JP5352050B2 - DRIVE DEVICE AND OPTICAL DISC DEVICE USING THE SAME - Google Patents

DRIVE DEVICE AND OPTICAL DISC DEVICE USING THE SAME Download PDF

Info

Publication number
JP5352050B2
JP5352050B2 JP2006313714A JP2006313714A JP5352050B2 JP 5352050 B2 JP5352050 B2 JP 5352050B2 JP 2006313714 A JP2006313714 A JP 2006313714A JP 2006313714 A JP2006313714 A JP 2006313714A JP 5352050 B2 JP5352050 B2 JP 5352050B2
Authority
JP
Japan
Prior art keywords
temperature
piezoelectric element
driving
period
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006313714A
Other languages
Japanese (ja)
Other versions
JP2008131734A (en
Inventor
▲松▼田孝弘
藤田浩司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi LG Data Storage Inc
Hitachi Consumer Electronics Co Ltd
Original Assignee
Hitachi LG Data Storage Inc
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi LG Data Storage Inc, Hitachi Consumer Electronics Co Ltd filed Critical Hitachi LG Data Storage Inc
Priority to JP2006313714A priority Critical patent/JP5352050B2/en
Publication of JP2008131734A publication Critical patent/JP2008131734A/en
Application granted granted Critical
Publication of JP5352050B2 publication Critical patent/JP5352050B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To cope with the problem that the shifting speed changes by the temperature of a piezoelectric element and the controllability deteriorates and the problem that there is necessity to prevent the overheat of the piezoelectric element due to drive in high temperature state, since the element deteriorates if the element temperature rises to the temperature determined by the material, in an actuator using a piezoelectric element for its motive power. <P>SOLUTION: In a driver for driving an actuator using a piezoelectric element for its motive power, the ambient temperature or the temperature of the element is measured, and a drive signal to be applied to the piezoelectric element is controlled by the measurement results, and the temperature is controlled into a specified range by the heat generation of the piezoelectric element by the application of the drive signal and the heat radiation while the drive signal is not applied. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、圧電素子を動力源として電気的な制御で動作する駆動装置を用いた光ディスク装置に関するものである。 The present invention relates to an optical disc apparatus using a driving device that operates by electrical control using a piezoelectric element as a power source.

圧電素子の収縮を動力源とするリニアアクチュエータが知られている。特許文献1および特許文献2では、圧電素子の伸び変位と縮み変位を異なる速さで行い、圧電素子に固着された駆動部材を異なる速度で往復移動させ、駆動部材に摩擦結合した移動体を任意方向に移動させるリニアアクチュエータが示されている。   A linear actuator using a contraction of a piezoelectric element as a power source is known. In Patent Document 1 and Patent Document 2, the displacement and contraction displacement of the piezoelectric element are performed at different speeds, the driving member fixed to the piezoelectric element is reciprocated at different speeds, and a moving body frictionally coupled to the driving member is arbitrarily selected. A linear actuator moving in the direction is shown.

特許文献2には、前述したアクチュエータの駆動速度の環境温度による特性変化を抑えるため、駆動パルスの駆動周波数を最適値に補正する方法が示されている。   Patent Document 2 discloses a method for correcting the driving frequency of the driving pulse to an optimum value in order to suppress the characteristic change due to the environmental temperature of the driving speed of the actuator described above.

特開2000−205809号公報JP 2000-205809 A 特開2006−87217号公報JP 2006-87217 A

圧電素子を動力源とするリニアアクチュエータでは、環境温度または圧電素子の温度によって移動体の移動速度が変化し、制御性が悪化することが問題となる。また、アクチュエータ駆動の際に、その発熱により圧電素子が過熱状態となる場合がある。圧電素子は材質によって決まる温度まで素子温度が上昇すると、素子が劣化するという問題があり、アクチュエータ駆動時に圧電素子の過熱を回避しなければならないという課題がある。   In a linear actuator using a piezoelectric element as a power source, there is a problem that the moving speed of the moving body changes depending on the environmental temperature or the temperature of the piezoelectric element, and the controllability deteriorates. Further, when the actuator is driven, the piezoelectric element may be overheated due to the heat generated. When the element temperature rises to a temperature determined by the material of the piezoelectric element, there is a problem that the element deteriorates, and there is a problem that overheating of the piezoelectric element must be avoided when the actuator is driven.

圧電素子を動力源とするアクチュエータを駆動する駆動装置において、環境温度または圧電素子の温度を測定し、該測定結果によって圧電素子に印加する駆動信号を制御し、駆動信号を印加する期間の圧電素子の発熱と、駆動信号を印加しない休止期間の放熱によって、動作時の温度が所定の範囲内となるように制御しこの駆動装置を用いた光ディスク装置とする。   In a drive device for driving an actuator using a piezoelectric element as a power source, the ambient temperature or the temperature of the piezoelectric element is measured, and the drive signal applied to the piezoelectric element is controlled according to the measurement result, and the piezoelectric element during the period in which the drive signal is applied The optical disk device using this drive device is controlled so that the temperature during operation falls within a predetermined range by the heat generation during the above period and the heat radiation during the idle period when no drive signal is applied.

本発明により、圧電素子を動力源とするアクチュエータの温度変動による影響を低減し、ユーザにとって良好な光ディスク装置が得られる。   According to the present invention, it is possible to reduce an influence due to temperature fluctuations of an actuator using a piezoelectric element as a power source, and to obtain an optical disk device that is favorable for a user.

以下に本発明の実施例を説明する。   Examples of the present invention will be described below.

図1は本発明による駆動装置の一実施の構成を図で示したものである。   FIG. 1 is a diagram showing the configuration of an embodiment of a drive device according to the present invention.

図1において、101は電圧印加によって伸縮する圧電素子、102は移動部材、103は駆動軸、104は圧電素子を伸縮する駆動信号を発生する信号発生手段、105は104の信号発生手段を制御し圧電素子を制御する制御手段、106は環境温度または101の圧電素子の温度を取得する測定手段である。101の圧電素子に駆動信号を印加することで、102の移動体は103の駆動軸に沿って移動し、リニアアクチュエータとして機能する。   In FIG. 1, 101 is a piezoelectric element that expands and contracts when a voltage is applied, 102 is a moving member, 103 is a drive shaft, 104 is a signal generating means for generating a driving signal for expanding and contracting the piezoelectric element, and 105 is a signal generating means for controlling 104. Control means 106 for controlling the piezoelectric element, and 106 is a measuring means for obtaining the ambient temperature or the temperature of the 101 piezoelectric element. By applying a driving signal to the piezoelectric element 101, the moving body 102 moves along the driving axis 103 and functions as a linear actuator.

ここで101から103で構成され、圧電素子を動力源とするリニアアクチュエータ動作の一例を図2を用いて説明する。図2において、201a、201b、201cは圧電素子、202a、202b、202cは移動部材、203a、203b、203cは駆動軸、204a、204b、204cは固定部材である。   Here, an example of a linear actuator operation composed of 101 to 103 and using a piezoelectric element as a power source will be described with reference to FIG. In FIG. 2, 201a, 201b and 201c are piezoelectric elements, 202a, 202b and 202c are moving members, 203a, 203b and 203c are drive shafts, and 204a, 204b and 204c are fixed members.

図2(a)において、201aの圧電素子は、一端を204aの固定部材と固定され、他端を203aの駆動軸と固定されている。202aの移動部材は、203aの駆動軸と接触しており、接触面の摩擦力により保持されている。図2(a)の圧電素子201aを低速で伸張させると、202aの移動部材は摩擦力により203aの駆動軸に保持され移動する。このように圧電素子を伸張した状態を図2(b)に示す。   In FIG. 2A, the piezoelectric element 201a has one end fixed to the fixing member 204a and the other end fixed to the drive shaft 203a. The moving member 202a is in contact with the drive shaft 203a and is held by the frictional force of the contact surface. When the piezoelectric element 201a in FIG. 2A is extended at a low speed, the moving member 202a is held and moved by the driving shaft of 203a by the frictional force. FIG. 2B shows a state where the piezoelectric element is extended in this way.

次に図2(b)の状態から、201bの圧電素子を急速に縮めると、202bの移動部材は慣性力によりその場にとどまるため、202bの移動部材と203bの駆動軸との間の摩擦部がすべり、202bの移動部材がほぼそのままの位置にとどまることになる。このようにして圧電素子を縮めた状態を図(c)に示す。   Next, when the piezoelectric element 201b is rapidly contracted from the state shown in FIG. 2 (b), the moving member 202b stays in place due to the inertial force, so that the friction part between the moving member 202b and the drive shaft 203b As a result, the moving member 202b stays almost in the same position. A state where the piezoelectric element is contracted in this manner is shown in FIG.

圧電素子の低速での伸張と、急速に縮めることを繰り返すことで、移動部材は駆動軸に沿って長い距離を移動することができる。また圧電素子に印加する駆動信号の極性を反転し、低速で縮めることと急速に伸張することを繰り返すことで、移動部材を逆の方向に駆動することができる。   By repeating the expansion of the piezoelectric element at a low speed and the rapid contraction, the moving member can move a long distance along the drive shaft. In addition, the moving member can be driven in the opposite direction by reversing the polarity of the drive signal applied to the piezoelectric element and repeating the contraction at a low speed and the rapid expansion.

図2で説明した圧電素子に対する駆動信号の生成方法を説明する。図1において、105の制御手段により、104の信号発生手段からの駆動信号が101の圧電素子に印加され、素子を収縮させる。106の測定手段は装置の周囲温度あるいは圧電素子の温度を取得し、105の制御手段は該温度情報によって、該駆動信号を制御する。   A method for generating a drive signal for the piezoelectric element described in FIG. 2 will be described. In FIG. 1, the driving signal from the signal generating means 104 is applied to the piezoelectric element 101 by the control means 105 to contract the element. The measuring means 106 acquires the ambient temperature of the apparatus or the temperature of the piezoelectric element, and the control means 105 controls the drive signal according to the temperature information.

図3は圧電素子に対する駆動信号の印加期間と圧電素子の温度との関係の一例を示している。図3において、301は圧電素子に印加される駆動信号を示し、302は圧電素子の温度を示す。駆動信号を印加して、圧電素子を収縮させると、印加期間td3において圧電素子の温度が△T3上昇する。 FIG. 3 shows an example of the relationship between the application period of the drive signal to the piezoelectric element and the temperature of the piezoelectric element. In FIG. 3, 301 indicates a drive signal applied to the piezoelectric element, and 302 indicates the temperature of the piezoelectric element. When the drive signal is applied to contract the piezoelectric element, the temperature of the piezoelectric element rises by ΔT 3 during the application period t d3 .

制御手段105は、102の移動部材の移動前に、106の測定手段からの温度情報が下限温度Tminよりも低い場合、104の信号発生手段からの駆動信号を101の圧電素子に印加する。101の圧電素子は駆動信号の印加により素子の伸縮が起こり、素子温度が上昇する。 When the temperature information from the measurement means 106 is lower than the lower limit temperature Tmin before the movement of the moving member 102, the control means 105 applies the drive signal from the signal generation means 104 to the piezoelectric element 101. The piezoelectric element 101 expands and contracts when a drive signal is applied, and the element temperature rises.

一方で圧電素子を動力源とするリニアアクチュエータは、102の移動部材の移動速度が圧電素子の素子温度によって変化する特性がある。素子温度が下限温度Tminから上限温度Tmaxの間となるようにアクチュエータを駆動すると、下限温度での駆動速度v1と上限温度での駆動速度v2に対して、駆動速度変化量△v(△v=v2−v1)と見積もることができる。上限温度と下限温度の差(Tmax−Tmin)を小さくすると、駆動速度の変化△vも小さくなり、より制御性が改善する。 On the other hand, the linear actuator using a piezoelectric element as a power source has a characteristic that the moving speed of the moving member 102 changes depending on the element temperature of the piezoelectric element. When the actuator is driven so that the element temperature is between the lower limit temperature T min and the upper limit temperature T max , the drive speed change amount Δv with respect to the drive speed v 1 at the lower limit temperature and the drive speed v 2 at the upper limit temperature. (Δv = v 2 −v 1 ) can be estimated. When the difference between the upper limit temperature and the lower limit temperature (T max −T min ) is reduced, the change in driving speed Δv is also reduced, and the controllability is further improved.

従って下限温度Tminよりも温度の低い場合に101の圧電素子に駆動信号を印加して、圧電素子の収縮により温度をTmin以上まで上昇させてから102の移動部材の移動を制御することで、速度変化を低減しアクチュエータの制御性を改善することができる。 Accordingly, when the temperature is lower than the lower limit temperature Tmin , a drive signal is applied to the piezoelectric element 101, and the movement of the moving member 102 is controlled after the temperature is increased to Tmin or more by contraction of the piezoelectric element. , The speed change can be reduced and the controllability of the actuator can be improved.

なお圧電素子の素子温度を上昇させるために印加される駆動信号のパルスデューティ、周波数、信号振幅、信号波形、極性は図3に限られたものではなく、連続的に信号を印加している途中でこれらが変化したり、連続的に駆動信号を印加することに対して、複数回に分けて印加したりすることも考えられる。また、駆動信号の印加によって必ずしも102の移動部材の移動を伴う必要はなく、アクチュエータの駆動条件に合わない駆動信号を素子に印加することも考えられる。   Note that the pulse duty, frequency, signal amplitude, signal waveform, and polarity of the drive signal applied to increase the element temperature of the piezoelectric element are not limited to those shown in FIG. 3, and the signal is being applied continuously. It is also conceivable that these change, or that the drive signal is continuously applied, in a plurality of times. Further, it is not always necessary to move the moving member 102 by applying the drive signal, and it is also conceivable to apply a drive signal that does not meet the drive conditions of the actuator to the element.

また、リニアアクチュエータの動作は図2に限るものではない、圧電素子を動力源とするアクチュエータであれば本発明の駆動方法を適用可能である。   The operation of the linear actuator is not limited to that shown in FIG. 2, and the driving method of the present invention can be applied to any actuator that uses a piezoelectric element as a power source.

また、図1に示すように、107の表示手段を持った構成であってもよく、106の測定手段によって取得した温度Tが、上限温度Tmaxあるいは素子の劣化する温度を超えた場合、107の表示手段によって警告を表示する。 Further, as shown in FIG. 1, a configuration having 107 display means may be adopted. When the temperature T acquired by the measurement means 106 exceeds the upper limit temperature T max or the temperature at which the element deteriorates, 107 The warning is displayed by the display means.

106の測定手段には、圧電素子周囲の温度を測定する方法が考えられるが、それ以外にも直接圧電素子の温度を測定する方法も考えられる。   As the measuring means 106, a method of measuring the temperature around the piezoelectric element is conceivable, but other than that, a method of directly measuring the temperature of the piezoelectric element is also conceivable.

また、図6のような光ディスク装置において、レーザ行路中の可動レンズを前記リニアアクチュエータによって光軸方向に駆動する構成も考えられる。   Further, in the optical disk apparatus as shown in FIG. 6, a configuration in which the movable lens in the laser path is driven in the optical axis direction by the linear actuator is also conceivable.

本発明における第二の実施の構成を示す。   The structure of 2nd implementation in this invention is shown.

第二の実施例は前記実施例1と同じく、図1に示される構成を持つ駆動装置に適用される。105の制御手段は102の移動部材を移動させる際に、106の測定手段からの温度情報に対し、104の信号発生手段が101の圧電素子に対して駆動信号を連続的に印加できる最大の駆動期間を設定する。最大の駆動期間の後、一定時間は駆動信号印加を停止する休止期間を設定する。   Similar to the first embodiment, the second embodiment is applied to a driving apparatus having the configuration shown in FIG. When the control unit 105 moves the moving member 102, the maximum drive that the signal generation unit 104 can continuously apply the drive signal to the piezoelectric element 101 with respect to the temperature information from the measurement unit 106 Set the period. After the maximum driving period, a pause period for stopping the driving signal application is set for a certain period of time.

図4に、圧電素子を動力源とするリニアアクチュエータを駆動する際の駆動信号と圧電素子の温度の関係について示す。図4(a)は、駆動信号をtd(4a)の期間連続的に印加し圧電素子を収縮させると、圧電素子の温度が△T(4a)上昇することを示している。 FIG. 4 shows the relationship between the drive signal and the temperature of the piezoelectric element when driving the linear actuator using the piezoelectric element as a power source. FIG. 4A shows that the temperature of the piezoelectric element rises by ΔT (4a) when the drive signal is continuously applied for the period t d (4a) to contract the piezoelectric element.

それに対して図4(b)は、td(4b)( td(4b)<td(4a))の駆動期間に連続的に信号を印加した後、信号の印加を停止し、期間ts(4b)の圧電素子を駆動しない休止期間とする。休止期間中には、駆動期間に上昇した温度が放熱によって低下する。休止期間ts(4b)の後、再度駆動信号を印加して圧電素子を駆動する。休止期間後、(td(4a)―td(4b))の期間の駆動により、図4(a)と同等の駆動量を得る。 On the other hand, in FIG. 4B, the signal application is stopped after applying the signal continuously during the drive period of t d (4b) (t d (4b) <t d (4a) ), and the period t A rest period in which the piezoelectric element s (4b) is not driven is set. During the idle period, the temperature that has risen during the driving period decreases due to heat dissipation. After the rest period ts (4b) , the drive signal is applied again to drive the piezoelectric element. After the idle period, a driving amount equivalent to that in FIG. 4A is obtained by driving in the period of (t d (4a) −t d (4b) ).

このように、休止期間によって温度上昇の最大値は△T(4b)(△T(4b)<△T(4a))となり、温度上昇を抑制することができる。 As described above, the maximum value of the temperature rise becomes ΔT (4b) (ΔT (4b) <ΔT (4a) ) during the suspension period, and the temperature rise can be suppressed.

また、素子温度の変化が抑制されるため、アクチュエータの駆動速度の変化量△vは小さくなり、制御性が改善できる。   In addition, since the change in the element temperature is suppressed, the amount of change Δv in the driving speed of the actuator becomes small, and the controllability can be improved.

アクチュエータの駆動速度の変化を所定の範囲内(下限温度Tmin、上限温度Tmax)とするため、105の制御手段で行われる駆動信号の印加期間、休止期間について説明する。 In order to make the change in the driving speed of the actuator within a predetermined range (lower limit temperature T min , upper limit temperature T max ), the drive signal application period and rest period performed by the control means 105 will be described.

駆動前の温度T0がT0<Tmaxであれば、連続的に駆動信号を印加する駆動期間td(4b)における温度上昇△Td(4b)によって上限温度を超えないよう(△Td(4b)≦(Tmax−T0))にする。 If the temperature T 0 of the pre-driver is a T 0 <T max, so as not to exceed the upper limit temperature by the temperature rise △ T d (4b) in the driving period t d to apply a continuous drive signal (4b) (△ T d (4b) ≦ (T max −T 0 )).

また、休止期間の直後に再度アクチュエータを駆動する場合には、休止期間ts(4b)の放熱で低下する温度△Ts(4b)によって下限温度を下回らないよう(△Ts(4b)≦((△Td(4b)+T0)−Tmin))にする。上記の条件を満足すれば、駆動期間と休止期間の長さは一定でなくとも、駆動前温度T0によって可変とすることも考えられる。 Also, when driving again actuator immediately after the rest period is not lower than the lower limit temperature by decreases in heat dissipation rest period t s (4b) temperature △ T s (4b) (△ T s (4b) ≦ ((ΔT d (4b) + T 0 ) −T min )). If the above conditions are satisfied, the length of the driving period and the rest period may be variable depending on the pre-driving temperature T 0 , even if the lengths are not constant.

以上説明した駆動期間と休止期間を制御し、所定の温度範囲内でアクチュエータを駆動することにより、圧電素子の過熱を防ぎ、素子劣化を避けることができる。これは、特に装置の周囲温度が高い場合に有効である。   By controlling the driving period and the rest period described above and driving the actuator within a predetermined temperature range, overheating of the piezoelectric element can be prevented and element deterioration can be avoided. This is particularly effective when the ambient temperature of the apparatus is high.

本発明における第三の実施の構成を示す。   The structure of 3rd implementation in this invention is shown.

第三の実施例は前記実施例1と同じく、図1に示される構成を持つ駆動装置に適用される。105の制御手段は、104の信号発生手段を制御し、101の圧電素子に駆動信号を印加する駆動期間と、駆動信号を印加しない休止期間とを周期的に繰り返して102の移動部材を段階的に移動させる駆動装置であり、106の測定手段からの温度によって、駆動期間と休止期間を制御することを特徴とする。   As in the first embodiment, the third embodiment is applied to a driving apparatus having the configuration shown in FIG. The control means 105 controls the signal generation means 104, and periodically repeats the drive period in which the drive signal is applied to the piezoelectric element 101 and the pause period in which the drive signal is not applied to step the moving member 102. The driving device is moved to the above-mentioned position, and the driving period and the rest period are controlled by the temperature from 106 measuring means.

図5に圧電素子を動力源とするリニアアクチュエータを駆動する際に、駆動期間と休止期間を周期的に繰り返す駆動信号を用いた場合の圧電素子の温度変化の一例について示す。図5(a)に示すように、一定の周期tp(5a)で駆動期間td(5a)と休止期間ts(5a)を繰り返して圧電素子を収縮し、リニアアクチュエータを構成する移動部材を移動させる。圧電素子の温度は駆動期間では上昇し、休止期間では放熱により冷却されるため、駆動前の温度T0に対し△T(5a)の温度範囲で動作する。 FIG. 5 shows an example of a temperature change of the piezoelectric element when a driving signal that periodically repeats a driving period and a rest period is used when driving a linear actuator using a piezoelectric element as a power source. Figure 5 (a), the piezoelectric element contracts by repeatedly driving period t d at a constant period t p (5a) (5a) a rest period t s (5a), the moving member constituting the linear actuator Move. Since the temperature of the piezoelectric element rises during the driving period and is cooled by heat dissipation during the idle period, the piezoelectric element operates in a temperature range of ΔT (5a) with respect to the temperature T 0 before driving.

駆動前温度T0が高い場合、圧電素子劣化と、102の移動部材の制御性が損なわれることが懸念される。従ってリニアアクチュエータ駆動温度の下限Tminと上限Tmaxを用い、107の測定手段からの温度TがTmin<T<Tmaxの範囲となるように前期駆動期間と休止期間の長さを制御する。圧電素子駆動前の温度T0と上限温度の温度差(Tmax−T0)が小さい場合には、駆動期間td(5a)を時間taだけ短くし、休止期間ts(5a)を時間taだけ長くすることで、温度上昇△T(5a)を抑制する。taの長さが温度T0に比例する場合も考えられる。 When the pre-drive temperature T 0 is high, there is a concern that the piezoelectric element deteriorates and the controllability of the 102 moving member is impaired. Therefore, using the lower limit T min and the upper limit T max of the linear actuator driving temperature, the lengths of the previous driving period and the rest period are controlled so that the temperature T from 107 measuring means is in the range of T min <T <T max. . Temperature T 0 and the temperature difference between the upper limit temperature before the piezoelectric element driving if (T max -T 0) is small, the driving period t d a (5a) as short as time t a, rest period t s (5a) By increasing the time t a , the temperature rise ΔT (5a) is suppressed. A case where the length of t a is proportional to the temperature T 0 is also conceivable.

以上説明した駆動期間、休止期間1周期辺りの割合の調整による温度上昇抑制方法とは別の抑制方法を説明する。図5(b)では、図5(a)に対して短い周期tp(5b)(tp(5b) <tp(5a))によって、駆動期間td(5b)(td(5b) <td(5a))と休止期間ts(5b)を繰り返して圧電素子を駆動する。駆動期間td(5b)の休止期間ts(5b)に対する比率td(5b)/ts(5b)を図5(a)の比率td(5a)/ts(5a)以下にすることで、温度の上昇を低減できる(△T(5b)<△T(5a))。 A description will be given of a suppression method different from the temperature increase suppression method by adjusting the ratio of the driving period and the rest period per cycle described above. In FIG. 5 (b), the driving period t d (5b) (t d (5b)) is shorter than that in FIG. 5 (a) by a shorter period t p (5b) (t p (5b) <t p (5a) ). The piezoelectric element is driven by repeating <t d (5a) ) and the rest period ts (5b) . The ratio t d (5b) / t s (5b) of the driving period t d (5b) to the rest period t s (5b ) is made equal to or less than the ratio t d (5a) / t s (5a) in FIG. Therefore, the temperature rise can be reduced (ΔT (5b) <ΔT (5a) ).

圧電素子駆動前の温度T0が十分に低く、上限温度との温度差(Tmax−T0)が大きい場合には図5(c)のような制御を用いる。図5(c)では、図5(a)に対して長い周期tp(5c)(tp(5c) >tp(5a))によって、駆動期間td(5c)と休止期間ts(5c)を繰り返して圧電素子を駆動する。駆動期間td(5c)に上昇する温度△T(5c)は図5(a)における温度上昇△T(5a)より大きくなる(△T(5c)>△T(5a))が、△T(5c)≦(Tmax−T0)であればよい。 When the temperature T 0 before driving the piezoelectric element is sufficiently low and the temperature difference (T max −T 0 ) from the upper limit temperature is large, the control as shown in FIG. 5C is used. In FIG. 5 (c), the drive period t d (5c) and the rest period t s ( ) are obtained with a longer period t p (5c) (t p (5c) > t p (5a) ) than in FIG. 5 (a). 5c) is repeated to drive the piezoelectric element. Temperature rise in the driving period t d (5c) △ T ( 5c) is greater than the temperature rise △ T (5a) in FIG. 5 (a) (△ T ( 5c)> △ T (5a)) is, △ T (5c) ≦ (T max −T 0 ) may be satisfied.

図5(c)の駆動方法では、長い周期により移動部材の停止状態からの起動回数が減少するため、起動毎の加速時間の影響を低減できる。   In the driving method of FIG. 5 (c), the number of activations from the stop state of the moving member decreases with a long cycle, so that the influence of the acceleration time for each activation can be reduced.

従って、周期的に駆動期間と休止期間を繰り返して圧電素子を駆動する装置において、高温時には短い周期の駆動により素子劣化を防ぎ、低温時には長い周期の駆動により駆動速度を得る。   Therefore, in an apparatus that drives a piezoelectric element by periodically repeating a driving period and a rest period, element deterioration is prevented by short-period driving at a high temperature, and a driving speed is obtained by long-period driving at a low temperature.

本発明によれば、圧電素子を動力源とするリニアアクチュエータは小型であることから、カメラや光ディスク装置などの小型レンズを駆動するために用いられている。これらの機器において、本発明の温度変化の影響を低減する制御方法を用いることで、多様な温度環境下での動作安定性を向上することができる。   According to the present invention, since a linear actuator using a piezoelectric element as a power source is small, it is used to drive a small lens such as a camera or an optical disk device. In these devices, the operation stability under various temperature environments can be improved by using the control method for reducing the influence of the temperature change of the present invention.

圧電素子を動力源とするリニアアクチュエータとその駆動手段の構成図。The block diagram of the linear actuator which uses a piezoelectric element as a motive power source, and its drive means. 圧電素子を動力源とするリニアアクチュエータの構成と駆動動作の一例を示す図である。It is a figure which shows an example of a structure and drive operation | movement of a linear actuator which uses a piezoelectric element as a motive power source. 圧電素子への駆動信号の印加と温度変化の一例を示す説明図。Explanatory drawing which shows an example of the application of the drive signal to a piezoelectric element, and a temperature change. 実施例2における圧電素子へ印加する駆動信号の制御方法と圧電素子の温度変化の一例を示す説明図。FIG. 6 is an explanatory diagram illustrating an example of a method for controlling a drive signal applied to a piezoelectric element and a temperature change of the piezoelectric element in Example 2. 実施例3における圧電素子へ印加する駆動信号の制御方法と圧電素子の温度変化の一例を示す説明図。FIG. 6 is an explanatory diagram illustrating an example of a method for controlling a drive signal applied to a piezoelectric element and a temperature change of the piezoelectric element in Example 3. 圧電素子を動力源とするリニアアクチュエータをレンズの変位に用いる光ディスク装置の構成図。The block diagram of the optical disk apparatus which uses the linear actuator which uses a piezoelectric element as a power source for the displacement of a lens.

符号の説明Explanation of symbols

101、601…圧電素子、 102、602…移動部材、 103、603…駆動軸、
104、604…信号発生手段、 105、605…制御手段、 106、606…測定手段、
107、607…表示手段、 201a、201b、201c…圧電素子、 202a、202b、202c…移動部材、
203a、203b、203c…駆動軸、 204a、204b、204c…固定部材、
608…光ディスク、 609…レーザ、 610…可動レンズ、 611…対物レンズ、
612…回転モータ。
101, 601 ... piezoelectric element, 102,602 ... moving member, 103,603 ... drive shaft,
104, 604 ... Signal generating means, 105, 605 ... Control means, 106, 606 ... Measuring means,
107, 607 ... display means, 201a, 201b, 201c ... piezoelectric element, 202a, 202b, 202c ... moving member,
203a, 203b, 203c ... drive shaft, 204a, 204b, 204c ... fixing member,
608 ... optical disc, 609 ... laser, 610 ... movable lens, 611 ... objective lens,
612 ... Rotary motor.

Claims (6)

電圧が印加されることにより伸縮する圧電素子と、
前記圧電素子に対する駆動信号を生成する信号発生手段と、
前記信号発生手段を制御し圧電素子に対する駆動信号印加を制御する制御手段と、
周囲温度または前記圧電素子の温度を測定する測定手段を有し、
前記制御手段は該測定結果に従い前記駆動信号の印加期間を制御し、
駆動時の周囲温度または圧電素子の温度を
下限温度Tminから上限温度Tmax(Tmin<Tmax)の範囲となるように制御し、
前記測定手段から得られる駆動前の温度Tに対し、
駆動期間t1の連続的な駆動信号印加による
温度上昇△T1と駆動装置における上限温度Tmaxとの関係が
((T+△≦T1)≦Tmax)となるように、
駆動信号の連続駆動期間t1 を調整し、
駆動期間t1の後、駆動信号を印加しない休止期間t2の温度変化量△T2が、
(T+△T1)−△T2 minの関係である休止期間t2を有することを特徴とする駆動装置。
A piezoelectric element that expands and contracts when a voltage is applied;
Signal generating means for generating a drive signal for the piezoelectric element;
Control means for controlling the signal generating means and controlling application of a drive signal to the piezoelectric element;
Measuring means for measuring the ambient temperature or the temperature of the piezoelectric element;
The control means controls the application period of the drive signal according to the measurement result,
The ambient temperature or the temperature of the piezoelectric element during driving is controlled to be within the range of the lower limit temperature T min to the upper limit temperature T max (T min <T max ),
For the temperature T before driving obtained from the measuring means,
The relationship between the temperature rise ΔT 1 due to continuous driving signal application during the driving period t 1 and the upper limit temperature T max in the driving device is
((T + Δ ≦ T 1 ) ≦ T max )
Adjusting the continuous drive period t 1 of the drive signal;
After the drive period t 1, the temperature change amount △ T 2 Not applying a driving signal rest period t 2,
A driving device characterized by having a rest period t 2 having a relationship of (T + ΔT 1 ) −ΔT 2T min .
請求項1に記載の駆動装置であって、
圧電素子による移動部材の駆動前に
前記測定手段によって測定された温度Tが
前記下限温度Tmin>Tの関係の場合、
前記制御手段は
一定の駆動期間thだけ駆動信号を生成することで、
下限温度Tmin以上まで温度を上昇させることを特徴とする駆動装置。
The drive device according to claim 1,
When the temperature T measured by the measuring means before the moving member is driven by the piezoelectric element satisfies the relationship of the lower limit temperature T min > T,
The control means generates a drive signal for a fixed drive period t h ,
A drive device characterized in that the temperature is raised to a lower limit temperature T min or more.
請求項1に記載の駆動装置であって、
装置の異常を示す表示手段を備え、
前記測定手段によって測定された温度Tと、
前記圧電素子の劣化温度Tcとが(T>Tc) の関係である場合、
前記表示手段に装置の異常を表示することを
特徴とする駆動装置。
The drive device according to claim 1,
A display means for indicating an abnormality of the apparatus;
A temperature T measured by the measuring means;
When the deterioration temperature T c of the piezoelectric element has a relationship of (T> T c ),
An apparatus for displaying an abnormality of the apparatus on the display means.
請求項1に記載の駆動装置であって、
前記制御手段は前記信号発生手段を制御して
前記圧電素子へ駆動信号を印加する駆動期間と、
駆動信号を印加しない休止期間とを
周期的に繰り返して圧電素子を駆動し、
前記測定手段による測定温度が高い場合に、
駆動期間と休止期間との比率は保ったまま
早い周期の繰り返しによって駆動することを
特徴とする駆動装置。
The drive device according to claim 1,
The control means controls the signal generating means to apply a drive signal to the piezoelectric element; and
The piezoelectric element is driven by periodically repeating a pause period in which a drive signal is not applied,
When the measurement temperature by the measurement means is high,
A driving apparatus characterized in that driving is performed by repetition of a fast cycle while maintaining a ratio between a driving period and a rest period.
請求項1に記載の駆動装置であって、
前記制御手段は前記信号発生手段を制御して
前記圧電素子へ駆動信号を印加する駆動期間と、
駆動信号を印加しない休止期間とを
周期的に繰り返して圧電素子を駆動し、
前記測定手段による測定温度が低い場合に、
駆動期間と休止期間との比率は保ったまま
遅い周期の繰り返しによって駆動することを
特徴とする駆動装置。
The drive device according to claim 1,
The control means controls the signal generating means to apply a drive signal to the piezoelectric element; and
The piezoelectric element is driven by periodically repeating a pause period in which a drive signal is not applied,
When the measurement temperature by the measurement means is low,
A driving device that is driven by repeating a slow cycle while maintaining a ratio between a driving period and a rest period.
請求項1乃至請求項5に記載の駆動装置を、
光学レンズの変位に用いる光ディスク装置。
The drive device according to claim 1 to claim 5,
An optical disk device used for displacement of an optical lens.
JP2006313714A 2006-11-21 2006-11-21 DRIVE DEVICE AND OPTICAL DISC DEVICE USING THE SAME Expired - Fee Related JP5352050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006313714A JP5352050B2 (en) 2006-11-21 2006-11-21 DRIVE DEVICE AND OPTICAL DISC DEVICE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006313714A JP5352050B2 (en) 2006-11-21 2006-11-21 DRIVE DEVICE AND OPTICAL DISC DEVICE USING THE SAME

Publications (2)

Publication Number Publication Date
JP2008131734A JP2008131734A (en) 2008-06-05
JP5352050B2 true JP5352050B2 (en) 2013-11-27

Family

ID=39557056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006313714A Expired - Fee Related JP5352050B2 (en) 2006-11-21 2006-11-21 DRIVE DEVICE AND OPTICAL DISC DEVICE USING THE SAME

Country Status (1)

Country Link
JP (1) JP5352050B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6704010B2 (en) * 2018-04-09 2020-06-03 レノボ・シンガポール・プライベート・リミテッド Electronic device and control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442784A (en) * 1990-06-04 1992-02-13 Fukoku Co Ltd Ultrasonic motor having temperature regulator
JPH07303383A (en) * 1994-04-28 1995-11-14 Olympus Optical Co Ltd Ultrasonic vibrator and its driving method
JPH0833367A (en) * 1994-07-15 1996-02-02 Anritsu Corp Drive control device of ultrasonic motor
JPH11191977A (en) * 1997-12-26 1999-07-13 Asmo Co Ltd Motor-driving circuit
JP2002095272A (en) * 2000-09-11 2002-03-29 Minolta Co Ltd Driver
JP2003007010A (en) * 2001-04-20 2003-01-10 Sony Corp Apparatus for recording and/or reproduction

Also Published As

Publication number Publication date
JP2008131734A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP4775115B2 (en) Length control device, length control program, and lens driving device
US20060186758A1 (en) Driving device and driving method
US6249093B1 (en) Drive mechanism employing electromechanical transducer, photographing lens with the drive mechanism, and its drive circuit
WO2011011355A1 (en) Methods for controlling velocity of at least partially resonant actuators systems and systems thereof
US20170344117A1 (en) Method and apparatus for driving actuators
JP5185640B2 (en) Inertial drive actuator
US10511237B2 (en) Method of driving a driving apparatus
JP5352050B2 (en) DRIVE DEVICE AND OPTICAL DISC DEVICE USING THE SAME
JP4561164B2 (en) Driving apparatus and driving method
JP5490132B2 (en) Drive device
JP2009240043A (en) Drive controller of vibrating actuator, lens barrel equipped with the same, camera, and drive control method of the vibrating actuator
JPH11356071A (en) Drive unit using electromechanical transducing element and driving circuit therefor
JP4804037B2 (en) Impact drive actuator
US9041270B2 (en) Driving apparatus
JP2009038877A (en) Method of driving lens actuator
EP4026240B1 (en) Piezoelectric stick-slip-motor and method of controlling same
JP6965044B2 (en) Vibration type actuator control device, vibration type actuator control method, vibration type drive device and electronic equipment
JP2010051055A (en) Drive device and optical device
JP2006075713A (en) Driving gear
JP2007043843A (en) Drive device and drive system
JP5338146B2 (en) Drive device
JP6378609B2 (en) Vibration type motor control device, lens device having the same, imaging device, and method for controlling vibration type motor
JP5316535B2 (en) Drive device
JPWO2011125719A1 (en) MOTOR DEVICE, ROTOR DRIVE METHOD, AND ROBOT DEVICE
JPH1189253A (en) Driving pulse generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees