JP5350595B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP5350595B2
JP5350595B2 JP2007027019A JP2007027019A JP5350595B2 JP 5350595 B2 JP5350595 B2 JP 5350595B2 JP 2007027019 A JP2007027019 A JP 2007027019A JP 2007027019 A JP2007027019 A JP 2007027019A JP 5350595 B2 JP5350595 B2 JP 5350595B2
Authority
JP
Japan
Prior art keywords
fuel
pressure
cartridge housing
fuel cartridge
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007027019A
Other languages
Japanese (ja)
Other versions
JP2008192508A (en
Inventor
孝史 皿田
考応 柳▲瀬▼
徹 尾崎
恒昭 玉地
一貴 譲原
文晴 岩崎
昇 石曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2007027019A priority Critical patent/JP5350595B2/en
Publication of JP2008192508A publication Critical patent/JP2008192508A/en
Application granted granted Critical
Publication of JP5350595B2 publication Critical patent/JP5350595B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料カートリッジと発電部を有する燃料電池に関するものである。   The present invention relates to a fuel cell having a fuel cartridge and a power generation unit.

従来、パーソナルコンピュータや携帯電話等の電子機器の電源として燃料電池を用いたものが知られている。その燃料電池には代表的なものとして気体燃料として水素ガスを使用する固体高分子型燃料電池(PEFC)がある。上記燃料電池を長時間にわたって連続運転する場合には途中で燃料電池に燃料を補給する必要がある。そこで従来では燃料電池に燃料を補給する方法として燃料の入った容器を燃料電池本体から取り外せるようなカートリッジにし、連続運転中に燃料がなくなると燃料電池からカートリッジを取り外し燃料の入った別のカートリッジ(燃料カートリッジ)に交換する方法がとられている。   2. Description of the Related Art Conventionally, a fuel cell is known as a power source for electronic devices such as personal computers and mobile phones. A typical example of such a fuel cell is a polymer electrolyte fuel cell (PEFC) that uses hydrogen gas as a gaseous fuel. When the fuel cell is continuously operated for a long time, it is necessary to replenish the fuel cell on the way. Therefore, in the past, as a method of replenishing the fuel cell, the container containing the fuel is made a cartridge that can be removed from the fuel cell main body, and when the fuel runs out during continuous operation, the cartridge is removed from the fuel cell and another cartridge containing the fuel ( A method of replacing the fuel cartridge) is used.

ところで上記燃料電池を使用中に燃料カートリッジ内の圧力を測定し、内部の雰囲気を把握したい場合があり、燃料カートリッジ筐体に燃料カートリッジ内の物質量を測定するセンサを取り付けている。例えば、燃料カートリッジ内の圧力を検出する圧力センサを燃料カートリッジに設け燃料カートリッジ内の圧力の変化から燃料残量を検出する方法が知られている。(例えば、特許文献1参照)
また燃料電池カートリッジとして固体の反応用物質と液体の反応溶液を燃料カートリッジの内部で反応させて水素を発生させるものがある。このような燃料電池カートリッジにおいて、液体の反応溶液の残量を検出するために、当該反応溶液を収容した溶液容器の圧力を検出したい場合もあり、その場合は、燃料カートリッジにおける液体容器に圧力センサをつけることで溶液容器の圧力測定は可能である。
特開2006−99984号公報
By the way, there is a case where it is desired to measure the pressure in the fuel cartridge while using the fuel cell to grasp the internal atmosphere, and a sensor for measuring the amount of substance in the fuel cartridge is attached to the fuel cartridge housing. For example, a method is known in which a pressure sensor for detecting the pressure in the fuel cartridge is provided in the fuel cartridge and the remaining amount of fuel is detected from a change in the pressure in the fuel cartridge. (For example, see Patent Document 1)
Some fuel cell cartridges generate hydrogen by reacting a solid reaction substance and a liquid reaction solution inside the fuel cartridge. In such a fuel cell cartridge, in order to detect the remaining amount of the liquid reaction solution, there is a case where it is desired to detect the pressure of the solution container containing the reaction solution. It is possible to measure the pressure of the solution container.
JP 2006-99984 A

燃料カートリッジは内部の燃料を全て消費した後は廃棄するものであり、圧力センサを燃料カートリッジ側に備えていると、燃料カートリッジと共に圧力センサも廃棄することになってしまう。このため、圧力センサが故障していないにもかかわらず、燃料カートリッジと共に圧力センサを廃棄しなければならず、圧力センサを有効活用することができなかった。   The fuel cartridge is discarded after all the internal fuel is consumed. If the pressure sensor is provided on the fuel cartridge side, the pressure sensor is discarded together with the fuel cartridge. For this reason, the pressure sensor must be discarded together with the fuel cartridge even though the pressure sensor has not failed, and the pressure sensor cannot be effectively used.

そこで、本発明は上記事情に鑑みてなされたものであり、燃料カートリッジと共に圧力センサを廃棄することなく、圧力センサを有効活用することができる燃料電池を提供することを目的とする。   Accordingly, the present invention has been made in view of the above circumstances, and an object thereof is to provide a fuel cell in which the pressure sensor can be effectively used without discarding the pressure sensor together with the fuel cartridge.

上記目的を達成するための本発明の第1の態様は、発電に用いられる燃料を蓄える燃料カートリッジ筐体と、前記燃料カートリッジ筐体に接続され、前記燃料カートリッジ筐体から供給される前記燃料によって発電する発電部と、前記燃料カートリッジ筐体の内部圧力を導入可能な圧力導入路を介して前記燃料カートリッジ筐体内部の圧力を計測する圧力センサと、前記燃料カートリッジ筐体と前記発電部とを着脱自在に接続する第1接続部とを備え、前記圧力センサは、前記発電部に取り付けられており、前記第1接続部は、前記燃料カートリッジ筐体と前記発電部が未接続時に前記燃料カートリッジ筐体から供給される前記燃料の流路を閉鎖する閉鎖手段を有し、前記閉鎖手段は、前記流路内に設けられた弁体と、当該弁体に接続された圧縮バネと、前記弁体に取り付けられ前記流路を密封可能なOリングと、を含んでいることを特徴とする燃料電池にある。 In order to achieve the above object, a first aspect of the present invention includes a fuel cartridge housing for storing fuel used for power generation, and the fuel connected to the fuel cartridge housing and supplied from the fuel cartridge housing. A power generation unit that generates power, a pressure sensor that measures a pressure inside the fuel cartridge housing via a pressure introduction path capable of introducing an internal pressure of the fuel cartridge housing, and the fuel cartridge housing and the power generation unit. A first connection part that is detachably connected, and the pressure sensor is attached to the power generation part, and the first connection part is connected to the fuel cartridge when the fuel cartridge housing and the power generation part are not connected. A closing means for closing the flow path of the fuel supplied from the housing; the closing means includes a valve body provided in the flow path and a pressure connected to the valve body; The fuel cell includes a compression spring and an O-ring attached to the valve body and capable of sealing the flow path .

かかる第1の態様では従来燃料カートリッジ筐体に取り付けてあった圧力センサが発電部に取り付けられているため、燃料カートリッジ筐体と発電部を第1接続部にて切り離した際に圧力センサを燃料カートリッジ筐体と共に廃棄することがなくなり圧力センサの有効活用をすることができる。   In the first aspect, since the pressure sensor that has been conventionally attached to the fuel cartridge casing is attached to the power generation section, the pressure sensor is removed when the fuel cartridge casing and the power generation section are disconnected at the first connection section. The pressure sensor can be effectively used without being discarded together with the cartridge housing.

本発明の第2の態様は、第1の態様に記載の燃料電池において、反応溶液を収納する溶液容器と、固体の反応用物質を収容するとともに前記反応溶液及び前記反応用物質を反応させて前記燃料を生成する反応室とを備え、前記燃料カートリッジ筐体側の第1部分及び前記発電部側の第2部分を有し、前記溶液容器から前記反応室に前記反応溶液を送る送液路と、前記第1部分と前記第2部分とを着脱自在に接続する第2接続部とを有し、前記圧力センサは、前記送液路内部の圧力を計測することを特徴とした燃料電池にある。   According to a second aspect of the present invention, in the fuel cell according to the first aspect, a solution container that contains a reaction solution, a solid reaction substance, and the reaction solution and the reaction substance are reacted. A reaction chamber for generating the fuel, a liquid supply path that has a first portion on the fuel cartridge housing side and a second portion on the power generation unit side, and sends the reaction solution from the solution container to the reaction chamber; The fuel cell is characterized in that it has a second connection part for detachably connecting the first part and the second part, and the pressure sensor measures the pressure inside the liquid feeding path. .

かかる第2の態様では溶液容器と反応室を有する燃料カートリッジ筐体において、溶液容器と反応室とを接続する送液路を燃料カートリッジ筐体側に属する第1部分と発電部側に属する第2部分とが分離されても、圧力センサが発電部側の第2部分に取り付けられているため、圧力センサを燃料カートリッジ筐体と共に廃棄することがなくなり圧力センサの有効活用をすることができる。   In the second aspect, in the fuel cartridge housing having the solution container and the reaction chamber, the liquid feeding path connecting the solution container and the reaction chamber has a first portion belonging to the fuel cartridge housing side and a second portion belonging to the power generation unit side. Since the pressure sensor is attached to the second portion on the power generation unit side even if they are separated, the pressure sensor is not discarded together with the fuel cartridge housing, and the pressure sensor can be effectively used.

本発明の第3の態様は、第3の態様に記載の燃料電池において、前記第2部分に備えられ、前記反応室の圧力が所定の圧力よりも低くなった場合にのみ、前記溶液容器から前記反応室に前記反応溶液を送る開閉手段をさらに備えることを特徴とした燃料電池にある。   A third aspect of the present invention is the fuel cell according to the third aspect, provided in the second portion, and from the solution container only when the pressure in the reaction chamber becomes lower than a predetermined pressure. The fuel cell further includes opening / closing means for sending the reaction solution to the reaction chamber.

かかる第3の態様では、所定の圧力反応室の圧力が所定の圧力よりも低くなった場合にのみ、溶液容器から反応室に前記反応溶液を送る開閉手段が第2部分に備えられているため、燃料カートリッジ筐体と発電部を切り離して交換する際に、圧力センサのみならず開閉手段までも燃料カートリッジ筐体と共に廃棄することがなくなり、圧力センサと開閉手段の有効活用をすることができる。   In the third aspect, since the second portion is provided with opening / closing means for sending the reaction solution from the solution container to the reaction chamber only when the pressure in the predetermined pressure reaction chamber becomes lower than the predetermined pressure. When the fuel cartridge casing and the power generation unit are separated and replaced, not only the pressure sensor but also the opening / closing means are not discarded together with the fuel cartridge casing, and the pressure sensor and the opening / closing means can be effectively used.

本発明によれば、使用後の燃料カートリッジ筐体を廃棄する際に燃料カートリッジ筐体と共に圧力センサを廃棄することがなく圧力センサを有効活用することができる。   According to the present invention, when discarding a used fuel cartridge casing, the pressure sensor can be effectively used without discarding the pressure sensor together with the fuel cartridge casing.

図1は本発明に係る燃料電池100の一実施形態の概略構成図である。この燃料電池100は発電に用いられる燃料を内部に収容した燃料カートリッジ筐体1と、発電部2と、発電部2に取り付けられた圧力センサ3と、接続部4から構成される。   FIG. 1 is a schematic configuration diagram of an embodiment of a fuel cell 100 according to the present invention. The fuel cell 100 includes a fuel cartridge housing 1 that contains therein fuel used for power generation, a power generation unit 2, a pressure sensor 3 attached to the power generation unit 2, and a connection unit 4.

発電部2は燃料を電気化学的に反応させて発電を行う起電部21(図2参照)を収容している。第1接続部4は燃料カートリッジ筐体1と発電部2とを着脱自在に接続する。燃料カートリッジ筐体1内の燃料は接続部3を流通することによって発電部1へと送られる。
(第1実施形態)
図2は本発明に係る燃料電池100の第1実施形態例の構成図である。以下図2に基づいて第1実施形態例を説明する。
The power generation unit 2 houses an electromotive unit 21 (see FIG. 2) that generates electricity by electrochemically reacting fuel. The 1st connection part 4 connects the fuel cartridge housing | casing 1 and the electric power generation part 2 so that attachment or detachment is possible. The fuel in the fuel cartridge housing 1 is sent to the power generation unit 1 by flowing through the connection unit 3.
(First embodiment)
FIG. 2 is a configuration diagram of the first embodiment of the fuel cell 100 according to the present invention. Hereinafter, a first embodiment will be described with reference to FIG.

燃料カートリッジ筐体1は内部に燃料容器11を有しており、燃料容器11は燃料111を収容している。燃料111には気体燃料や液体燃料があり、気体燃料の例としては水素、液体燃料の例としてはメタノールやメタノール水溶液を挙げることができる。燃料111は燃料容器11と発電部2に収容される起電部21とを接続する第1接続部4を介して起電部21へと送られる。   The fuel cartridge housing 1 has a fuel container 11 inside, and the fuel container 11 contains a fuel 111. The fuel 111 includes a gaseous fuel and a liquid fuel. Examples of the gaseous fuel include hydrogen, and examples of the liquid fuel include methanol and an aqueous methanol solution. The fuel 111 is sent to the electromotive unit 21 via the first connection unit 4 that connects the fuel container 11 and the electromotive unit 21 accommodated in the power generation unit 2.

起電部21は集電体と触媒層によって構成されるアノード極と、同様に集電体と触媒層によって構成されるカソード極と、アノード極とカソード極との間に配置されたイオン交換膜によって構成される。アノード極では触媒層で燃料カートリッジから供給された気体燃料もしくは液体燃料から水素の陽イオンであるプロトンを発生させ、発生したプロトンは電解質膜を通ってカソード極に移動する。カソード極の触媒層で電解質膜を通り抜けたプロトンと空気中の酸素を反応させる。アノード極において水素がプロトンになることによって発生する電子はアノード集電体からカソード集電体に移動し、電流を得る。   The electromotive unit 21 includes an anode electrode constituted by a current collector and a catalyst layer, a cathode electrode similarly constituted by a current collector and a catalyst layer, and an ion exchange membrane disposed between the anode electrode and the cathode electrode. Consists of. At the anode electrode, protons which are hydrogen cations are generated from the gaseous fuel or liquid fuel supplied from the fuel cartridge by the catalyst layer, and the generated protons move to the cathode electrode through the electrolyte membrane. Protons that have passed through the electrolyte membrane react with oxygen in the air at the catalyst layer on the cathode electrode. Electrons generated by hydrogen becoming protons at the anode electrode move from the anode current collector to the cathode current collector to obtain an electric current.

ここで起電部21は負圧の燃料111が供給されると大気圧以上の燃料111が供給された場合よりも発電電圧が大幅に低下する。そのため燃料容器11は内部の燃料111が燃料残量の少ない状態まで減少しても燃料容器11の内部圧力が大きく負圧にならない手段を備えると良い。   Here, when the negative pressure fuel 111 is supplied to the electromotive unit 21, the power generation voltage is significantly reduced as compared with the case where the fuel 111 at atmospheric pressure or higher is supplied. Therefore, the fuel container 11 is preferably provided with means for preventing the internal pressure of the fuel container 11 from becoming a large negative pressure even when the internal fuel 111 is reduced to a state where the remaining amount of fuel is small.

燃料111が気体燃料である場合には燃料111が燃料残量の少ない状態まで減少しても燃料容器11の内部圧力が大きく負圧にならない手段として、燃料111を高圧の状態で燃料容器11に充填するという手段を挙げることができる。燃料容器11の内部の燃料111が減少すると、燃料111は燃料容器11の内部圧力が大気圧と平衡圧の状態になるまでは陽圧を維持する。   In the case where the fuel 111 is a gaseous fuel, as a means for preventing the internal pressure of the fuel container 11 from becoming a large negative pressure even if the fuel 111 is reduced to a state where the remaining amount of fuel is small, the fuel 111 is put into the fuel container 11 in a high pressure state. A means of filling can be mentioned. When the fuel 111 inside the fuel container 11 decreases, the fuel 111 maintains a positive pressure until the internal pressure of the fuel container 11 becomes the atmospheric pressure and the equilibrium pressure.

さらに燃料111が液体燃料である場合には燃料111が燃料残量の少ない状態まで減少しても燃料容器11の内部圧力が大きく負圧にならない手段として、燃料容器11は可撓性を有する部材でできており、溶液容器が所定圧(具体的には大気圧)を受けるという手段を挙げることができる。燃料容器11の内部の燃料111が減少すると燃料容器11は燃料111が大気圧と平衡圧になるまで撓み燃料容器11の体積が減少し、燃料容器11の内部圧力は大気圧に保たれる。可撓性のある材料としてはポリプロピレン、PET、シリコーンゴム、ブチルゴム、イソプレンゴム等が挙げられる。   Further, when the fuel 111 is a liquid fuel, the fuel container 11 is a flexible member as a means for preventing the internal pressure of the fuel container 11 from becoming a large negative pressure even when the fuel 111 is reduced to a state where the remaining amount of fuel is small. And a means that the solution container receives a predetermined pressure (specifically, atmospheric pressure). When the fuel 111 inside the fuel container 11 decreases, the fuel container 11 bends until the fuel 111 reaches an atmospheric pressure and an equilibrium pressure, the volume of the fuel container 11 decreases, and the internal pressure of the fuel container 11 is maintained at atmospheric pressure. Examples of the flexible material include polypropylene, PET, silicone rubber, butyl rubber, and isoprene rubber.

さらに燃料111が液体燃料である場合には燃料111が燃料残量の少ない状態まで減少しても燃料容器11の内部圧力が大きく負圧にならない手段として、SUSやアクリルやアルミニウムのような剛性を有する部材でできた筒状の燃料容器11の一面をピストン状にし、燃料容器11が所定圧(具体的には大気圧)を受けるという手段を挙げることができる。燃料容器11の内部の燃料111が減少するとピストン面が燃料容器11の内部圧力が大気圧と平衡圧になるまで燃料容器11の内部容積を減少する方向に移動し、燃料容器11の内部圧力は大気圧に保たれる。   Further, when the fuel 111 is a liquid fuel, rigidity such as SUS, acrylic or aluminum is used as a means for preventing the internal pressure of the fuel container 11 from becoming a large negative pressure even if the fuel 111 is reduced to a state where the remaining amount of fuel is small. One example is a means in which one surface of a cylindrical fuel container 11 made of a member having a piston shape is formed and the fuel container 11 receives a predetermined pressure (specifically, atmospheric pressure). When the fuel 111 inside the fuel container 11 decreases, the piston surface moves in the direction of decreasing the internal volume of the fuel container 11 until the internal pressure of the fuel container 11 reaches the atmospheric pressure and the equilibrium pressure. Maintained at atmospheric pressure.

さらに燃料111が液体燃料である場合には燃料111が燃料残量の少ない状態まで減少しても燃料容器11の内部圧力が大きく負圧にならない手段として、SUSやアクリルやアルミニウムのような剛性を有する部材でできた燃料容器11に燃料111と共に高圧気体を充填するという手段を挙げることができる。燃料容器11の内部の燃料111が減少すると、燃料111は共に充填された気体の圧力が大気圧と平衡圧の状態になるまでは陽圧を維持する。   Further, when the fuel 111 is a liquid fuel, rigidity such as SUS, acrylic or aluminum is used as a means for preventing the internal pressure of the fuel container 11 from becoming a large negative pressure even if the fuel 111 is reduced to a state where the remaining amount of fuel is small. A means for filling the fuel container 11 made of the member having high pressure gas together with the fuel 111 can be mentioned. When the fuel 111 inside the fuel container 11 decreases, the fuel 111 maintains a positive pressure until the pressure of the gas filled together becomes an atmospheric pressure and an equilibrium pressure.

さらに第1接続部4は、燃料カートリッジ筐体1と発電部2が未接続時には流路を閉鎖する閉鎖手段をもっていても良い。閉鎖手段を設けることにより燃料カートリッジ筐体1と発電部2が未接続の状態で、燃料カートリッジ筐体1と起電部21に対して外部からの物質の混入と、内容物の流出を防ぐことができる。   Further, the first connection part 4 may have a closing means for closing the flow path when the fuel cartridge housing 1 and the power generation part 2 are not connected. By providing a closing means, it is possible to prevent mixing of substances from the outside and outflow of contents to the fuel cartridge casing 1 and the electromotive section 21 when the fuel cartridge casing 1 and the power generation section 2 are not connected. Can do.

第1接続部4が未接続時に流路を閉鎖する手段としては接続時に物理的作用によって弁が開くという手段を挙げることができる。図3(a)は未接続時の第1接続部4の断面図、図3(b)接続時の第1接続部4の断面図である。第1接続部4は雄側接続部41と雌側接続部42によって構成されている。また雄側接続部41と雌側接続部42は内部に接続部内流路43があり、接続部内流路43には弁体受け部431がある。雄側接続部41と雌側接続部42は内部にそれぞれ弁体44と圧縮ばね45と弁体Oリング46とが設けられている。また弁体44には弁体受け部431と干渉する弁体突出部441が設けられている。さらに雄側接続部41には挿入部411が設けられ、雌側接続部42には挿入部411を受け入れる受容部421が設けられている。挿入部411には接続Oリング412が設けられている。   Examples of means for closing the flow path when the first connection portion 4 is not connected include means for opening the valve by a physical action when connected. 3A is a cross-sectional view of the first connection portion 4 when not connected, and FIG. 3B is a cross-sectional view of the first connection portion 4 when connected. The first connection part 4 is constituted by a male side connection part 41 and a female side connection part 42. Further, the male side connection portion 41 and the female side connection portion 42 have a connection portion internal flow path 43 therein, and the connection portion internal flow path 43 has a valve element receiving portion 431. The male connection part 41 and the female connection part 42 are provided with a valve body 44, a compression spring 45, and a valve body O-ring 46, respectively. Further, the valve body 44 is provided with a valve body protrusion 441 that interferes with the valve body receiving portion 431. Further, the male side connection part 41 is provided with an insertion part 411, and the female side connection part 42 is provided with a receiving part 421 for receiving the insertion part 411. The insertion portion 411 is provided with a connection O-ring 412.

図3(a)に基づき未接続時の作用について説明する。弁体44は背面から圧縮ばね45から力を受けており、弁体受け部431と弁体突出部441が干渉して弁体44は固定される。弁体44には弁体受け部431と弁体突出部441が接触している時に接続部内流路43との間を密封するOリング46が取り付けられている。このため未接続時には弁体44とOリング46によって接続部内流路は閉鎖される。   The operation when not connected will be described with reference to FIG. The valve body 44 receives force from the compression spring 45 from the back surface, and the valve body receiving portion 431 and the valve body protruding portion 441 interfere with each other to fix the valve body 44. An O-ring 46 is attached to the valve body 44 to seal the space between the valve body receiving portion 431 and the valve body protruding portion 441 between the flow path 43 in the connecting portion. For this reason, the flow path in the connection portion is closed by the valve body 44 and the O-ring 46 when not connected.

図3(b)に基づき接続時の作用について説明する。雄側接続部41と雌側接続部42を接続すると、挿入部411が受容部421の内部に挿入され、挿入部411と受容部421の間を接続Oリング412が密封する。そしてさらに接続を深い状態にすることで雄側接続部41と雌側接続部42の弁体44同士が押し合いそれぞれの弁体44は弁体受け部431と弁体突出部441が離れる方向に移動する。弁体44が移動するとOリング46が密封性を失い第1接続部4の内部を物質が貫通することを可能にする。   The operation at the time of connection will be described based on FIG. When the male side connection portion 41 and the female side connection portion 42 are connected, the insertion portion 411 is inserted into the receiving portion 421, and the connection O-ring 412 seals between the insertion portion 411 and the receiving portion 421. Further, by further deepening the connection, the valve bodies 44 of the male side connection portion 41 and the female side connection portion 42 are pressed against each other, and the respective valve bodies 44 move in a direction in which the valve body receiving portion 431 and the valve body protrusion 441 are separated. To do. When the valve body 44 moves, the O-ring 46 loses its sealing property and allows the substance to penetrate the inside of the first connection portion 4.

一方、発電部2には圧力センサ3が取り付けられている。圧力センサ3は圧力導入路31を介して、燃料カートリッジ筐体1を発電部2から切り離した際に発電部2側にある第1接続部4の一部と接続される。第1接続部4は燃料容器11の内部圧力をうけるため、圧力センサ3では燃料容器11の内部圧力を検出できる。   On the other hand, a pressure sensor 3 is attached to the power generation unit 2. The pressure sensor 3 is connected to a part of the first connection portion 4 on the power generation unit 2 side when the fuel cartridge housing 1 is separated from the power generation unit 2 via the pressure introduction path 31. Since the first connection portion 4 receives the internal pressure of the fuel container 11, the pressure sensor 3 can detect the internal pressure of the fuel container 11.

上記のような構造の燃料電池100は、燃料カートリッジ筐体1に圧力センサをとりつけることなく燃料カートリッジ筐体1内に収容される燃料溶液11の内部圧力を検出することを可能にしながら、燃料カートリッジ筐体1を交換して廃棄する際に圧力センサ3を共に廃棄することがなく圧力センサ3を有効利用することが可能である。
(第2実施形態)
図4は本発明に係る燃料電池100の第1実施形態例の構成図である。以下図4に基づいて第1実施形態例を説明する。なお、第1実施形態と同一または同一作用を示す部材には同一符号を付して重複する説明は省略する。
The fuel cell 100 having the above-described structure allows the fuel cartridge 100 to detect the internal pressure of the fuel solution 11 accommodated in the fuel cartridge housing 1 without attaching a pressure sensor to the fuel cartridge housing 1. When the housing 1 is replaced and discarded, the pressure sensor 3 can be used effectively without discarding the pressure sensor 3 together.
(Second Embodiment)
FIG. 4 is a configuration diagram of the first embodiment of the fuel cell 100 according to the present invention. Hereinafter, a first embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the member which shows the same or same action as 1st Embodiment, and the overlapping description is abbreviate | omitted.

燃料カートリッジ筐体1は内部には燃料容器11の代わりに溶液容器12と反応室13を収容している。溶液容器12には反応溶液121が収容されている。反応室13には固体の反応用物質131が収容されており、反応室13の内部では水素生成反応が生じる。燃料カートリッジ筐体1の内部で発生した水素は第1接続部4によって発電部2に収容される起電部21に送られる。   The fuel cartridge housing 1 accommodates a solution container 12 and a reaction chamber 13 in place of the fuel container 11. A reaction solution 121 is accommodated in the solution container 12. A solid reaction substance 131 is accommodated in the reaction chamber 13, and a hydrogen generation reaction occurs inside the reaction chamber 13. Hydrogen generated inside the fuel cartridge housing 1 is sent to the electromotive unit 21 accommodated in the power generation unit 2 by the first connection unit 4.

溶液容器12の内部にある反応溶液121は溶液容器12と反応室13を接続する送液路14を介して反応室13へと送液される。送液された反応溶液121は反応室13の内部で反応用物質131と接触することにより水素生成反応を生じる。反応溶液121と反応用物質131の組み合わせの例としては触媒水溶液と(例えばりんご酸水溶液と水素化ホウ素ナトリウム)、水素貯蔵水溶液と固体触媒(例えば水素化ホウ素ナトリウム水溶液と白金)、水溶液と金属(例えば水とアルミニウム)がある。   The reaction solution 121 inside the solution container 12 is sent to the reaction chamber 13 through a solution sending path 14 that connects the solution container 12 and the reaction chamber 13. The fed reaction solution 121 comes into contact with the reaction substance 131 inside the reaction chamber 13 to cause a hydrogen generation reaction. Examples of combinations of the reaction solution 121 and the reaction substance 131 include an aqueous catalyst solution (for example, malic acid aqueous solution and sodium borohydride), a hydrogen storage aqueous solution and a solid catalyst (for example, sodium borohydride aqueous solution and platinum), an aqueous solution and a metal ( For example, water and aluminum).

溶液容器12は内部に収容された反応溶液121の残量が減少するのに伴い反応溶液121の液体体積が変化する手段を設けていると良い。液体体積が変化する手段を設けることで溶液容器12の内圧が極めて低くならずに円滑な送液及び水素生成反応をすることが可能になる。   The solution container 12 may be provided with means for changing the liquid volume of the reaction solution 121 as the remaining amount of the reaction solution 121 accommodated therein decreases. By providing the means for changing the liquid volume, it is possible to perform smooth liquid feeding and hydrogen generation reaction without the internal pressure of the solution container 12 being extremely low.

反応溶液121の液体体積が変化する手段の例としては、溶液容器12は可撓性を有する部材でできており、溶液容器12が所定圧(具体的には大気圧)を受けるという手段を挙げることができる。反応溶液121の残量が減少すると溶液容器12は反応溶液121が大気圧と平衡圧になるまで撓み反応溶液121の体積が変化する。可撓性のある材料としてはポリプロピレン、PET、シリコーンゴム、ブチルゴム、イソプレンゴム等が挙げられる。   As an example of means for changing the liquid volume of the reaction solution 121, the solution container 12 is made of a flexible member, and the solution container 12 receives a predetermined pressure (specifically, atmospheric pressure). be able to. When the remaining amount of the reaction solution 121 decreases, the solution container 12 bends until the reaction solution 121 reaches an atmospheric pressure and an equilibrium pressure, and the volume of the reaction solution 121 changes. Examples of the flexible material include polypropylene, PET, silicone rubber, butyl rubber, and isoprene rubber.

さらに反応溶液121の液体体積が変化する手段の例としては、SUSやアクリルやアルミニウムのような剛性を有する部材でできた筒状の溶液容器12の一面をピストン状にし、溶液容器12が所定圧(具体的には大気圧)を受けるという手段を挙げることができる。反応溶液121の残量が減少するとピストン面が反応溶液121の圧力が大気圧と平衡圧になるまで撓み反応溶液121の体積が変化する。   Furthermore, as an example of means for changing the liquid volume of the reaction solution 121, one surface of a cylindrical solution container 12 made of a rigid member such as SUS, acrylic, or aluminum is formed into a piston shape, and the solution container 12 has a predetermined pressure. A means of receiving (specifically, atmospheric pressure) can be mentioned. When the remaining amount of the reaction solution 121 decreases, the piston surface deflects until the pressure of the reaction solution 121 reaches the atmospheric pressure and the equilibrium pressure, and the volume of the reaction solution 121 changes.

さらに反応溶液121の液体体積が変化する手段の例としては、SUSやアクリルやアルミニウムのような剛性を有する部材でできた溶液容器12に反応溶液121と共に高圧の気体を充填するという手段が挙げられる。反応溶液121の残量が減少すると、気体の圧力と反応溶液121の圧力が平衡圧になるまで高圧の気体が膨張し反応溶液121の体積が変化する。   Further, as an example of means for changing the liquid volume of the reaction solution 121, a means for filling the solution container 12 made of a rigid member such as SUS, acrylic, or aluminum with a high-pressure gas together with the reaction solution 121 can be given. . When the remaining amount of the reaction solution 121 decreases, the high-pressure gas expands and the volume of the reaction solution 121 changes until the pressure of the gas and the pressure of the reaction solution 121 reach an equilibrium pressure.

送液路14には送液路14の一部分が燃料カートリッジ筐体1から着脱自在に接続できる第2接続部141が設けられている。燃料カートリッジ筐体1が発電部2から外されると送液路14は、燃料カートリッジ筐体1側にあり溶液容器12と接続している第1部分142と、発電部側にある第2部分143とに、第2接続部141によって切り分けられる。   The liquid supply path 14 is provided with a second connection portion 141 that allows a part of the liquid supply path 14 to be detachably connected to the fuel cartridge housing 1. When the fuel cartridge housing 1 is removed from the power generation unit 2, the liquid supply path 14 is located on the fuel cartridge housing 1 side and connected to the solution container 12, and the second portion on the power generation unit side. 143 and the second connection part 141.

また第2接続部141は第1接続部4と同様に内部の流路が燃料カートリッジ筐体1と発電部2が未接続時には閉鎖される手段をもっていても良い。閉鎖手段を設けることにより燃料カートリッジ筐体1と発電部2が未接続の状態で、溶液容器12と反応室13に対して外部からの物質の混入と、内容物の流出を防ぐことができる。   Similarly to the first connection portion 4, the second connection portion 141 may have a means for closing the internal flow path when the fuel cartridge housing 1 and the power generation portion 2 are not connected. By providing the closing means, it is possible to prevent mixing of substances from the outside and outflow of the contents to the solution container 12 and the reaction chamber 13 while the fuel cartridge casing 1 and the power generation unit 2 are not connected.

上記のような構成の燃料電池100では、燃料カートリッジ筐体1の内部に収容される溶液容器12の内部圧力を検出することを可能にしながら、燃料カートリッジ筐体1を交換して廃棄する際に溶液容器12と反応室13内に外部からの物質の混入と内容物の外部への漏洩を防止しつつ、圧力センサ3を共に廃棄することがなく圧力センサ3を有効利用することが可能である。
(第3実施形態)
図5は本発明に係る燃料電池100の第3実施形態例の構成図である。以下図5に基づいて第3実施形態例を説明する。なお、第1実施形態及び第2実施形態と同一または同一作用を示す部材には同一符号を付して重複する説明は省略する。
In the fuel cell 100 configured as described above, when the internal pressure of the solution container 12 accommodated in the fuel cartridge housing 1 can be detected, the fuel cartridge housing 1 is replaced and discarded. It is possible to effectively utilize the pressure sensor 3 without discarding the pressure sensor 3 while preventing the entry of substances from the outside into the solution container 12 and the reaction chamber 13 and the leakage of the contents to the outside. .
(Third embodiment)
FIG. 5 is a configuration diagram of a third embodiment of the fuel cell 100 according to the present invention. Hereinafter, a third embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the member which shows the same or same action as 1st Embodiment and 2nd Embodiment, and the overlapping description is abbreviate | omitted.

第3実施形態に係る燃料電池100は、図6に示した送液路14の第2部分143において圧力導入路31が接続する箇所と反応室13との間に、反応室13の圧力が溶液容器12から反応室13へ反応溶液121の供給を開始する条件に用いられる所定圧を下回った場合にのみ溶液容器12から反応室13に反応溶液121を送る開閉手段5を有したものである。   In the fuel cell 100 according to the third embodiment, the pressure in the reaction chamber 13 is a solution between the portion where the pressure introduction path 31 is connected in the second portion 143 of the liquid supply path 14 shown in FIG. Opening / closing means 5 for sending the reaction solution 121 from the solution container 12 to the reaction chamber 13 is provided only when the pressure falls below a predetermined pressure used for conditions for starting the supply of the reaction solution 121 from the container 12 to the reaction chamber 13.

開閉手段5には、所定圧力が反応溶液121の内部圧力である場合には、反応室13の圧力が溶液容器12の内部圧力よりも低くなったときに反応溶液121の送液を可能にする逆止弁51である。   When the predetermined pressure is the internal pressure of the reaction solution 121, the opening / closing means 5 enables the reaction solution 121 to be fed when the pressure in the reaction chamber 13 becomes lower than the internal pressure of the solution container 12. This is a check valve 51.

図6は逆止弁51の1例を示した断面図である。図6(a)は開弁状態の逆止弁51、図6(b)は閉弁状態の逆止弁51である。逆止弁51は送液管511の内部に流路512が形成されている。流路512中には、内部に貫通孔が形成されており図中の左側の溶液容器側から図中の右側の反応室側に向かって流路の断面積が順次減少する構造になっている可撓性を有する部材でできた逆止弁体513が取り付けられている。可撓性を有する部材の例としてはブチルゴム、二トリルゴム等のゴム材やPETやシリコーンなどがあげられる。逆止弁体513の溶液容器側には送液管511に部分的に埋設された固定部514がある。固定部514により反応溶液121が移動しても逆止弁体513は反応溶液121に流されることはなくその場にとどまる。図中の矢印は反応溶液の流れる方向である。   FIG. 6 is a cross-sectional view showing an example of the check valve 51. 6A shows the check valve 51 in the opened state, and FIG. 6B shows the check valve 51 in the closed state. The check valve 51 has a flow path 512 formed inside the liquid supply pipe 511. A through-hole is formed inside the flow channel 512, and the cross-sectional area of the flow channel decreases sequentially from the left side solution container side to the right reaction chamber side in the drawing. A check valve body 513 made of a flexible member is attached. Examples of flexible members include rubber materials such as butyl rubber and nitrile rubber, PET and silicone. On the solution container side of the check valve body 513, there is a fixing portion 514 partially embedded in the liquid feeding pipe 511. Even if the reaction solution 121 is moved by the fixing portion 514, the check valve body 513 is not flowed into the reaction solution 121 and remains in place. The arrow in the figure indicates the direction in which the reaction solution flows.

図6(a)を用いて開弁状態の作用を説明する。溶液容器12の内部圧力が反応室13の内部圧力よりも高い状況では、逆止弁体513は溶液容器側から圧力を受けて反応室側へと撓んで貫通孔がひろがり反応溶液121は貫通孔を通り抜け反応室側へと送液される。   The operation in the valve open state will be described with reference to FIG. In a situation where the internal pressure of the solution container 12 is higher than the internal pressure of the reaction chamber 13, the check valve body 513 receives pressure from the solution container side and bends toward the reaction chamber side, so that the through hole is expanded and the reaction solution 121 is in the through hole. The liquid is passed through the reaction chamber.

図6(b)を用いて閉弁状態の作用を説明する。溶液容器12の内部圧力が反応室13の内部圧力よりも低い状況では反応溶液121は反応室側から溶液容器側へと移動しようとするが、逆止弁体513は反応室側から圧力を受けて溶液容器側へと撓んで貫通孔が狭まり流路512を閉じる。このため溶液容器12の内部圧力が反応室13の内部圧力よりも高い状況では反応溶液121は反応室13へ送液されない。   The operation in the closed state will be described with reference to FIG. In a situation where the internal pressure of the solution container 12 is lower than the internal pressure of the reaction chamber 13, the reaction solution 121 tries to move from the reaction chamber side to the solution container side, but the check valve body 513 receives pressure from the reaction chamber side. As a result, the through hole is narrowed by bending toward the solution container, and the flow path 512 is closed. For this reason, in a situation where the internal pressure of the solution container 12 is higher than the internal pressure of the reaction chamber 13, the reaction solution 121 is not sent to the reaction chamber 13.

上記のような構成の燃料電池100では、圧力センサ3が発電部3に取り付けられると共に逆止弁51が送液路14の発電部2に収容される第2部分43に取り付けられているため、反応溶液121が反応室13から溶液容器12に逆流することなく安定な水素生成反応を可能としながら、溶液容器12の内部圧力を検出することが可能であり、かつ燃料カートリッジ筐体1を交換して廃棄する際に溶液容器12と反応室13内に外部からの物質の混入と内容物の外部への漏洩を防止しつつ、圧力センサ3のみならず逆止弁51も共に廃棄せずに有効利用することが可能である。
(第4実施形態)
図7は本発明に係る燃料電池100の第4実施形態例の構成図である。以下図7に基づいて第4実施形態例を説明する。なお、第1実施形態、第2実施形態、第3実施形態と同一または同一作用を示す部材には同一符号を付して重複する説明は省略する。
In the fuel cell 100 having the above-described configuration, the pressure sensor 3 is attached to the power generation unit 3 and the check valve 51 is attached to the second portion 43 accommodated in the power generation unit 2 of the liquid supply path 14. It is possible to detect the internal pressure of the solution container 12 while allowing a stable hydrogen generation reaction without causing the reaction solution 121 to flow backward from the reaction chamber 13 to the solution container 12, and replacing the fuel cartridge housing 1. In the case of disposal, the inside of the solution container 12 and the reaction chamber 13 is effectively prevented without discarding both the pressure sensor 3 and the check valve 51 while preventing the entry of substances from the outside and the leakage of the contents to the outside. It is possible to use.
(Fourth embodiment)
FIG. 7 is a configuration diagram of a fourth embodiment of the fuel cell 100 according to the present invention. Hereinafter, a fourth embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the member which shows the same or same action as 1st Embodiment, 2nd Embodiment, and 3rd Embodiment, and the overlapping description is abbreviate | omitted.

第3実施形態に係る燃料電池100は、反応室13の内部圧力が溶液容器12から反応室13へ反応溶液121の供給を開始する条件に用いられる所定圧を下回った場合にのみ開弁状態になる圧力調整弁52(図7及び図8参照)を開閉手段5として備える。所定圧は大気圧やばね圧力がある。開閉手段5と第1接続部4とを接続し開閉手段5に反応室13の内部圧力をあたえる水素導入路53を具備する。   The fuel cell 100 according to the third embodiment is opened only when the internal pressure of the reaction chamber 13 falls below a predetermined pressure that is used for starting the supply of the reaction solution 121 from the solution container 12 to the reaction chamber 13. The pressure regulating valve 52 (see FIGS. 7 and 8) is provided as the opening / closing means 5. The predetermined pressure includes atmospheric pressure and spring pressure. The opening / closing means 5 and the first connecting portion 4 are connected to each other, and the opening / closing means 5 is provided with a hydrogen introduction path 53 that applies the internal pressure of the reaction chamber 13.

図8は圧力調整弁52の1例を示した断面図である。   FIG. 8 is a sectional view showing an example of the pressure regulating valve 52.

図8に示すように、圧力調整弁52は、基体521に穿たれた貫通部522の基体521の厚さ方向の両側を塞ぐように可撓性のシートからなり基体521の厚さ方向に撓むことが可能である第1の圧力変形部523a及び第2の圧力変形部523bが設けられる。また、第1の圧力変形部523a及び第2の圧力変形部523bに挟まれた貫通部522の空間は、基体521の厚さ方向の中間に設けられた仕切部材524により区分けされる。第1の圧力変形部523側が第1の流路525a、第2の圧力変形部524側が第2の流路525bとなる。第1の流路525a及び第2の流路525bはそれぞれ基体521の平面方向に延びており、これら第1の流路525aと第2の流路525bは、仕切部材524に穿たれた貫通孔526からなる連通路527を介して連通されている。また第1の圧力変形部523aの流路525との相対する側は水素導入路53と連通される。   As shown in FIG. 8, the pressure regulating valve 52 is made of a flexible sheet so as to block both sides of the base 521 in the thickness direction of the base 521 of the through-hole 522 formed in the base 521 and bends in the thickness direction of the base 521. A first pressure deformation portion 523a and a second pressure deformation portion 523b are provided. Further, the space of the penetrating portion 522 sandwiched between the first pressure deforming portion 523a and the second pressure deforming portion 523b is divided by a partition member 524 provided in the middle in the thickness direction of the base 521. The first pressure deformation portion 523 side is the first flow path 525a, and the second pressure deformation portion 524 side is the second flow path 525b. The first flow path 525a and the second flow path 525b each extend in the planar direction of the base 521, and the first flow path 525a and the second flow path 525b are through holes formed in the partition member 524. Communication is made via a communication path 527 consisting of 526. Further, the side of the first pressure deformation portion 523 a facing the flow path 525 is communicated with the hydrogen introduction path 53.

また、貫通部522の第1の圧力変形部523a及び第2の圧力変形部523bの間の空間には、第1の圧力変形部523a及び第2の圧力変形部524bに連結されながら共に厚さ方向に移動する弁部材528が設けられている。弁部材528は、第1の圧力変形部523a及び第2の圧力変形部523bを連結すると共に連通路527を貫通して配置された連結部528aと連結部528aの第1の圧力変形部523a側に設けられて連通路527を開閉可能な弁体528bを設けている。   In addition, the space between the first pressure deforming portion 523a and the second pressure deforming portion 523b of the penetrating portion 522 is connected to the first pressure deforming portion 523a and the second pressure deforming portion 524b and has a thickness. A valve member 528 is provided that moves in the direction. The valve member 528 connects the first pressure deforming portion 523a and the second pressure deforming portion 523b and connects the connecting portion 528a disposed through the communication path 527 and the first pressure deforming portion 523a side of the connecting portion 528a. And a valve body 528b that can open and close the communication passage 527 is provided.

ここで、基体521に設けられた貫通部522の形状は特に限定されないが、第1の圧力変形部523a及び第2の圧力変形部523bの変形の容易さや耐久性を考慮すると円筒形状が好ましく、本実施形態では円筒形状としている。また、仕切部材524に設けられた貫通孔526の形状も特に限定されないが、本実施形態では断面円形の貫通孔526としている。さらに、弁部材528の連結部528a及び弁体528bの形状も特に限定されないが、本実施形態では円筒棒状の連結部528aに円盤状の弁体528bが一体的に設けられた形状とした。   Here, the shape of the through portion 522 provided in the base 521 is not particularly limited, but a cylindrical shape is preferable in consideration of the ease of deformation and durability of the first pressure deformation portion 523a and the second pressure deformation portion 523b. In this embodiment, it is cylindrical. The shape of the through hole 526 provided in the partition member 524 is not particularly limited, but in the present embodiment, the through hole 526 has a circular cross section. Further, the shapes of the connecting portion 528a and the valve body 528b of the valve member 528 are not particularly limited, but in this embodiment, the disc-like valve body 528b is integrally provided on the cylindrical rod-like connecting portion 528a.

また、基体521、仕切部材524の材質も特に限定されないが、製造の容易さやコスト面を考慮すると各種プラスチックを用いるのが好ましい。一方、第1の圧力変形部523a及び第2の圧力変形部523bは、圧力を受けて変形可能であり接触する流体を透過せず且つ耐久性のある材質であれば特に限定されないが、製造の容易さやコスト面を考慮すると、各種ゴム材や各種プラスチックシートを用いることが可能である。   Further, the materials of the base 521 and the partition member 524 are not particularly limited, but it is preferable to use various plastics in consideration of ease of manufacture and cost. On the other hand, the first pressure deforming portion 523a and the second pressure deforming portion 523b are not particularly limited as long as they are deformable under pressure, do not transmit the contact fluid, and are durable materials. In consideration of ease and cost, various rubber materials and various plastic sheets can be used.

なお、第1の圧力変形部523a及び第2の圧力変形部523bと弁部材529との連結は接着や熱融着、超音波溶着などを用いて行えばよい。また、図8では、第1の圧力変形部523a及び第2の圧力変形部523bの内側に弁部材528を接合した状態となっているが、例えば、弁体528bの外縁部に第1の圧力変形部523aが接合されるように設けてもよい。また、連通路527には連結部528aが貫通状態で存在するため、第1の流路525aと第2の流路525bとを連通する際の流路抵抗を考慮して貫通孔526及び連結部528aの寸法を設計する必要がある。   Note that the first pressure deformation portion 523a, the second pressure deformation portion 523b, and the valve member 529 may be connected using adhesion, heat fusion, ultrasonic welding, or the like. In FIG. 8, the valve member 528 is joined to the inside of the first pressure deformation portion 523a and the second pressure deformation portion 523b. For example, the first pressure is applied to the outer edge portion of the valve body 528b. You may provide so that the deformation | transformation part 523a may be joined. In addition, since the connecting portion 528a exists in a penetrating state in the communication passage 527, the through-hole 526 and the connecting portion are considered in consideration of the channel resistance when the first channel 525a and the second channel 525b are communicated. It is necessary to design the dimensions of 528a.

このような圧力調整弁52の動作を以下に説明する。   The operation of the pressure adjustment valve 52 will be described below.

圧力調整弁52は、第1の圧力変形部523aは水素導入路53から反応室13の圧力を受け、第2の圧力変形部523bの外側に、例えば大気圧やばねによって圧力を受けるように配置する。第1の流路525aと第2の流路525bの何れか一方を、溶液容器12に連通する送液路14に連結すると共に、他方を反応室13に連通する送液路14である燃料需要側への流路へ連結して使用する。   The pressure regulating valve 52 is arranged such that the first pressure deforming portion 523a receives the pressure of the reaction chamber 13 from the hydrogen introduction path 53, and receives the pressure outside the second pressure deforming portion 523b, for example, by atmospheric pressure or a spring. To do. One of the first flow path 525a and the second flow path 525b is connected to a liquid supply path 14 that communicates with the solution container 12, and the other is a fuel demand that is a liquid supply path 14 that communicates with the reaction chamber 13. Used by connecting to the channel to the side.

上記のような使用状態において、反応室13の内部圧力が、第2の圧力変形部523bが受ける大気圧より高い状態においては、図8(b)に示すように、第1の圧力変形部523a及び第2の圧力変形部523bは弁部材528と共に図中上方に移動して弁体528bが仕切部材524に当接して連通路527が閉じられた状態になり、第1の流路525aと第2の流路525bとの連通が遮断された状態になり、反応溶液121の送液は停止される。   In the state of use as described above, in the state where the internal pressure of the reaction chamber 13 is higher than the atmospheric pressure received by the second pressure deformation portion 523b, as shown in FIG. 8B, the first pressure deformation portion 523a. The second pressure deforming portion 523b moves upward in the drawing together with the valve member 528 so that the valve body 528b abuts against the partition member 524 and the communication path 527 is closed, and the first flow path 525a The communication with the second flow path 525b is blocked, and the feeding of the reaction solution 121 is stopped.

一方、反応室13の内部圧力が、第2の圧力変形部523bが受ける大気圧より低い状態となると、図8(a)に示すように、第1の圧力変形部523a及び第2の圧力変形部523bは弁部材528と共に図中下方に移動して弁体528bが仕切部材524から離間して連通路527が開かれた状態になり、第1の流路525aと第2の流路525bとの連通は確保され、反応溶液121が送液される。   On the other hand, when the internal pressure of the reaction chamber 13 is lower than the atmospheric pressure received by the second pressure deformation portion 523b, as shown in FIG. 8A, the first pressure deformation portion 523a and the second pressure deformation portion. The part 523b moves downward in the figure together with the valve member 528, the valve body 528b is separated from the partition member 524, and the communication path 527 is opened, and the first flow path 525a and the second flow path 525b Is ensured, and the reaction solution 121 is fed.

上記のような構成の燃料電池100では、圧力調整弁52は送液路14の発電部2に収容される第2部分43に取り付けられているため、反応溶液121の圧力が大気圧よりも低いときにのみ溶液容器12から反応室13へ送液され安定な水素生成反応を可能としながら、燃料カートリッジ筐体1に圧力センサをとりつけることなく溶液容器12の内部圧力を検出することが可能である。また、燃料カートリッジ筐体1を交換して廃棄する際に溶液容器12と反応室13内に外部からの物質の混入と内容物の外部への漏洩を防止しつつ、圧力センサ3のみならず圧力調整弁52も共に廃棄せずに有効利用することが可能である。   In the fuel cell 100 configured as described above, since the pressure adjustment valve 52 is attached to the second portion 43 accommodated in the power generation unit 2 of the liquid supply path 14, the pressure of the reaction solution 121 is lower than the atmospheric pressure. It is possible to detect the internal pressure of the solution container 12 without attaching a pressure sensor to the fuel cartridge housing 1 while allowing a stable hydrogen generation reaction that is sent from the solution container 12 to the reaction chamber 13 only occasionally. . In addition, when the fuel cartridge casing 1 is replaced and discarded, the pressure sensor 3 as well as the pressure sensor 3 is prevented from leaking into the solution container 12 and the reaction chamber 13 while preventing the entry of substances from the outside and the leakage of the contents to the outside. The regulating valve 52 can also be used effectively without being discarded.

本発明に係る燃料電池の一実施形態の概略構成図である。1 is a schematic configuration diagram of an embodiment of a fuel cell according to the present invention. 本発明に係る燃料電池の第1実施形態の構成図である。1 is a configuration diagram of a first embodiment of a fuel cell according to the present invention. FIG. 図2の第1接続部の閉鎖手段を説明するための機構図である。It is a mechanism figure for demonstrating the closing means of the 1st connection part of FIG. 本発明に係る燃料電池の第2実施形態の構成図である。It is a block diagram of 2nd Embodiment of the fuel cell which concerns on this invention. 本発明に係る燃料電池の第3実施形態の構成図である。It is a block diagram of 3rd Embodiment of the fuel cell which concerns on this invention. 図5の逆止弁を説明するための機構図である。FIG. 6 is a mechanism diagram for explaining the check valve of FIG. 5. 本発明に係る燃料電池の第4実施形態の構成図である。It is a block diagram of 4th Embodiment of the fuel cell which concerns on this invention. 図7の逆止弁を説明するための機構図である。It is a mechanism figure for demonstrating the non-return valve of FIG.

符号の説明Explanation of symbols

1…燃料カートリッジ筐体、2…発電部、3…圧力センサ、4…第1接続部、5…開閉手段、11…燃料容器、12…溶液容器、13…反応室、14…送液路、21…起電部、31…圧力導入路、41…雄側接続部、42雌側接続部、43…接続部内流路、44…弁体、45…圧縮ばね、46…Oリング、51…逆止弁、52…圧力調整弁、53…水素導入路、100…燃料電池、111…燃料、121…反応溶液、131…反応用物質、141…第2接続部、142…第1部分、143…第2部分、411…挿入部、412…接続Oリング、421…受容部、431…弁体受け部、441…弁体突出部、511…送液管、512…流路、513…逆止弁体、514…固定部、521…基体、522…貫通部、523a…第1の圧力変形部、523b…第2の圧力変形部、524…仕切部材、525a…第1の流路、525b…第2の流路、526…貫通孔、527…連通路、528…弁部材、528a…連結部、528b…弁体、矢印…反応溶液の流れる方向   DESCRIPTION OF SYMBOLS 1 ... Fuel cartridge housing | casing, 2 ... Power generation part, 3 ... Pressure sensor, 4 ... 1st connection part, 5 ... Opening / closing means, 11 ... Fuel container, 12 ... Solution container, 13 ... Reaction chamber, 14 ... Liquid sending path, DESCRIPTION OF SYMBOLS 21 ... Electromotive part, 31 ... Pressure introduction path, 41 ... Male side connection part, 42 Female side connection part, 43 ... Flow path in connection part, 44 ... Valve body, 45 ... Compression spring, 46 ... O-ring, 51 ... Reverse Stop valve, 52 ... Pressure regulating valve, 53 ... Hydrogen introduction path, 100 ... Fuel cell, 111 ... Fuel, 121 ... Reaction solution, 131 ... Reaction substance, 141 ... Second connection, 142 ... First part, 143 ... 2nd part, 411 ... Insertion part, 412 ... Connection O-ring, 421 ... Receiving part, 431 ... Valve body receiving part, 441 ... Valve body protrusion part, 511 ... Liquid feeding pipe, 512 ... Channel, 513 ... Check valve Body, 514 ... fixing part, 521 ... base, 522 ... penetrating part, 523a ... first pressure deformation part, 23b ... second pressure deforming section, 524 ... partitioning member, 525a ... first flow path, 525b ... second flow path, 526 ... through hole, 527 ... communication path, 528 ... valve member, 528a ... connecting section, 528b ... Valve, arrow ... Reaction solution flow direction

Claims (2)

発電に用いられる燃料を蓄える燃料カートリッジ筐体と、
前記燃料カートリッジ筐体に接続され、前記燃料カートリッジ筐体から供給される前記
燃料によって発電する発電部と、
前記燃料カートリッジ筐体の内部圧力を導入可能な圧力導入路を介して前記燃料カートリッジ筐体内部の圧力を計測する圧力センサと、
前記燃料カートリッジ筐体と前記発電部とを着脱自在に接続する第1接続部と、を備え、
前記圧力センサは、前記発電部に取り付けられており、
前記第1接続部は、前記燃料カートリッジ筐体と前記発電部が未接続時に前記燃料カートリッジ筐体から供給される前記燃料の流路を閉鎖する閉鎖手段を有し、
前記閉鎖手段は、前記流路内に設けられた弁体と、当該弁体に接続された圧縮バネと、前記弁体に取り付けられ前記流路を密封可能なOリングと、を含み、
前記燃料カートリッジ筐体は、反応溶液を収納する溶液容器と、固体の反応用物質を収
容するとともに前記反応溶液及び前記反応用物質を反応させて前記燃料を生成する反応室
とを備え、
前記燃料カートリッジ筐体側の第1部分及び前記発電部側の第2部分を有し、前記溶液
容器から前記反応室に前記反応溶液を送る送液路と、
前記第1部分と前記第2部分とを着脱自在に接続する第2接続部とを有し、
前記圧力センサは、前記送液路内部の圧力を計測することを特徴とする燃料電池。
A fuel cartridge housing for storing fuel used for power generation;
A power generation unit that is connected to the fuel cartridge housing and generates electricity using the fuel supplied from the fuel cartridge housing;
A pressure sensor for measuring the pressure inside the fuel cartridge housing via a pressure introduction path capable of introducing the internal pressure of the fuel cartridge housing;
A first connection part for detachably connecting the fuel cartridge housing and the power generation part,
The pressure sensor is attached to the power generation unit,
The first connection portion has a closing means for closing a flow path of the fuel supplied from the fuel cartridge housing when the fuel cartridge housing and the power generation unit are not connected,
Said closure means includes a valve body provided in the flow channel, seen including a compression spring connected to the valve body, and a O-ring capable of sealing said flow path is attached to said valve body,
The fuel cartridge housing contains a solution container for containing a reaction solution and a solid reaction substance.
And a reaction chamber for generating the fuel by reacting the reaction solution and the reaction substance.
And
A first portion on the fuel cartridge housing side and a second portion on the power generation unit side;
A liquid feed path for sending the reaction solution from a container to the reaction chamber;
A second connection part for detachably connecting the first part and the second part;
The fuel cell according to claim 1 , wherein the pressure sensor measures a pressure inside the liquid supply path .
前記第2部分に備えられ、前記反応室の圧力が所定の圧力よりも低くなった場合にのみ、前記溶液容器から前記反応室に前記反応溶液を送る開閉手段をさらに備えることを特徴とした請求項に記載の燃料電池。 An opening / closing means that is provided in the second part and that sends the reaction solution from the solution container to the reaction chamber only when the pressure in the reaction chamber becomes lower than a predetermined pressure. Item 4. The fuel cell according to Item 1 .
JP2007027019A 2007-02-06 2007-02-06 Fuel cell Expired - Fee Related JP5350595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027019A JP5350595B2 (en) 2007-02-06 2007-02-06 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027019A JP5350595B2 (en) 2007-02-06 2007-02-06 Fuel cell

Publications (2)

Publication Number Publication Date
JP2008192508A JP2008192508A (en) 2008-08-21
JP5350595B2 true JP5350595B2 (en) 2013-11-27

Family

ID=39752398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027019A Expired - Fee Related JP5350595B2 (en) 2007-02-06 2007-02-06 Fuel cell

Country Status (1)

Country Link
JP (1) JP5350595B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8887772B2 (en) 2011-01-12 2014-11-18 Samsung Sdi Co., Ltd. Fuel injection apparatus, fuel injection system and fuel injection method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042101B2 (en) * 2001-07-06 2008-02-06 ソニー株式会社 FUEL CELL AND POWER SUPPLY METHOD USING FUEL CELL
US6953630B2 (en) * 2001-07-25 2005-10-11 Ballard Power Systems Inc. Fuel cell anomaly detection method and apparatus
JP2003097795A (en) * 2001-09-27 2003-04-03 Sony Corp Fuel storage device, electric power generating device and electric apparatus
JP4066159B2 (en) * 2002-08-26 2008-03-26 ソニー株式会社 Hydrogen gas production apparatus and energy conversion system
JP4627997B2 (en) * 2003-02-24 2011-02-09 セイコーインスツル株式会社 Fuel cell system
JP4227062B2 (en) * 2003-03-31 2009-02-18 株式会社東芝 FUEL CELL SYSTEM, FUEL CELL SYSTEM FUEL AND FUEL CELL SYSTEM CLOSED CONTAINER
WO2005101558A1 (en) * 2004-04-07 2005-10-27 Matsushita Electric Industrial Co., Ltd. Fuel cartridge for fuel cell, and fuel cell
US20060225350A1 (en) * 2005-01-28 2006-10-12 John Spallone Systems and methods for controlling hydrogen generation
US7727293B2 (en) * 2005-02-25 2010-06-01 SOCIéTé BIC Hydrogen generating fuel cell cartridges

Also Published As

Publication number Publication date
JP2008192508A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP4653105B2 (en) Fuel cartridge for fuel cell and manufacturing method thereof
US7156131B2 (en) Method and apparatus for filling a fuel container
ES2373031T3 (en) FUEL SUPPLY.
JP4431577B2 (en) Fuel cartridge with connecting valve
KR101513121B1 (en) Pressurized fuel cell cartridges
KR101109428B1 (en) Fuel cartridge with flexible liner
US20080280187A1 (en) Liquid cartridge
JP4706982B2 (en) Pressure regulating valve, fuel cell system using the same, and hydrogen generation facility
JP5587603B2 (en) Device for refilling a fuel cartridge for a fuel cell
JP4852823B2 (en) Liquid fuel cartridge for fuel cell
JP5350595B2 (en) Fuel cell
WO2009154069A1 (en) Fuel filling kit and fuel filling method
JP2009091231A (en) Liquid supply device, hydrogen generation apparatus, and fuel cell system
JP4826064B2 (en) Fuel cell system
JP2010102902A (en) Fuel cell
JP2009231055A (en) Valve body for fuel cartridge
JPH09154938A (en) Fluid supplying apparatus
JP2008146989A (en) Connecting structure and connecting method of fuel cartridge

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5350595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees