を示す。スラブの上面及び下面における空孔22の断面はいずれも円形であって三角格子状に配置されている。上面における空孔の断面221は下面における空孔の断面222による三角格子の重心の直上に配置されており、同様に断面222は断面221による三角格子の重心の直下に配置されている。そして、図3(b)に示すように、断面221から最近接の3個の断面222に向けて3個の空孔22がスラブ21に対して傾斜した方向に延びている。同様に、断面222から最近接の3個の断面221に向けて3個の空孔22がスラブ21に対して傾斜した方向に延びている(図3(c))。このように空孔22が形成されていることにより、スラブ21内の任意の位置でのスラブ21に平行な断面において、空孔22の断面形状はC3vの対称性を有する。これにより、空孔22の周期により定まる波長帯域において完全PBGが形成される。本実施形態では空孔22の周期を4μmとした。この場合、完全PBGはおよそ波長9.5μm〜11.1μmの間に形成される。   In the slab 21, a three-direction inclined different refractive index region composed of holes 22 extending in a direction inclined with respect to the normal line of the slab 21 is periodically arranged. The configuration of the three-direction tilted different refractive index region used in the present embodiment is shown in FIG. FIG. 3A shows the shapes of the different refractive index regions on the upper surface (shown by a solid line) and the lower surface (shown by a broken line) of the slab 21. The cross sections of the holes 22 on the upper and lower surfaces of the slab are both circular and arranged in a triangular lattice shape. The cross section 221 of the hole on the upper surface is disposed immediately above the center of gravity of the triangular lattice by the cross section 222 of the hole on the lower surface, and similarly, the cross section 222 is disposed immediately below the center of gravity of the triangular lattice by the cross section 221. As shown in FIG. 3 (b), the three holes 22 extend in a direction inclined with respect to the slab 21 from the cross section 221 toward the three closest cross sections 222. Similarly, three holes 22 extend in a direction inclined with respect to the slab 21 from the cross section 222 toward the three closest cross sections 221 (FIG. 3 (c)). Since the holes 22 are formed in this way, the cross-sectional shape of the holes 22 has C3v symmetry in a cross section parallel to the slab 21 at an arbitrary position in the slab 21. Thereby, a complete PBG is formed in the wavelength band determined by the period of the holes 22. In the present embodiment, the period of the holes 22 is 4 μm. In this case, the complete PBG is formed between wavelengths of approximately 9.5 μm to 11.1 μm.

スラブ21内に、一部の空孔22を欠損させる(一部の空孔22を設けない)ことにより、点状欠陥23を形成する。本実施形態では図4に示すように、スラブ21の上面の三角格子のうち直線上に隣接する3個の格子点241〜243からそれぞれ3個ずつ、スラブ21の下面に向かって図中の矢印の方向に延びる空孔22を欠損させた。この場合、スラブ21の上面には空孔22が全くない格子点241〜243が存在する。それに対して、スラブ21の下面にはそのような格子点はなく、空孔22を欠損させた格子点のいずれにおいても、欠損していない空孔22がその格子点から1個又は2個延びている。従って、本実施形態の点状欠陥23はスラブに垂直な方向に関して非対称な構造を有する。   A point-like defect 23 is formed in the slab 21 by deleting a part of the holes 22 (not providing a part of the holes 22). In the present embodiment, as shown in FIG. 4, three of the three lattice points 241 to 243 adjacent to each other on the straight line among the triangular lattices on the upper surface of the slab 21 are directed toward the lower surface of the slab 21. The voids 22 extending in the direction of were removed. In this case, lattice points 241 to 243 having no holes 22 are present on the upper surface of the slab 21. On the other hand, there is no such lattice point on the lower surface of the slab 21, and at any lattice point where the void 22 is missing, one or two voids 22 that are not missing extend from the lattice point. ing. Therefore, the point defect 23 of this embodiment has an asymmetric structure with respect to the direction perpendicular to the slab.

点状欠陥23は、図5の上面図に示すように、スラブ21内に多数設ける。本実施形態では、長辺の長さが12a(aは三角格子の周期)、短辺の長さが4×31/2aである長方形の単位領域25に2個(単位領域の頂点及び面心に各1個)の割合で点状欠陥23を配置した。単位領域25中の点状欠陥23用格子点の数は、2次元フォトニック結晶の周期性が損われることがなく且つ点状欠陥同士の結合が十分小さくなるように、この領域25中の三角格子の全格子点の数の1/16、という十分に少ない数とした。 A large number of point-like defects 23 are provided in the slab 21 as shown in the top view of FIG. In the present embodiment, two rectangular unit regions 25 having a long side length of 12a (a is a period of a triangular lattice) and a short side length of 4 × 3 1/2 a (vertex of the unit region and The point-like defects 23 were arranged at a ratio of 1 each to the face center. The number of lattice points for the point defect 23 in the unit region 25 is such that the periodicity of the two-dimensional photonic crystal is not impaired and the coupling between the point defects is sufficiently small. The number was sufficiently small, 1/16 of the total number of lattice points.

本実施形態の2次元フォトニック結晶熱輻射光源では、スラブ21を加熱すると、第1半導体層211と第2半導体層212により形成される多数のサブバンドの間で電子の遷移が生じる。この電子の遷移により、サブバンド間のエネルギー差に対応した周波数(波長)のTM偏光が生じる。
ここで、上述の量子井戸においては、電子はスラブに平行な方向には自由に運動することができるため、サブバンド間遷移による発光に加えて、自由電子により幅広い波長帯に亘って発光が生じる。点状欠陥23の共振周波数をサブバンド間遷移による発光の周波数に一致させておくことにより、サブバンド間遷移によって生じた光は、共振周波数以外の周波数の光と比較して長時間点状欠陥に留まるため、光と電子の相互作用が強まって発光が選択的に増強され、強度が黒体輻射のレベルに近づく。それに対して、点状欠陥23の共振周波数以外の周波数の光は薄いスラブを通り抜けるだけの時間しか電子と相互作用しないため、垂直な方向への発光は点状欠陥23の共振周波数の光と比較して弱いレベルにとどまる。
そして、選択された周波数の光は、点状欠陥23の非対称性により、TM偏光にはないスラブ21に平行な電界成分が生じるため、点状欠陥23からスラブ21に垂直な方向に放出される。また、点状欠陥23を多数配置したことにより、その点状欠陥23が配置された広い範囲内から発光が得られる。
In the two-dimensional photonic crystal thermal radiation light source of this embodiment, when the slab 21 is heated, electron transition occurs between a number of subbands formed by the first semiconductor layer 211 and the second semiconductor layer 212. This electron transition generates TM polarized light having a frequency (wavelength) corresponding to the energy difference between the subbands.
Here, in the above-described quantum well, since electrons can move freely in a direction parallel to the slab, in addition to light emission due to intersubband transition, light emission occurs over a wide wavelength band by free electrons. . By making the resonance frequency of the point defect 23 coincide with the light emission frequency due to the transition between the subbands, the light generated by the transition between the subbands is longer for a longer time than the light having a frequency other than the resonance frequency. Therefore, the interaction between light and electrons is strengthened and light emission is selectively enhanced, and the intensity approaches the level of black body radiation. On the other hand, since light having a frequency other than the resonance frequency of the point defect 23 interacts with electrons only for a time that passes through the thin slab, light emitted in the vertical direction is compared with light having the resonance frequency of the point defect 23. And stay at a weak level.
The light of the selected frequency is emitted in a direction perpendicular to the slab 21 from the point defect 23 because an electric field component parallel to the slab 21 which is not in the TM polarized light is generated due to the asymmetry of the point defect 23. . In addition, since a large number of point-like defects 23 are arranged, light emission can be obtained from a wide range where the point-like defects 23 are arranged.

上記実施形態の2次元フォトニック結晶熱輻射光源における発光スペクトルを3次元FDTD(Finite Difference Time Domain:時間領域差分)法を用いて計算で求めた結果を、図6を用いて説明する。ここでは、第2半導体層212に注入される電子の濃度を1×1018cm-3とし、光源を600Kに加熱した場合について計算を行った。計算の都合上、点状欠陥23は1個のみとした。また、比較例として、上記実施形態におけるスラブ21と同じ量子井戸構造を有し空孔22がないスラブ(電子密度:1×1018cm-3)を600Kに加熱した場合(比較例1、図7(a))、及び量子井戸構造及び空孔22を持たず厚さと電子密度がスラブ21と等しいGaAsのみから成るスラブを600Kに加熱した場合(比較例2、図7(b))についても同様の計算を行った。図6及び図7のグラフにおいて、スラブに垂直な方向に(スラブの表面から)放出される発光の強度は実線で表し、スラブに平行な方向に(スラブの端部から)放出される発光の強度は破線で表した。グラフの横軸は光の周波数をc/a(cは光速、aは本実施形態における空孔22の周期)で規格化した規格化周波数である。縦軸に示した光の強度の単位は任意単位であるが、図6、図7(a)及び(b)の3つのグラフ間では強度を比較することが可能である。 The result obtained by calculating the emission spectrum in the two-dimensional photonic crystal thermal radiation light source of the above embodiment using a three-dimensional FDTD (Finite Difference Time Domain) method will be described with reference to FIG. Here, the calculation was performed for the case where the concentration of electrons injected into the second semiconductor layer 212 was 1 × 10 18 cm −3 and the light source was heated to 600K. For the sake of calculation, only one point defect 23 is assumed. As a comparative example, when a slab (electron density: 1 × 10 18 cm −3 ) having the same quantum well structure as the slab 21 in the above embodiment and having no holes 22 is heated to 600 K (Comparative Example 1, FIG. 7 (a)), and a case where a slab made of only GaAs having a quantum well structure and no holes 22 and having a thickness and an electron density equal to those of the slab 21 is heated to 600 K (Comparative Example 2, FIG. 7B). Similar calculations were performed. 6 and 7, the intensity of light emitted in the direction perpendicular to the slab (from the surface of the slab) is represented by a solid line, and the intensity of light emitted in the direction parallel to the slab (from the end of the slab). The intensity is represented by a broken line. The horizontal axis of the graph is a normalized frequency in which the frequency of light is normalized by c / a (c is the speed of light, and a is the period of the holes 22 in the present embodiment). The unit of light intensity shown on the vertical axis is an arbitrary unit, but it is possible to compare intensities between the three graphs of FIG. 6, FIG. 7 (a) and FIG. 7 (b).

比較例2では黒体輻射に関するプランクの法則に従い、広い周波数領域に亘って光の強度が分布している。比較例1では、規格化周波数が0.3825のところに強いピークが見られる。このように特定の周波数の光のみが強い強度で放出されるのは、この周波数に対応する大きさのサブバンド間遷移が生じているためであると考えられる。しかし、その周波数の光は、大半がスラブの端部から放出されており、スラブの表面からはあまり放出されていない。これは、サブバンド間遷移により生じる光がTM偏波であることによると考えられる。   In Comparative Example 2, the light intensity is distributed over a wide frequency range in accordance with Planck's law regarding black body radiation. In Comparative Example 1, a strong peak is observed at the normalized frequency of 0.3825. The reason why only light of a specific frequency is emitted with a strong intensity is considered to be due to a transition between subbands having a magnitude corresponding to this frequency. However, most of the light of that frequency is emitted from the end of the slab and not much from the surface of the slab. This is considered to be due to the fact that the light generated by the transition between subbands is TM polarization.

一方、本実施例では、サブバンド間遷移により生じた規格化周波数が0.3825である光はスラブの端部からはほとんど放出されない。これは、この周波数が本実施例において形成されているPBGの範囲内にあるため、この周波数の光がスラブに平行な方向に伝播することができないからである。それに対してスラブの表面からは、この周波数の光は強い強度で放出される。このような強い強度が得られる理由は、(i)点状欠陥23によりこの周波数の発光が選択的に増強されること、(ii)点状欠陥23の形状の非対称性により偏波の向きがTM偏波からスラブに平行な方向の電界成分を含む向きに変換されるためスラブに垂直な方向に光を取り出すことができること、及び(iii)この周波数において2次元フォトニック結晶に完全PBGが形成されていることにより、偏波の向きが変換された時に生じた、電界がスラブに平行な方向に振動する光のスラブ内への漏れが抑制されること、によると考えられる。   On the other hand, in the present embodiment, light having a normalized frequency of 0.3825 generated by intersubband transition is hardly emitted from the end of the slab. This is because light of this frequency cannot propagate in a direction parallel to the slab because this frequency is within the range of the PBG formed in this embodiment. On the other hand, light of this frequency is emitted with high intensity from the surface of the slab. The reason why such a strong intensity is obtained is that (i) light emission at this frequency is selectively enhanced by the point defect 23, and (ii) the polarization direction is caused by the asymmetry of the shape of the point defect 23. Since TM is converted into a direction that includes an electric field component parallel to the slab, light can be extracted in the direction perpendicular to the slab, and (iii) a complete PBG is formed in the two-dimensional photonic crystal at this frequency. Therefore, it is considered that light leaking into the slab caused by the electric field oscillating in the direction parallel to the slab, which is generated when the polarization direction is changed, is suppressed.

上記実施形態の2次元フォトニック結晶熱輻射光源において、第2半導体層212に注入する電子の濃度が異なる複数の例につき、発光スペクトルを計算した。計算の条件は、電子の濃度を除いて実施例1と同じである。電子の濃度は、1×1015cm-3、1×1016cm-3、5×1016cm-3、1×1017cm-3、2×1017cm-3、5×1017cm-3、(1×1018cm-3:第1実施例)、1×1019cm-3、とした。 In the two-dimensional photonic crystal thermal radiation light source of the above embodiment, emission spectra were calculated for a plurality of examples having different concentrations of electrons injected into the second semiconductor layer 212. The calculation conditions are the same as in Example 1 except for the electron concentration. The electron concentration is 1 × 10 15 cm −3 , 1 × 10 16 cm −3 , 5 × 10 16 cm −3 , 1 × 10 17 cm −3 , 2 × 10 17 cm −3 , 5 × 10 17 cm −3 , (1 × 10 18 cm −3 : First Example), 1 × 10 19 cm −3 .

計算結果を図8に示す。いずれも、規格化周波数が0.3825である光について、スラブの表面から放出される発光の強度が最大になると共に、スラブの端部からの発光はPBGにより抑制される。また、第2半導体層212の電子の濃度が増加すると共に、規格化周波数が0.3825である光以外の、PBGの外側にある周波数領域からの発光が増加する。   The calculation results are shown in FIG. In any case, with respect to light having a normalized frequency of 0.3825, the intensity of light emitted from the surface of the slab is maximized, and light emitted from the end of the slab is suppressed by PBG. Further, as the electron concentration in the second semiconductor layer 212 increases, light emission from the frequency region outside the PBG other than the light having the normalized frequency of 0.3825 increases.

図9に、規格化周波数が0.15(PBGの外側)の光と0.3825の光について、第2半導体層212の電子密度による発光強度の変化を示す。電子密度が2×1017cm-3以下の範囲では、規格化周波数が0.15の光と0.3825の光は、いずれも電子密度の増加と共に強度が増加し、規格化周波数が0.3825の光は0.15の光よりも強度が2桁大きい。それに対して、電子密度が2×1017cm-3以上の範囲では、規格化周波数が0.15の光は電子密度が2×1017cm-3以下の場合と同様に電子密度の増加と共に強度が増加しているのに対して、規格化周波数が0.3825の光は強度が飽和している。このような飽和が生じるのは、サブバンド間遷移が一つの周波数(0.3825)に集中しており、かつその周波数の光が点状欠陥による増強効果を受けるため、他の周波数の光よりも低い電子密度で黒体輻射の強度に近づくためであると考えられる。従って、点状欠陥の共振周波数(サブバンド間遷移に関する周波数)で強い発光を得つつ、それ以外の波長の発光を抑制するためには、電子密度はサブバンド間遷移の発光強度が飽和する範囲31内で最も小さい値(本実施例では2×1017cm-3)とすることが望ましい。 FIG. 9 shows changes in emission intensity depending on the electron density of the second semiconductor layer 212 for light having a normalized frequency of 0.15 (outside the PBG) and light having a 0.3825. In the range where the electron density is 2 × 10 17 cm -3 or less, the light with the normalized frequency of 0.15 and the light with 0.3825 both increase in intensity as the electron density increases, and the light with the normalized frequency of 0.3825 is 0.15. The intensity is two orders of magnitude greater than light. On the other hand, in the range where the electron density is 2 × 10 17 cm −3 or more, the light with the normalized frequency of 0.15 increases in intensity as the electron density increases as in the case where the electron density is 2 × 10 17 cm −3 or less. In contrast, the intensity of the light with the normalized frequency of 0.3825 is saturated. Such saturation occurs because the transition between subbands is concentrated at one frequency (0.3825), and light at that frequency is enhanced by point defects, so it is lower than light at other frequencies. This is probably because the electron density approaches the intensity of blackbody radiation. Therefore, in order to obtain strong light emission at the resonance frequency of the point-like defect (frequency related to the transition between subbands) and suppress light emission at other wavelengths, the electron density is a range in which the light emission intensity of the transition between subbands is saturated It is desirable to set the smallest value within 31 (2 × 10 17 cm −3 in this embodiment).

本発明において用いられる量子井戸構造を説明するための概念図。The conceptual diagram for demonstrating the quantum well structure used in this invention. 本発明に係る2次元フォトニック結晶熱輻射光源の一実施形態を示す斜視図。The perspective view which shows one Embodiment of the two-dimensional photonic crystal thermal radiation light source which concerns on this invention. 本実施形態における3方向傾斜異屈折率領域の構成を示す平面図及び斜視図。The top view and perspective view which show the structure of the 3 direction inclination different refractive index area | region in this embodiment. 本実施形態における点状欠陥23の構成を示す平面図。The top view which shows the structure of the point defect 23 in this embodiment. スラブ21の上面における点状欠陥23の配置を示す平面図。The top view which shows arrangement | positioning of the point-like defect 23 in the upper surface of the slab 21. FIG. 第1実施例の2次元フォトニック結晶熱輻射光源の発光スペクトルの計算結果を示すグラフ。The graph which shows the calculation result of the emission spectrum of the two-dimensional photonic crystal thermal radiation light source of 1st Example. 比較例のスラブを加熱した時に生じる輻射のスペクトルの計算結果を示すグラフ。The graph which shows the calculation result of the spectrum of the radiation produced when the slab of a comparative example is heated. 第2実施例の2次元フォトニック結晶熱輻射光源の発光スペクトルの計算結果を示すグラフ。The graph which shows the calculation result of the emission spectrum of the two-dimensional photonic crystal thermal radiation light source of 2nd Example. 第2半導体層212の電子密度と発光強度の関係を示すグラフ。7 is a graph showing the relationship between the electron density and the light emission intensity of the second semiconductor layer 212.

符号の説明Explanation of symbols

11、21…スラブ
121…第1半導体
122…第2半導体
131…第1バンドギャップ
132…第2バンドギャップ
14…サブバンドが形成される領域
15…伝導バンド
211…第1半導体層
212…第2半導体層
22…空孔
221…スラブの上面での空孔22の断面
222…スラブの下面での空孔22の断面
23…点状欠陥
241、242、243…格子点
DESCRIPTION OF SYMBOLS 11, 21 ... Slab 121 ... 1st semiconductor 122 ... 2nd semiconductor 131 ... 1st band gap 132 ... 2nd band gap 14 ... Area | region 15 in which a subband is formed ... Conductive band 211 ... 1st semiconductor layer 212 ... 2nd Semiconductor layer 22 ... hole 221 ... cross section 222 of hole 22 on the upper surface of the slab ... cross section 23 of hole 22 on the lower surface of the slab ... dot-like defects 241, 242, 243 ... lattice points

Claims (6)

複数種の半導体を積層して成る量子井戸構造を有するスラブと
前記スラブを加熱する熱源とを備え、
前記スラブ内に、
a) 前記量子井戸の複数のサブバンドの間の遷移エネルギーを含むような、TM偏波に対するフォトニックバンドギャップが形成されるように周期的に多数配置された、前記複数種の半導体と異なる屈折率を有する異屈折率領域と、
b) 前記異屈折率領域の周期的配置の点状欠陥から成り前記遷移エネルギーに対応する波長の光が内部に存在可能な点状欠陥と
を備えることを特徴とする2次元フォトニック結晶熱輻射光源。
A slab having a quantum well structure formed by stacking a plurality of types of semiconductors ;
A heat source for heating the slab ,
In the slab,
a) Refraction different from the plurality of types of semiconductors, which are periodically arranged in a large number so as to form a photonic band gap with respect to TM polarization, including transition energy between a plurality of subbands of the quantum well. A refractive index region having a refractive index;
b) A two-dimensional photonic crystal thermal radiation characterized by comprising a point-like defect consisting of point-like defects having a periodic arrangement in the different refractive index region and having a wavelength corresponding to the transition energy. light source.
複数種の半導体を積層して成る量子井戸構造を有するスラブを備え、
前記スラブ内に、
a) 前記量子井戸の複数のサブバンドの間の遷移エネルギーを含むような、TM偏波に対するフォトニックバンドギャップが形成されるように周期的に多数配置された、前記複数種の半導体と異なる屈折率を有する異屈折率領域と、
b) 前記異屈折率領域の周期的配置の点状欠陥から成り前記遷移エネルギーに対応する波長の光が内部に存在可能な点状欠陥と
を備え、
前記スラブが加熱されて前記遷移エネルギーに対応するエネルギーがスラブに供給されることにより、該遷移エネルギーに対応する波長の発光が生じることを特徴とする2次元フォトニック結晶熱輻射光源。
A slab having a quantum well structure formed by laminating a plurality of types of semiconductors,
In the slab,
a) Refraction different from the plurality of types of semiconductors, which are periodically arranged in a large number so as to form a photonic band gap with respect to TM polarization, including transition energy between a plurality of subbands of the quantum well. A refractive index region having a refractive index;
b) consisting of point-like defects with periodic arrangement of the different refractive index regions, and having point-like defects in which light having a wavelength corresponding to the transition energy can exist inside,
A two-dimensional photonic crystal thermal radiation light source characterized in that when the slab is heated and energy corresponding to the transition energy is supplied to the slab, light emission having a wavelength corresponding to the transition energy is generated .
前記点状欠陥がスラブに垂直な方向に関して非対称な形状を有することを特徴とする請求項1又は2に記載の2次元フォトニック結晶熱輻射光源。 2-dimensional photonic crystal heat radiation source according to claim 1 or 2, wherein the point defect is characterized by having an asymmetrical shape with respect to a direction perpendicular to the slab. 前記異屈折率領域が、前記遷移エネルギーを含むような完全フォトニックバンドギャップが形成されるように配置されていることを特徴とする請求項1〜3のいずれかに記載の2次元フォトニック結晶熱輻射光源。 The two-dimensional photonic crystal according to any one of claims 1 to 3, wherein the different refractive index regions are arranged so as to form a complete photonic band gap including the transition energy. Thermal radiation light source. 前記異屈折率領域が前記スラブの一方の表面である第1表面において三角格子状に、且つ各格子点に関して少なくとも3回回転対称性を持つように配置されており、
該異屈折率領域が前記スラブの他方の表面である第2表面において前記第1表面の三角格子に対して相補的な位置にある三角格子状に、且つ各格子点に関して少なくとも3回回転対称性を持つように配置されており、
前記第1表面の各格子点から該格子点に最隣接である前記第2表面の3個の格子点に向けてそれぞれ該異屈折率領域の柱が延びている、
ことを特徴とする請求項に記載の2次元フォトニック結晶熱輻射光源。
The different refractive index regions are arranged in a triangular lattice shape on the first surface, which is one surface of the slab, and so as to have at least three-fold rotational symmetry with respect to each lattice point;
In the second surface, which is the other surface of the slab, the different refractive index region is in a triangular lattice shape that is complementary to the triangular lattice of the first surface, and at least three-fold rotational symmetry with respect to each lattice point Are arranged to have
Columns of the different refractive index regions extend from the respective lattice points on the first surface toward the three lattice points on the second surface that are closest to the lattice point.
The two-dimensional photonic crystal thermal radiation light source according to claim 4 .
前記量子井戸構造の電子又は正孔の密度を、本熱輻射光源からの放射光の強度が飽和する最小値とすることを特徴とする請求項1〜のいずれかに記載の2次元フォトニック結晶熱輻射光源。 2-dimensional photonic according to any one of claims 1 to 5, characterized in that a minimum intensity of the emitted light is saturated from the electrons or holes density, the thermal radiation source of the quantum well structure Crystal heat radiation light source.
JP2006230128A 2006-08-28 2006-08-28 Two-dimensional photonic crystal thermal radiation source Active JP5352787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230128A JP5352787B2 (en) 2006-08-28 2006-08-28 Two-dimensional photonic crystal thermal radiation source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230128A JP5352787B2 (en) 2006-08-28 2006-08-28 Two-dimensional photonic crystal thermal radiation source

Publications (2)

Publication Number Publication Date
JP2008053134A JP2008053134A (en) 2008-03-06
JP5352787B2 true JP5352787B2 (en) 2013-11-27

Family

ID=39236967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230128A Active JP5352787B2 (en) 2006-08-28 2006-08-28 Two-dimensional photonic crystal thermal radiation source

Country Status (1)

Country Link
JP (1) JP5352787B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769102A (en) * 2019-11-15 2020-02-07 Oppo广东移动通信有限公司 Double-layer film structure, shell assembly and electronic device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI387133B (en) 2008-05-02 2013-02-21 Epistar Corp Light-emitting device
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US8857983B2 (en) 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
JP2014067968A (en) * 2012-09-27 2014-04-17 Dainippon Printing Co Ltd Solar cell module
US9972970B2 (en) 2014-02-28 2018-05-15 Japan Science And Technology Agency Thermal emission source and two-dimensional photonic crystal for use in the same emission source
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US9941547B2 (en) 2014-08-21 2018-04-10 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US9715130B2 (en) 2014-08-21 2017-07-25 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US9383593B2 (en) 2014-08-21 2016-07-05 Johnson & Johnson Vision Care, Inc. Methods to form biocompatible energization elements for biomedical devices comprising laminates and placed separators
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US9793536B2 (en) 2014-08-21 2017-10-17 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US9599842B2 (en) 2014-08-21 2017-03-21 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
JPWO2017141682A1 (en) * 2016-02-16 2018-12-06 ローム株式会社 Thermo-light conversion element and thermoelectric conversion element
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232258A (en) * 1999-02-10 2000-08-22 Nippon Telegr & Teleph Corp <Ntt> Two-dimensional semiconductor photo-crystallized element and manufacture thereof
JP3999152B2 (en) * 2003-03-25 2007-10-31 アルプス電気株式会社 Two-dimensional photonic crystal slab and optical device using the same
JP4025738B2 (en) * 2004-03-05 2007-12-26 国立大学法人京都大学 2D photonic crystal
JP4297358B2 (en) * 2004-08-30 2009-07-15 国立大学法人京都大学 Two-dimensional photonic crystal and optical device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769102A (en) * 2019-11-15 2020-02-07 Oppo广东移动通信有限公司 Double-layer film structure, shell assembly and electronic device

Also Published As

Publication number Publication date
JP2008053134A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP5352787B2 (en) Two-dimensional photonic crystal thermal radiation source
Wierer Jr et al. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency
US20130343415A1 (en) Surface emitting laser
JP4921038B2 (en) Resonator and light emitting device using the same
JP5020866B2 (en) Vertical cavity surface emitting laser
Kim et al. Enhanced light extraction from GaN-based green light-emitting diode with photonic crystal
JP5138898B2 (en) Two-dimensional photonic crystal surface emitting laser light source
US20090035884A1 (en) Method for manufacturing surface-emitting laser
WO2005086302A1 (en) Two-dimensional photonic crystal surface-emitting laser light source
JP2006065273A (en) Three-dimensional periodic structure and functional element including the same
US8265114B2 (en) Surface emitting laser
US20200382048A1 (en) Thermal radiation light source
JP5322453B2 (en) 3D photonic crystal light emitting device
Jiao et al. The effects of nanocavity and photonic crystal in InGaN/GaN nanorod LED arrays
Cho et al. Enhanced light extraction in light-emitting diodes with photonic crystal structure selectively grown on p-GaN
US20060263025A1 (en) Photonic crystal optical element and manufacturing method therefor
JP4684861B2 (en) Waveguide and device having the same
JP5892534B2 (en) Semiconductor laser element
Liu et al. Control, optimization and measurement of parameters of semiconductor nanowires lasers
Danang Birowosuto et al. Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals
JP4689441B2 (en) Waveguide and device having the same
Yoshida et al. Experimental investigation of lasing modes in double-lattice photonic-crystal resonators and introduction of in-plane heterostructures
TW201409147A (en) Raman scattering light amplification device, method for producing Raman scattering light amplification device, and Raman laser light source using the Raman scattering light amplification device
JP4868437B2 (en) Semiconductor laser
Kim et al. Metal mirror assisting light extraction from patterned AlGaInP light-emitting diodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350