JP5351581B2 - 画像表示装置 - Google Patents

画像表示装置 Download PDF

Info

Publication number
JP5351581B2
JP5351581B2 JP2009080070A JP2009080070A JP5351581B2 JP 5351581 B2 JP5351581 B2 JP 5351581B2 JP 2009080070 A JP2009080070 A JP 2009080070A JP 2009080070 A JP2009080070 A JP 2009080070A JP 5351581 B2 JP5351581 B2 JP 5351581B2
Authority
JP
Japan
Prior art keywords
variable
image display
display device
term
pixel circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009080070A
Other languages
English (en)
Other versions
JP2010231079A (ja
Inventor
芳直 小林
Original Assignee
エルジー ディスプレイ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー ディスプレイ カンパニー リミテッド filed Critical エルジー ディスプレイ カンパニー リミテッド
Priority to JP2009080070A priority Critical patent/JP5351581B2/ja
Publication of JP2010231079A publication Critical patent/JP2010231079A/ja
Application granted granted Critical
Publication of JP5351581B2 publication Critical patent/JP5351581B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、画像表示装置に関する。
非晶質または多結晶のシリコン等で形成された薄膜トランジスタ(TFT)と有機発光ダイオード(OLED)等の電流制御型の発光素子とを各画素回路に持つ画像表示装置が知られている。そして、この画像表示装置では、画像信号に応じた異なる電流が各画素回路に流れることで、各画素回路において所望の輝度の発光が実現させる。
このような画像表示装置では、発光素子をそれぞれ有する複数の画素回路が行列状に配置されるとともに、電源線が画素回路に対して1行ごとに共通に接続される。そして、各電源線は電気抵抗を有するため、電気抵抗と流れる電流とに基づいて、電源線を介して各画素回路に付与される電圧に変化が生じる。例えば、各画素回路に対して電圧を印加するドライバ(電源供給用ドライバ)に対して、共通の電源線を介して複数の画素回路に接続される構成では、電源供給用ドライバから遠い画素回路であればあるほど、供給される電圧が降下する。従って、ドライバから遠い画素回路であればあるほど、OLEDの発光輝度が所望の発光輝度から低下し、表示される画像において輝度ムラやクロストーク等の不具合が発生するため、画質の低下を招く。
そこで、このような電気抵抗による電圧降下量を補償するように、各画像信号線に供給される画像信号を補正する技術が提案されている(例えば、特許文献1〜5等)。
ここで、特許文献1の技術に準じて電圧降下量を算出する一手法について説明する。なお、ここでは、表示パネルの左側から順に配列される、1、2、3、・・・、N番目の画素回路が、この順番で共通の電源線に対して電気的に接続されているものとする。そして、表示パネルの最も左側に配列される1番目の画素回路の横方向のX座標を0、表示パネルの最も右側に配列されるN番目の画素回路の横方向のX座標を1、各X座標の画素回路において電圧に応じて流れる電流(電流分布)をi(x)、各X座標の画素回路における電源線の電気抵抗をrとする。
まず、X座標がxである画素回路において発生する電圧の降下率(電圧降下率)δV(x)は、X座標がxから1に至る迄の各画素回路において電圧に応じて流れる電流を積算した値に、電気抵抗rを乗じたものであり、下式(1)で示される。
Figure 0005351581
そして、X座標が0である画素回路からX座標がxである画素回路に至る迄に電源線において発生する電圧の降下量(電圧降下量)V(x)は、下式(2)で示される。なお、x=0の位置からドライバまでの間に抵抗Rがある場合には、電圧降下量V’(x)が、下式(3)で示されるように、下式(2)で示される電圧降下量V(x)に対して、電流の総量に抵抗Rを乗じた項が加えられたものになる。
Figure 0005351581
上式(2)で示されるように、電圧降下量V(x)は、電圧降下率δV(x)をX座標が0〜xの区間について積分した値となる。
特開2005−10319号公報 特開2004−109191号公報 特開2004−245955号公報 特開2006−301556号公報 特開2005−62337号公報
しかしながら、上記特許文献1の技術では、各画素回路における電圧降下量V(x)を算出するための演算量が2重の積分演算を伴う非常に大きなものとなる。このため、電圧降下量に応じて短時間で画像信号を補正することができず、外部からの複数フレームの画像信号の入力に応じて、迅速に該複数フレームの画像信号を可視的に出力することができない。更に、このような2重の積分演算を行うためには、比較的大容量のメモリも必要となる。また、上記特許文献2〜4の技術についても、上記特許文献1と同様に、各画素に係る画像信号の補正を行うための演算量が非常に大きく、上記特許文献1と同様な不具合を招く。更に、上記特許文献5の技術では、画素回路の各列を構成する各画素回路に係る画像信号が電圧降下量の度合いに応じて細かく補正されず、画質の劣化の問題が残されている。
また、上記特許文献1〜5の技術では、表示パネルの両端から電圧を各画素回路に対して供給する際に生じる電圧降下量については、全く考慮されていなかった。
本発明は、上記課題に鑑みてなされたものであり、外部からの複数フレームの画像信号の入力に応じた該複数フレームの画像信号の迅速な可視的な出力と、画質の向上とを図ることが可能な画像表示装置を提供することを目的とする。
上記課題を解決するために、本発明の第1の態様に係る画像表示装置は、発光素子をそれぞれ有する複数の画素回路と、各前記画素回路において画像信号に応じた電位を設定する電位設定部とを備える。また、前記画像表示装置は、前記複数の画素回路に対して共通に接続され、且つ各前記発光素子を同時に発光させるための電圧が印加される電圧印加線に対して電位を付与する電位付与部と、画像信号に基づく各前記画素回路に流れる予測電流に応じて、前記電圧の予測降下量を示す近似式をフーリエ級数を用いて算出する近似式算出部とを備える。更に、前記近似式に基づいて、各前記予測降下量に応じた補正を前記画像信号に対して行う信号補正部を備える。
本発明によれば、比較的少ない演算量で電源線の電気抵抗に起因する電圧の降下を補償することができるため、外部からの複数フレームの画像信号の入力に応じた該複数フレームの画像信号の迅速な可視的な出力と、画質の向上とを図ることができる。
第1実施形態に係る画像表示装置の機能的な構成を示す図である。 第1および第2実施形態に係る1つの画素回路の構成を示す回路図である。 寄生容量および有機EL素子の容量を明示した画素回路の回路図である。 画素回路の動作を示すタイミングチャートである。 画素回路の動作を示す回路図である。 画素回路の動作を示す回路図である。 画素回路の動作を示す回路図である。 画素回路の動作を示す回路図である。 第1実施形態に係る画素回路に対する給電方法を示す図である。 水平ラインごとの電圧の降下量を例示する図である。 駆動トランジスタのドレイン電圧とドレイン電流との関係を示す図である。 電圧の降下量を示す近似式の算出方法を説明するための図である。 第1実施形態に係る信号処理部の機能的な構成を示す図である。 定数・係数導出部の機能的な構成を示す図である。 第2実施形態に係る画像表示装置の機能的な構成を示す図である。 第2実施形態に係る画素回路に対する給電方法を示す図である。 水平ラインにおける電圧の降下量を例示する図である。 電圧の降下量を示す近似式の算出方法を説明するための図である。 電圧の降下量を示す近似式の算出方法を説明するための図である。 一変形例に係る画素回路に対する給電方法を示す図である。 一変形例に係る信号処理部の機能的な構成を示す図である。 一変形例に係る1つの画素回路の構成を示す回路図である。
以下、本発明の実施形態を図面に基づいて説明する。
<第1実施形態>
<画像表示装置の構成>
図1で示される画像表示装置1は、有機発光ダイオードの発光を利用した装置(有機EL装置)であり、制御部2、パネル部3、および電源回路4を備えている。なお、ここでは、画像信号が、赤(R)、緑(G)、青(B)の3原色に係る信号によって構成されている例を挙げて説明する。
制御部2は、信号処理部20、記憶部21、およびタイミングジェネレータ(TG)22を備えている。
信号処理部20は、入力画像信号を処理し、処理後の画像信号を出力画像信号としてXドライバ回路32に付与する。記憶部21は、不揮発性のメモリ等によって構成され、信号処理部20における処理に必要なデータ等を記憶する。TG22は、画像信号の垂直および水平同期信号に応じて、Yドライバ回路31および電位設定部としてのXドライバ回路32に対して、駆動タイミングを制御するための信号を付与する。なお、信号処理部20およびTG22を構成する一部については、専用のハードウェア構成によって実現されても良いし、CPU等によってプログラムが実行されることで機能的に実現されても良い。
パネル部3は、有機EL表示部30、Yドライバ回路31、およびXドライバ回路32を備えている。
有機EL表示部30は、略長方形の輪郭を有する有機ELディスプレイ(organic electroluminescence display)であり、有機材料に電流を流すことで材料自らが発光する自発光型の発光素子(ここでは、有機発光ダイオード)を備える表示部(自発光型表示部)として構成されている。この有機EL表示部30には、多数の画素回路301がマトリックス状に配列されている。
また、多数の画素回路301は、赤色の光を発する発光素子を有する画素回路301と、緑色の光を発する発光素子を有する画素回路301と、青色の光を発する発光素子を有する画素回路301とによって構成されている。そして、各色の画素回路301がいわゆるサブピクセルに対応し、赤色に係る1つの画素回路301と緑色に係る1つの画素回路301と青色に係る1つの画素回路301とからなる画素回路群が1つのピクセルに対応する。
有機EL表示部30には、発光輝度に対応する出力画像信号を各画素回路301に供給するための複数の画像信号線L2(図2参照)が設けられている。この画像信号線L2は、垂直方向に並ぶ複数の画素回路301にそれぞれ接続されている。また、有機EL表示部30には、複数の画像信号線L2に対して略直交する複数の走査信号線L4(図2参照)が設けられている。ここでは、水平方向に配列される複数の画素回路からなる画素回路の列(以下「水平ライン」と称する)ごとに1本の走査信号線L4が設けられており、各走査信号線L4に順次に走査信号が供給される。なお、走査信号は、画像信号線L2を介して出力画像信号に応じた電位を各画素回路301において設定するタイミングを制御する信号である。
また、有機EL表示部30には、各画素回路301に含まれる駆動トランジスタTd(図2参照)の閾値電圧Vthのばらつきを補償する動作(以下「閾値電圧補償動作」と称する)を行うために必要な信号を供給する補償制御線L3(図2参照)が設けられている。また、有機EL表示部30には、後述する第2切替トランジスタTm(図2参照)の状態を切り替えるために必要な信号を供給するマージ線L5(図2参照)が設けられている。更に、有機EL表示部30には、各画素回路301に含まれる有機発光ダイオードOLED(図2参照)の両極間に発光に必要な電圧を印加する電源線L1(図2参照)が設けられている。
Yドライバ回路31は、有機EL表示部30の垂直方向に沿った一辺(図1では左辺)に沿って設けられており、TG22からの信号に応じて、電源線L1、補償制御線L3、走査信号線L4、およびマージ線L5に対して電位を付与する。そして、Yドライバ回路31には、電源線L1に対して電圧を印加するための複数の出力回路311が設けられている。なお、Yドライバ回路31に対しては、電源回路4から電圧が供給され、各出力回路311から電源線L1を介して複数の画素回路301に電圧が供給される。
Xドライバ回路32は、有機EL表示部30の水平方向に沿った一辺(図1では上辺)に沿って設けられており、TG22からの信号に応じて、出力画像信号に応じた電位を設定する。
<画素回路の構成>
図2で示されるように、画素回路301は、有機発光ダイオードOLED、駆動トランジスタTd、補償用トランジスタTth、第1切替トランジスタTs、第2切替トランジスタTm、およびコンデンサC1を有している。なお、以下では、駆動トランジスタTd、補償用トランジスタTth、第1切替トランジスタTs、および第2切替トランジスタTmを、適宜「トランジスタ」と略称し、ここでは、各トランジスタTd,Tth,Ts,Tmが、NMOSトランジスタによって構成されている例を挙げて説明する。
有機発光ダイオードOLEDは、アノードが接地され、カソードが、トランジスタTdを介して、電源線L1に対して電気的に接続されている。
トランジスタTdについては、ゲートとドレインとが、トランジスタTdのゲート電圧の閾値電圧のずれを補償するためのトランジスタTthを介して電気的に接続されている。また、トランジスタTdのゲートが、コンデンサC1の一方電極に対して電気的に接続されている。このコンデンサC1の他方電極は、トランジスタTsを介して画像信号線L2に対して電気的に接続されているとともに、トランジスタTmを介して電源線L1に対して電気的に接続されている。なお、コンデンサC1は、トランジスタTthを介して電荷を蓄積することで、該電荷に応じた電位をトランジスタTdのゲート電圧に反映させることができる。
また、トランジスタTthのゲートが、補償制御線L3に対して電気的に接続され、トランジスタTsのゲートが、走査信号線L4に対して電気的に接続され、トランジスタTmのゲートが、マージ線L5に対して電気的に接続されている。なお、以下では、電源線L1、画像信号線L2、補償制御線L3、走査信号線L4、およびマージ線L5を、適宜「配線」と総称する。
図3は、図2で示された画素回路301の回路図に対して、トランジスタの寄生容量(寄生キャパシタ)および有機発光ダイオードOLEDの容量(OLEDキャパシタ)を明示したものである。図3で示されるように、有機発光ダイオードOLEDでは、発光時とは逆方向に電圧が印加されると、アノードとカソードとの間にOLEDキャパシタColedが生じる。トランジスタTdでは、ゲートとドレインとの間に寄生キャパシタC4が生じるとともに、ゲートとソースとの間に寄生キャパシタC5が生じる。トランジスタTthでは、ゲートとドレインとの間に寄生キャパシタC2が生じるとともに、ゲートとソースとの間に寄生キャパシタC3が生じる。
<画素回路の動作>
図4は、画素回路301の動作を示すタイミングチャートである。図4では、画像表示装置1に含まれる複数の画素回路301のうち、n(自然数)行目のものと(n+1)行目のものとに各配線L1〜L5から与えられる電位(すなわち隣接する2行の画素回路301それぞれに与えられる電位)が例示されている。
図4で示されるように、1行の画素回路301において1フレーム分の画像信号を可視的に出力するための動作期間(単位フレーム期間)は、準備のための期間T1と、トランジスタTdの閾値電圧Vthを検出するための期間T2と、書き込みのための期間T3と、発光のための期間T4とを有する。また、n行目の画素回路301と(n+1)行目の画素回路301とでは、単位フレーム期間が期間T3に相当する期間ずれている。この単位フレーム期間が、画像信号の電位が変化させられつつ(換言すれば画像信号線L2の電位が変化させられつつ)繰り返されることで、動画像の表示が実現される。
以下では、図5〜図8を参照しつつ、図4の期間T1〜T4における画素回路301の動作について説明する。なお、期間T1の開始時点では、前フレームの期間T4においてコンデンサC1に電荷が溜められているものとする。
まず、期間T1では、図4で示されるように、トランジスタTs,Tthのゲートが低電位(例えば0V)VgLに設定されるため、トランジスタTs,Tthが電流を流さない状態(非導通状態)となる。また、トランジスタTmのゲートが正の高電位VgHに設定されるため、トランジスタTmが電流を流す状態(導通状態)となる。このとき、コンデンサC1に蓄積された電荷により、トランジスタTdにおけるソースの電位に対するゲートの電位、すなわちゲート電圧Vgsが閾値電圧Vthよりも高くなるため、トランジスタTdが導通状態となる。従って、図5で示されるように、導通状態であるトランジスタTdを介して、正の高電位Vpに設定された電源線L1からOLEDキャパシタColedへ電荷が供給されて、OLEDキャパシタColedに電荷が蓄積される。
次に、期間T2では、図4で示されるように、トランジスタTsのゲートが低電位VgLに設定されるため、トランジスタTsが非導通状態に設定される。また、トランジスタTm,Tthのゲートが正の高電位VgHに設定されるため、トランジスタTm,Tthがそれぞれ導通状態となる。このとき、トランジスタTdは、導通状態であるトランジスタTthを介してゲートとドレインとの間が電気的に接続される。従って、図6で示されるように、トランジスタTdのゲート電圧Vgsが閾値電圧Vthに達するまで、コンデンサC1およびOLEDキャパシタColedに蓄積された電荷が、電位が0Vに設定された電源線L1へ抜ける。そして、トランジスタTdのゲート電圧Vgsが閾値電圧Vthに達すると、トランジスタTdは非導通状態となる。
次に、期間T3では、図4で示されるように、トランジスタTs,Tthのゲートが正の高電位VgHに設定されるため、トランジスタTs,Tthが導通状態となる。一方、トランジスタTmのゲートが低電位VgLに設定されるため、トランジスタTmが非導通状態となる。このとき、コンデンサC1の他方電極は、導通状態であるトランジスタTsを介して電位(−Vdata)に設定された画像信号線L2に対して電気的に接続されるため、図7で示されるように、OLEDキャパシタColedに蓄積された電荷がコンデンサC1へ移動する。なお、このとき、トランジスタTdは非導通状態に維持される。このようにして、期間T3では、各画素回路301において、出力画像信号に応じた電荷がコンデンサC1に蓄積されることで、トランジスタTdのゲートに対して出力画像信号に応じた電位が設定される。
次に、期間T4では、図4で示されるように、トランジスタTs,Tthのゲートが低電位VgLに設定されるため、トランジスタTs,Tthが非導通状態となる。一方、トランジスタTmのゲートが高電位VgHに設定されるため、トランジスタTmが導通状態となる。このとき、トランジスタTdのゲート電圧Vgsが閾値電圧Vthよりも高くなるため、トランジスタTdが導通状態となる。従って、図8で示されるように、導通状態であるトランジスタTdを介して、接地線から負電位(−VDD、ただし、VDD>0V)に設定された電源線L1へ電流が流れ、有機発光ダイオードOLEDが発光する。
このようにして、各画素回路301では、トランジスタTdのゲートに対して出力画像信号に応じた電位が付与されることで、該トランジスタTdによって有機発光ダイオードOLEDを流れる電流が調整されて、該有機発光ダイオードOLEDが発光する。
<画像表示装置における電圧の低下>
図9で示されるように、パネル部3には、複数本(ここでは4本)の水平ラインごとに、一体的に形成された電源線L1と該電源線L1に電圧を印加する出力回路311とが設けられている。具体的には、電圧印加線としての電源線L1が、4本の水平ラインに含まれる複数の画素回路301に対して共通に接続されるとともに、該複数の画素回路301に含まれる各有機発光ダイオードOLEDを同時に発光させるための電圧を印加する。そして、電位付与部としての1つの出力回路311は、電源線L1の端部に対して電位を付与する。本実施形態では、該端部は、電源線L1のうちの有機EL表示部30の左辺側の一端部となっている。
電源線L1は、一端部(ここでは、左端部)を形成する左側接続配線部L1aと、他端部(ここでは、右端部)を形成する右側接続配線部L1bと、略同一の構成からなる複数(ここでは4本)の配線部L11〜L14とを有する。具体的には、水平ラインごとに、画素回路301に対して電圧を印加するための配線部が配設される。そして、各配線部L11〜L14の一端が、左側接続配線部L1aによって相互に電気的に接続されるとともに、各配線部L11〜L14の一端とは反対側の他端が、基準部としての右側接続配線部L1bによって相互に電気的に接続される。更に、出力回路311は、左側接続配線部L1aを介して、各配線部L11〜L14の一端に対してそれぞれ電位を付与する。
このため、出力回路311は、複数の画素回路301が配列されている領域(以下「発光領域」とも称する)の一端側(ここでは左端側)から、共通の電源線L1を介して、4つの水平ラインに含まれる複数の画素回路301に対して電圧を印加する。そして、4本の水平ラインを構成する複数の画素回路301では、出力回路311からの電圧の供給に応じて、該複数の画素回路301にそれぞれ含まれる有機発光ダイオードOLEDが同時に発光する。
ところで、電源線L1は、いわゆる電気抵抗を有するため、各配線部L11〜L14では、各画素回路301の発光に伴って流れる電流に基づいて、各画素回路301に供給される電圧の低下を生じさせる。なお、画素回路301ごとに流れる電流が異なるため、水平ラインごとに各画素回路301に供給される電圧の低下の態様が異なる。つまり、画素回路301ごとに電源線L1から付与される電位が異なる。本実施形態では、電源線L1に付与される負の電位(−VDD)が減少することで、有機発光ダイオードOLEDのアノードとトランジスタTdのソースとの間に印加される電圧が低下する。
図10は、水平ラインごとの電圧の降下量を例示する図である。図10では、横軸が、有機EL表示部30の一端側(ここでは左端)の画素回路301を基準とした水平方向の位置を示し、縦軸が、有機EL表示部30の一端側の画素回路301に供給される電圧を基準とした各画素回路301に供給される電圧の降下量を示している。なお、ここでは、水平ラインの左端に配置される画素回路301の位置を示す座標(X座標)を0、水平ラインの右端に配置される画素回路301の位置を示す座標(X座標)を1とする。そして、図10では、1つの電源線L1に含まれる4本の配線部L11〜L14によって電圧がそれぞれ印加される4つの水平ラインについて、画素回路301の水平方向の位置と電圧の降下量との関係がそれぞれ曲線(ここでは、実線、破線、一点鎖線、二点鎖線)で示されている。
図10で示されるように、各水平ラインにおいて、出力回路311から離れれば離れるほど、すなわちYドライバ回路31から離れれば離れるほど、画素回路301に供給される電圧が低下する。但し、右側接続配線部L1bの存在によって、各配線部L11〜L14の他端における電圧の降下量が同一となる。
図2で示される画素回路301では、期間T4においては、コンデンサC1の他方電極がトランジスタTmを介して電源線L1に対して電気的に接続されるため、電源線L1の電位が変動しても、トランジスタTdのゲート電圧Vgsは変化しない。しかしながら、電源線L1における電位の上昇、すなわち各画素回路301に供給される電圧の低下に伴って、トランジスタTdのソースを基準としたソースとドレインとの間の電圧(いわゆるドレイン電圧)が低下する。このドレイン電圧の低下によって、図11で示されるように、トランジスタTdを流れる電流(ドレイン電流)が低下する。その結果、有機発光ダイオードOLEDの発光輝度が所望の発光輝度から低下する。従って、期間T4では、有機EL表示部30のうち、左側が明るく右側が暗くなる傾向となり、輝度ムラが視認されることになる。
この様な不具合に対して、画像表示装置1では、上述した電圧の降下量に応じて、画像信号が補正されることで、電圧の降下の影響が低減される。すなわち、電圧の降下に対する補償処理が行われる。この補償処理により、表示される画像において輝度ムラやクロストーク(高輝度の部分の横方向に暗い帯が見える)等の不具合が発生しないようにしている。以下、電圧の降下に対する補償処理について説明する。
<電圧の降下に対する補償処理>
本実施形態では、信号処理部20において、入力画像信号に基づいて、各画素回路301に対して印加される電圧の降下量を示す近似式を導出するとともに、各画素回路301について、入力画像信号の電位に応じたトランジスタTdの増幅率μで電圧の降下量を除すことで補正値を決定し、該補正値をいわゆるガンマ変換後の入力画像信号の電位に加算することで、出力画像信号を生成する。このような処理により、電圧の降下に対する補償処理が実現される。
ここで、(A)予測される電圧の降下量を示す近似式を入力画像信号から導出する方法(予測電圧降下量の近似式の導出方法)、(B)補正値の決定方法、および(C)信号処理部20の機能的な構成について、順次に説明する。
<A.予測電圧降下量の近似式の導出方法>
ここでは、まず、4本の配線部L11〜L14が右側接続配線部L1bによって電気的に接続されていないものと仮定して、各水平ラインについて電圧の降下量を示す仮の近似式を導出する。そして、仮の近似式のそれぞれに対して、4本の配線部L11〜L14の右端が右側接続配線部L1bによって電気的に接続されていることによる影響について修正を加えることで、各水平ラインに係る予測電圧降下量の近似式を導出する。
<A−1.各水平ラインに係る仮の近似式の導出>
ここでは、配線部L11によって電圧が印加される水平ラインに係る仮の近似式を導出する例を挙げて説明する。
有機EL表示部30では、Yドライバ回路31が設けられている一端側(ここでは左端側)から順に配列される、1、2、3、・・・、N番目のピクセルにそれぞれ対応する各画素回路群が、この順番で共通の配線部L11に対して電気的に接続されている。そして、有機EL表示部30の左端側に配列されている1番目の画素回路群の横方向のX座標を0、有機EL表示部30の右端側に配列されているN番目の画素回路群の横方向のX座標を1、各X座標の画素回路群において発光時に電圧に応じて流れる電流(電流分布)をi(x)、各X座標の画素回路群における電源線L1の電気抵抗をrとする。
まず、X座標がxである画素回路群において発生する画素回路301に印加される電圧の降下、すなわち電圧の降下率(電圧降下率)δV1(x)は、X座標がxから1に至る迄の各画素回路群において電圧に応じて流れる電流を積算した値に、電気抵抗rを乗じたものであり、下式(4)で示される。
Figure 0005351581
そして、X座標が0である画素回路群からX座標がxである画素回路群に至る迄に配線部L11によって各画素回路群に印加される電圧において発生するものと予測される降下量(予測電圧降下量)V1(x)は、下式(5)で示される。
Figure 0005351581
上式(5)で示されるように、予測電圧降下量V1(x)は、電圧降下率δV1(x)をX座標が0〜xである区間について積分した値で示される。そして、電流分布i(x)は、フーリエ級数を用いれば、下式(6)で近似的に示される。
Figure 0005351581
上式(6)で示されるように、電流分布i(x)が、電流分布i(x)の直流成分DCと、変数xに係る1次、2次、および3次の正弦関数の項と、変数xに係る1次、2次、および3次の余弦関数の項とによって近似的に示される。なお、上式(6)では、変数xに係る1次、2次、および3次の正弦関数の項の係数がそれぞれS1、S2、S3で示され、変数xに係る1次、2次、および3次の余弦関数の項の係数がそれぞれC1、C2、C3で示されている。ここでは、電流分布i(x)を、フーリエ級数を用いて近似的に表すことで、電流分布i(x)の積分が容易となり、演算の簡略化が図られることになる。
上式(6)の直流成分DCは、1つの水平ラインに含まれる全ての画素回路301を流れる電流の総和によって求められる。つまり、下式(7)で示されるように、電流分布i(x)を、X座標が0〜1である区間について積分することで、直流成分DCが求められる。
Figure 0005351581
ところで、X座標がxである画素回路群については、電流分布i(x)が、下式(8)で示されるように、X座標がxである画素回路群に含まれる赤、緑、青の3色に係る画素回路301をそれぞれ流れる電流の和によって求められる。
Figure 0005351581
上式(8)では、X座標がxである赤色に係る画素回路301を流れる電流がIr(x)で示され、X座標がxである緑色に係る画素回路301を流れる電流がIg(x)で示され、X座標がxである青色に係る画素回路301を流れる電流がIb(x)で示されている。そして、各電流Ir(x),Ig(x),Ib(x)は、入力画像信号に基づいて、例えば、下式(9)〜(11)によって予測される。
Figure 0005351581
上式(9)〜(11)では、赤、緑、青の3色に係る画素回路301の各有機発光ダイオードOLEDの電流発光効率がそれぞれEr,Eg,Eb[cd/A]、最大階調における赤、緑、青の3色に係る画素回路301の発光時の光度がそれぞれYr,Yg,Yb[cd]、ガンマ変換に係る指数がγ(一般にγ=2.2)、X座標がxである赤、緑、青の3色の画素回路301にそれぞれ対応する入力画像信号が示す階調がLr(x),Lg(x),Lb(x)でそれぞれ表されている。なお、この入力画像信号と消費電流との関係については、赤(R)緑(G)青(B)に関してそれぞれ1対1の関係があるので、テーブルを用いて求めることもできる。
また、上式(6)で示される正弦関数の1次の項の係数S1は、下式(12)によって求められ、余弦関数の1次の項の係数C1は、下式(13)によって求められる。
Figure 0005351581
そして、正弦関数のn次(nは自然数)の項の係数Snは、下式(14)によって求められ、余弦関数のn次の項の係数Cnは、下式(15)によって求められる。
Figure 0005351581
つまり、上式(6)の係数S1,S2,S3,C1,C2,C3は、上式(14)および(15)によってそれぞれ求められる。
ここで、電圧降下率δV1(x)は、上式(1)で示されたように、電流分布i(x)をX座標がx〜1である区間について積分したものに、電気抵抗rを乗じることで求められる。そこで、まず、仮に上式(6)を積分すると、下式(16)が求められる。
Figure 0005351581
このため、上式(16)を用いて、下式(17)で示される電圧降下率δV1(x)が求められる。
Figure 0005351581
また、ここで、予測電圧降下量V1(x)は、上式(2)で示されたように、電圧降下率δV1(x)をX座標が0〜xである区間について積分することで求められる。そこで、まず、上式(17)を積分すると、下式(18)が求められる。
Figure 0005351581
そして、上式(18)を用いて、下式(19)で示される予測電圧降下量V1(x)の仮の近似式が求められる。下式(19)は、x=0を基準とした電圧降下を示すが、ドライバからx=0の部分までの配線に抵抗Rがある場合には、予測電圧降下量V1(x)が、下式(20)で示されるように、下式(19)に対して、電流の総量に抵抗Rを乗じた項が加えられたものになる。
Figure 0005351581
上式(19),(20)のうち、電気抵抗r、および電気抵抗Rについては、パネル部3の設計によって求められる。また、上式(7)〜(15)で示されたように、各画素回路301に対応する入力画像信号に基づいて、電源線L1から各画素回路301に供給されるものと予測される電流(予測電流)が求められ、該予測電流に応じて、直流成分DC、および係数S1,S2,S3,C1,C2,C3が導出される。すなわち、−r×{(C1/4π2)+(C2/16π2)+(C3/36π2)}+(R×DC)が定数として算出され、その他、xの1次および2次項、正弦関数のn次の項、および余弦関数のn次の項の各係数がそれぞれ算出される。
なお、上式(19)で示される予測電圧降下量V1(x)の近似式は、有機EL表示部30の一端側を基準とした各画素回路301の位置を示す変数xに係る1次および2次の項と、該変数xに係る三角関数の項とを含む。ここで、三角関数の項は、各画素回路301に係る予測電流の大小に起因して生じるものと予測される電圧の変動を示している。
そして、上式(19)で示されるように、変数xに係る1次の項は、変数xと係数とを乗じた項を含む。より具体的には、変数xに係る1次の項が、(係数A)×xの形式で示される。また、変数xに係る2次の項が、変数xの2乗と係数とを乗じた項を含む。より具体的には、変数xに係る2次の項が、(係数B)×x2の形式で示される。
また、上式(19)で示されるように、三角関数の項には、各画素回路301の位置を示す変数xに係る正弦(サイン)と係数とを乗じた正弦関数の項と、該変数xに係る余弦(コサイン)と係数とを乗じた余弦関数の項とが含まれる。このように上式(19)は、1次の項、2次の項、および三角関数の項の和で表すことができる。なお、各画素回路301に係る予測電流に起因する電圧の変動がないものとして、上式(19)の三角関数の項の和をゼロと見なし、上式(19)を1次の項と2次の項のみの式とし、補正精度の誤差を許容してハードウェアを簡略化することも可能である。
具体的には、三角関数の項が、変数xに対して第1の自然数としての2を乗じた変数(2x)に係る正弦(ここでは、sin2πx)と係数とを乗じた正弦関数の項、変数xに対して第2の自然数としての4を乗じた変数(4x)に係る正弦(ここでは、sin4πx)と係数とを乗じた正弦関数の項、および変数xに対して第3の自然数としての6を乗じた変数(6x)に係る正弦(ここでは、sin6πx)と係数とを乗じた正弦関数の項を含む。また、該三角関数の項が、変数xに対して第1の自然数としての2を乗じた変数(2x)に係る余弦(ここでは、cos2πx)と係数とを乗じた余弦関数の項、変数xに対して第2の自然数としての4を乗じた変数(4x)に係る余弦(ここでは、cos4πx)と係数とを乗じた余弦関数の項、および変数xに対して第3の自然数としての6を乗じた変数(6x)に係る余弦(ここでは、cos6πx)と係数とを乗じた余弦関数の項を含む。すなわち、異なる2以上の自然数倍(ここでは、1〜3倍)に係る正弦(サイン)と係数とを乗じた正弦関数の項、および変数xの異なる2以上の自然数倍(ここでは、1〜3倍)に係る余弦(コサイン)と係数とを乗じた余弦関数の項を含む。
より詳細には、変数xの最大値をxmax(ここでは、1)とすると、変数xに係る1次の正弦関数の項が、(係数C)×sin{2π×(x/xmax)}の形式で示され、変数xに係る1次の余弦関数の項が、(係数D)×cos{2π×(x/xmax)}の形式で示される。そして、変数xに係るn次(nは、1〜3の自然数)の正弦関数の項が、(係数)×sin{2nπ×(x/xmax)}の形式で示され、変数xに係るn次の余弦関数の項が、(係数)×cos{2nπ×(x/xmax)}の形式で示される。
このように、予測電流i(x)をフーリエ級数を利用した形式で近似的に表現することで、上式(7),(12)〜(15)で示されるように、予測電流i(x)を1回積分する計算によって、予測電圧降下量V1(x)の近似式が導出される。このため、予測電圧降下量V1(x)を求めるための演算量が低減され、入力画像信号から予測電圧降下量V1(x)を迅速に導出することが可能となる。
また、上述された配線部L11に係る予測電圧降下量V1(x)の仮の近似式の算出方法と同様な方法によって、各配線部L12〜L14についても、上式(19)で示された予測電圧降下量V1(x)と同様な仮の近似式がそれぞれ求められる。以下、配線部L12の仮の近似式に係る予測電圧降下量をV2(x)、配線部L13の仮の近似式に係る予測電圧降下量をV3(x)、配線部L14の仮の近似式に係る予測電圧降下量をV4(x)と表す。
<A−2.各水平ラインに係る予測電圧降下量の近似式の導出>
各予測電圧降下量V1(x)〜V4(x)については、図12の4種類の各曲線で示されるように、X座標が1である場合の各予測電圧降下量V1(1)〜V4(1)が、必ずしも同量にはならない。但し、実際には、4本の配線部L11〜L14の右端が右側接続配線部L1bによって電気的に接続されているため、各配線部L11〜L14の右端における電位は同一となる。したがって、4本の配線部L11〜L14の右端における予測電圧降下量は、予測電圧降下量V1(1)〜V4(1)の平均値となる。このため、この平均値をVm(1)とすれば、該平均値Vm(1)は、下式(21)で示される。
Figure 0005351581
そして、4本の配線部L11〜L14が略同一の構成を有するため、4本の配線部L11〜L14のインピーダンスは略同一である。したがって、各予測電圧降下量V1(x)〜V4(x)が、各予測電圧降下量V1(1)〜V4(1)の平均値Vm(1)に対する差異に応じてそれぞれ補正されることで、各配線部L11〜L14に係る予測電圧降下量の近似式が求められる。ここで、配線部L11の近似式に係る予測電圧降下量をV1C(x)、配線部L12の近似式に係る予測電圧降下量をV2C(x)、配線部L13の近似式に係る予測電圧降下量をV3C(x)、配線部L14の近似式に係る予測電圧降下量をV4C(x)とすれば、各予測電圧降下量V1C(x)〜V4C(x)は、下式(22)〜(25)で示される。下式(22)〜(25)は、x=0を基準とした電圧降下を示すが、ドライバからx=0の部分までの配線に抵抗Rがある場合には、式(22)〜(25)の各予測電圧降下量V1C(x)〜V4C(x)に、電流の総量に抵抗Rを乗じた項を加える必要がある。この抵抗Rによる電圧降下は4本の配線部L11〜L14で共通になるので、まず、上式(19)に従ってドライバからx=0の部分までの配線抵抗がない場合の電圧降下を求め、その電圧降下に抵抗Rによる電圧降下分を加えればよい。この抵抗Rを考慮した予測電圧降下量V’1C(x)〜V’4C(x)は、下式(26)〜(29)で示される。なお、i1(x),i2(x),i3(x),i4(x)は、配線部L11〜L14における電流分布をそれぞれ示す。
Figure 0005351581
上式(22)で示されるように、予測電圧降下量V1(x)に対して、平均値Vm(1)と予測電圧降下量V1(1)との差分を係数とした変数xの一次の項が加算されることで、予測電圧降下量V1C(x)が導出される。また、上式(23)で示されるように、予測電圧降下量V2(x)に対して、平均値Vm(1)と予測電圧降下量V2(1)との差分を係数とした変数xの一次の項が加算されることで、予測電圧降下量V2C(x)が導出される。また、上式(24)で示されるように、予測電圧降下量V3(x)に対して、平均値Vm(1)と予測電圧降下量V3(1)との差分を係数とした変数xの一次の項が加算されることで、予測電圧降下量V3C(x)が導出される。更に、上式(25)で示されるように、予測電圧降下量V4(x)に対して、平均値Vm(1)と予測電圧降下量V4(1)との差分を係数とした変数xの一次の項が加算されることで、予測電圧降下量V4C(x)が導出される。
このようにして、配線部ごとに、各画素回路301における予測電流に応じて求まる各画素回路301に係る予測電圧降下量を近似的に示す項(近似項)V1(x)〜V4(x)が、平均値Vm(1)を用いて修正された予測電圧降下量V1C(x)〜V4C(x)の近似式が導出される。なお、平均値Vm(1)は、上述したように、複数の配線部L11〜L14について共通する右側接続配線部L1bにおける予測電圧降下量にあたる。そして、このようにして導出される予測電圧降下量V1C(x)〜V4C(x)は、例えば、図10で示された4種類の曲線のような関係を表し、各配線部L11〜L14の右端における予測電圧降下量V1C(1)〜V4C(1)が同一の値を示す。
<B.補正値の決定方法>
ある1つの画素回路301に着目すると、上述したように、トランジスタTdのドレイン電圧Vdが、電源線L1によって供給される電圧の降下に応じて降下する。そして、トランジスタTdのドレイン電流Idが、ドレイン電圧Vdの降下に応じて降下する。そこで、ここでは、ドレイン電圧Vdの降下量(ドレイン電圧降下量)がdVd、ドレイン電流Idの降下量(ドレイン電流降下量)がdIdである場合に、発光時のトランジスタTdのゲート電圧VgsをdVgs上昇させることで、ドレイン電圧Vdの降下による影響を打ち消す処理を行うものとする。また、トランジスタTdのいわゆる相互コンダクタンスgmは、下式(30)で示される関係を有し、トランジスタTdのいわゆるドレイン抵抗rdは、下式(31)で示される関係を有する。なお、ドレイン抵抗rdは、入力画像信号の階調に応じて変化する。
Figure 0005351581
ここで、上式(30)から下式(32)で示されるドレイン電流降下量dIdの式が導出されるとともに、上式(31)から下式(33)で示されるドレイン電流降下量dIdの式が導出される。
Figure 0005351581
そして、上式(32)のドレイン電流降下量dIdに、上式(33)のドレイン電流降下量dIdが代入されて、計算が行われることで、下式(34)で示されるゲート電圧の上昇量(ゲート電圧上昇量)dVgsが求められる。なお、下式(34)の計算では、トランジスタTdの増幅率μがドレイン抵抗rdと相互コンダクタンスgmとを乗じたものであることが利用されている。
Figure 0005351581
上式(34)で示されるように、ゲート電圧上昇量dVgsは、ドレイン電圧降下量dVdを増幅率μで除することで求められる。なお、本実施形態では、ある画素回路301におけるドレイン電圧降下量dVdは、その画素回路301における予測電圧降下量V1C(x)〜V4C(x)に等しい。このため、各予測電圧降下量V1C(x)〜V4C(x)を増幅率μで除することで、各画素回路301に係るゲート電圧上昇量dVgsが求められる。そして、出力画像信号の電圧Vdataが、ゲート電圧上昇量dVgsに応じて上昇されることで、ドレイン電圧Vdの降下による影響が打ち消される。なお、出力画像信号の電圧Vdataの上昇が、発光時のゲート電圧Vgsの上昇に寄与する度合いは、いわゆる書き込み効率αによって決まる。以下では、書き込み効率αが1、すなわち出力画像信号の電圧Vdataの上昇量が、そのまま発光時のゲート電圧上昇量dVgsに反映されるものとして説明する。
<C.信号処理部の機能的な構成>
図13は、信号処理部20の機能的な構成を示す図である。信号処理部20は、ラインバッファ201、定数・係数導出部202、近似式導出部203、被乗数算出部204、乗数決定部205、ガンマ(γ)変換部206、補正値決定部207、および補正値加算部208を有する。
ラインバッファ201は、外部から順次に入力される入力画像信号を受け付けて、一次的に記憶する。なお、ここでは、入力画像信号が、6ビットの階調(64段階の階調)を表現している例を挙げて説明する。
定数・係数導出部202は、外部から順次に入力される入力画像信号に基づいて、上式(19)で示される予測電圧降下量V1(x)の近似式に係る定数および係数を導出する。詳細には、定数・係数導出部202では、上式(7)〜(15)に沿った演算により、各画素回路301に対応する入力画像信号に基づいて、電源線L1から各画素回路301に供給されるものと予測される電流(予測電流)が求められ、更に該予測電流に基づいて、直流成分DC、および係数S1,S2,S3,C1,C2,C3が算出される。そして、具体的には、図14で示されるように、定数・係数導出部202は、電流予測部2021R,2021G,2021B、合算部2022、定数・係数算出部2023を備えている。
電流予測部2021Rは、上式(9)に従った演算により、座標xに係る赤色の画素回路301に対応する入力画像信号が示す階調に基づき、該赤色の画素回路301を流れる電流の予測値(予測電流)Ir(x)を導出する。電流予測部2021Gは、上式(10)に従った演算により、座標xに係る緑色の画素回路301に対応する入力画像信号が示す階調に基づき、該緑色の画素回路301を流れる電流の予測値(予測電流)Ig(x)を導出する。電流予測部2021Bは、上式(11)に従った演算により、座標xに係る青色の画素回路301に対応する入力画像信号が示す階調に基づき、該青色の画素回路301を流れる電流の予測値(予測電流)Ib(x)を導出する。なお、この入力画像信号と消費電流との関係については、RGBに関してそれぞれ1対1の関係があるので、テーブルを用いて求めることもできる。
合算部2022は、上式(8)に従った演算により、各電流予測部2021R,2021G,2021Bから出力される予測電流Ir(x),Ig(x),Ib(x)を合算することで、座標xの画素回路群において発光時に流れるものと予測される電流(予測電流)i(x)を算出する。定数・係数算出部2023は、上式(7),(12)〜(15)に従った演算により、合算部2022で順次に算出される各画素回路群の予測電流i(x)を用いた積分演算によって、直流成分DC、および係数S1,S2,S3,C1,C2,C3を算出する。
なお、定数・係数導出部202では、電流予測部2021R,2021G,2021B、合算部2022、定数・係数算出部2023によって、予測電圧降下量V1(x)の近似式に係る定数および係数と同様に、予測電圧降下量V1(x)〜V4(x)の近似式に係る定数および係数が導出される。
近似式導出部203は、定数・係数導出部202で導出された定数および係数、および右側接続配線部L1bに係る予測電圧降下量を用いて、予測電圧降下量V1C(x)〜V4C(x)の近似式を導出する。
具体的には、まず、定数・係数導出部202で導出された直流成分DC、および係数S1,S2,S3,C1,C2,C3の各値が、上式(19)に代入されるような演算が行われることで、各配線部L11〜L14に係る予測電圧降下量V1(x)〜V4(x)の仮の近似式が導出される。次に、各予測電圧降下量V1(x)〜V4(x)について、各配線部L11〜L14の右側接続配線部L1bによって電気的に接続される右端における予測電圧降下量V1(1)〜V4(1)が算出されるとともに、該4つの予測電圧降下量V1(1)〜V4(1)の平均値Vm(1)が算出される。そして、上式(22)〜(25)に沿った演算により、予測電圧降下量V1(x)〜V4(x)、予測電圧降下量V1(1)〜V4(1)、および平均値Vm(1)に基づき、各配線部L11〜L14に係る予測電圧降下量V1C(x)〜V4C(x)の近似式が導出される。
なお、本実施形態では、定数・係数導出部202と近似式導出部203とが、各画素回路301に供給される電圧に係る予測電圧降下量V1C(x)〜V4C(x)を示す近似式を算出する部分(近似式算出部)に相当する。
被乗数算出部204は、記憶部21等に格納される三角関数テーブル211を参照しつつ、近似式導出部203で導出された予測電圧降下量V1C(x)〜V4C(x)の近似式から、各画素回路群に対応する予測電圧降下量を、被乗数として算出する。ここでは、三角関数テーブル211には、例えば、変数xの各値に対して1次の正弦関数であるsin(2πx)の値が関連付けられて格納されている。したがって、被乗数算出部204は、各配線部L11〜L14について、画像信号が補正される対象となる画素回路群(補正対象画素回路群)のX座標の値と三角関数テーブル211とから、予測電圧降下量V1C(x)〜V4C(x)の近似式のうちの三角関数の項の値を導出して、各補正対象画素回路群に対応する予測電圧降下量(すなわち被乗数)を順次に算出する。
乗数決定部205は、記憶部21等に格納される乗数テーブル212を参照することで、ラインバッファ201から入力される各画素回路301に対応する入力画像信号の電位に応じて、増幅率μの逆数1/μを乗数として決定する。ここでは、乗数テーブル212には、赤、緑、青の色ごとに入力画像信号の各電位に対して、増幅率の逆数である1/μが関連付けられて格納されている。つまり、乗数決定部205は、乗数テーブル212を参照しつつ、画像信号が補正される対象となる画素回路(補正対象画素回路)に対応する入力画像信号の電位に応じて、対応する増幅率の逆数である1/μを決定する。
なお、増幅率μ、およびその逆数1/μは、環境温度によって変動する。このため、乗数テーブル212に、複数の温度について、赤、緑、青の色ごとに入力画像信号の各電位に対して、増幅率μの逆数1/μが関連付けられて格納されており、環境温度に応じて、乗数決定部205によって決定される乗数(1/μ)が変更されることが好ましい。この乗数テーブル212に入れる値は、増幅率μの逆数1/μに限らない。例えば、電源電圧の変動があった場合には、乗数テーブル212にその変動分を補正するために必要な係数を入れておけばよい。
γ変換部206は、各画素回路301に対応する入力画像信号に対して、いわゆるγ変換を施す。例えば、γ変換部206では、入力画像信号が示す階調が2.2乗されるような変換が行われる。このとき、6ビットの階調を表現する入力画像信号が、8ビットの階調を表現する画像信号(γ変換後の画像信号)に変換される。
補正値決定部207は、被乗数算出部204で算出された予測電圧降下量(すなわち被乗数)に対して、乗数決定部205で決定された増幅率μの逆数1/μ(乗数)を乗じることで、補正値を決定する。換言すれば、入力画像信号に応じたトランジスタTdの増幅率μで、予測電圧降下量を除することで補正値が導出される。乗数テーブル212では、RGBについて別々に1セットずつのテーブル、すなわち合計3セット分のテーブルが用意され、各乗数テーブルにより、RGBのそれぞれの補正値が導出される。
補正値加算部208は、γ変換後の画像信号の電位に対して、補正値決定部207で決定された補正値を加算することで、画像信号に対する補正を行う。このようにして、信号補正部としての補正値加算部208が、γ変換が施された後の画像信号に対して補正を行うことで、出力画像信号を生成する。この出力画像信号は、Xドライバ回路32に対して出力される。
なお、上述したように、1つの電源線L1によって電圧が印加される4本の水平ラインについて、入力画像信号に基づく演算が行われることで、各配線部L11〜L14に係る予測電圧降下量V1C(x)〜V4C(x)の近似式が導出される。したがって、ある画素回路301に対応する入力画像信号について、信号処理部20に入力画像信号が入力されてから補正値決定部207において補正値が決定されるまでに要する時間の方が、γ変換部206においてγ変換が施されるのに要する時間よりも、長くなる。このため、この処理時間の差を、ラインバッファ201における入力画像信号の保持によって調節することで、入力画像信号の入力と、画像信号の補正との間におけるタイミングの調整が行われ、画像信号の補正が正しく行われる。
以上のように、第1実施形態に係る画像表示装置1では、各画素回路群における予測電流i(x)がフーリエ級数を利用した形式で近似的に表現されることで、少ない演算量で予測電圧降下量V1C(x)〜V4C(x)の近似式が求められる。このため、入力画像信号から予測電圧降下量V1C(x)〜V4C(x)が迅速に導出される。その結果、外部からの複数フレームの画像信号の入力に応じて、迅速に該複数フレームの画像信号を可視的に出力することが可能となる。したがって、外部からの複数フレームの画像信号の入力に応じた該複数フレームの画像信号の迅速な可視的な出力と、画質の向上とを図ることが可能となる。
更に、基準部としての右側接続配線部L1bに係る予測電圧降下量Vm(1)を用いて、各予測電圧降下量V1C(x)〜V4C(x)の近似式が導出される。したがって、複数の水平ラインにそれぞれ電圧を印加する複数の配線部L11〜L14の両端が電気的に接続されているような構成であっても、迅速に予測電圧降下量V1C(x)〜V4C(x)の近似式が求められる。すなわち、入力画像信号から予測電圧降下量V1C(x)〜V4C(x)が迅速に導出される。
また、出力回路311から離れれば離れるほど、電源線L1から各画素回路301に対して印加される電圧の降下量が大きくなるが、複数の水平ラインにそれぞれ電圧を印加する複数の配線部L11〜L14の両端が電気的に接続されているような構成では、複数の配線部L11〜L14における電圧降下量の最大値が同一となる。本実施形態では、予測電圧降下量V1C(x)〜V4C(x)の最大値が同一となる。このため、複数の水平ラインについて、画像信号を最も大きく補正するための補正値が同一となり、補正の誤差が生じ難くなる。すなわち、画質の向上を図ることが可能となる。
また、外部からの複数フレームの画像信号の入力に応じて、迅速に該複数フレームの画像信号を補正して、可視的に出力することが可能であるため、画像信号を一時的に保持するためのバッファメモリの容量が小さくて済む。したがって、画像表示装置1の小型化、ならびに製造における省資源化と低コスト化とを図ることが可能となる。
<第2実施形態>
上記第1実施形態に係る画像表示装置1では、複数の水平ラインにそれぞれ電圧を印加する複数の配線部L11〜L14の両端が電気的に接続されて電源線L1が構成されていた。これに対して、第2実施形態に係る画像表示装置1Aでは、各水平ラインに電圧を印加する電源線L1の両端に対して同電位を付与することで、各画素回路301に対して電圧を印加する。
<画像表示装置の構成>
図15で示されるように、第2実施形態に係る画像表示装置1Aは、第1実施形態に係る画像表示装置1(図1)と比較して、パネル部3に配設された電源線L1が異なる構成の電源線L1Aに変更され、電源線L1Aの右端に対して電位を付与するYドライバ回路31が追加され、信号処理部20が異なる信号処理を行う信号処理部20Aに変更されたものとなっている。また、上記構成の変更により、制御部2が制御部2Aに変更されるとともに、パネル部3がパネル部3Aに変更される。なお、第2実施形態に係る画像表示装置1Aのうち、第1実施形態に係る画像表示装置1と同様な部分については同一の符号を付して適宜説明を省略する。
図16で示されるように、パネル部3Aには、水平ラインごとに、電源線L1Aが設けられている。ここで、電源線L1Aの延設方向の中央部L1Cを基準として、電源線L1Aのうちの中央部L1Cよりも左側の部分を左側配線部L1Lとし、中央部L1Cよりも右側の部分を右側配線部L1Rとすると、1本の電源線L1Aは、左側配線部L1Lの右端と右側配線部L1Rの左端とが基準部としての中央部L1Cによって電気的に接続された構成を有することになる。
そして、電源線L1Aのうちの複数の画素回路301を挟む一端部および他端部に対して第1および第2電位付与部としての出力回路311がそれぞれ同電位を付与する。詳細には、電源線L1Aの左端部に対して第1電位付与部としての出力回路311が電位を付与するとともに、電源線L1Aの右端部に対して第2電位付与部としての出力回路311が電位を付与する。このため、左右の出力回路311は、複数の画素回路301が配列されている領域(発光領域)の両端側から、共通の電源線L1Aを介して、1本の水平ラインに含まれる複数の画素回路301に対して同時に電圧を印加する。その結果、1本の水平ラインを構成する複数の画素回路301では、出力回路311からの電圧の供給に応じて、該複数の画素回路301にそれぞれ含まれる有機発光ダイオードOLEDが同時に発光する。
また、各電源線L1Aでは、出力回路311によって両端側から同電位が付与されるが、各画素回路301の発光に伴って流れる電流に基づいて、各画素回路301に供給される電圧の低下を生じさせる。ここでは、出力回路311から離れるにつれて、各画素回路301に供給される電圧が低下する。つまり、電源線L1Aに付与される負の電位(−VDD)が減少することで、有機発光ダイオードOLEDのアノードとトランジスタTdのソースとの間に印加される電圧が低下する。
<画像表示装置における電圧の低下>
図17は、1つの水平ラインにおける電圧の降下量を例示する図である。図17では、図10と同様に、横軸が、有機EL表示部30の最も左端側の画素回路301を基準とした水平方向の位置を示し、縦軸が、有機EL表示部30の両端の画素回路301に供給される電圧を基準とした各画素回路301に供給される電圧の降下量を示している。なお、図10と同様に、水平ラインの左端に配置される画素回路301の位置を示す座標(X座標)を0、水平ラインの右端に配置される画素回路301の位置を示す座標(X座標)を1とする。そして、図17では、1つの水平ラインについて、画素回路301の水平方向の位置と電圧の降下量との関係が曲線CVで示されている。
図17で示されるように、各水平ラインにおいて、出力回路311から離れれば離れるほど、すなわちYドライバ回路31から離れれば離れるほど、画素回路301に供給される電圧が低下する傾向にある。但し、入力画像信号によって、左側配線部L1Lにおける電圧の降下量と、右側配線部L1Rにおける電圧の降下量とが異なるため、中央部L1Cにおいて電圧の降下量が最も大きくなるとは限らない。しかしながら、左側配線部L1Lと右側配線部L1Rとは、中央部L1Cにおいて電気的に接続されている。このため、電源線L1Aにおいては、左端における電圧を基準とした中央部L1Cにおける電圧の降下量と、右端における電圧を基準とした中央部L1Cにおける電圧の降下量とが同量となる。
そして、ここでは、電源線L1における電位の上昇、すなわち各画素回路301に供給される電圧の低下に伴って、トランジスタTdにおけるドレイン電圧およびドレイン電流が低下する。従って、発光に係る期間T4では、有機EL表示部30のうち、横方向の中央部に近い部分が相対的に暗くなる傾向となり、輝度ムラが視認されることになる。
この様な不具合に対して、画像表示装置1Aでは、上述した電圧の降下量に応じて、画像信号を補正することで、電圧の降下の影響を低減する。以下、第2実施形態に係る電圧の降下に対する補償処理について説明する。
<電圧の降下に対する補償処理>
本実施形態では、信号処理部20Aにおいて、入力画像信号に基づき、各画素回路301に対して印加される電圧の降下量を示す近似式を導出するとともに、第1実施形態と同様に、各画素回路301について、入力画像信号の電位に応じたトランジスタTdの増幅率μで電圧の降下量を除すことで補正値を決定し、該補正値をいわゆるガンマ変換後の入力画像信号の電位に加算することで、出力画像信号を生成する。このような処理により、電圧の降下に対する補償処理が実現される。
なお、第2実施形態に係る電圧の降下に対する補償処理では、第1実施形態に係る電圧の降下に対する補償処理と比較して、予測電圧降下量の近似式の導出方法が異なるが、補正値の決定方法については、同様なものとなる。また、図13で示されるように、第2実施形態に係る信号処理部20Aについては、予測電圧降下量の近似式の導出方法の変更に伴って、第1実施形態に係る信号処理部20のうちの定数・係数算出部2023、定数・係数導出部202、および近似式導出部203が、それぞれ定数・係数算出部2023A、定数・係数導出部202A、および近似式導出部203Aに変更されたものとなる。したがって、以下では、第2実施形態に係る予測電圧降下量の近似式の導出方法について説明する。
ここでは、まず、1本の電源線L1Aを構成する左側配線部L1Lおよび右側配線部L1Rが中央部L1Cによって電気的に接続されていないものと仮定して、水平ラインの左側半分における電圧の降下量を示す仮の近似式、および水平ラインの右側半分における電圧の降下量を示す仮の近似式をそれぞれ導出する。そして、2つの仮の近似式に対して、左側配線部L1Lの右端と右側配線部L1Rの左端とが中央部L1Cによって電気的に接続されていることによる影響について修正を加えることで、水平ラインの左側半分に係る予測電圧降下量の近似式と、水平ラインの右側半分に係る予測電圧降下量の近似式とを導出する。なお、水平ラインの左側半分における仮の近似式に係る電圧降下量をVL(x)、水平ラインの右側半分における仮の近似式に係る電圧降下量をVR(x)とする。
有機EL表示部30では、左端側から順に配列される、1、2、3、・・・、N番目のピクセルにそれぞれ対応する各画素回路群が、この順番で共通の電源線L1Aに対して電気的に接続されている。そして、第1実施形態と同様に、有機EL表示部30の左端側に配列されている1番目の画素回路群の横方向のX座標を0、有機EL表示部30の右端側に配列されているN番目の画素回路群の横方向のX座標を1、各X座標の画素回路群において発光時に電圧に応じて流れる電流(電流分布)をi(x)、各X座標の画素回路群における電源線L1の電気抵抗をrとする。
ここで、水平ラインの左側半分における仮の近似式に係る電圧降下量VL(x)、水平ラインの右側半分における仮の近似式に係る電圧降下量VR(x)の導出について説明する。
まず、水平ラインの左側半分については、X座標がxである画素回路群において発生する電圧の降下、すなわち電圧の降下率(電圧降下率)δVL(x)は、X座標がxから0.5に至る迄の各画素回路群において電圧に応じて流れる電流を積算した値に、電気抵抗rを乗じたものであり、下式(35)で示される。また、水平ラインの右側半分については、X座標がxである画素回路群において発生する電圧の降下、すなわち電圧の降下率(電圧降下率)δVR(x)は、X座標が0.5からxに至る迄の各画素回路群において電圧に応じて流れる電流i(x)を積算した値に、電気抵抗rを乗じたものであり、下式(36)で示される。
Figure 0005351581
そして、水平ラインの左側半分について、X座標が0である画素回路群からX座標がxである画素回路群に至る迄に左側配線部L1Lによって各画素回路群に印加される電圧において発生するものと予測される降下量(予測電圧降下量)VL(x)は、下式(37)で示される。また、水平ラインの右側半分について、X座標が1である画素回路群からX座標がxである画素回路群に至る迄に右側配線部L1Rによって各画素回路群に印加される電圧において発生するものと予測される降下量(予測電圧降下量)VR(x)は、下式(38)で示される。
Figure 0005351581
上式(37),(38)でそれぞれ与えられる予測電圧降下量VL(x),VR(x)についても、上記第1実施形態と同様に、上式(6)で示されたフーリエ級数を用いて近似的に表した電流分布i(x)を、上式(37),(38)に適用して、積分演算を行うことで、予測電圧降下量VL(x),VR(x)の近似式を導出することができる。なお、上記第1実施形態と同様に、電流分布i(x)が、電流分布i(x)の直流成分DCと、変数xに係る1次、2次、および3次の正弦関数の項と、変数xに係る1次、2次、および3次の余弦関数の項とによって近似的に示される。このため、各予測電圧降下量VL(x),VR(x)の近似式についても、上式(19)で示される予測電圧降下量V1(x)と同様に、有機EL表示部30の一端側を基準とした各画素回路301の位置を示す変数xに係る1次および2次の項と、該変数xに係る三角関数の項とを含むものとなる。この三角関数の項は、上記第1実施形態と同様に、各画素回路301に係る予測電流の大小に起因して生じるものと予測される電圧の変動を示す。
なお、上式(6)を上式(37),(38)に適用した上での積分演算については説明を省略するが、予測電圧降下量VL(x),VR(x)の各近似式に含まれる変数xに係る1次および2次の項と該変数xに係る三角関数の項の形式については、予測電圧降下量V1(x)の近似式に含まれる各項と同様な形式のものとなる。
そして、上記第1実施形態と同様に、電気抵抗rについては、パネル部3の設計によって求められる。また、予測電圧降下量VL(x)の近似式に含まれる直流成分DC、および係数S1,S2,S3,C1,C2,C3を導出する際には、上式(7),(12)〜(15)のX座標に係る積分の区間が0〜0.5に変更された式と上式(8)〜(11)とが用いられる。更に、予測電圧降下量VR(x)の近似式に含まれる直流成分DC、および係数S1,S2,S3,C1,C2,C3を導出する際には、上式(7),(12)〜(15)のX座標に係る積分の区間が1〜0.5に変更された式と上式(8)〜(11)とが用いられる。
具体的には、各画素回路301に対応する入力画像信号に基づいて、電源線L1Aから各画素回路301に供給されるものと予測される電流(予測電流)が求められ、該予測電流に応じて、各予測電圧降下量VL(x),VR(x)の近似式に係る直流成分DC、および係数S1,S2,S3,C1,C2,C3が導出される。すなわち、各予測電圧降下量VL(x),VR(x)の近似式を構成する定数、xの1次および2次項、正弦関数のn次の項、および余弦関数のn次の項の各係数がそれぞれ算出される。
このように、予測電流i(x)をフーリエ級数を利用した形式で近似的に表現することで、上式(7),(12)〜(15)で示されるように、予測電流i(x)を1回積分する計算によって、予測電圧降下量VL(x),VR(x)の近似式が導出される。このため、予測電圧降下量VL(x),VR(x)を求めるための演算量が低減され、入力画像信号から予測電圧降下量VVL(x),VR(x)を迅速に導出することが可能となる。
ところで、上式(37),(38)でそれぞれ与えられる予測電圧降下量VL(x),VR(x)については、xに0.5を代入した値、すなわち予測電圧降下量VL(0.5),VR(0.5)は、必ずしも同量とはならない。例えば、図18で示されるように、予測電圧降下量VL(x)を示す曲線CVLと予測電圧降下量VR(x)を示す曲線CVRとは、X座標が0.5であっても一致しない。
しかしながら、実際には、電源線L1Aのうち、X座標の値が0.5である画素回路301に対して電圧を印加する部分は、中央部L1Cとなる。そして、左側配線部L1Lの右端と右側配線部L1Rの左端とが中央部L1Cによって電気的に接続されているため、左側配線部L1Lの右端における電位と右側配線部L1Rの左端における電位とが同一となる。
そこで、水平ラインの左および右側半分における仮の近似式に係る電圧降下量をVL(x),VR(x)を、中央部L1Cにおける電位で修正することを考える。具体的には、左側配線部L1Lの右端と右側配線部L1Rの左端とを、仮に電源とみなして短絡させることを考えると、中央部L1Cにおける予測電圧降下量VCENTERは、下式(39)で示されるように、2つの予測電圧降下量VL(0.5),VR(0.5)の平均値となる。
Figure 0005351581
そして、左側配線部L1Lの右端から右側配線部L1Rの左端に対して、下式(40)で示される電流ICENTERが流れるものとみなすことができる。ここで、電源線L1Aの左端から右端までの電気抵抗をRとすると、電流ICENTERは、下式(40)で示される。
Figure 0005351581
この電流ICENTERが、電源線L1Aの左端から右端まで流れるものとみなすことができる。そして、左側および右側配線部L1L,L1Rとが略同一の構成を有するため、左側配線部L1Lと右側配線部L1Rのインピーダンスは略同一である。したがって、各予測電圧降下量VL(x),VR(x)が、各予測電圧降下量VL(0.5),VR(0.5)の平均値Vm(0.5)に対する差異に応じてそれぞれ補正されることで、各配線部L1L,L1Rに係る予測電圧降下量の近似式が求められる。ここで、左側配線部L1Lの近似式に係る予測電圧降下量をVLC(x)、右側配線部L1Rの近似式に係る予測電圧降下量をVRC(x)とすれば、各予測電圧降下量VLC(x),VRC(x)は、下式(41),(42)で示される。
Figure 0005351581
具体的には、左側配線部L1Lにおいて上式(40)で示される電流ICENTERが均一に流れることによって生じる電圧の変化量を補正量として、仮の近似式に係る予測電圧降下量VL(x)に対して加算することで、上式(41)で示される予測電圧降下量VLC(x)が導出される。また、右側配線部L1Rにおいて上式(40)で示される電流ICENTERが均一に流れることによって生じる電圧の変化量を補正量として、仮の近似式に係る予測電圧降下量VR(x)に対して加算することで、上式(42)で示される予測電圧降下量VRC(x)が導出される。なお、左側配線部L1Lに係る補正量は、図19の直線RELで示されるようなX座標の変化に比例したオフセットを与えるものとなり、右側配線部L1Rに係る補正量は、図19の直線RERで示されるようなX座標の変化に比例したオフセットを与えるものとなる。
このようにして、配線部ごとに、各画素回路301における予測電流に応じて各画素回路301に係る予測電圧降下量を近似的に示す項(近似項)VL(x),VR(x)が求まるとともに、該近似項VL(x),VR(x)が、平均値Vm(0.5)を用いて修正された予測電圧降下量VLC(x),VRC(x)の近似式が導出される。そして、このようにして導出される予測電圧降下量VLC(x),VRC(x)は、例えば、図17における1つの曲線CVで示されるような関係を表す。
以上のように、第2実施形態に係る画像表示装置1Aでは、各画素回路群における予測電流i(x)がフーリエ級数を利用した形式で近似的に表現されることで、少ない演算量で予測電圧降下量VLC(x),VRC(x)の近似式が求められる。このため、入力画像信号から予測電圧降下量VLC(x),VRC(x)が迅速に導出される。その結果、外部からの複数フレームの画像信号の入力に応じて、迅速に該複数フレームの画像信号を可視的に出力することが可能となる。したがって、外部からの複数フレームの画像信号の入力に応じた該複数フレームの画像信号の迅速な可視的な出力と、画質の向上とを図ることが可能となる。
更に、基準部としての中央部L1Cに係る予測電圧降下量Vm(0.5)を用いて、各予測電圧降下量VLC(x),VRC(x)の近似式が導出される。したがって、水平ラインの両端側から各画素回路に対して電圧を印加するような構成であっても、迅速に予測電圧降下量VLC(x),VRC(x)の近似式が求められる。すなわち、入力画像信号から予測電圧降下量VLC(x),VRC(x)が迅速に導出される。
なお、水平ラインの両端側から各画素回路に対して電圧を印加するような構成では、水平ラインの一端側から各画素回路に対して電圧を印加する構成と比較して、電圧降下量の最大値が1/4程度となる。これは、電圧降下量が、出力回路311からの電源線の長さの2乗に比例するためである。したがって、大画面の表示パネル等で、水平ラインの両端側から各画素回路に対して電圧を印加するような構成を採用すれば、電圧降下量が低減され、画像信号を最も大きく補正するための補正値が比較的小さくて済む。その結果、補正の誤差、およびノイズが生じ難くなり、画質の向上が図られることになる。
<変形例>
なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
◎例えば、上記第2実施形態では、図16で示されたように、各電源線L1Aの両端に対して出力回路311から電位が付与されたが、これに限られない。例えば、図20で示されるように、第1実施形態と同様に水平ライン毎に配線部が設けられ、複数の配線部L11〜L14の左端を相互に電気的に接続する左側接続配線部L1aに対して出力回路311から電位が付与されるとともに、複数の配線部L11〜L14の右端を相互に電気的に接続する右側接続配線部L1bに対しても出力回路311から電位が付与されても良い。つまり、配線部L11〜L14と左側接続配線部L1aと右側接続配線部L1bとからなる電源線L1の両端から出力回路311によってそれぞれ電位が付与されても良い。
◎また、上記第1および第2実施形態では、各画素回路301について、予測電圧降下量を、入力画像信号に対応する増幅率μで除することで、画像信号の補正値を決定したが、これに限られない。例えば、入力画像信号が示す階調(データ階調)を基準として、データ階調が1階調変化する毎にトランジスタTdのドレイン電流Idが変化する量で、トランジスタTdにおけるドレイン電流降下量dIdを除するとの考え方に沿って、入力画像信号に対する補正値を決定しても良い。なお、予測電圧降下量の近似式の導出方法については、上記第1および第2実施形態と同様な方法で良く、以下では、本一変形例に係る補正値の決定方法、および信号処理部20Bの機能的な構成について、順次に説明する。
ここで、入力画像信号の階調をLINdata、入力画像信号の補正値をdLINdataとして、上式(31)で示されるドレイン抵抗rdを用いると、補正値dLINdataは、下式(43)で表される。
Figure 0005351581
上式(43)で示されるように、ドレイン電圧降下量dVdを、ドレイン抵抗rdと、ドレイン電流降下量dIdをデータ階調の変化量dLINdataで除した値とで除することで、補正値dLINdataが求まる。ここで、ドレイン電流降下量dIdをデータ階調の変化量dLINdataで除した値(dId/dLINdata)は、データ階調の変化に対するドレイン電流Idの変化の傾きに相当する。そして、ドレイン抵抗rd、および傾き(dId/dLINdata)は、画素回路301の設計上、入力画像信号が示す階調に対して一義的に決まる。このため、例えば、入力画像信号が示す各階調毎に、ドレイン抵抗rdの逆数と傾き(dId/dLINdata)とを乗じた数値をテーブルに記憶させておくことで、入力画像信号の入力に応じて、対応するドレイン抵抗rdの逆数と傾き(dId/dLINdata)との積を求めることが可能である。
図21は、本一変形例に係る画像表示装置1Bの制御部2Bに含まれる信号処理部20Bの機能的な構成を示す図である。画像表示装置1Bは、上記第1実施形態に係る画像表示装置1と比較して、信号処理部20の一部の構成が、異なる機能を有する構成に変更された信号処理部20Bとなったものである。以下では、信号処理部20Bのうち、信号処理部20と同様な構成については、同じ符号を付して重複説明を省略し、異なる構成について説明する。なお、第2実施形態に係る画像表示装置1Aの信号処理部20Aに対して、信号処理部20Bを適用しても良い。
図21で示されるように、信号処理部20Bは、ラインバッファ201、定数・係数導出部202、近似式導出部203、被乗数算出部204、乗数決定部205B、γ変換部206B、補正値決定部207B、および補正値加算部208Bを有する。
乗数決定部205Bは、記憶部21等に格納される乗数テーブル212Bを参照することで、ラインバッファ201から入力される入力画像信号の階調から、ドレイン抵抗rdの逆数と、傾き(dId/dLINdata)とを乗じた値{(dId/dLINdata)/rd}を乗数として決定する。ここでは、乗数テーブル212Aには、赤、緑、青の色毎に入力画像信号の各階調に対して、乗数の候補の値{(dId/dLINdata)/rd}が関連付けられて格納されている。つまり、乗数決定部205Bは、乗数テーブル212Bを参照しつつ、補正対象画素回路に対応する入力画像信号の階調に応じて、対応する乗数{(dId/dLINdata)/rd}を決定する。
なお、乗数の候補の値{(dId/dLINdata)/rd}は、環境温度によって変動する。このため、乗数テーブル212Bに、複数の温度について、赤、緑、青の色毎に入力画像信号の各階調に対して乗数の候補の値{(dId/dLINdata)/rd}が関連付けられて格納されており、環境温度に応じて、乗数決定部205Bによって決定される乗数{(dId/dLINdata)/rd}が変更されることが好ましい。
補正値決定部207Bは、被乗数算出部204で算出された予測電圧降下量(すなわち被乗数)に対して、乗数決定部205Bで決定された乗数{(dId/dLINdata)/rd}を乗じることで、補正値を決定する。
補正値加算部208Bは、γ変換前の画像信号(入力画像信号)の電位に対して、補正値決定部207Bで決定された補正値を加算することで、画像信号に対する補正を行う。このようにして、信号補正部としての補正値加算部208Bが、γ変換が施される前の画像信号に対して補正を行う。このとき、6ビットの階調を表現する入力画像信号が、8ビットの階調を表現する画像信号となる。
γ変換部206Bは、補正値加算部208Bで補正された各画素回路301に係る画像信号に対して、いわゆるγ変換を施す。例えば、γ変換部206Bでは、補正後の画像信号が示す階調が2.2乗されるような変換が行われる。このとき、8ビットの階調を表現する補正後の画像信号が、10ビットの階調を表現する出力画像信号(γ変換後の画像信号)に変換される。この出力画像信号は、Xドライバ回路32に対して出力される。
なお、本一変形例に係る画像表示装置1Bと比較して、上記第1および第2実施形態に係る画像表示装置1,1Aでは、γ変換前の画像信号が表現する階調のビット数が少ないため、γ変換に要するハードウェア構成ならびにデータ量の低減が図られる。
◎また、上記第1および第2実施形態では、予測電圧降下量の近似式の三角関数の項に、変数xの1〜3倍に応じた正弦(サイン)と係数とを乗じた項、および変数xの1〜3倍に応じた余弦(コサイン)と係数とを乗じた項が含まれた。すなわち、三角関数の項に、変数xに係る1〜3次の正弦関数の項と、変数xに係る1〜3次の余弦関数の項とが含まれた。しかしながら、これに限られない。例えば、三角関数の項には、少なくとも、変数xに係る1次の正弦関数の項と、変数xに係る1次の余弦関数の項とが含まれれば良い。但し、予測電圧降下量の近似の精度の観点から言えば、三角関数の項に、変数xに係る1〜3次の正弦関数の項と、変数xに係る1〜3次の余弦関数の項とが含まれることが好ましい。
◎また、上記第1および第2実施形態では、画素回路301(図2)の構成上、電源線L1の電位が変化しても、トランジスタTdのゲート電圧Vgsが変化しなかったが、これに限られない。例えば、図22で示されるような電源線L1s,L1dの電位の変動に応じてトランジスタTdのゲート電圧Vgsが変化する画素回路301Cに対しても、本発明を適用することができる。
なお、画素回路301Cは、有機発光ダイオードOLED、トランジスタTd、トランジスタTth、およびコンデンサCsを備えており、発光時に相対的に高電位となる電源線L1dと、発光時に相対的に低電位となる電源線L1sとの間に、有機発光ダイオードOLEDとトランジスタTdとが直列に接続されている。また、トランジスタTdのドレインとゲートとの間に、トランジスタTthが設けられ、該トランジスタTthは、補償制御線L3の電位によって導通状態と非導通状態との間で切り替えられる。また、トランジスタTdのゲートと画像信号線L2とがコンデンサCsを介して接続されている。
このような構成を有する画素回路301Cでは、発光時において、電源線L1sの電位の変動に応じてトランジスタTdのゲート電圧Vgsが変化するとともに、電源線L1dと電源線L1sとの間における電位差(すなわち電圧)の低下に起因して、トランジスタTdのドレイン電圧Vdが低下する。したがって、画素回路301Cでは、ゲート電圧Vgsおよびドレイン電圧Vdの双方の低下によって、発光時におけるトランジスタTdのドレイン電流Idが低下する。このような構成では、上記第1および第2実施形態で説明した画像信号の補正方法と同様な方法によって、ドレイン電圧Vdの低下に起因するドレイン電流Idの低下を抑制することが可能である。すなわち、本発明は、発光素子と駆動トランジスタとが直列に接続され、該駆動トランジスタの発光時におけるドレイン電圧Vdの低下によってドレイン電流Idが低下する画素回路を備える種々の画像表示装置に対して適用することができる。なお、ゲート電圧Vgsの低下に起因するドレイン電流Idの低下については、別個に画像信号の補正等を行うことで対処すれば良い。
◎また、上記第1および第2実施形態では、画素回路群毎に電圧の降下、すなわち、予測電圧降下量を求めたが、これに限られない。例えば、画素回路毎に予測電圧降下量を求めるようにしても良い。
◎なお、上記第1実施形態では、各水平ラインに対応する入力画像信号については、Yドライバ回路31に最も近い画素回路301側から順に、対応する入力画像信号が順次に入力されても良いし、Yドライバ回路31から最も遠い画素回路301側から順に、対応する入力画像信号が順次に入力されても良い。
◎なお、上記第1および第2実施形態では、発光素子が有機発光ダイオードOLEDである場合について説明したが、これに限られず、例えば、発光素子が、無機材料等で構成された発光ダイオード等であっても構わない。
◎また、上記第1および第2実施形態および上記各変形例の全部または一部について、矛盾のない範囲で組み合わせても構わない。
1,1A,1B 画像表示装置
2,2A,2B 制御部
3,3A パネル部
4 電源回路
20,20A,20B 信号処理部
30 有機EL表示部
31 Yドライバ回路
32 Xドライバ回路
201 ラインバッファ
202,202A 定数・係数導出部
203,203A 近似式導出部
204 被乗数算出部
205,205B 乗数決定部
206,206B γ変換部
207,207B 補正値決定部
208,208B 補正値加算部
301,301C 画素回路
311 出力回路
L1,L1A,L1d,L1s 電源線
L11〜L14 配線部
L1a 左側接続配線部
L1b 右側接続配線部
L1C 中央部
L1L 左側配線部
L1R 右側配線部
OLED 有機発光ダイオード

Claims (14)

  1. 発光素子をそれぞれ有する複数の画素回路と、
    各前記画素回路において画像信号に応じた電位を設定する電位設定部と、
    前記複数の画素回路に対して共通に接続され、且つ各前記発光素子を同時に発光させるための電圧が印加される電圧印加線に対して電位を付与する電位付与部と、
    画像信号に基づく各前記画素回路に流れる予測電流に応じて、前記電圧の予測降下量を示す近似式をフーリエ級数を用いて算出する近似式算出部と、
    前記近似式に基づいて、各前記予測降下量に応じた補正を前記画像信号に対して行う信号補正部と、を備える画像表示装置であって、
    前記電圧印加線が、
    前記電圧印加線の端部と該電圧印加線に含まれる基準部とを電気的に接続する複数の配線部を有し、
    前記近似式算出部が、
    前記基準部に係る前記電圧の予測降下量を用いて、前記近似式を算出し、
    前記近似式が、各前記画素回路の位置を示す変数に係る1次および2次の項と、各前記予測電流に起因する前記電圧の変動を示す前記変数に係る三角関数の項とを含むことを特徴とする画像表示装置。
  2. 請求項に記載の画像表示装置であって、
    前記近似式算出部が、
    前記配線部ごとに、各前記予測電流に基づく各前記画素回路における前記電圧の予測降下量を近似的に示す近似項を、前記複数の配線部に共通する前記基準部における前記電圧の予測降下量を用いて修正することで、前記近似式を算出することを特徴とする画像表示装置。
  3. 請求項に記載の画像表示装置であって、
    前記複数の画素回路が、
    一方向に複数の画素回路がそれぞれ配列されている複数の画素回路列を含み、前記配線部が、
    前記画素回路列ごとに設けられており、
    前記電位付与部が、
    各前記配線部の一端に対してそれぞれ電位を付与するとともに、
    前記基準部が、
    各前記配線部の前記一端とは異なる他端を相互に電気的に接続することを特徴とする画像表示装置。
  4. 請求項に記載の画像表示装置であって、
    前記三角関数の項が、
    前記変数に係る正弦と係数とを乗じた項、および該変数に係る余弦と係数とを乗じた項を含むことを特徴とする画像表示装置。
  5. 請求項に記載の画像表示装置であって、
    前記三角関数の項が、
    前記変数に第1の自然数を乗じた第1変数に係る正弦と係数とを乗じた項、前記変数に第2の自然数を乗じた第2変数に係る正弦と係数とを乗じた項、前記第1変数に係る余弦と係数とを乗じた項、および前記第2変数に係る余弦と係数とを乗じた項を含むことを特徴とする画像表示装置。
  6. 請求項に記載の画像表示装置であって、
    前記1次の項が、
    前記変数と係数とを乗じた項を含み、
    前記2次の項が、
    前記変数の2乗と係数とを乗じた項を含むことを特徴とする画像表示装置。
  7. 請求項から請求項の何れか1つの請求項に記載の画像表示装置であって、
    前記近似式算出部が、
    前記予測電流に基づいて、各前記係数を算出することを特徴とする画像表示装置。
  8. 請求項に記載の画像表示装置であって、
    前記近似式が、各前記画素回路の位置を示す変数に係る1次および2次の項を含むことを特徴とする画像表示装置。
  9. 発光素子をそれぞれ有する複数の画素回路と、
    各前記画素回路において画像信号に応じた電位を設定する電位設定部と、
    前記複数の画素回路に対して共通に接続され、且つ各前記発光素子を同時に発光させるための電圧が印加される電圧印加線に対して電位を付与する電位付与部と、
    画像信号に基づく各前記画素回路に流れる予測電流に応じて、前記電圧の予測降下量を示す近似式をフーリエ級数を用いて算出する近似式算出部と、
    前記近似式に基づいて、各前記予測降下量に応じた補正を前記画像信号に対して行う信号補正部と、を備える画像表示装置であって、
    前記電圧印加線が、
    前記複数の画素回路を挟む一端および他端を有し、
    前記電位付与部が、
    前記一端に対して電位を付与する第1電位付与部と、前記他端に対して電位を付与する第2電位付与部とを有し、
    前記近似式が、各前記画素回路の位置を示す変数に係る1次および2次の項と、各前記予測電流に起因する前記電圧の変動を示す前記変数に係る三角関数の項とを含むことを特徴とする画像表示装置。
  10. 請求項に記載の画像表示装置であって、
    前記三角関数の項が、
    前記変数に係る正弦と係数とを乗じた項、および該変数に係る余弦と係数とを乗じた項を含むことを特徴とする画像表示装置。
  11. 請求項に記載の画像表示装置であって、
    前記三角関数の項が、
    前記変数に第1の自然数を乗じた第1変数に係る正弦と係数とを乗じた項、前記変数に第2の自然数を乗じた第2変数に係る正弦と係数とを乗じた項、前記第1変数に係る余弦と係数とを乗じた項、および前記第2変数に係る余弦と係数とを乗じた項を含むことを特徴とする画像表示装置。
  12. 請求項に記載の画像表示装置であって、
    前記1次の項が、
    前記変数と係数とを乗じた項を含み、
    前記2次の項が、
    前記変数の2乗と係数とを乗じた項を含むことを特徴とする画像表示装置。
  13. 請求項10から請求項12の何れか1つの請求項に記載の画像表示装置であって、
    前記近似式算出部が、
    前記予測電流に基づいて、各前記係数を算出することを特徴とする画像表示装置。
  14. 請求項に記載の画像表示装置であって、
    前記近似式が、各前記画素回路の位置を示す変数に係る1次および2次の項を含むことを特徴とする画像表示装置。
JP2009080070A 2009-03-27 2009-03-27 画像表示装置 Active JP5351581B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080070A JP5351581B2 (ja) 2009-03-27 2009-03-27 画像表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080070A JP5351581B2 (ja) 2009-03-27 2009-03-27 画像表示装置

Publications (2)

Publication Number Publication Date
JP2010231079A JP2010231079A (ja) 2010-10-14
JP5351581B2 true JP5351581B2 (ja) 2013-11-27

Family

ID=43046931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080070A Active JP5351581B2 (ja) 2009-03-27 2009-03-27 画像表示装置

Country Status (1)

Country Link
JP (1) JP5351581B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102431311B1 (ko) * 2015-01-15 2022-08-12 티씨엘 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 표시 장치
GB2546002B (en) 2015-12-30 2019-10-30 Lg Display Co Ltd Organic light emitting diode display device
KR20170080459A (ko) * 2015-12-30 2017-07-10 엘지디스플레이 주식회사 유기발광다이오드표시장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3673761B2 (ja) * 2001-02-09 2005-07-20 キヤノン株式会社 電子源の特性調整方法及び電子源の製造方法及び画像表示装置の特性調整方法及び画像表示装置の製造方法
GB0314895D0 (en) * 2003-06-26 2003-07-30 Koninkl Philips Electronics Nv Light emitting display devices
JP5138428B2 (ja) * 2008-03-07 2013-02-06 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー 表示装置

Also Published As

Publication number Publication date
JP2010231079A (ja) 2010-10-14

Similar Documents

Publication Publication Date Title
US10297201B2 (en) Compensation method of cathode voltage drop of organic light emitting diode display device and pixel driving circuit
US9183785B2 (en) Organic light emitting display device and method for driving the same
KR102091485B1 (ko) 유기 발광 표시 장치 및 그의 구동 방법
US10276090B2 (en) Display device capable of correcting voltage drop and method for driving the same
CN108269527A (zh) 有机发光二极管显示装置
KR101985243B1 (ko) 유기전계발광표시장치, 이의 구동방법 및 이의 제조방법
US9881553B2 (en) OLED drive system raising frame contrast and drive method
KR101935588B1 (ko) 표시 장치 및 그 구동 방법
US9881558B2 (en) Display device including data scaler and method for driving the same
KR100741977B1 (ko) 유기 전계발광 표시장치 및 그의 구동방법
JP2009180765A (ja) 表示駆動装置、表示装置及びその駆動方法
WO2013094422A1 (ja) 画素回路及び表示装置
US9361823B2 (en) Display device
CN109983529B (zh) 有机el显示装置和有机el元件的劣化量的估算方法
KR20150041485A (ko) 유기 발광 표시 장치
KR20030081610A (ko) 유기 전계발광 표시장치 및 이의 구동방법
JP6333382B2 (ja) 表示装置およびその駆動方法
KR20160007786A (ko) 표시장치
WO2019014939A1 (en) PIXEL CIRCUIT FOR A DISPLAY DEVICE
JP2018531425A (ja) Oled表示パネルのコントラスト比向上方法及びそのシステム
JP5351581B2 (ja) 画像表示装置
KR20180043563A (ko) 디지털-아날로그 변환회로와 그를 포함한 유기발광 표시장치
WO2020059072A1 (ja) 表示装置およびその駆動方法
KR20150072593A (ko) 유기 발광 표시 장치
KR102379777B1 (ko) 전계 발광 시스템 및 그 기준전압 설정 방법

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Ref document number: 5351581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250