JP5349560B2 - Welding head for resistance welding machine and welding method - Google Patents

Welding head for resistance welding machine and welding method Download PDF

Info

Publication number
JP5349560B2
JP5349560B2 JP2011201725A JP2011201725A JP5349560B2 JP 5349560 B2 JP5349560 B2 JP 5349560B2 JP 2011201725 A JP2011201725 A JP 2011201725A JP 2011201725 A JP2011201725 A JP 2011201725A JP 5349560 B2 JP5349560 B2 JP 5349560B2
Authority
JP
Japan
Prior art keywords
electrode
gas
temperature
welding
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011201725A
Other languages
Japanese (ja)
Other versions
JP2013059806A (en
Inventor
厚 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP2011201725A priority Critical patent/JP5349560B2/en
Publication of JP2013059806A publication Critical patent/JP2013059806A/en
Application granted granted Critical
Publication of JP5349560B2 publication Critical patent/JP5349560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such problems that a conventional resistance welding system needs to start the discharge of gas such as argon, helium before welding, and to continue to blow the gas for a definite period of time after welding until an electrode is sufficiently cooled, thus wastefully consuming an expensive gas, and also needs a long takt time to obtain a sufficient time until cooling of the electrode. <P>SOLUTION: The welding head for a resistance welder is characterized by comprising: an electrode for the resistance welder; a temperature-measuring unit for measuring the temperature of the electrode; a protection unit which covers the circumference of the electrode and has the inflow port of a gas for blowing to the electrode; and a gas switch for selecting an optional gas out of a plurality of gases. Besides, the welding head is characterized in that the type of the gas to be blown to the electrode is switched according to the measured temperature of the electrode. <P>COPYRIGHT: (C)2013,JPO&amp;INPIT

Description

本発明は抵抗溶接機用溶接ヘッドおよび溶接方法に関する。         The present invention relates to a welding head for a resistance welder and a welding method.

抵抗溶接において、被溶接物が純銅もしくは銀(もしくは、それらに微量の異種金属を添加したもの)など固有抵抗が低く熱伝導率が大きい場合、溶接電極はMo(IACS31%)やW(IACS30%)など、抵抗溶接電極材としては相対的に固有抵抗が大きく熱伝導率の小さいものが使用される。Fe、Ni,ステンレスなど 純銅もしくは銀(もしくは、それらに微量の異種金属を添加したもの)と比較して固有抵抗が大きく熱伝率の低い材料を抵抗溶接する場合には、Cr−Cu(IACS80%)などが使用される。
近年、電装部品などの高電流化にともない、抵抗値の低下や、熱伝導性を改善するために、従来の相対的に低電流時に使用されきている真鍮などに変わり、純銅(もしくは純銅に微量な他元素を添加したもの)が使用されるようになり、MoやWが赤熱する条件下での使用が必要とされる。電極が高温になると空気中では酸化、窒素雰囲気中では窒化が進み、電極の寿命が著しく低下するので、酸化消耗(スケールアウト)が進まないように電極を周辺雰囲気から保護し、積極的に冷却する必要がある。
In resistance welding, if the work piece is pure copper or silver (or a small amount of a different kind of metal added to them) and the specific resistance is low and the thermal conductivity is large, the welding electrode is Mo (IACS 31%) or W (IACS 30%). For example, a material having a relatively large specific resistance and a low thermal conductivity is used as the resistance welding electrode material. Fe, Ni, stainless steel, etc. In the case of resistance welding of a material having a large specific resistance and a low thermal conductivity compared to pure copper or silver (or a material obtained by adding a trace amount of different metals), Cr—Cu (IACS80 %) Etc. are used.
In recent years, with the increase in electric current of electrical parts, etc., in order to reduce the resistance value and improve the thermal conductivity, it has been replaced with the conventional brass that has been used at relatively low currents. That are added with a small amount of other elements), and use under conditions where Mo and W are red hot is required. When the electrode becomes hot, oxidation in the air and nitridation proceed in the nitrogen atmosphere, and the life of the electrode is remarkably reduced. Therefore, the electrode is protected from the surrounding atmosphere to prevent oxidation exhaustion (scale out) and actively cooled. There is a need to.

例えばモリブデンは室温でわずかに酸化(変色)し、約300℃で酸化し始め、約500℃以上でMoO3を形成し急激に酸化する。また窒素雰囲気中においては600℃以上で脆化が認められ、約1500℃以上で窒化物を形成し、水蒸気の存在においては、約700℃で酸化を始める。
タングステンは室温でわずかに酸化(変色)し、約400〜500℃で酸化し始め、約700℃以上でWO3を形成し急激に酸化する。窒素雰囲気中においては、約2300℃以上で窒化物を形成し、水蒸気存在に対しては、赤熱状態ですみやかに酸化する。
For example, molybdenum slightly oxidizes (discolors) at room temperature, begins to oxidize at about 300 ° C., and forms MoO 3 at about 500 ° C. or more to rapidly oxidize. In a nitrogen atmosphere, embrittlement is observed at 600 ° C. or higher, nitrides are formed at about 1500 ° C. or higher, and oxidation begins at about 700 ° C. in the presence of water vapor.
Tungsten is slightly oxidized (discolored) at room temperature, begins to oxidize at about 400 to 500 ° C., forms WO 3 at about 700 ° C. or more, and rapidly oxidizes. In a nitrogen atmosphere, nitrides are formed at about 2300 ° C. or higher, and the presence of water vapor quickly oxidizes in a red hot state.

このため従来より 電極先端近傍にノズルを設け、通電する少し前からアルゴンまたはヘリウムなどのガスを噴きつけて、電極周囲の酸素又は窒素の滞留を抑制し、電極が高温になっても変質しないように保護している。
噴きつけたガスは接合終了後の電極の冷却にも利用されている。通常、連続的に溶接を行う場合には、電極を冷却するためにフォルダを水冷にするなどの処置を施したとしても、蓄熱により溶接通電開始時の電極の温度が上昇しているため、初期設定と同じ通電量や通電時間では過大な溶けになるので、打点数ごとに通電量や通電時間を適宜減らすなどの複雑な条件設定が必要となる.噴きつけたガスの冷却効果を利用することにより溶接通電開始時の電極の温度上昇を抑えることができ、溶接条件を簡素化できる。
For this reason, a nozzle has been provided near the tip of the electrode, and a gas such as argon or helium is sprayed shortly before energization to suppress stagnation of oxygen or nitrogen around the electrode so that it does not change even if the electrode becomes hot. To protect.
The sprayed gas is also used for cooling the electrode after the end of bonding. Normally, when welding is performed continuously, the temperature of the electrode at the start of welding energization rises due to heat storage, even if measures such as cooling the folder with water to cool the electrode are used. Since the same amount of energization and energization time as the setting result in excessive melting, it is necessary to set complicated conditions such as appropriately reducing the energization amount and energization time for each number of striking points. By utilizing the cooling effect of the injected gas, the temperature rise of the electrode at the start of welding energization can be suppressed, and the welding conditions can be simplified.

又、噴きつけたガスの拡散を防ぐ方法として特許文献1のような電極の周囲を遮蔽する提案もある。 There is also a proposal for shielding the periphery of the electrode as disclosed in Patent Document 1 as a method for preventing the diffusion of the injected gas.

更に熱溶着装置の例ではあるが冷却エアの供給・停止を発熱部の温度で制御する特許文献2のような提案もある。 Furthermore, although it is an example of a heat welding apparatus, there also exists a proposal like patent document 2 which controls supply / stop of cooling air with the temperature of a heat generating part.

特開2008−137078(図1)JP2008-137078 (FIG. 1) 特開2004−90558(6頁)JP 2004-90558 (6 pages)

しかしながら今までの方式では接合前にアルゴン・ヘリウム等のガスの放出を開始し、接合後に電極が十分冷却するまでの余裕をみてガスを一定時間噴き続ける必要があり、高価なガスに無駄が生じていた。又、電極が十分冷却するまでの余裕を見るためタクトタイムが長くなっていた However, in the conventional method, it is necessary to start discharging gas such as argon and helium before bonding and to continue to blow gas for a certain period of time until the electrode sufficiently cools after bonding, resulting in wasted expensive gas. It was. Also, the tact time was long to see the allowance for the electrode to cool down sufficiently.

特許文献2の様に電極の温度でガスの噴きつけを制御しても、高価なアルゴン・ヘリウム等のガスを電極材質の酸化温度未満になるまで噴き続ける必要がある。 Even if the gas injection is controlled by the temperature of the electrode as in Patent Document 2, it is necessary to continue to blow an expensive gas such as argon or helium until it becomes lower than the oxidation temperature of the electrode material.

本発明はこれら高価なガスを効率よく使用し、接合単価および接合時間の低減を実現する抵抗溶接ヘッドおよび溶接方法の提案を行う。 The present invention proposes a resistance welding head and a welding method that efficiently use these expensive gases and realize reduction of the unit cost and time of joining.

本発明の抵抗溶接機用溶接ヘッドは抵抗溶接用の電極と、前記電極の温度を測定する温度測定手段と、前記電極の周囲を覆い、前記電極に噴きつける気体の流入口を持つ保護手段と、複数の種類の気体のうち任意の気体を選択する気体切替手段と、を有し、前記電極に噴きつける気体を切り換える判断を前記温度測定手段の測定温度に基づいておこなう事を特徴とする。 A welding head for a resistance welding machine according to the present invention includes an electrode for resistance welding, temperature measuring means for measuring the temperature of the electrode, protective means for covering the periphery of the electrode and having a gas inlet for spraying the electrode. , possess a gas switching means for selecting an arbitrary gas among the plurality of kinds of gases, and it is characterized in that performed based decision to switch the gas sprayed on the electrode in the measurement temperature of the temperature measuring means.

また、前記電極に噴きつける気体を切り換える判断をおこなう前記電極の測定温度は、電極の材料の窒化温度または酸化温度であることを特徴とする。
つまり溶接後の高温状態の電極を電極の材質の窒化温度または酸化温度までは窒化または酸化を抑制する効果のあるガスで冷却し、電極の温度が電極の材質の窒化温度未満または酸化温度未満に下がってから窒素または圧縮空気等安価なガスに切り換えて冷却をおこなう。
In addition, the measurement temperature of the electrode for performing the determination to switch the gas sprayed onto the electrode is a nitriding temperature or an oxidation temperature of the electrode material.
In other words, the electrode in the high temperature state after welding is cooled to a nitriding temperature or oxidation temperature of the electrode material with a gas that has an effect of suppressing nitriding or oxidation, so that the electrode temperature is less than the nitriding temperature or the oxidation temperature of the electrode material. After lowering, switch to an inexpensive gas such as nitrogen or compressed air for cooling.

通常、窒化を抑制するガスとしてアルゴンまたはヘリウムガスが使用されているので、膣化を抑制する場合は、噴きつける気体を一方はアルゴン又はヘリウム、他方を窒素とし、溶接後の電極温度が電極材質の窒化温度未満になるまでアルゴン又はヘリウムを噴きつけ、電極材質の窒化温度未満で窒素に切り替える。 Usually, argon or helium gas is used as a gas to suppress nitriding. When suppressing vaginalization, the gas to be sprayed is one of argon or helium and the other is nitrogen, and the electrode temperature after welding is the electrode material. Argon or helium is sprayed until the temperature is lower than the nitriding temperature of the electrode, and the temperature is switched to nitrogen at a temperature lower than the nitriding temperature of the electrode material.

さらに酸化を抑制する場合は、噴きつける気体を一方はアルゴン又はヘリウム又は窒素、他方を圧縮空気とし、溶接後の電極温度が電極材質の酸化温度未満になるまでアルゴン又はヘリウム又は窒素を吹き付け、電極材質の酸化温度未満で圧縮空気に切り替えることを特徴とする。 In order to further suppress oxidation, the gas to be sprayed is argon, helium or nitrogen on one side and compressed air on the other side, and argon, helium or nitrogen is blown until the electrode temperature after welding is lower than the oxidation temperature of the electrode material. It is characterized by switching to compressed air below the oxidation temperature of the material.

さらに噴きつける気体をアルゴン又はヘリウムと、窒素と、圧縮空気との3種類とし、溶接後の電極温度が電極材質の窒化温度未満になるまでアルゴン又はヘリウムを吹き付け、電極の材質の窒化温度未満で窒素に切り替え、電極温度が電極材質の酸化温度未満になるまで窒素を吹き付け、電極温度が電極材質の酸化温度未満になったら圧縮空気に切り替えることを特徴とする。 Furthermore, the gas to be blown is made of argon or helium, nitrogen and compressed air, and argon or helium is blown until the electrode temperature after welding becomes lower than the nitriding temperature of the electrode material. Switching to nitrogen, nitrogen is blown until the electrode temperature falls below the oxidation temperature of the electrode material, and when the electrode temperature falls below the oxidation temperature of the electrode material, switching to compressed air is performed.

また、本発明は抵抗溶接機を用いた溶接方法において、
1)窒化又は酸化を抑制する気体を電極に向けて噴射するステップと
)前記気体を噴射しながら、前記電極へ供給する電力を制御して溶接を行うステップと
3)溶接後に前記気体を噴射しながら、電極温度の測定値が電極を構成する部材の窒化又は酸化温度より低下した時に気体切替手段にて噴射する気体を圧縮空気又は窒素に変更するステップを持つ抵抗溶接機を用いた溶接方法を特徴とする。
Further, the present invention is a welding method using a resistance welder,
1) while spraying step and 2) before SL gas to be injected toward the nitriding or gas the electrodes to inhibit oxidation, steps and 3 perform welding by controlling the power supplied to the electrode) the after welding while spraying the gas, electrodes temperature measurements resistance welding with a step of changing the gas to be injected by the gas body switching means to a compressed air or nitrogen when the lower than nitriding or oxidation temperature of the members constituting the electrodes It features a welding method using a machine.

高価なガスを効率よく使用し、接合単価および接合時間の低減を実現する抵抗溶接機用溶接ヘッドおよび溶接方法を提供する。 Provided are a welding head and a welding method for a resistance welding machine that efficiently use expensive gas and realize a reduction in joining unit cost and joining time.

本発明の実施の一形態に係る気体切り換えにバブルを用いた溶接ヘッドの構成図である。It is a lineblock diagram of a welding head using a bubble for gas change concerning one embodiment of the present invention. 本発明の実施の一形態に係る気体切り換えに複数のソレノイドバルブ等からなる気体種類切替部を用いた溶接ヘッドの構成図である。It is a lineblock diagram of a welding head using a gas kind change part which consists of a plurality of solenoid valves etc. for gas change concerning one embodiment of the present invention. 図2の形態にスピードコントローラー等の流入調整部を追加した溶接ヘッドの構成図である。It is a block diagram of the welding head which added the inflow adjustment parts, such as a speed controller, to the form of FIG. 図3の形態の気体種類切替部と流入調整部を保護ヘッドごとに独立に配置した溶接ヘッドの構成図である。It is a block diagram of the welding head which has arrange | positioned the gas kind switching part and inflow adjustment part of the form of FIG. 3 independently for every protection head. 図4の形態の溶接ヘッドで気体種類を3種類にした時の溶接ヘッドの構成図である。It is a block diagram of a welding head when the gas type is made into three types with the welding head of the form of FIG. 本発明の接合方法の一例を示すフローチャートである。It is a flowchart which shows an example of the joining method of this invention.

以下に図面を参照しながら、本発明の実施の一形態について説明する。図1は本発明の実施の一形態に係る抵抗溶接機の溶接ヘッドの構成の一例を示した図である。
温度測定手段である熱電対温度計等の温度計17を付けた電極12は保護手段である保護カバー11に覆われている。保護カバー11には保護カバー11内部に気体を導くための吸入口18を複数設けている。吸入口18は気体のON/OFFを図示しない制御部からの信号でおこなうバルブ14(a),14(b)とチューブでつながれ、バルブ14(a),14(b)は各々種類の異なる気体(気体15、気体16)を供給されている。仮に気体15を窒化を抑制する比較的高価なヘリウム又はアルゴンガス、気体16を安価な窒素ガスとする。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a view showing an example of the configuration of a welding head of a resistance welding machine according to an embodiment of the present invention.
An electrode 12 provided with a thermometer 17 such as a thermocouple thermometer as temperature measuring means is covered with a protective cover 11 as protective means. The protective cover 11 is provided with a plurality of suction ports 18 for introducing gas into the protective cover 11. The suction port 18 is connected by a tube to valves 14 (a) and 14 (b) for performing gas ON / OFF by a signal from a control unit (not shown), and the valves 14 (a) and 14 (b) are different types of gases. (Gas 15 and gas 16) are supplied. Assuming that the gas 15 is a relatively expensive helium or argon gas that suppresses nitriding, and the gas 16 is an inexpensive nitrogen gas.

接合時はまず14(b)をOFF、14(a)をONにして、保護カバー11内を気体15で充満させる。気体15が保護カバー11よりあふれ出る程度の時間を置き、図示しない移動手段により電極12間に被接合物を移動させる。次に電極12を図示しない移動手段により被接合物に接触させた後通電をし、溶接をおこなう。 At the time of joining, first, 14 (b) is turned OFF and 14 (a) is turned ON, and the inside of the protective cover 11 is filled with the gas 15. The time to allow the gas 15 to overflow from the protective cover 11 is set, and the object to be joined is moved between the electrodes 12 by a moving means (not shown). Next, the electrode 12 is brought into contact with an object to be joined by a moving means (not shown) and then energized to perform welding.

溶接の制御方法は定電流制御,定電力制御、溶接熱制御等がある。溶接熱制御の場合の温度測定に温度計17を使用しても良いし他の方法で測定しても良い。 Welding control methods include constant current control, constant power control, and welding heat control. The thermometer 17 may be used for temperature measurement in the case of welding heat control, or may be measured by another method.

被接合物が銅系金属で厚さがある場合、長時間通電することになり電極12は熱伝導率が低いことから発熱は大きく、電極12の温度は500〜2千数百℃になり赤熱現象を起こすほど高温になる。このため溶接が修了して通電を停止した後も冷却のためガスを噴きつける必要がある。 When the object to be joined is made of a copper-based metal and has a thickness, the electrode 12 is energized for a long time, and the electrode 12 has a low thermal conductivity, so the heat generation is large. It becomes hot enough to cause the phenomenon. For this reason, it is necessary to spray gas for cooling even after the welding is completed and the energization is stopped.

気体15での冷却中、温度計17の測定値を観測し、前記測定値が電極12の素材の窒化温度より降下した後にバルブ14(b)を開いて気体16の噴きつけを開始し、バルブ14(a)を閉じて気体15の噴きつけを停止し、冷却するガスを気体16に切り替える。 During cooling with the gas 15, the measured value of the thermometer 17 is observed, and after the measured value falls below the nitriding temperature of the material of the electrode 12, the valve 14 (b) is opened to start the injection of the gas 16. 14 (a) is closed to stop the spraying of the gas 15, and the gas to be cooled is switched to the gas 16.

例えば電極12の素材がタングステンの場合は約2300℃以上、モリブデンの場合は約600℃以上で窒化するので温度計17の測定値が窒化しない温度、すなわちタングステンの場合は約2200℃に、モリブデンの場合は約500℃に降下したら気体15から気体16への切り換えを実施する。 For example, when the material of the electrode 12 is tungsten, it is nitrided at about 2300 ° C. or more, and in the case of molybdenum, it is nitrided at about 600 ° C. or more, so the measured value of the thermometer 17 is not nitrided, that is, about 2200 ° C. in the case of tungsten. In this case, when the temperature falls to about 500 ° C., switching from the gas 15 to the gas 16 is performed.

また気体15をヘリウム又はアルゴンガス又は窒素、気体16を酸素を含む通常の圧縮空気とした場合は電極12の素材がタングステンの場合は約400℃以上、モリブデンの場合は約300℃以上で酸化するので温度計17の測定値が酸化しない温度、すなわちタングステンの場合は約300℃に、モリブデンの場合は約200℃に降下したら気体15から気体16への切り換えを実施する。 Further, when the gas 15 is helium or argon gas or nitrogen, and the gas 16 is normal compressed air containing oxygen, the electrode 12 is oxidized at a temperature of about 400 ° C. or higher when the material is tungsten, and when it is molybdenum, it is oxidized at a temperature of about 300 ° C. or higher. Therefore, when the measured value of the thermometer 17 falls to a temperature at which it does not oxidize, that is, about 300 ° C. for tungsten and about 200 ° C. for molybdenum, switching from gas 15 to gas 16 is performed.

更に温度計17の測定値を監視して電極12の温度が十分に降下した後、気体の噴きつけを停止して、接合動作を終了する。 Further, the measured value of the thermometer 17 is monitored, and after the temperature of the electrode 12 has sufficiently decreased, the gas injection is stopped and the joining operation is completed.

また、図1では保護カバー11に気体に応じた数の注入口を設けているが、これでは動作部の多いヘッド周辺の配管が煩雑になる。このため被接合物の移動に制限が発生したり、接触の危険もある。図2にこれらを改善した形態を示す。気体の種類数あった保護カバー11の流入口18を1箇所にして、バルブ14(a),14(b)を削除し、代わりに気体切替手段である気体種類切替器19を追加した態様である。気体種類切替器19は複数のソレノイドバルブの組み合わせ等からなり、図示しない制御部からの信号により気体の選択と出力/停止の制御を行う。図2では2種類の気体の選択を行う。 In FIG. 1, the protective cover 11 is provided with the number of inlets corresponding to the gas, but this makes the piping around the head with many operating parts complicated. For this reason, there are restrictions on the movement of the object to be joined, and there is a risk of contact. FIG. 2 shows an improved form of these. In a mode in which the inlet 18 of the protective cover 11 corresponding to the number of types of gas is provided in one place, the valves 14 (a) and 14 (b) are deleted, and a gas type switching device 19 as a gas switching unit is added instead. is there. The gas type switch 19 includes a combination of a plurality of solenoid valves, and performs gas selection and output / stop control by a signal from a control unit (not shown). In FIG. 2, two types of gases are selected.

本接合ヘッドは2個の電極12を一つのペアとして使用するが、通常電極の配置は上下に向かい合わせて取り付けられる。この時、使用するガスの気体密度(比重)によっては上下の保護カバー11内のガスの充填具合が異なり、噴出し量が同量だと片側の保護カバー内のガスが先にあふれる等、充填量・充填時間にむらが生じる。図3では保護カバー11と気体種類切替器19の間にガスの流量を調整するスピードコントローラー等の流入調整部13を設け、ここで上下の保護カバー11内のガスがバランスよく充填されるように調整する。 The present bonding head uses two electrodes 12 as one pair, but the electrodes are usually mounted so that the electrodes face each other vertically. At this time, depending on the gas density (specific gravity) of the gas used, the filling condition of the gas in the upper and lower protective covers 11 is different, and if the amount of ejection is the same, the gas in the protective cover on one side overflows first. Unevenness occurs in quantity and filling time. In FIG. 3, an inflow adjusting portion 13 such as a speed controller for adjusting the gas flow rate is provided between the protective cover 11 and the gas type switch 19 so that the gas in the upper and lower protective covers 11 is filled with a good balance. adjust.

二つの保護カバー11内の充填量調整のみでなく、ガスの種類でも充填量を変更したい場合は、図4に示す様に保護カバー毎に気体種類切替器19を設け、流入調整部13を気体種類切替器各々の入力部に設ければ良い。 When it is desired not only to adjust the filling amount in the two protective covers 11 but also to change the filling amount depending on the type of gas, a gas type switch 19 is provided for each protective cover as shown in FIG. What is necessary is just to provide in the input part of each kind switch.

上に示した例は2種類の気体を切り替える制御であるが、本発明は気体の種類数は定めない。例えば図5に示すように気体種類を3種類にして気体15をヘリウムまたはアルゴン、気体16を窒素、気体20を圧縮空気とした時は、電極12の素材がタングステンの場合は約2300℃以上、モリブデンの場合は約600℃以上で窒化するので温度計17の測定値が窒化しない温度、すなわちタングステンの場合は約2200℃程度に、モリブデンの場合は約500℃程度に降下したら気体15から気体16への切り換える。次に電極12の素材がタングステンの場合は約400℃以上、モリブデンの場合は約300℃以上で酸化するので温度計17の測定値が酸化しない温度、すなわちタングステンの場合は約300℃程度に、モリブデンの場合は約200℃程度に降下したら気体16から気体20への切り換えを実施する。 Although the example shown above is control which switches two types of gas, this invention does not determine the number of types of gas. For example, as shown in FIG. 5, when the gas type is three and the gas 15 is helium or argon, the gas 16 is nitrogen, and the gas 20 is compressed air, when the electrode 12 is made of tungsten, the temperature is about 2300 ° C. or more. In the case of molybdenum, nitriding is performed at about 600 ° C. or higher, so the temperature measured by the thermometer 17 is not nitrided, that is, about 2200 ° C. in the case of tungsten and about 500 ° C. in the case of molybdenum. Switch to. Next, when the material of the electrode 12 is tungsten, it is oxidized at about 400 ° C. or more, and in the case of molybdenum, it is oxidized at about 300 ° C. or more. Therefore, the measured value of the thermometer 17 is not oxidized, that is, about 300 ° C. in the case of tungsten. In the case of molybdenum, when the temperature falls to about 200 ° C., switching from the gas 16 to the gas 20 is performed.

図5に示す溶接ヘッドを用いた抵抗溶接機の溶接方法の一例を、図6を用いて説明する。前記溶接ヘッドは抵抗溶接用の電極と、前記電極の温度を測定する温度測定手段と前記電極の周囲を覆い、前記電極に噴きつける気体の流入口を持つ保護手段と、複数の種類の気体のうち任意の気体を選択する気体切替手段と、を有する。
事前の動作は説明せず、被溶接物が溶接可能な状態で前記電極と接触した後からの説明を行う。
まず気体15であるヘリウム又はアルゴンガスの噴きつけを開始する(S601)。
上記気体15が保護手段内に充満した後に電極への通電を開始し、温度測定手段の情報により電極の温度を所定の時間内、所定の温度になるように制御し、被溶接物の接合を行う(S602、S603)。
次に温度測定手段からの温度情報を監視し、電極の温度が電極材質の窒化温度を下回るまでヘリウム又はアルゴンガスで冷却を行う(S604、S605)。
電極の温度が電極材質の窒化温度未満になったら、気体切替手段で気体15の噴きつけを停止し、気体16である窒素ガスの噴きつけを開始する(S606)。
次に温度測定手段からの温度情報を監視し、電極の温度が電極材質の酸化温度を下回るまで窒素ガスで冷却を行う(S607、S608)。
電極の温度が電極材質の酸化温度未満になったら、気体切替手段で気体16の噴きつけを停止し、気体20である圧縮空気の噴きつけを開始する(S609)。
次に温度測定手段からの温度情報を監視し、電極の温度が所定の温度を下回るまで圧縮空気で冷却を行い、その後気体切替手段で圧縮空気の噴きつけを停止する。(S610、S611、S102)。
上記の方法により高価なガスの無駄を省きながら、電極の劣化を防ぐことが可能となる。
An example of the welding method of the resistance welder using the welding head shown in FIG. 5 will be described with reference to FIG. The welding head includes an electrode for resistance welding, temperature measuring means for measuring the temperature of the electrode, protective means for covering the periphery of the electrode and having a gas inlet for spraying the electrode, and a plurality of types of gas. Gas switching means for selecting an arbitrary gas.
Prior operations will not be described, but will be described after the workpiece is in contact with the electrodes in a weldable state.
First, injection of helium or argon gas, which is the gas 15, is started (S601).
After the gas 15 is filled in the protective means, energization of the electrode is started, and the temperature of the electrode is controlled to be a predetermined temperature within a predetermined time according to the information of the temperature measuring means, and joining of the workpieces is performed. Perform (S602, S603).
Next, temperature information from the temperature measuring means is monitored, and cooling is performed with helium or argon gas until the electrode temperature falls below the nitriding temperature of the electrode material (S604, S605).
When the temperature of the electrode becomes lower than the nitriding temperature of the electrode material, the gas switching unit stops the spraying of the gas 15 and the spraying of the nitrogen gas as the gas 16 is started (S606).
Next, temperature information from the temperature measuring means is monitored, and cooling is performed with nitrogen gas until the electrode temperature falls below the oxidation temperature of the electrode material (S607, S608).
When the temperature of the electrode becomes lower than the oxidation temperature of the electrode material, the gas switching means stops the injection of the gas 16 and the injection of the compressed air as the gas 20 is started (S609).
Next, temperature information from the temperature measuring means is monitored, cooling with compressed air is performed until the temperature of the electrode falls below a predetermined temperature, and then the blowing of compressed air is stopped by the gas switching means. (S610, S611, S102).
With the above method, it is possible to prevent deterioration of the electrode while eliminating waste of expensive gas.

11:保護カバー
12:電極
15,16,20:気体
17:温度計
19:気体種類切替器
11: Protective cover 12: Electrodes 15, 16, 20: Gas 17: Thermometer 19: Gas type switch

Claims (6)

抵抗溶接用の電極と、
前記電極の温度を測定する温度測定手段と
前記電極の周囲を覆い、前記電極に噴きつける気体の流入口を持つ保護手段と、
複数の種類の前記気体のうち任意の気体を選択する気体切替手段と,を有し、前記電極に噴きつける気体を切り換える判断を前記温度測定手段の測定温度に基づいておこなう事を特徴とする抵抗溶接機用溶接ヘッド。
Electrodes for resistance welding;
Temperature measuring means for measuring the temperature of the electrode and protective means covering the periphery of the electrode and having a gas inlet for spraying the electrode;
Have a, and the gas switching means for selecting an arbitrary gas among the plurality of types of the gas, and wherein a decision to switch the gas sprayed on the electrode be performed based on the measured temperature of the temperature measuring means resistance Welding head for welding machine.
前記電極に噴きつける気体を切り換える判断をおこなう前記電極の測定温度は、電極の材料の窒化温度未満または酸化温度未満であることを特徴とする請求項1に記載の抵抗溶接機用溶接ヘッド。 The welding head for a resistance welder according to claim 1, wherein the measurement temperature of the electrode that determines to switch the gas sprayed to the electrode is less than the nitriding temperature or the oxidation temperature of the electrode material. 前記電極に噴きつける気体の一方をアルゴン又はヘリウム、他方を窒素とし、溶接後の電極の測定温度が電極材質の窒化温度未満になるまでアルゴン又はヘリウムを噴きつけ、電極の測定温度が電極材質の窒化温度未満で窒素に切り替えることを特徴とする請求項1又は2に記載の抵抗溶接機用溶接ヘッド。 One of the gases to be sprayed onto the electrode is argon or helium and the other is nitrogen, and argon or helium is sprayed until the measurement temperature of the electrode after welding is lower than the nitriding temperature of the electrode material. resistance welding machine for welding head according to claim 1 or 2, characterized in that switching to nitrogen below the nitriding temperature. 前記電極に噴きつける気体の一方をアルゴン又はヘリウム又は窒素、他方を圧縮空気とし、溶接後の電極の測定温度が電極材質の酸化温度未満になるまでアルゴン又はヘリウム又は窒素を噴きつけ、電極の測定温度が電極材質の酸化温度未満で圧縮空気に切り替えることを特徴とする請求項1又は2に記載の抵抗溶接機用溶接ヘッド。 One of the gases to be sprayed on the electrode is argon, helium or nitrogen, and the other is compressed air, and argon, helium or nitrogen is sprayed until the measurement temperature of the electrode after welding becomes lower than the oxidation temperature of the electrode material, and measurement of the electrode is performed. resistance welding machine for welding head according to claim 1 or 2 temperature and switches to the compressed air below the oxidation temperature of the electrode material. 前記電極に噴きつける気体をアルゴン又はヘリウムと、窒素と、圧縮空気との3種類とし、溶接後の電極の測定温度が電極材質の窒化温度未満になるまでアルゴン又はヘリウムを吹き付け、電極の測定温度が電極材質の窒化温度未満で窒素に切り替え、電極の測定温度が電極材質の酸化温度未満になるまで窒素を吹き付け、電極の測定温度が電極材質の酸化温度未満で圧縮空気に切り替えることを特徴とする請求項1又は2に記載の抵抗溶接機用溶接ヘッド。 The gas to be sprayed onto the electrode is three types of argon or helium, nitrogen and compressed air, and argon or helium is blown until the measurement temperature of the electrode after welding becomes lower than the nitriding temperature of the electrode material, and the measurement temperature of the electrode features There switched to nitrogen below the nitriding temperature of the electrode material, blowing nitrogen until the measured temperature of the electrode is less than the oxidation temperature of the electrode material, a switch are archives air measured temperature of the electrode is less than the oxidation temperature of the electrode material resistance welding machine for welding head according to claim 1 or 2,. 抵抗溶接機の溶接方法において、
1)窒化又は酸化を抑制する気体を電極に向けて噴射するステップと
)前記気体を噴射しながら、前記電極へ供給する電力を制御して溶接を行うステップと
3)溶接後に前記気体を噴射しながら、電極温度の測定値が電極を構成する部材の窒化又は酸化温度より低下した時に気体切替手段にて噴射する気体を圧縮空気又は窒素に変更するステップ
を持つ抵抗溶接機の溶接方法。
In the resistance welding machine welding method,
1) while spraying step and 2) before SL gas to be injected toward the nitriding or gas the electrodes to inhibit oxidation, steps and 3 perform welding by controlling the power supplied to the electrode) the after welding while spraying the gas, electrodes temperature measurements resistance welding with a step of changing the gas to be injected by the gas body switching means to a compressed air or nitrogen when the lower than nitriding or oxidation temperature of the members constituting the electrodes Machine welding method.
JP2011201725A 2011-09-15 2011-09-15 Welding head for resistance welding machine and welding method Active JP5349560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011201725A JP5349560B2 (en) 2011-09-15 2011-09-15 Welding head for resistance welding machine and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011201725A JP5349560B2 (en) 2011-09-15 2011-09-15 Welding head for resistance welding machine and welding method

Publications (2)

Publication Number Publication Date
JP2013059806A JP2013059806A (en) 2013-04-04
JP5349560B2 true JP5349560B2 (en) 2013-11-20

Family

ID=48184975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011201725A Active JP5349560B2 (en) 2011-09-15 2011-09-15 Welding head for resistance welding machine and welding method

Country Status (1)

Country Link
JP (1) JP5349560B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101518903B1 (en) 2013-07-09 2015-05-11 현대자동차 주식회사 Cooling structure of spot welding device
WO2015041287A1 (en) * 2013-09-20 2015-03-26 本田技研工業株式会社 Protective cover for welding gun
CN114850641B (en) * 2022-05-25 2023-05-26 西北电子装备技术研究所(中国电子科技集团公司第二研究所) Parallel sealing machine electrode assembly capable of keeping welding energy stable at parallel welding seam

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937342Y2 (en) * 1980-12-09 1984-10-16 東急車輌製造株式会社 spot welding equipment
JPH08197259A (en) * 1995-01-20 1996-08-06 Ishida Co Ltd Resistance welding machine
JPH10128554A (en) * 1996-10-28 1998-05-19 Toyota Auto Body Co Ltd Cap tip for spot welding, and cooling device of cap tip
JPH11314166A (en) * 1998-04-30 1999-11-16 Kanto Auto Works Ltd Electrode for spot welding
JP2003117661A (en) * 2001-10-16 2003-04-23 Nissan Motor Co Ltd Welding gun and method for cooling welding gun
JP4724006B2 (en) * 2006-01-31 2011-07-13 株式会社多賀製作所 Electrode cleaning method and apparatus in welding method
JP4424755B1 (en) * 2009-04-17 2010-03-03 株式会社エスエムケイ Lower electrode device for welding

Also Published As

Publication number Publication date
JP2013059806A (en) 2013-04-04

Similar Documents

Publication Publication Date Title
US5614110A (en) Varying protective gas composition between piercing and cutting with plasma torch
Schnick et al. Metal vapour causes a central minimum in arc temperature in gas–metal arc welding through increased radiative emission
JP5349560B2 (en) Welding head for resistance welding machine and welding method
KR20120138839A (en) Apparatus and method for a liquid cooled shield for improved piercing performance
JP6009231B2 (en) Plasma welding torch and plasma welding equipment
JP2007275971A (en) Plasma torch
JP5628917B2 (en) Method of cutting short circuit during short circuit arc welding and welding apparatus for short circuit arc welding
JP2014108438A (en) Control circuit, welding power supply device, cooling water circulation device, welding system and control method
KR102190947B1 (en) Plasma cutting apparatus
KR102027896B1 (en) Stud Welding Gun with Preheating Function
JP2005205479A (en) Soldering machine
KR102020416B1 (en) Cooling apparatus for welding
JP2007024396A (en) Induction heating melting furnace
WO2016093197A1 (en) Operation method for electric resistance furnaces
Mitchell Influence of process parameters during secondary melting of nickel based superalloys
US10610954B2 (en) Welding apparatus and plasma welding method
JP2021023972A (en) Torch device and arc welding method
JP2006084155A (en) Metal melting device
JP2008279489A (en) Arc machining apparatus
JP3794296B2 (en) Spot welding equipment
JP2012166261A (en) Welding method and welding apparatus
Ranga Janardhana et al. Experimental analysis of different coolants used in plasma cutting operation for the improved electrode life
JPH1076369A (en) Life predicting method of plasma torch electrode and nozzle damage detecting method and device thereof
JPWO2002064290A1 (en) Plasma torch used for heating molten steel
JP2006002242A (en) Plasma thermal spraying device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Ref document number: 5349560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250