JP5350017B2 - Plate for tube manufacturing - Google Patents

Plate for tube manufacturing Download PDF

Info

Publication number
JP5350017B2
JP5350017B2 JP2009047608A JP2009047608A JP5350017B2 JP 5350017 B2 JP5350017 B2 JP 5350017B2 JP 2009047608 A JP2009047608 A JP 2009047608A JP 2009047608 A JP2009047608 A JP 2009047608A JP 5350017 B2 JP5350017 B2 JP 5350017B2
Authority
JP
Japan
Prior art keywords
tube
brazing
plate
concentration
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009047608A
Other languages
Japanese (ja)
Other versions
JP2010203640A (en
Inventor
和彦 南
幸裕 宮手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to JP2009047608A priority Critical patent/JP5350017B2/en
Publication of JP2010203640A publication Critical patent/JP2010203640A/en
Application granted granted Critical
Publication of JP5350017B2 publication Critical patent/JP5350017B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve excellent brazing even when heat exchange medium passages are narrow and replacement with brazing atmosphere is difficult, in manufacturing a flat multihole type tube for a heat exchanger made by bending a plate-shaped body. <P>SOLUTION: In the plate-shaped body (10) for brazing, partition wall forming parts (15) are swollen along the longitudinal direction on one face of a flat plate part (11), and the plate-shaped body (10) for brazing is bent to form the tube. The partition wall forming parts (15) are brazed to form the plurality of partitioned heat exchange medium passages, so as to manufacture the flat multihole type aluminum tube. The plate-shaped body (11) has brazing filler metal (10b) on one face of a core material (10a), and Mg concentration in aluminum constituting the core material (10a) is 0.01 mass% or less. The brazing filler metal (10b) comprises aluminum allow including 5-12 mass% of Si concentration, 0.003-0.03 mass% of Sr concentration, 0.005 mass% or less of Mg concentration, 0.002 mass% or less of Ca concentration and remaining comprising Al and unavoidable impurities. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、偏平多穴型の熱交換器用チューブの製作材料である板状体およびその関連技術に関する。   The present invention relates to a plate-like body that is a material for producing a flat multi-hole type heat exchanger tube, and a related technique.

本明細書および特許請求の範囲において、「アルミニウム」の語は純アルミニウムおよびアルミニウム合金の両方を含む意味で用いられる。   In the present specification and claims, the term “aluminum” is used to include both pure aluminum and aluminum alloys.

偏平多穴型の熱交換器用チューブの製造方法として、アルミニウム板の一面側に、溝付ロールによる圧延、金型成形、ロール成形等により複数の仕切壁形成部等を隆起させてチューブ製造用板状体とし、このチューブ製造用板状体をヘアピン状に折り曲げて縁部をろう付してチューブ状に形成するとともに、突き合わせた仕切壁形成部をろう付してチューブ内を複数の熱交換媒体通路に仕切る方法が知られている。この製造方法によれば、チューブの薄肉化が可能であり、ひいては熱交換器の小型軽量化が可能である(特許文献1、2参照)。   As a method for manufacturing a flat multi-hole type heat exchanger tube, a plurality of partition wall forming portions are raised on one side of an aluminum plate by rolling with grooved rolls, die forming, roll forming, etc. This tube manufacturing plate-like body is bent into a hairpin shape and the edges are brazed to form a tube, and the partition wall forming portion that is abutted is brazed to form a plurality of heat exchange media in the tube. A method of partitioning into a passage is known. According to this manufacturing method, the tube can be thinned, and the heat exchanger can be reduced in size and weight (see Patent Documents 1 and 2).

特開平6−281373号公報JP-A-6-281373 特開2006−78163号公報JP 2006-78163 A

偏平多穴型の熱交換器用チューブの製造においては、良好なろう付を達成するために、窒素ガス等の非酸化生雰囲気でろう付が行われる。しかしながら、チューブの薄肉小型化に伴って熱交換媒体通路は狭小となったために、通路内の空気がろう付雰囲気に置換されにくくなった。このため、通路内に酸素が残っている状態でろう材が溶融し始め、ろう材の構成元素が酸化して生成される酸化物がろう付を遅延させ、ろう付に時間がかかるという問題点があった。   In the manufacture of a flat multi-hole heat exchanger tube, brazing is performed in a non-oxidizing raw atmosphere such as nitrogen gas in order to achieve good brazing. However, since the heat exchange medium passage becomes narrower as the tube becomes thinner and thinner, it becomes difficult to replace the air in the passage with the brazing atmosphere. For this reason, the brazing material starts to melt while oxygen remains in the passage, and the oxide produced by oxidizing the constituent elements of the brazing material delays brazing, and it takes time to braze. was there.

本発明は、上述した技術背景に鑑み、板状体を折り曲げて製作する扁平多穴型の熱交換器用チューブの製造に際し、熱交換媒体通路が狭小でろう付雰囲気に置換しにくい場合においても良好にろう付できるチューブ製造用板状体およびその関連技術の提供を目的とする。   In view of the technical background described above, the present invention is good even when a flat multi-hole type heat exchanger tube manufactured by bending a plate-like body is manufactured and the heat exchange medium passage is narrow and difficult to replace with a brazing atmosphere. It aims at providing the plate-shaped object for tube manufacture which can be brazed, and its related technique.

即ち、本発明は下記[1]〜[9]に記載の構成を有する。   That is, the present invention has the configurations described in [1] to [9] below.

[1]平板部の一方の面に長手方向に沿って仕切壁形成部が隆起し、曲げ加工して幅方向の端部どうしをろう付してチューブを成形するとともに前記仕切壁形成部をろう付することにより、チューブ内が複数の熱交換媒体通路に仕切られた扁平多穴型のアルミニウム製チューブを製造するためのろう付用板状体であって、
前記板状体は心材の仕切壁形成部が隆起した面にろう材を有し、
前記心材を構成するアルミニウム中のMg濃度が0.01質量%以下であり、
前記ろう材が、Si濃度:5〜12質量%、Sr濃度:0.003〜0.03質量%、Mg濃度:0.005質量%以下、Ca濃度:0.002質量%以下であり、残部がAlおよび不可避不純物からなるアルミニウム合金で構成されていることを特徴とするチューブ製造用板状体。
[1] A partition wall forming portion is raised along the longitudinal direction on one surface of the flat plate portion, and is bent to braze end portions in the width direction to form a tube and to braze the partition wall forming portion. By attaching, it is a plate member for brazing for producing a flat multi-hole aluminum tube in which the inside of the tube is partitioned into a plurality of heat exchange medium passages,
The plate-like body has a brazing material on the surface where the partition wall forming portion of the core material is raised,
Mg concentration in aluminum constituting the core material is 0.01% by mass or less,
The brazing filler metal is Si concentration: 5-12% by mass, Sr concentration: 0.003-0.03% by mass, Mg concentration: 0.005% by mass or less, Ca concentration: 0.002% by mass or less, and the balance Is made of an aluminum alloy composed of Al and inevitable impurities.

[2]前記ろう材中のSiの平均粒子径が3.5μm以下である前項1に記載のチューブ製造用板状体。   [2] The plate-like body for manufacturing a tube according to item 1 above, wherein an average particle diameter of Si in the brazing material is 3.5 μm or less.

[3]少なくとも1つの熱交換媒体用通路の円相当直径が0.8mm以下である前項1または2に記載のチューブ製造用板状体。   [3] The plate-like body for producing a tube according to the above item 1 or 2, wherein the equivalent circle diameter of at least one heat exchange medium passage is 0.8 mm or less.

[4]前記心材とろう材とがクラッドされてなる前項1〜3のいずれかに記載のチューブ製造用板状体。   [4] The plate-like body for manufacturing a tube according to any one of items 1 to 3, wherein the core material and the brazing material are clad.

[5]前項4に記載のチューブ製造用板状体を製造する方法であって、
心材と、均質化処理を行うことなく製作したろう材とを重ねてクラッド材を製作し、このクラッド材のろう材側の面に仕切壁形成部を隆起させることを特徴とするチューブ製造用板状体の製造方法。
[5] A method for producing a plate-like body for producing a tube according to item 4,
A tube manufacturing plate characterized in that a core material and a brazing material manufactured without homogenization are overlapped to produce a clad material, and a partition wall forming portion is raised on the brazing material side surface of the clad material A method of manufacturing a body.

[6]前項1〜4のいずれかに記載のチューブ製造用板状体を、ろう材側を内側にして折り曲げ加工して幅方向の端部どうしを当接させてチューブを成形するとともに、前記仕切壁形成部によりチューブ内を複数の熱交換媒体通路に仕切って扁平多穴型の熱交換器用チューブを成形し、ろう付加熱を行うことを特徴とする熱交換器用チューブの製造方法。   [6] The tube-forming plate according to any one of the preceding items 1 to 4 is bent with the brazing material side inward, the ends in the width direction are brought into contact with each other, and the tube is formed. A method for producing a heat exchanger tube, characterized in that a partition wall forming portion partitions the inside of the tube into a plurality of heat exchange medium passages to form a flat multi-hole heat exchanger tube and performs brazing addition heat.

[7]ろう付加熱を酸素濃度が300ppm以下の雰囲気中で行う前項6に記載の熱交換器用チューブの製造方法。   [7] The method for producing a heat exchanger tube as recited in the aforementioned Item 6, wherein the brazing heat is performed in an atmosphere having an oxygen concentration of 300 ppm or less.

[8]ろう付加熱開始時の昇温速度を50℃/min以上とする前項6または7に記載の熱交換器用チューブの製造方法。   [8] The method for producing a heat exchanger tube as described in 6 or 7 above, wherein the rate of temperature rise at the start of brazing addition heat is 50 ° C./min or more.

[9]チューブとフィンとを交互に重ねて配置するとともに、前記チューブにヘッダータンクを連結した状態でコア部を仮組みし、仮組みしたコア部を加熱して前記チューブとフィン、およびチューブとヘッダータンクをろう付する熱交換器の製造方法において、
前記チューブとして、前項1〜4のいずれかに記載のチューブ製造用板状体を折り曲げて成形した扁平多穴型チューブを用い、
前記加熱により、チューブ製作用板状体のろう材を溶融させて熱交換器用チューブの内部のろう付を行うことを特徴とする熱交換器の製造方法。
[9] The tubes and fins are alternately stacked, and the core portion is temporarily assembled in a state where the header tank is connected to the tubes, and the temporarily assembled core portions are heated to form the tubes, fins, and tubes. In the method of manufacturing a heat exchanger for brazing the header tank,
As the tube, using a flat multi-hole type tube formed by bending the plate-like body for tube production according to any one of the preceding items 1 to 4,
A method of manufacturing a heat exchanger, comprising: melting a brazing material of a tube-made working plate-like body by the heating to braze the inside of a heat exchanger tube.

上記[1]に記載のチューブ製作用板状体によれば、心材中のMg濃度、ろう材中のMg濃度およびCa濃度が規制されているため、ろう付時に生成するこれらの元素の酸化物量が抑制される。また、ろう材中のSrによりSi粒子が微細化されているため、ろう材が短時間で溶融してAlの酸化膜の成長が抑制され、ろう材の流動性低下を抑えることができる。MgおよびCaの酸化物およびAlの酸化膜はいずれもろう付を遅延させて短時間でのろう付を困難にするものであり、これらの生成や成長が抑制されることでチューブ内部において良好なろう付が短時間で達成される。さらに、これらの生成が抑制されることで、良好なろう付を達成するためのろう付雰囲気中の酸素濃度の許容範囲が緩和されるので、熱交換媒体通路が小さいために通路内がろう付雰囲気に置換されにくいチューブにおいても、良好なろう付を達成することができる。   According to the tube manufacturing plate-like body described in [1] above, since the Mg concentration in the core material, the Mg concentration in the brazing material, and the Ca concentration are regulated, the amounts of oxides of these elements generated during brazing Is suppressed. Further, since the Si particles are refined by Sr in the brazing material, the brazing material is melted in a short time, and the growth of the Al oxide film is suppressed, and a decrease in the fluidity of the brazing material can be suppressed. The oxides of Mg and Ca and the oxide film of Al both delay brazing and make brazing in a short time difficult. Brazing is achieved in a short time. Furthermore, by suppressing these generations, the allowable range of the oxygen concentration in the brazing atmosphere for achieving good brazing is relaxed, so that the inside of the passage is brazed because the heat exchange medium passage is small. Even in a tube that is difficult to be replaced by the atmosphere, good brazing can be achieved.

上記[2]に記載のチューブ製作用板状体においては、ろう材中のSiの平均粒子径が3.5μm以下に微細化されているため、ろう材が特に短時間で溶融して良好なろう付を達成することができる。   In the tube-working plate according to the above [2], since the average particle diameter of Si in the brazing material is refined to 3.5 μm or less, the brazing material melts particularly quickly and is good. Brazing can be achieved.

上記[3]に記載のチューブ製作用板状体によれば、円相当直径が0.8mm以下の狭小な熱交換媒体通路を有するチューブに対しても良好なろう付が達成される。   According to the tube manufacturing plate-like body described in [3] above, good brazing can be achieved even for a tube having a narrow heat exchange medium passage having an equivalent circle diameter of 0.8 mm or less.

上記[4]に記載のチューブ製作用板状体によれば、心材とろう材のクラッド材から製作された板状体において良好なろう付性を達成できる。   According to the tube-working plate-like body described in [4] above, good brazability can be achieved in a plate-like body manufactured from a core material and a clad material of brazing material.

上記[5]に記載のチューブ製作用板状体の製造方法によれば、心材とろう材のクラッド材を材料として、ろう材中のSi粒子が微細化されたチューブ製作用板状体を製造することができる。   According to the method for producing a tube-working plate-like body described in [5] above, a tube-working plate-like body in which Si particles in the brazing material are miniaturized is produced using a clad material of a core material and a brazing material. can do.

上記[6]に記載の熱交換器用チューブの製造方法によれば、ろう付性を低下させるCaおよびMgの酸化物の生成が抑制されるとともに、Al酸化膜の成長が抑制され、良好にろう付されたチューブを製造することができる。   According to the method for manufacturing a heat exchanger tube as described in [6] above, the formation of Ca and Mg oxides that lower the brazing property is suppressed, and the growth of the Al oxide film is suppressed. The attached tube can be manufactured.

上記[7][8]に記載の各熱交換器用チューブの製造方法によれば、CaおよびMgの酸化物の生成およびAl酸化膜の成長が特に抑制される。   According to the method for manufacturing a heat exchanger tube described in [7] and [8] above, generation of Ca and Mg oxides and growth of an Al oxide film are particularly suppressed.

上記[9]の熱交換器の製造方法によれば、熱交換器用チューブ内部のろう付、熱交換器用チューブとヘッダーとのろう付、熱交換器用チューブとアウターフィンとのろう付を同時に行うことができる。   According to the heat exchanger manufacturing method of [9] above, brazing of the heat exchanger tube, brazing of the heat exchanger tube and the header, and brazing of the heat exchanger tube and the outer fin are simultaneously performed. Can do.

本発明のチューブ製造用板状体から製造される熱交換器用チューブの一例を示す断面図である。It is sectional drawing which shows an example of the tube for heat exchangers manufactured from the plate-shaped object for tube manufacture of this invention. 本発明の熱交換器用チューブの製造方法において、チューブ製造用板状体を曲げ加工する工程を示す断面図である。It is sectional drawing which shows the process of bending the plate-shaped object for tube manufacture in the manufacturing method of the tube for heat exchangers of this invention. 図2のチューブ製造用板状体の製造方法を示す図である。It is a figure which shows the manufacturing method of the plate-shaped object for tube manufacture of FIG. 図1の熱交換器用チューブを用いた熱交換器の正面図である。It is a front view of the heat exchanger using the tube for heat exchangers of FIG.

図1に、本発明のチューブ製造用板状体から製造される熱交換器用チューブ(1)の一例を示す。この熱交換器用チューブ(1)は対向する上下の平坦壁(2)(3)と左右の側壁(4)(5)によってチューブ状に形成され、チューブ内が仕切壁(6)によって複数の熱交換媒体通路(7)に仕切られた扁平多穴型のチューブである。なお、説明の便宜上、図面における上下方向および左右方向をチューブの上下左右としているが、これらの方向はチューブの配置方向を限定するものではない。   FIG. 1 shows an example of a heat exchanger tube (1) produced from the tube production plate of the present invention. This heat exchanger tube (1) is formed into a tube shape by the opposed upper and lower flat walls (2) (3) and left and right side walls (4) (5), and the inside of the tube is divided into a plurality of heat by the partition wall (6). It is a flat multi-hole tube partitioned by an exchange medium passage (7). For convenience of explanation, the up and down direction and the left and right direction in the drawing are the up and down and left and right directions of the tube, but these directions do not limit the arrangement direction of the tube.

前記熱交換器用チューブ(1)は、図2に示すように、帯状のチューブ製造用板状体(10)を曲げ加工し、当接部をろう付することにより製造されたものである。   As shown in FIG. 2, the heat exchanger tube (1) is manufactured by bending a belt-shaped tube manufacturing plate (10) and brazing the contact portion.

チューブ製造用板状体(10)は、帯状の平板部(11)の一方の面に、長手方向に沿って複数種の隆起部を有する略板状体である。前記平板部(11)の中央部に右側壁(4)となる右側壁形成部(14)が突設され、この右側壁形成部(14)の左右の部分が下平坦壁形成部(12)および上平坦壁形成部(13)となされ、各平坦壁形成部(12)(13)には、所定間隔で仕切壁形成部(15)が突設されている。また、下平坦壁形成部(12)の端部に第1左側壁形成部(17)が突設され、上平坦壁形成部(13)の端部から内側に退入した部分に第2左側壁形成部(18)が突設されている。前記上平坦壁形成部(13)の端部は側壁覆い部(19)となされている。即ち、前記チューブ製造用板状体(10)は、平板部(11)の一方の面に、右側壁部(14)、第1左側壁形成部(17)、第2左側壁形成部(18)、複数の仕切壁形成部(15)が突設され、前記仕切壁形成部(15)が突設された領域が実質的に上下の平坦壁形成部(12)(13)である。以下の説明において、平板部(11)から突出する部分のうちの複数種を示す場合は「隆起部」と称する。   The tube manufacturing plate-like body (10) is a substantially plate-like body having a plurality of types of raised portions along the longitudinal direction on one surface of the belt-like flat plate portion (11). A right side wall forming portion (14) serving as a right side wall (4) protrudes from a central portion of the flat plate portion (11), and left and right portions of the right side wall forming portion (14) are lower flat wall forming portions (12). And the upper flat wall forming portion (13), and the flat wall forming portions (12) and (13) are provided with partition wall forming portions (15) protruding at predetermined intervals. In addition, a first left side wall forming part (17) protrudes from an end of the lower flat wall forming part (12), and a second left side is formed in a portion retracted inward from the end of the upper flat wall forming part (13). A wall forming part (18) is projected. An end portion of the upper flat wall forming portion (13) is a side wall covering portion (19). That is, the tube manufacturing plate-like body (10) has a right side wall (14), a first left side wall forming part (17), and a second left side wall forming part (18) on one surface of the flat plate part (11). ), A plurality of partition wall forming portions (15) project, and the region where the partition wall forming portion (15) projects is substantially the upper and lower flat wall forming portions (12) (13). In the following description, when a plurality of types of portions protruding from the flat plate portion (11) are shown, they are referred to as “bumped portions”.

前記チューブ製造用板状体(10)は、図2中の部分拡大図に示すように、心材(10a)の一面側にろう材(10b)を有し、他面側に外皮材(10c)を有するクラッド材の平板を材料とし、この材料のろう材(10b)側に前記隆起部(14)(15)(17)(18)を隆起させる加工を施すことにより製作される。   As shown in the partially enlarged view in FIG. 2, the plate-like body for tube production (10) has a brazing material (10b) on one surface side of the core material (10a) and an outer skin material (10c) on the other surface side. It is manufactured by applying a process of raising the raised portions (14), (15), (17), and (18) on the brazing material (10b) side of this material.

前記隆起部(14)(15)(17)(18)の隆起加工は、上下一組の圧延ロールを複数組直列に配列した圧延装置を用い、材料を圧延しながら隆起部(14)(15)(17)(18)を形成する方法を例示できる。   The raised portions (14), (15), (17), and (18) are raised by using a rolling machine in which a plurality of sets of upper and lower sets of rolling rolls are arranged in series, and rolling the material while raising the raised portions (14) (15 ) (17) A method for forming (18) can be exemplified.

図3は、圧延装置における一組の圧延ロール(30)(31)による成形中の状態を模式的に示すものであり、図面の左右方向が材料(32)の幅方向を示している。各組の圧延ロール(30)(31)間の隙間間隔は、材料(32)の挿入側から出側に向けて材料(32)の厚さよりも狭くなるように設定されている。また、各組の圧延ロールは、平坦周面を有してチューブの外面側を成形するフラットな下側ロール(30)に対し、チューブの内面側を成形する上側ロール(31)には隆起部(14)(15)(17)(18)形成用の複数種の環状溝(33)(34)が形成されている(2つの環状溝のみ図示)。前記環状溝(33)(34)の形状は形成する隆起部(14)(15)(17)(18)に応じて異なる。配列した複数の上側ロール(31)は隆起部(14)(15)(17)(18)に応じた複数種の環状溝を有するが、いずれの環状溝も材料(32)の挿入側から出側に向けて溝幅が徐々に狭くかつ深くなるように設計され、最後のロールの溝形状がチューブ製造用板状体(10)の隆起部(14)(15)(17)(18)形状に対応する。   FIG. 3 schematically shows a state during forming by a pair of rolling rolls (30) and (31) in a rolling apparatus, and the horizontal direction of the drawing shows the width direction of the material (32). The clearance gap between each set of rolling rolls (30) and (31) is set to be narrower than the thickness of the material (32) from the insertion side to the exit side of the material (32). Each set of rolling rolls has a flat peripheral surface and a flat lower roll (30) that forms the outer surface side of the tube, whereas the upper roll (31) that forms the inner surface side of the tube has a raised portion. (14) (15) (17) (18) A plurality of kinds of annular grooves (33) (34) for forming are formed (only two annular grooves are shown). The shape of the annular groove (33) (34) varies depending on the raised portions (14) (15) (17) (18) to be formed. The plurality of upper rolls (31) arranged have a plurality of types of annular grooves corresponding to the ridges (14), (15), (17), and (18), and any of the annular grooves protrudes from the material (32) insertion side. Designed so that the groove width gradually becomes narrower and deeper toward the side, the groove shape of the last roll is the raised part (14) (15) (17) (18) shape of the plate for tube manufacturing (10) Corresponding to

そして、上記構成の圧延装置に材料(32)を通すことにより、材料(32)は圧延作用によって肉厚が徐々に減じられるとともに、減肉分の金属が徐々に環状溝(33)(34)側に寄せられて隆起し、隆起部(14)(15)(17)(18)が成形される。   Then, by passing the material (32) through the rolling device having the above configuration, the thickness of the material (32) is gradually reduced by the rolling action, and the metal of the reduced thickness gradually becomes the annular groove (33) (34). The raised portions (14), (15), (17), and (18) are formed.

上述した溝付ロールによる圧延によれば、複数の形状の異なる隆起部を同時に隆起成形することができる。なお、本発明に用いるチューブ製造用板状体の製造方法は溝付ロールによる圧延に限定されるものではない。他の方法として、金型による隆起成形やロールによる隆起成形を例示できる。   According to the rolling by the grooved roll described above, a plurality of raised portions having different shapes can be raised simultaneously. In addition, the manufacturing method of the plate-shaped object for tube manufacture used for this invention is not limited to the rolling by a grooved roll. As other methods, uplift molding using a mold or uplift molding using a roll can be exemplified.

前記チューブ製作用板状体(10)から偏平多穴型のチューブへの成形は曲げ加工により行い、曲げ加工によって当接した部分をろう付して接合することにより熱交換器用チューブ(1)となる。   The tube-made working plate (10) is formed into a flat multi-hole tube by bending, and the heat contact tube (1) is joined by brazing and joining the abutted portions by bending. Become.

前記チューブ製造用板状体(10)から偏平多穴型の熱交換器用チューブ(1)への成形は、図1、2に参照されるように、以下の工程で行う。   Molding of the tube manufacturing plate-like body (10) into the flat multi-hole type heat exchanger tube (1) is carried out in the following steps, as shown in FIGS.

前記チューブ製作用板状体(10)は、右側壁形成部(14)を中心にして下平坦壁形成部(12)と上平坦壁形成部(13)とを折り曲げ、最後にヘアピン状に折り曲げると、右側壁形成部(14)はそのまま右側壁(4)となる。また、第1左側壁形成部(17)と第2左側壁形成部(18)とが突き合わされ、さらに側壁覆い部(19)を曲げてかしめると、これらが密着して左側壁(5)を形成し、上下の平坦壁(2)(3)と左右の側壁(4)(5)によるチューブ形状となる。同時に、下平坦壁形成部(12)の仕切壁形成部(15)と上平坦壁形成部(13)の仕切壁形成部(15)がそれぞれに突き合わされて仕切壁(6)となり、チューブ内が複数の熱交換媒体通路(7)に仕切られる。   The tube-made working plate-like body (10) bends the lower flat wall forming portion (12) and the upper flat wall forming portion (13) around the right side wall forming portion (14), and finally bends into a hairpin shape. The right side wall forming part (14) becomes the right side wall (4) as it is. Further, when the first left side wall forming part (17) and the second left side wall forming part (18) are abutted, and the side wall covering part (19) is further bent and caulked, they are brought into close contact with each other and the left side wall (5) To form a tube with upper and lower flat walls (2) (3) and left and right side walls (4) (5). At the same time, the partition wall forming part (15) of the lower flat wall forming part (12) and the partition wall forming part (15) of the upper flat wall forming part (13) are brought into contact with each other to form a partition wall (6). Is partitioned into a plurality of heat exchange medium passages (7).

扁平多穴型に成形した熱交換器用チューブ(1)は、加熱してろう材(10b)を溶融させ、各当接部分をろう付接合する。本発明においては、以下に詳述するように、前記心材(10a)およびろう材(10b)がろう付遅延物質の生成が抑制される組成に規定されているため、熱交換媒体通路(7)が狭小であって通路(7)内の非酸化性ろう付雰囲気への置換が遅れて酸素が残っている場合においても、チューブ内部の良好なろう付を達成することができる。   The heat exchanger tube (1) formed into a flat multi-hole mold is heated to melt the brazing material (10b) and braze-join each contact portion. In the present invention, as described in detail below, since the core material (10a) and the brazing material (10b) are regulated to have a composition that suppresses the formation of a brazing retarding substance, the heat exchange medium passage (7) Even if the gas is narrow and the replacement with the non-oxidizing brazing atmosphere in the passage (7) is delayed, it is possible to achieve good brazing inside the tube.

心材(10a)は、Mg濃度が0.01質量%以下のアルミニウムを用いる。心材(10a)のMg濃度が0.01質量%を超えると、ろう付時の昇温過程、即ちろう付雰囲気への置換が十分でない状態で酸素と反応して酸化物を形成しやすくなり、生成された酸化物によってろう付に時間がかかるようになる。また、心材(10a)の他面側に外皮材を有するクラッド材を用いた場合にも、Mgが外皮材の表面にまで拡散し、酸化物を形成してろう付遅延の原因となる。かかる理由により、Mg濃度を0.01質量%以下に規制する必要があり、好ましいMg濃度は0.007質量%以下である。また、下限値は規定されないが、母合金となる塊のコストがアップするため、0.002質量%以上が好ましい。   As the core material (10a), aluminum having an Mg concentration of 0.01% by mass or less is used. When the Mg concentration of the core material (10a) exceeds 0.01% by mass, it becomes easy to form an oxide by reacting with oxygen in a temperature rising process at the time of brazing, that is, in a state where the substitution to the brazing atmosphere is not sufficient, The generated oxide takes time to braze. Also, when a clad material having a skin material on the other surface side of the core material (10a) is used, Mg diffuses to the surface of the skin material and forms an oxide, which causes brazing delay. For this reason, it is necessary to regulate the Mg concentration to 0.01% by mass or less, and the preferable Mg concentration is 0.007% by mass or less. Moreover, although a lower limit is not prescribed | regulated, since the cost of the lump used as a mother alloy increases, 0.002 mass% or more is preferable.

また、心材(10a)の残部組成はAlおよび不可避不純物である。   The balance composition of the core material (10a) is Al and inevitable impurities.

ろう材は、Si濃度が5〜12質量%、Sr濃度が0.003〜0.03質量、Mg濃度が0.005質量%以下、Ca濃度が0.002質量%以下であり、残部がAlおよび不可避不純物からなるアルミニウム合金とする。   The brazing filler metal has an Si concentration of 5 to 12 mass%, an Sr concentration of 0.003 to 0.03 mass, an Mg concentration of 0.005 mass% or less, a Ca concentration of 0.002 mass% or less, and the balance being Al. And an aluminum alloy composed of inevitable impurities.

Si濃度は所期するろう材の融点を確保するために5〜12質量%とし、好ましい範囲は7〜12質量%である。   The Si concentration is 5 to 12% by mass in order to ensure the melting point of the desired brazing material, and the preferred range is 7 to 12% by mass.

Srは、Si粒子を微細化して昇温中に短時間でろう材を溶融させるために添加される元素である。共晶温度近くでろう材を短時間で溶融することにより、Alの酸化膜の成長によるろう材の流動性低下を抑え、これにより短時間で良好なろう付を達成する。Sr濃度が0.003質量%未満ではその効果が乏しく、0.03質量%を超える範囲では不経済である。好ましいSr濃度は0.007〜0.02質量%である。   Sr is an element added to refine the Si particles and melt the brazing material in a short time during the temperature rise. By melting the brazing material near the eutectic temperature in a short time, a decrease in the fluidity of the brazing material due to the growth of the Al oxide film is suppressed, thereby achieving good brazing in a short time. If the Sr concentration is less than 0.003% by mass, the effect is poor, and if it exceeds 0.03% by mass, it is uneconomical. A preferable Sr concentration is 0.007 to 0.02 mass%.

MgおよびCaは、これらの酸化物がろう付遅延の原因物質であるため、ろう付加熱におけるこれらの酸化物を抑制するために、Mg濃度を0.005質量%以下、Ca濃度を0.002質量%以下に規制する必要がある。さらに、Mg濃度は0.004質量%以下が好ましく、Ca濃度は0.0015質量%以下が好ましい。また、下限値は規定されないが、母合金となる塊のコストがアップするため、Mg濃度の下限値は0.002質量%が好ましく、Ca濃度の下限値は0.001質量%が好ましい。   In Mg and Ca, these oxides are causative substances of brazing delay, so in order to suppress these oxides in the heat of brazing addition, the Mg concentration is 0.005% by mass or less and the Ca concentration is 0.002%. It is necessary to regulate to less than mass%. Further, the Mg concentration is preferably 0.004% by mass or less, and the Ca concentration is preferably 0.0015% by mass or less. Moreover, although a lower limit is not prescribed | regulated, since the cost of the lump used as a mother alloy goes up, the lower limit of Mg concentration is preferable 0.002 mass%, and the lower limit of Ca concentration is preferable 0.001 mass%.

なお、上述した心材およびろう材の組成の説明で用いた「母合金」とは、材料となるアルミニウム地金と、合金成分を母合金にて添加する際の母合金(所期する組成に調整された合金)との両方を含んでいる。   The “mother alloy” used in the description of the composition of the core material and the brazing material described above is an aluminum ingot as a material and a mother alloy when the alloy components are added in the mother alloy (adjusted to the desired composition) Alloy) and both.

ろう材中のSi粒子は、その平均粒子径が3.5μm以下に微細化されていることが好ましい。Si粒子の微細化によりろう材が共晶温度近くで溶融するため、ろう材は早期に短時間で溶融する。このため、Alの酸化膜の成長によるろう材の流動性低下が抑制されてろう付性が向上する。Siの平均粒子径が3.5μmを超えると溶融のタイミングを早める効果が乏しい。特に好ましいSiの平均粒子径は3.0μm以下である。本発明において、Si粒子径は断面で測定したものであり、粒子断面の円相当直径(粒子断面積と同一面積の円の直径)として表したものである。また、平均粒子径とは、個数の平均(観察視野内に存在するn個の粒子の粒子径の総和をnで除したもの)である。   The average particle diameter of the Si particles in the brazing material is preferably refined to 3.5 μm or less. Since the brazing material is melted near the eutectic temperature due to the refinement of the Si particles, the brazing material is melted quickly and in a short time. For this reason, the fluidity | liquidity fall of the brazing material by the growth of the oxide film of Al is suppressed, and brazing property improves. When the average particle diameter of Si exceeds 3.5 μm, the effect of accelerating the melting timing is poor. A particularly preferable average particle diameter of Si is 3.0 μm or less. In the present invention, the Si particle diameter is measured by a cross section, and is expressed as a circle equivalent diameter of a particle cross section (a diameter of a circle having the same area as the particle cross sectional area). The average particle diameter is the average of the numbers (the sum of the particle diameters of n particles present in the observation field divided by n).

また、外皮材(10c)は、チューブとアウターフィンおよびヘッダーとをろう付し、かつチューブに犠牲腐食による耐食性を付与するため層であり、例えばSiおよびZnを添加したアルミニウム合金で構成される。かかるアルミニウム合金としてAl−Si系合金、Al−Zn系合金、Al−Si−Zn系合金を例示でき、これらの合金におけるSi濃度は5〜12質量%が好ましく、Zn濃度は0.5〜4質量%が好ましい。   The skin material (10c) is a layer for brazing the tube, the outer fin, and the header and imparting corrosion resistance to the tube by sacrificial corrosion, and is made of, for example, an aluminum alloy to which Si and Zn are added. Examples of the aluminum alloy include an Al—Si alloy, an Al—Zn alloy, and an Al—Si—Zn alloy, and the Si concentration in these alloys is preferably 5 to 12% by mass, and the Zn concentration is 0.5 to 4 Mass% is preferred.

上述したように、本実施形態のチューブ製造用板状体(10)は、それぞれ板状の心材(10a)、ろう材(10b)、外皮材(10c)を重ねて所要の厚さに圧延したクラッド材を材料として製造される。ろう材中のSi粒子径は、ろう材の製造工程、クラッド材の製造工程、隆起成形工程においても制御することができる。即ち、クラッド前の単独材においても、心材とのクラッド材においても、Si粒子を成長させないために高温での熱処理をしないようにようにすれば良い。具体的には、クラッド前のろう材に均質化処理を行わないことでSi粒子の成長を抑制することができる。また、ろう材の単独材の製作時またはクラッド材の製作時に熱間圧延を行う場合には低い温度で行う圧延することによってSi粒子の成長を抑制することができる。具体的には500℃以下で熱間圧延することが好ましい。   As described above, the plate manufacturing body (10) of the present embodiment is obtained by rolling the plate-shaped core material (10a), the brazing material (10b), and the outer skin material (10c) to a required thickness. Manufactured using clad material. The Si particle diameter in the brazing material can also be controlled in the brazing material manufacturing process, the cladding material manufacturing process, and the bulge forming process. That is, it is only necessary to prevent heat treatment at a high temperature in order to prevent Si particles from growing either in the single material before cladding or in the cladding material with the core material. Specifically, the growth of Si particles can be suppressed by not performing the homogenization treatment on the brazing material before cladding. Further, when hot rolling is performed at the time of producing a brazing material alone or at the time of producing a clad material, the growth of Si particles can be suppressed by rolling at a low temperature. Specifically, it is preferable to perform hot rolling at 500 ° C. or less.

さらに、ろう付加熱時にMgおよびCaの酸化物の生成およびAlの酸化膜の成長を抑制できる条件を選択することによってろう付性を向上させることができる。   Furthermore, the brazing property can be improved by selecting conditions that can suppress the formation of Mg and Ca oxides and the growth of the Al oxide film during brazing heat.

ろう付雰囲気中の酸素濃度が低いほど酸化物や酸化膜の生成が抑制されることは言うまでもないが、本発明はろう材組成および心材組成を規定し、さらにSi粒子を微細化することによって酸化が抑制されるので、ろう付雰囲気中の酸素濃度の許容範囲が緩和される。具体的にはろう付雰囲気中の酸素濃度が300ppm以下であれば良好なろう付を達成することができる。特に好ましい酸素濃度は100ppm以下である。従って、熱交換媒体通路(7)が狭小で、窒素ガス等のろう付雰囲気ガスとの置換が不完全で、酸素が残っている状態であっても良好なろう付を達成することができる。   Needless to say, the lower the oxygen concentration in the brazing atmosphere is, the more the formation of oxides and oxide films is suppressed. However, the present invention defines the brazing material composition and the core material composition, and further oxidizes by miniaturizing the Si particles. Therefore, the allowable range of the oxygen concentration in the brazing atmosphere is relaxed. Specifically, good brazing can be achieved if the oxygen concentration in the brazing atmosphere is 300 ppm or less. A particularly preferable oxygen concentration is 100 ppm or less. Therefore, good brazing can be achieved even in a state where the heat exchange medium passage (7) is narrow, the substitution with a brazing atmosphere gas such as nitrogen gas is incomplete, and oxygen remains.

また、ろう付加熱の開始時には急速に温度を上昇させた方が、MgおよびCaの酸化物の生成およびAlの酸化膜の成長が抑制されてろう付性が良好となる。具体的には、50℃/min以上で昇温することが好ましく、特に70℃/min以上で昇温することが好ましい。   Also, when the temperature is rapidly increased at the start of the brazing addition heat, the formation of Mg and Ca oxides and the growth of the Al oxide film are suppressed, and the brazing property is improved. Specifically, it is preferable to increase the temperature at 50 ° C./min or more, and it is particularly preferable to increase the temperature at 70 ° C./min or more.

本発明において熱交換器用チューブの寸法は何ら限定されないが、ろう付加熱時の酸化物生成が抑制されることから、熱交換媒体用通路の断面積が小さいために通路内の空気がろう付雰囲気に置換されにくいチューブに対して適用意義が大きい。熱交換媒体用通路の断面における円相当直径、即ち通路長手方向に垂直な断面の円相当直径が0.8mm以下のチューブの製造に好適であり、特に円相当直径が0.7mm以下のチューブに好適である。前記円相当直径とは、通路の断面積と同一面積を有する円の直径である。また、本発明の熱交換器用チューブは多穴型であるが、複数の熱交換媒体用通路のうちの少なくとも1つの通路の円相当直径が0.8mm以下であれば本発明の適用意義は大きい。   In the present invention, the dimensions of the heat exchanger tube are not limited at all. However, since the formation of oxide during brazing addition heat is suppressed, the air in the passage is brazed because the cross-sectional area of the heat exchange medium passage is small. Significantly applicable to tubes that are difficult to replace. It is suitable for manufacturing a tube having an equivalent circle diameter in the cross section of the heat exchange medium passage, that is, a circle equivalent diameter in a cross section perpendicular to the longitudinal direction of the passage of 0.8 mm or less, particularly for a tube having an equivalent circle diameter of 0.7 mm or less. Is preferred. The circle equivalent diameter is a diameter of a circle having the same area as the cross-sectional area of the passage. Moreover, although the heat exchanger tube of the present invention is a multi-hole type, if the equivalent circle diameter of at least one of the plurality of heat exchange medium passages is 0.8 mm or less, the application significance of the present invention is great. .

上記実施形態においては心材、内皮材としてのろう材、外皮材の3層クラッド材で製作したチューブ製作用板状体および熱交換器用チューブを例示したが、本発明は3層クラッド材で製作されたものに限定されない。本発明におけるチューブ材料は、心材の一方の面(隆起部を成形する側の面)にろう材を有するものであれば足り、心材に内皮材としてろう材を合わせた2層クラッド材も本発明に含まれる。外皮材の有無は任意であり、外皮材を設ける場合もその構成(合金組成、層数、厚み)は任意であって、外皮材がろう材または犠牲腐食材であることにも限定されない。さらに、心材とろう材(内皮材)との間に中間材を有するクラッド材で製作したものも本発明に含まれる。さらに、クラッド材にも限定されず、心材となる平板に隆起部を成形した後、ろう付予定部に塗布や高速噴射法によってろう材を付着させて製作したチューブ製作用板状体も本発明に含まれる。前記ろう材付着方法のうち、前者は、粉末状のろう材をバインダーと混合して液状またはペースト状とし、このろう材混合物をろう付予定部に塗布する方法である。後者の高速噴射法とは、粉末ろう材を高速で噴射し、粒子をろう付予定部に衝突させてバインダーを介さずに付着させる方法である。いずれの方法においても、ろう材とともにフラックスも同時に付着させることができる。   In the above embodiment, the tube-made working plate and the heat exchanger tube made of the core material, the brazing material as the inner skin material, and the three-layer clad material of the outer skin material are exemplified, but the present invention is made of the three-layer clad material. It is not limited to that. The tube material according to the present invention only needs to have a brazing material on one side of the core material (the surface on the side where the raised portion is formed), and a two-layer clad material in which the brazing material is combined with the core material as an endothelium material is also included in the present invention. include. The presence or absence of the outer skin material is arbitrary, and even when the outer skin material is provided, the configuration (alloy composition, number of layers, thickness) is arbitrary, and the outer skin material is not limited to being a brazing material or a sacrificial corrosion material. Furthermore, what was manufactured with the clad material which has an intermediate material between a core material and a brazing material (endothelium material) is also contained in this invention. Furthermore, the present invention also relates to a tube working plate-like body manufactured by forming a raised portion on a flat plate as a core material and then attaching a brazing material to a portion to be brazed by coating or high-speed spraying method. include. Among the above-mentioned brazing material adhesion methods, the former is a method in which a powdery brazing material is mixed with a binder to form a liquid or a paste, and this brazing material mixture is applied to a portion to be brazed. The latter high-speed spraying method is a method in which a powder brazing material is sprayed at a high speed and particles are caused to collide with a portion to be brazed and adhered without using a binder. In any method, the flux can be attached simultaneously with the brazing material.

本発明において、チューブ製作用板状体の隆起部形状は図示したもの限定されない。例例えば、図示例のチューブ製作用板状体(10)は側壁形成部(14)(17)(18)を隆起させることで側壁(4)(5)を厚肉化してチューブ強度を高めているが、側壁形成部を隆起させることなく平板を曲げ加工するだけでも側壁を形成することができる。また、仕切壁(6)は仕切壁形成部(15)の高さを高くして他方の平坦壁形成部に当接させるようにしても良い。さらに、熱交換媒体用通路(7)内にインナーフィンを突設することも任意である。   In the present invention, the shape of the raised portion of the tube-made working plate is not limited to that illustrated. For example, the tube-shaped plate-like body (10) in the example shown in the figure increases the thickness of the side walls (4) and (5) by raising the side wall forming portions (14), (17) and (18) to increase the tube strength. However, the side wall can be formed only by bending the flat plate without raising the side wall forming portion. Further, the partition wall (6) may be brought into contact with the other flat wall forming portion by increasing the height of the partition wall forming portion (15). Furthermore, it is also optional to project an inner fin in the heat exchange medium passage (7).

熱交換器用チューブのろう付加熱は、チューブ単独で行っても良いし、図4に示すように、成形した熱交換器用チューブをヘッダー等の他部材とともに仮組した状態で行っても良い。   The heat addition heat of the heat exchanger tube may be performed by the tube alone, or may be performed in a state where the formed heat exchanger tube is temporarily assembled together with other members such as a header as shown in FIG.

図4に示す熱交換器(20)は、複数の熱交換器用チューブ(1)が相互間にアウターフィン(21)を介在させた状態で積層されるとともに、熱交換器用チューブ(1)の両端がヘッダー(22)に連通接続され、熱交換器用チューブ(1)、アウターフィン(21)、ヘッダー(22)がろう付けにより接合一体化されたコア部を有するものである。図中、(23)はサイドプレートである。   In the heat exchanger (20) shown in FIG. 4, a plurality of heat exchanger tubes (1) are laminated with outer fins (21) interposed therebetween, and both ends of the heat exchanger tube (1) are stacked. Is connected to the header (22) and has a core portion in which the heat exchanger tube (1), the outer fin (21), and the header (22) are joined and integrated by brazing. In the figure, (23) is a side plate.

曲げ加工により成形した熱交換器用チューブ(1)とブレージンシートからなるアウターフィン(21)とを交互に積み重ねるとともに、熱交換器用チューブ(1)の両端をブレージングシートからなるヘッダー(22)の扁平孔に差し込んで仮組みする。この仮組物にフラックスを塗布し、加熱する。この加熱により、熱交換器用チューブ(1)はチューブ製作用板状体(10)に付着させたろう材およびフラックスが溶融し、第1左側壁形成部(17)と第2左側壁形成部(18)、突き合わせた仕切壁成形部(15)(15)が互いにろう付接合される。かつ、ヘッダー(22)のろう材層によって熱交換器用チューブ(1)とヘッダー(22)がろう付接合され、フィン(21)のろう材層によって、熱交換器用チューブ(1)とアウターフィン(21)がろう付接合される。   The heat exchanger tubes (1) formed by bending and outer fins (21) made of brazing sheets are alternately stacked, and the heat exchanger tubes (1) are flattened on the header (22) made of brazing sheets at both ends. Insert it into the hole and temporarily assemble it. A flux is applied to the temporary assembly and heated. As a result of this heating, the heat exchanger tube (1) melts the brazing filler metal and the flux adhered to the tube working plate (10), and the first left side wall forming part (17) and the second left side wall forming part (18 ), The butted partition wall moldings (15) and (15) are brazed to each other. The heat exchanger tube (1) and the header (22) are brazed and joined by the brazing material layer of the header (22), and the heat exchanger tube (1) and the outer fin ( 21) is brazed.

表1に示すMg濃度の心材に、内皮材として表1に示す組成のろう材、外皮材としてAl−8質量%Si−2質量%Zn合金からなる外皮ろう材をクラッドした3層クラッド材を製作した。前記3層クラッド材は内皮材のクラッド率が7%、外皮材のクラッド率が8%である。このクラッド材の製作において、ろう材に対する均質化処理の有無は表1に示すとおりである。   A three-layer clad material in which a core material having a Mg concentration shown in Table 1 is clad with a brazing material having the composition shown in Table 1 as an endothelial material and an outer brazing material made of an Al-8 mass% Si-2 mass% Zn alloy as an outer skin material. Produced. The three-layer clad material has a clad rate of 7% for the endothelial material and 8% for the clad material. Table 1 shows whether or not the brazing material is homogenized in the production of the clad material.

前記クラッド材を材料(32)とし、図3の隆起部成形用の環状溝(33)(34)を有する上側ロール(31)とフラットな下側ロール(30)とを用いて圧延し、図2に示すチューブ製作用板状体(10)を製作した。チューブ製作用板状体(10)は、最も薄い部分の厚さが250μmとなるように圧延し、チューブ成形後の熱交換媒体用通路(7)の円相当直径が0.7mmとなるように隆起部(14)(15)(17)(18)を形成した。   Using the clad material as a material (32), rolling is performed using the upper roll (31) having the annular grooves (33) and (34) for forming the raised portions shown in FIG. 3 and the flat lower roll (30). A tube working plate-like body (10) shown in Fig. 2 was produced. The tube working plate (10) is rolled so that the thickness of the thinnest part is 250 μm, and the equivalent circle diameter of the heat exchange medium passage (7) after the tube forming is 0.7 mm. Raised parts (14) (15) (17) (18) were formed.

製作したチューブ製作用板状体(10)のろう材(10b)側の面にKAlFフラックスを付着させ、図1、2に参照されるように、各チューブ製作用板状体(10)を曲げ加工して偏平多穴型の熱交換器用チューブ(1)に成形した。そして、図4に参照されるように、これらの熱交換器用チューブ(1)を、別途製作したあるアウターフィン(21)、ヘッダー(22)とともに、図4に示す熱交換器(20)のコア部を仮組みしてフラックスを塗布し、表1に示す濃度の酸素を含む窒素ガス雰囲気中で、表1に示す速度で600℃まで昇温し、600℃で5分間保持してろう付した。 KAlF 4 flux is adhered to the surface of the manufactured tube plate (10) on the brazing material (10b) side, and each tube plate (10) is attached as shown in FIGS. It was bent into a flat multi-hole type heat exchanger tube (1). Then, as shown in FIG. 4, these heat exchanger tubes (1), together with a separately manufactured outer fin (21) and header (22), the core of the heat exchanger (20) shown in FIG. The parts were temporarily assembled and flux was applied, and the temperature was raised to 600 ° C. at a rate shown in Table 1 and brazed at 600 ° C. for 5 minutes in a nitrogen gas atmosphere containing oxygen at the concentrations shown in Table 1. .

ろう付後、チューブ内面をSEM観察してMgおよびCaの酸化物の量を調べるとともに、コア部内に8MPaの内圧を加えた結果により下記の基準で評価した。   After brazing, the inner surface of the tube was observed with an SEM to examine the amounts of Mg and Ca oxides, and evaluated according to the following criteria based on the result of applying an internal pressure of 8 MPa into the core.

◎:仕切壁および側壁が良好にろう付され、MgおよびCaの酸化物の量が少ない。また内圧を加えてもチューブに膨れや破壊が発生しない。   (Double-circle): A partition wall and a side wall are brazed favorable and there are few amounts of the oxide of Mg and Ca. In addition, the tube does not swell or break even when internal pressure is applied.

○:仕切壁および側壁が良好にろう付され、かつ内圧を加えてもチューブに膨れや破壊が発生しないが、MgおよびCaの酸化物の量が「◎」よりも多いもの。   ○: The partition wall and the side wall are brazed well, and the tube does not swell or break even when an internal pressure is applied, but the amount of oxides of Mg and Ca is larger than “◎”.

△:MgおよびCaの酸化物の量が「○」よりも多いが、内圧を加えてもチューブに膨れや破壊が発生せず、ろう付には問題がないもの。   Δ: The amount of Mg and Ca oxide is larger than “◯”, but the tube does not swell or break even when an internal pressure is applied, and there is no problem in brazing.

×:MgおよびCaの酸化物の量が「△」よりも多く、仕切壁および側壁が良好にろう付されておらず、内圧を加えるとチューブに膨れまたは破壊が発生したもの。   X: The amount of oxides of Mg and Ca is larger than “Δ”, the partition walls and the side walls are not brazed well, and the tube is swollen or broken when an internal pressure is applied.

表1に、熱交換器用チューブの製造条件の概略と評価結果を示す。   Table 1 shows an outline of the manufacturing conditions of the heat exchanger tube and the evaluation results.

Figure 0005350017
Figure 0005350017

表1より、心材およびろう材の合金組成により、断面積の小さい熱交換媒体用通路を有する熱交換器用チューブにおいても良好なろう付を達成できることを確認した。   From Table 1, it was confirmed that favorable brazing could be achieved even in a heat exchanger tube having a heat exchange medium passage having a small cross-sectional area, by the alloy composition of the core material and the brazing material.

本発明は小型化された扁平多穴型の熱交換器用チューブの製造に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for manufacturing a miniaturized flat multi-hole heat exchanger tube.

1…熱交換器用チューブ
2…下平坦壁
3…上平坦壁
4…右側壁
5…左側壁
6…仕切壁
7…熱交換媒体通路
10…チューブ製造用板状体
11…平板部
12、13…平坦壁形成部
14…右側壁形成部(側壁形成部)
15…仕切壁形成部
17…第1左側壁形成部(側壁形成部)
18…第2左側壁形成部(側壁形成部)
19…側壁覆い部
20…熱交換器
21…アウターフィン
22…ヘッダー
1… Tube for heat exchanger
2 ... Bottom flat wall
3… Upper flat wall
4 ... right side wall
5 ... Left wall
6 ... Partition wall
7… Heat exchange medium passage
10 ... Plate for tube manufacturing
11: Flat plate
12, 13 ... Flat wall forming part
14 ... Right side wall forming part (side wall forming part)
15 ... Partition wall forming part
17 ... 1st left side wall formation part (side wall formation part)
18 ... 2nd left side wall formation part (side wall formation part)
19 ... Side wall cover
20 ... Heat exchanger
21 ... Outer fin
22 ... Header

Claims (9)

平板部の一方の面に長手方向に沿って仕切壁形成部が隆起し、曲げ加工して幅方向の端部どうしをろう付してチューブを成形するとともに前記仕切壁形成部をろう付することにより、チューブ内が複数の熱交換媒体通路に仕切られた扁平多穴型のアルミニウム製チューブを製造するためのろう付用板状体であって、
前記板状体は心材の仕切壁形成部が隆起した面にろう材を有し、
前記心材を構成するアルミニウム中のMg濃度が0.01質量%以下であり、
前記ろう材が、Si濃度:5〜12質量%、Sr濃度:0.003〜0.03質量%、Mg濃度:0.005質量%以下、Ca濃度:0.002質量%以下であり、残部がAlおよび不可避不純物からなるアルミニウム合金で構成されていることを特徴とするチューブ製造用板状体。
A partition wall forming portion is raised along the longitudinal direction on one surface of the flat plate portion, bent to braze the end portions in the width direction to form a tube and braze the partition wall forming portion. Is a brazing plate for producing a flat multi-hole aluminum tube in which the inside of the tube is partitioned into a plurality of heat exchange medium passages,
The plate-like body has a brazing material on the surface where the partition wall forming portion of the core material is raised,
Mg concentration in aluminum constituting the core material is 0.01% by mass or less,
The brazing filler metal is Si concentration: 5-12% by mass, Sr concentration: 0.003-0.03% by mass, Mg concentration: 0.005% by mass or less, Ca concentration: 0.002% by mass or less, and the balance Is made of an aluminum alloy composed of Al and inevitable impurities.
前記ろう材中のSiの平均粒子径が3.5μm以下である請求項1に記載のチューブ製造用板状体。   The plate-like body for producing a tube according to claim 1, wherein an average particle diameter of Si in the brazing material is 3.5 µm or less. 少なくとも1つの熱交換媒体用通路の円相当直径が0.8mm以下である請求項1または2に記載のチューブ製造用板状体。   The plate-like body for producing a tube according to claim 1 or 2, wherein the at least one heat exchange medium passage has a circle-equivalent diameter of 0.8 mm or less. 前記心材とろう材とがクラッドされてなる請求項1〜3のいずれかに記載のチューブ製造用板状体。   The plate-like body for manufacturing a tube according to any one of claims 1 to 3, wherein the core material and the brazing material are clad. 請求項4に記載のチューブ製造用板状体を製造する方法であって、
心材と、均質化処理を行うことなく製作したろう材とを重ねてクラッド材を製作し、このクラッド材のろう材側の面に仕切壁形成部を隆起させることを特徴とするチューブ製造用板状体の製造方法。
A method for producing a plate-like body for producing a tube according to claim 4,
A tube manufacturing plate characterized in that a core material and a brazing material manufactured without homogenization are overlapped to produce a clad material, and a partition wall forming portion is raised on the brazing material side surface of the clad material A method of manufacturing a body.
請求項1〜4のいずれかに記載のチューブ製造用板状体を、ろう材側を内側にして折り曲げ加工して幅方向の端部どうしを当接させてチューブを成形するとともに、前記仕切壁形成部によりチューブ内を複数の熱交換媒体通路に仕切って扁平多穴型の熱交換器用チューブを成形し、ろう付加熱を行うことを特徴とする熱交換器用チューブの製造方法。   The tube-shaped plate for manufacturing a tube according to any one of claims 1 to 4, wherein the tube is formed by bending the brazing material side inward to bring the end portions in the width direction into contact with each other, and the partition wall A method for producing a heat exchanger tube, characterized by forming a flat multi-hole type heat exchanger tube by partitioning the inside of the tube into a plurality of heat exchange medium passages by a forming portion, and performing brazing addition heat. ろう付加熱を酸素濃度が300ppm以下の雰囲気中で行う請求項6に記載の熱交換器用チューブの製造方法。   The manufacturing method of the tube for heat exchangers of Claim 6 which performs brazing addition heat in the atmosphere whose oxygen concentration is 300 ppm or less. ろう付加熱開始時の昇温速度を50℃/min以上とする請求項6または7に記載の熱交換器用チューブの製造方法。   The manufacturing method of the tube for heat exchangers of Claim 6 or 7 which makes the temperature increase rate at the time of a brazing addition heat start 50 degreeC / min or more. チューブとフィンとを交互に重ねて配置するとともに、前記チューブにヘッダータンクを連結した状態でコア部を仮組みし、仮組みしたコア部を加熱して前記チューブとフィン、およびチューブとヘッダータンクをろう付する熱交換器の製造方法において、
前記チューブとして、請求項1〜4のいずれかに記載のチューブ製造用板状体を折り曲げて成形した扁平多穴型チューブを用い、
前記加熱により、チューブ製作用板状体のろう材を溶融させて熱交換器用チューブの内部のろう付を行うことを特徴とする熱交換器の製造方法。
The tubes and fins are alternately stacked and the core portion is temporarily assembled in a state where the header tank is connected to the tubes, and the temporarily assembled core portions are heated to connect the tubes and fins, and the tubes and header tanks. In the manufacturing method of the heat exchanger to be brazed,
As the tube, using a flat multi-hole tube formed by bending a plate-like body for producing a tube according to any one of claims 1 to 4,
A method of manufacturing a heat exchanger, comprising: melting a brazing material of a tube-made working plate-like body by the heating to braze the inside of a heat exchanger tube.
JP2009047608A 2009-03-02 2009-03-02 Plate for tube manufacturing Expired - Fee Related JP5350017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009047608A JP5350017B2 (en) 2009-03-02 2009-03-02 Plate for tube manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009047608A JP5350017B2 (en) 2009-03-02 2009-03-02 Plate for tube manufacturing

Publications (2)

Publication Number Publication Date
JP2010203640A JP2010203640A (en) 2010-09-16
JP5350017B2 true JP5350017B2 (en) 2013-11-27

Family

ID=42965303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009047608A Expired - Fee Related JP5350017B2 (en) 2009-03-02 2009-03-02 Plate for tube manufacturing

Country Status (1)

Country Link
JP (1) JP5350017B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023099241A (en) * 2020-05-29 2023-07-12 三菱電機株式会社 Heat transfer pipe, heat exchanger, heat source unit, and manufacturing method of heat transfer pipe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180589A (en) * 1991-12-27 1993-07-23 Showa Alum Corp Aluminum tube for heat exchanger
JPH10193085A (en) * 1997-01-13 1998-07-28 Shinko Alcoa Yuso Kizai Kk Flat pipe for heat exchanger
JP5101812B2 (en) * 2004-12-07 2012-12-19 昭和電工株式会社 High corrosion resistance tube for heat exchanger, heat exchanger and method for producing the same
JP4807826B2 (en) * 2005-08-04 2011-11-02 住友軽金属工業株式会社 Aluminum alloy clad material with excellent surface bonding by brazing sacrificial anode material
JP5034401B2 (en) * 2006-09-19 2012-09-26 株式会社ケーヒン・サーマル・テクノロジー Integrated heat exchanger
JP2009030814A (en) * 2007-07-24 2009-02-12 Showa Denko Kk Tube for heat exchanger and heat exchanger

Also Published As

Publication number Publication date
JP2010203640A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP6312968B1 (en) Brazing sheet and method for producing the same
JP7042023B2 (en) Brazing method
US10898963B2 (en) Brazing sheet for flux-free brazing, method for flux-free brazing and method for producing heat exchanger
JP5906113B2 (en) Extruded heat transfer tube for heat exchanger, heat exchanger, and method for producing extruded heat transfer tube for heat exchanger
EP3563968B1 (en) Brazing sheet for flux-free brazing, method for flux-free brazing, and method for heat manufacturing heat exchanger
JP6468983B2 (en) Aluminum alloy brazing sheet, manufacturing method thereof, aluminum alloy sheet and heat exchanger
JP6438019B2 (en) Heat exchanger tubes and heat exchangers and brazing pastes
JP6463262B2 (en) Aluminum alloy brazing sheet and method for producing aluminum alloy heat exchanger
JP6263574B2 (en) Brazing sheet, method for producing the same and method for brazing aluminum structure
JP2010085081A (en) Heat exchanger made of aluminum alloy
JP5985973B2 (en) Aluminum alloy brazing sheet and method for producing the same, and heat exchanger using the aluminum alloy brazing sheet
JP2006348372A (en) High strength aluminum alloy material for automobile heat-exchanger
JP2019520982A (en) Method for manufacturing clad sheet products
JP5710946B2 (en) Flat tubes and heat exchangers for heat exchangers
JP6942449B2 (en) Aluminum alloy brazing sheet
US11229978B2 (en) Brazing sheet for flux-free brazing, method for flux-free brazing and method for manufacturing heat exchanger
WO2016175066A1 (en) Aluminum-made heat exchanger
JP5350017B2 (en) Plate for tube manufacturing
WO2021193842A1 (en) Aluminum alloy bare material for brazed member and aluminum alloy cladding material for brazed member
WO2021200638A1 (en) Member to be brazed made of aluminum, and method for manufacturing brazed body
WO2021200639A1 (en) Aluminum member to be brazed and method for producing brazing body
WO2021193841A1 (en) Aluminum alloy bare material for member to be brazed, and aluminum alloy clad material for member to be brazed
JP6184804B2 (en) Brazing method of aluminum alloy material and manufacturing method of brazing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121228

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees