JP5348304B2 - Method for manufacturing glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium - Google Patents

Method for manufacturing glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium Download PDF

Info

Publication number
JP5348304B2
JP5348304B2 JP2012231336A JP2012231336A JP5348304B2 JP 5348304 B2 JP5348304 B2 JP 5348304B2 JP 2012231336 A JP2012231336 A JP 2012231336A JP 2012231336 A JP2012231336 A JP 2012231336A JP 5348304 B2 JP5348304 B2 JP 5348304B2
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
glass substrate
load
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012231336A
Other languages
Japanese (ja)
Other versions
JP2013134804A (en
Inventor
雷太 田先
晴彦 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2012231336A priority Critical patent/JP5348304B2/en
Publication of JP2013134804A publication Critical patent/JP2013134804A/en
Application granted granted Critical
Publication of JP5348304B2 publication Critical patent/JP5348304B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、磁気記録媒体用ガラス基板の製造方法および磁気記録媒体の製造方法に関する。   The present invention relates to a method for manufacturing a glass substrate for a magnetic recording medium and a method for manufacturing a magnetic recording medium.

磁気記録装置等に用いられる磁気記録媒体用基板としては、従来、アルミニウム合金基板が使用されてきたが、高記録密度化の要求に伴い、アルミニウム合金基板に比べて硬く、平坦性や平滑性に優れるガラス基板が主流となってきている。   Conventionally, an aluminum alloy substrate has been used as a substrate for a magnetic recording medium used in a magnetic recording apparatus or the like. However, with the demand for higher recording density, it is harder and more flat and smooth than an aluminum alloy substrate. Excellent glass substrates are becoming mainstream.

近年、磁気記録媒体はさらに高記録密度化、高速回転化が進んできたことにより、磁気記録媒体の半径/トラック位置情報を記録しているサーボ情報を磁気ヘッドが見失い、読み取り/書き込みエラーが発生する現象が従来よりも多く発生するようになってきている。   In recent years, magnetic recording media have further increased in recording density and rotation speed, causing the magnetic head to lose sight of the servo information recording the radius / track position information of the magnetic recording medium, resulting in read / write errors. More and more phenomena occur than before.

このようなエラーの発生は、高記録密度化に伴う狭トラック幅化、高速回転化に伴うディスクフラッタリングの発生による機械的振動が原因であると考えられてきた。   The occurrence of such errors has been considered to be caused by mechanical vibration due to the occurrence of disk fluttering accompanying the narrowing of track width and high-speed rotation accompanying high recording density.

このため、このようなエラーを抑制するため、例えば、磁気記録媒体用ガラス基板の材料として比弾性(比弾性とはヤング率をガラスの密度で割った量で、軽くて強い、軽くて変形しにくい、という特性をあらわす指針となる量である。以下、比ヤング率ともいう。)が高い材料を使用し、フラッタリングを抑制することが行われてきた。   Therefore, in order to suppress such errors, for example, as a material for a glass substrate for a magnetic recording medium, specific elasticity (specific elasticity is an amount obtained by dividing Young's modulus by the density of glass, light and strong, light and deformed. It is an amount that serves as a guideline that expresses the characteristic of being difficult.Hereinafter, a material having a high specific Young's modulus) is used to suppress fluttering.

また、特許文献1には、厚さ方向の対称性が所定の範囲内の磁気記録媒体用ガラス基板を選択することにより、ハードディスクとしたときに磁気記録媒体に記録されたサーボ情報のエラーを少なくする磁気ディスク用ガラス基板の製造方法が記載されている。   Further, in Patent Document 1, by selecting a glass substrate for a magnetic recording medium whose symmetry in the thickness direction is within a predetermined range, errors in servo information recorded on the magnetic recording medium when a hard disk is formed can be reduced. A method for manufacturing a glass substrate for a magnetic disk is described.

特開2010−277679号公報JP 2010-277679 A

上記のように磁気記録媒体のエラーの発生を抑制する方法が従来から検討されてきたが、エラーの発生を十分には抑制できておらず、依然として磁気記録媒体とした際にエラーが発生する問題があった。   As described above, methods for suppressing the occurrence of errors in the magnetic recording medium have been studied in the past, but the occurrence of errors has not been sufficiently suppressed, and problems still occur when the magnetic recording medium is used. was there.

そこで、本発明は上記従来技術が有する問題に鑑み、磁気記録媒体とした際にエラーの発生率の低い磁気記録媒体用ガラス基板の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION In view of the above-described problems of the prior art, it is an object of the present invention to provide a method for manufacturing a glass substrate for a magnetic recording medium with a low error rate when the magnetic recording medium is used.

上記課題を解決するため本発明は、円盤形状のガラス基板の主平面を研磨する主平面研磨工程を有する磁気記録媒体用ガラス基板の製造方法であって、
前記主平面研磨工程後の磁気記録媒体用ガラス基板において、
前記磁気記録媒体用ガラス基板の対向する2箇所に設けられた弦と円弧によって囲まれ、前記弦と前記円弧との間の距離の最大値は前記磁気記録媒体用ガラス基板の直径の2.3%〜7.7%の長さである、直径方向の両端部を下面側から支持し、前記磁気記録媒体用ガラス基板の直径の35〜80%の長さの幅であり、該幅方向の中心線は前記磁気記録媒体用ガラス基板の中心を通り、前記弦と平行である前記磁気記録媒体用ガラス基板の中央領域上面に、(磁気記録媒体用ガラス基板の主平面の面積)mm×2.28mN/mmにより計算される荷重を48時間加えた後に荷重を取り除き、荷重を取り除いた後5時間経過時の平坦度と、
荷重を加える前の平坦度との差の絶対値を擬弾性変形量Aとした場合に、
前記擬弾性変形量Aを4.2μm以下とすることを特徴とする磁気記録媒体用ガラス基板の製造方法を提供する。
In order to solve the above problems, the present invention is a method for producing a glass substrate for a magnetic recording medium, comprising a main plane polishing step for polishing a main plane of a disk-shaped glass substrate,
In the glass substrate for a magnetic recording medium after the main surface polishing step,
The magnetic recording medium glass substrate is surrounded by a string and a circular arc provided at two opposing positions, and the maximum value of the distance between the string and the circular arc is 2.3 of the diameter of the magnetic recording medium glass substrate. The both ends in the diametrical direction having a length of% to 7.7% are supported from the lower surface side, and the width is 35 to 80% of the diameter of the glass substrate for a magnetic recording medium. A center line passes through the center of the magnetic recording medium glass substrate and is parallel to the chord, on the upper surface of the central region of the magnetic recording medium glass substrate (area of the main plane of the magnetic recording medium glass substrate) mm 2 × After removing the load after adding the load calculated by 2.28 mN / mm 2 for 48 hours, the flatness at the time of 5 hours after removing the load,
When the absolute value of the difference from the flatness before applying a load is the pseudoelastic deformation amount A,
Provided is a method for producing a glass substrate for a magnetic recording medium, wherein the pseudoelastic deformation amount A is set to 4.2 μm or less.

本発明は、磁気記録媒体に荷重が加わり変形した場合でも所定の時間内に元の形状に戻ることができる磁気記録媒体用ガラス基板の製造方法を提供するものである。このため、出荷時にカセット内に梱包、固定され磁気記録媒体用ガラス基板が変形した場合でも、サーボ情報を書き込むまでの時間に元の形状に復元し、磁気記録媒体の適切な位置にサーボ情報を記録することができ、その後のエラー(読み取り/書き込みエラー)の発生を抑制することが可能になる。   The present invention provides a method of manufacturing a glass substrate for a magnetic recording medium that can return to its original shape within a predetermined time even when a load is applied to the magnetic recording medium and deformed. For this reason, even when the glass substrate for magnetic recording medium is deformed and packed in the cassette at the time of shipment, it is restored to its original shape at the time until servo information is written, and the servo information is placed at an appropriate position on the magnetic recording medium. It is possible to record, and it is possible to suppress the occurrence of subsequent errors (read / write errors).

本発明に係る第1の実施形態における擬弾性変形量の測定フローの説明図Explanatory drawing of the measurement flow of the pseudo elastic deformation amount in the first embodiment according to the present invention. 本発明に係る第1の実施形態における擬弾性変形量測定の際の荷重付加方法の説明図Explanatory drawing of the load addition method in the case of the pseudo elastic deformation amount measurement in 1st Embodiment based on this invention

以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and the following embodiments are not departed from the scope of the present invention. Various modifications and substitutions can be made.

[第1の実施形態]
本実施形態では本発明の磁気記録媒体用ガラス基板の製造方法について説明を行う。
[First Embodiment]
In the present embodiment, a method for producing a glass substrate for a magnetic recording medium according to the present invention will be described.

本発明の発明者らは、磁気記録媒体用ガラス基板の材料として比弾性(比弾性とはガラスのヤング率をガラスの密度で割った量で、軽くて強い、軽くて変形しにくい、という特性をあらわす指針となる量である。以下、比ヤング率ともいう。)が高い材料を使用した場合であっても、磁気記録媒体に読み出しエラーが起きることの原因について検討を行った結果、搬送工程で磁気記録媒体が変形した場合に、変形が十分戻らないうちにサーボ情報を書き込むことが原因の一つであることを見出し、本発明を完成させた。   The inventors of the present invention have a specific elasticity as a material for a glass substrate for a magnetic recording medium (specific elasticity is an amount obtained by dividing the Young's modulus of glass by the density of glass and is light and strong, light and difficult to deform) (Hereinafter, also referred to as the specific Young's modulus.) Even if a material with a high specific Young's modulus is used, as a result of examining the cause of the read error in the magnetic recording medium, When the magnetic recording medium is deformed, it has been found that one of the causes is that the servo information is written before the deformation is sufficiently recovered, and the present invention has been completed.

一般的に磁気記録媒体用ガラス基板はその表面に磁性層等を形成して磁気記録媒体とした後、他の磁気記録媒体と接触しないようにカセット中に収め、さらに、減圧された梱包容器内に収めてハードディスクドライブの製造工場へと出荷、搬送される。磁気記録媒体を搬送する際、磁気記録媒体は、カセット内に収められているものの、さらに減圧された梱包容器(包装)内に収められているため、荷重が加わり変形する場合がある。   In general, a glass substrate for a magnetic recording medium is formed into a magnetic recording medium by forming a magnetic layer or the like on the surface thereof, and then placed in a cassette so that it does not come into contact with other magnetic recording media. And shipped to a hard disk drive manufacturing factory. When the magnetic recording medium is transported, the magnetic recording medium is contained in a cassette, but is further contained in a decompressed packaging container (packaging), so that a load may be applied and the magnetic recording medium may be deformed.

そして、ハードディスクドライブの製造工場に搬送後、磁気記録媒体はカセットから取出されハードディスクドライブに組み立て、サーボ情報を書き込み、リード・ライトテストに供される。   Then, after being transported to the hard disk drive manufacturing factory, the magnetic recording medium is taken out from the cassette, assembled into the hard disk drive, written with servo information, and used for a read / write test.

上記のように搬送時に磁気記録媒体に荷重が加わり変形していた場合、カセットから取出すことにより荷重が取り除かれるため、これらの工程の間に磁気記録媒体は元の形状へと徐々に戻っていく。   As described above, when a load is applied to the magnetic recording medium during deformation as described above, the load is removed by removing the magnetic recording medium from the cassette. Therefore, the magnetic recording medium gradually returns to the original shape during these steps. .

通常、磁気記録媒体はカセット取出し後、5〜12時間程度後にサーボ情報が書き込まれる。しかしながら、この段階で磁気記録媒体の形状がまだ十分に復元していない場合、サーボ情報を書き込んだ後もその位置が変位することになる。このため、書き込んだサーボ情報の書き込み位置がずれて、エラーを生じる原因になる。   Normally, servo information is written to the magnetic recording medium about 5 to 12 hours after the cassette is taken out. However, if the shape of the magnetic recording medium has not been sufficiently restored at this stage, the position will be displaced even after the servo information is written. For this reason, the writing position of the written servo information is shifted, causing an error.

そして、磁気記録媒体に読み出しエラーが起きることの原因について検討を行った結果、磁気記録媒体は磁気記録媒体用ガラス基板表面に磁性層等を形成したものであるから、磁気記録媒体の形状が復元する速度は磁気記録媒体用ガラス基板の擬弾性変形量に依存していることが分かった。   As a result of examining the cause of the read error in the magnetic recording medium, the magnetic recording medium has a magnetic layer formed on the surface of the glass substrate for the magnetic recording medium, so the shape of the magnetic recording medium is restored. It was found that the speed at which it is applied depends on the amount of pseudoelastic deformation of the glass substrate for magnetic recording media.

本発明は、主平面研磨工程後の磁気記録媒体用ガラス基板の擬弾性変形量Aを4.2μm以下とすることによって、磁気記録媒体用ガラス基板表面に磁性層等を形成した磁気記録媒体において読み出しエラーが発生することを確実に抑制しようとするものである。   The present invention relates to a magnetic recording medium in which a magnetic layer or the like is formed on the surface of a glass substrate for magnetic recording medium by setting the pseudoelastic deformation amount A of the glass substrate for magnetic recording medium after the main surface polishing step to 4.2 μm or less. It is intended to reliably suppress the occurrence of a read error.

ここでいう、擬弾性変形量Aとは、磁気記録媒体用ガラス基板の対向する両端部を下面側から支持し、磁気記録媒体用ガラス基板の中央部(中心を含む中央領域)上面に荷重を48時間加えた後に荷重を取り除き、荷重を取り除いた後5時間経過時の平坦度と、荷重を加える前の平坦度との差の絶対値である。   The pseudo-elastic deformation amount A here means that both opposing ends of the glass substrate for magnetic recording medium are supported from the lower surface side, and a load is applied to the upper surface of the central portion (central region including the center) of the glass substrate for magnetic recording medium. It is the absolute value of the difference between the flatness after 5 hours have passed after removing the load and the flatness when 5 hours have elapsed after applying the load and the flatness before applying the load.

ここで、擬弾性変形量Aを測定する際に、磁気記録媒体用ガラス基板に荷重を48時間加えているのは磁気記録媒体を梱包、出荷してから、ハードディスクドライブ組立のため梱包を開封するまで一般的に要する時間に基づいている。さらに、後述する擬弾性変形量A〜Cの測定方法で擬弾性変形量を測定した場合、いずれのガラス基板を用いても荷重を加える時間が16時間程度で平坦度の変化が飽和してきていることが確認された。このため、平坦度の変化が飽和し、それ以上長く荷重をかけても平坦度の変化が起きない時間という観点からも48時間とした。   Here, when the amount of pseudoelastic deformation A is measured, the load is applied to the glass substrate for magnetic recording medium for 48 hours. After packing and shipping the magnetic recording medium, the packing is opened for assembling the hard disk drive. Until generally based on the time required. Furthermore, when the amount of pseudoelastic deformation is measured by the method of measuring the amount of pseudoelastic deformation A to C, which will be described later, the change in flatness has been saturated in about 16 hours even when any glass substrate is used. It was confirmed. For this reason, the change in flatness is saturated, and the time is set to 48 hours from the viewpoint of no change in flatness even when a load is applied for a longer time.

また、荷重を取り除いた後5時間後の平坦度を比較の対象としているのは、通常、磁気記録媒体の梱包を開封後、サーボ情報を書き込むまでの時間が5〜12時間程度であるためである。エラーを抑制するためには、この間にその後の変位が問題とならない程度にまで磁気記録媒体用ガラス基板が元の形状へと回復している必要がある。   Further, the reason for comparing the flatness after 5 hours after removing the load is that the time from writing the packing of the magnetic recording medium to writing servo information is usually about 5 to 12 hours. is there. In order to suppress the error, it is necessary that the glass substrate for magnetic recording medium is restored to the original shape to such an extent that subsequent displacement does not become a problem.

擬弾性変形量Aの値としては、サーボ情報を記録した後に磁気記録媒体用ガラス基板が変位したとしても許容される値であればよく、擬弾性変形量Aの値は上記のように4.2μm以下である。擬弾性変形量Aとしては4.0μm以下であることが好ましく、3.5μm以下であることがさらに好ましく、3.0μm以下であることが特に好ましい。なお、擬弾性変形量Aの下限値は0μmとなる。これは、他の擬弾性変形量B、擬弾性変形量Cについても同様のことがいえる。   The value of the pseudoelastic deformation amount A may be an allowable value even if the glass substrate for magnetic recording medium is displaced after servo information is recorded, and the value of the pseudoelastic deformation amount A is 4. 2 μm or less. The pseudoelastic deformation amount A is preferably 4.0 μm or less, more preferably 3.5 μm or less, and particularly preferably 3.0 μm or less. The lower limit value of the pseudoelastic deformation amount A is 0 μm. The same can be said for other pseudoelastic deformation amounts B and pseudoelastic deformation amounts C.

また、磁気記録媒体用ガラス基板直径方向の両端部を下面側から支持し、前記磁気記録用ガラス基板の中央部(中心を含む中央領域)上面に荷重を48時間加えた後に荷重を取り除き、荷重を取り除いた後5時間経過時の平坦度と、荷重を取り除いた後48時間経過時の平坦度との差の絶対値を擬弾性変形量Bとする。この場合に、前記擬弾性変形量Bが3.0μm以下の磁気記録媒体用ガラス基板であることが好ましい。   Further, both ends of the magnetic recording medium glass substrate in the diameter direction are supported from the lower surface side, and the load is removed after applying the load to the upper surface of the central portion (central region including the center) of the magnetic recording glass substrate for 48 hours. The absolute value of the difference between the flatness after 5 hours from the removal of the flatness and the flatness after 48 hours after the removal of the load is defined as a pseudoelastic deformation amount B. In this case, it is preferable that the glass substrate for a magnetic recording medium has a pseudo elastic deformation amount B of 3.0 μm or less.

擬弾性変形量Bは、荷重を除去してから5時間経過時から48時間経過時の間の変形量を意味している。このため、その値が小さいほど、荷重を除去して5時間経過時にサーボ情報を書き込んでからの変位量が小さいことを意味している。   The pseudo-elastic deformation amount B means a deformation amount from when 5 hours have elapsed since the load was removed to when 48 hours have elapsed. For this reason, the smaller the value, the smaller the displacement amount after the servo information is written when the load is removed and 5 hours have elapsed.

従って、擬弾性変形量Bが上記規定を満たすことによってサーボ情報を書き込んだ後の変位量が小さく、磁気記録媒体とした場合にエラーの発生をより抑制することが可能になる。   Therefore, when the pseudoelastic deformation amount B satisfies the above-mentioned definition, the displacement amount after writing the servo information is small, and it becomes possible to further suppress the occurrence of errors when the magnetic recording medium is used.

擬弾性変形量Bの値としては、サーボ情報を書き込んだ後、データの読み取り、書き込みを行う際に許容される変形量であればよいが、上記のように3.0μm以下であることが好ましい。擬弾性変形量Bとしては、2.5μm以下であることがより好ましく、2.0μm以下であることが特に好ましい。   The value of the pseudoelastic deformation amount B may be a deformation amount that is allowed when data is read or written after servo information is written, but is preferably 3.0 μm or less as described above. . The pseudoelastic deformation amount B is more preferably 2.5 μm or less, and particularly preferably 2.0 μm or less.

さらに、磁気記録媒体用ガラス基板の両端部を下面側から支持し、前記磁気記録媒体用ガラス基板の中央部(中心を含む中央領域)上面に荷重を48時間加えた後に荷重を取り除き、荷重を取り除いた後、5時間経過時の平坦度である擬弾性変形量Cが5.5μm以下であることが好ましい。   Further, both end portions of the glass substrate for magnetic recording medium are supported from the lower surface side, and the load is removed for 48 hours after applying the load to the upper surface of the central portion (central region including the center) of the glass substrate for magnetic recording medium. After removal, it is preferable that the pseudoelastic deformation amount C, which is the flatness after the lapse of 5 hours, is 5.5 μm or less.

擬弾性変形量Cは、その値が小さいほど荷重除去後5時間経過時における平坦度が小さいことを示している。係るパラメータを充足する磁気記録媒体用ガラス基板は、荷重を48時間加えているにもかかわらず、変形量が少ないことおよび/または荷重を除去してから5時間で平坦度が回復していることを示している。このため、荷重除去後5時間経過時にサーボ情報を書き込んだとしても、磁気記録媒体用ガラス基板のその後の変形量は小さく、エラーの発生を抑制することが可能になる。   The pseudoelastic deformation amount C indicates that the smaller the value is, the smaller the flatness is after 5 hours have elapsed after the load is removed. The glass substrate for a magnetic recording medium satisfying such parameters has a small amount of deformation and / or has recovered its flatness within 5 hours after the load is removed even though the load is applied for 48 hours. Is shown. For this reason, even if the servo information is written when 5 hours have elapsed after the load is removed, the subsequent deformation amount of the glass substrate for magnetic recording medium is small, and the occurrence of errors can be suppressed.

ここまで説明した擬弾性変形量A〜Cの測定方法について図1、2を用いて説明する。   A method for measuring the pseudoelastic deformation amounts A to C described so far will be described with reference to FIGS.

なお、以下の説明、図1において各時間での平坦度はF(xh)のように表わす。式中xは、荷重を取り除いた時点を基準(0h)とし、荷重を取り除いてからの経過時間を示している。また、荷重を取り除く前の時間はマイナスで表わされる。このため、例えば、F(−48h)とは、荷重を取り除く48時間前、すなわち荷重を加える前の磁気記録媒体用ガラス基板の平坦度を示している。   In the following description and FIG. 1, the flatness at each time is expressed as F (xh). In the equation, x represents the elapsed time since the load was removed, with the time when the load was removed as the reference (0h). Also, the time before the load is removed is represented by a minus value. For this reason, for example, F (−48 h) indicates the flatness of the glass substrate for a magnetic recording medium 48 hours before the load is removed, that is, before the load is applied.

まず、擬弾性変形量測定フローについて、図1を用いて説明する。   First, the pseudo-elastic deformation measurement flow will be described with reference to FIG.

測定は、図1に示すように、まず、荷重を加える前に、磁気記録媒体用ガラス基板の平坦度F(−48h)を測定する(図1中(1)の点)。その後、磁気記録媒体用ガラス基板に後述する方法により、48時間荷重を加える。これは、一般的なハードディスクドライブ組立工程において磁気記録媒体を梱包、出荷してから開封するまで48時間程度であるためである。また、上記のようにいずれのガラス基板においても荷重を加えてから16時間程度で平坦度の変化が飽和してくることが確認されている(ガラス基板が変形しきる)。このため、平坦度の変化が飽和し、それ以上長く荷重をかけても平坦度の変化が起きない時間という観点からも48時間としている。   As shown in FIG. 1, first, before applying a load, the flatness F (−48 h) of the glass substrate for a magnetic recording medium is measured (point (1) in FIG. 1). Thereafter, a load is applied to the glass substrate for magnetic recording medium for 48 hours by the method described later. This is because it takes about 48 hours from packing and shipping the magnetic recording medium to opening it in a general hard disk drive assembly process. Further, as described above, it has been confirmed that the change in flatness is saturated in about 16 hours after the load is applied to any glass substrate (the glass substrate is completely deformed). For this reason, the change in flatness is saturated, and the time is 48 hours from the viewpoint of the time when the change in flatness does not occur even when a load is applied for a longer time.

48時間経過後荷重を取り除き(図1中(2)の点)、荷重を取り除いた後5時間経過したときに平坦度を再度測定して(図1中(3)の点)これをF(5h)とした。これは、一般的にハードディスクの組立工程において、梱包開封後5〜12時間程度してからサーボ情報の書き込みが行われているためである。   After 48 hours, the load was removed (point (2) in FIG. 1), and when 5 hours had elapsed after the load was removed, the flatness was measured again (point (3) in FIG. 1). 5h). This is because servo information is generally written after about 5 to 12 hours after unpacking in the hard disk assembly process.

また、荷重を取り除いた後、48時間経過したときの平坦度を測定して(図1中(4)の点)これをF(48h)とした。これは、一般的なハードディスクドライブの組立工程において、梱包を開封後48時間程度経過した時点でリード・ライトテストを行うためである。   Further, after removing the load, the flatness when 48 hours passed was measured (point (4) in FIG. 1), and this was defined as F (48h). This is because a read / write test is performed when about 48 hours have elapsed after opening the package in a general hard disk drive assembly process.

そして、擬弾性変形量Aは上記のように、荷重を加える前の平坦度F(−48h)と、荷重を取り除いた後5時間経過した時の平坦度との差の絶対値により算出され、以下の式で表わされる。
(擬弾性変形量A)=|F(5h)−F(−48h)|
擬弾性変形量Aの値が小さいほど、荷重を加えることによって生じた変形から元の磁気記録媒体用ガラス基板の形状(平坦度)に戻っていることを示している。
Then, as described above, the pseudoelastic deformation amount A is calculated by the absolute value of the difference between the flatness F (−48 h) before the load is applied and the flatness when 5 hours have elapsed after the load is removed, It is represented by the following formula.
(Pseudoelastic deformation amount A) = | F (5h) −F (−48h) |
It shows that the smaller the value of the pseudoelastic deformation amount A, the more the shape (flatness) of the glass substrate for magnetic recording medium is restored from the deformation caused by applying a load.

また、擬弾性変形量Bは上記のように荷重を取り除いた後5時間経過した時の平坦度と、48時間経過した時の平坦度の差の絶対値により算出され、以下の式で表わされる。
(擬弾性変形量B)=|F(5h)−F(48h)|
擬弾性変形量Cは、荷重を除去した後5時間経過した時の平坦度を表わしている。このため、以下の式で表わされる。
(擬弾性変形量C)=F(5h)
磁気記録媒体用ガラス基板の平坦度を測定する手段については特に限定されるものではなく、例えば位相測定干渉法(フェイズシフト法)により測定を行うことができる。
The pseudoelastic deformation amount B is calculated by the absolute value of the difference between the flatness when 5 hours have elapsed after removing the load as described above and the flatness when 48 hours have elapsed, and is expressed by the following equation. .
(Pseudoelastic deformation amount B) = | F (5h) −F (48h) |
The pseudoelastic deformation amount C represents the flatness when 5 hours have elapsed after the load is removed. For this reason, it is represented by the following formula.
(Pseudoelastic deformation amount C) = F (5 h)
A means for measuring the flatness of the glass substrate for a magnetic recording medium is not particularly limited, and for example, measurement can be performed by a phase measurement interferometry (phase shift method).

次に、擬弾性変形量を測定する際の、磁気記録媒体用ガラス基板に荷重を加える方法について以下に説明する。   Next, a method for applying a load to the glass substrate for a magnetic recording medium when measuring the amount of pseudoelastic deformation will be described below.

磁気記録媒体用ガラス基板に荷重を加える際には、磁気記録媒体用ガラス基板の対向する直径方向の両端部を下面側から支持し、磁気記録媒体用ガラス基板の中心を含む中央部に磁気記録媒体用ガラス基板の上面から垂直下方に荷重を加えることにより行う。   When applying a load to the glass substrate for magnetic recording medium, both opposite ends in the diametrical direction of the glass substrate for magnetic recording medium are supported from the lower surface side, and magnetic recording is performed on the central portion including the center of the glass substrate for magnetic recording medium. This is done by applying a load vertically downward from the upper surface of the medium glass substrate.

具体的な例について、図2を用いて説明する。   A specific example will be described with reference to FIG.

図2は擬弾性変形量を測定するために、磁気記録媒体用ガラス基板に荷重を加えている構成例を示したものであり、図2(a)は横側面図、図2(b)は上面図をそれぞれ示したものである。   FIG. 2 shows a configuration example in which a load is applied to the glass substrate for magnetic recording medium in order to measure the amount of pseudoelastic deformation. FIG. 2 (a) is a lateral side view, and FIG. 2 (b) is a side view. The top views are respectively shown.

図2にあるように、磁気記録媒体用ガラス基板の両端部を支持するためV字ブロック11を用い、その上に磁気記録媒体用ガラス基板13、荷重(重石)15を配置してガラス基板に荷重を加える。   As shown in FIG. 2, a V-shaped block 11 is used to support both ends of the glass substrate for magnetic recording medium, and a glass substrate 13 for magnetic recording medium and a load (weight) 15 are arranged on the V-shaped block 11. Apply load.

V字ブロック11はその中央部にV字状の切り込み部12を有している。そして、V字状の切り込み部12を覆うように磁気記録媒体用ガラス基板13を配置することにより磁気記録媒体用ガラス基板13の両端部14のみを下面側から支持することができるように構成されている。なお、磁気記録媒体用ガラス基板を支持する部材としては、V字ブロックに限定されるものではなく、磁気記録媒体用ガラス基板の両端部14を支持できるものであればよい。例えば四角柱形状のブロック2つを所定の間隔を空けて、磁気記録媒体用ガラス基板の両端部分14を支持できるように配置したものでもよい。   The V-shaped block 11 has a V-shaped notch 12 at the center thereof. Then, by arranging the glass substrate 13 for magnetic recording medium so as to cover the V-shaped cut portion 12, only both end portions 14 of the glass substrate 13 for magnetic recording medium can be supported from the lower surface side. ing. The member that supports the glass substrate for magnetic recording medium is not limited to the V-shaped block, and any member that can support both end portions 14 of the glass substrate for magnetic recording medium may be used. For example, two rectangular columnar blocks may be arranged so as to support both end portions 14 of the glass substrate for a magnetic recording medium with a predetermined interval.

この場合、V字ブロックと接触し、磁気記録媒体用ガラス基板を支持する直径方向の両端2箇所に設けられた両端部(支持部)14は、それぞれ弦141、142と円弧によって囲まれている。そして、弦141と弦142はV字ブロックの切り込み部の端部であり、平行になっている。そして、弦と円弧の間の距離の最大値、すなわち、図2中のW1はそれぞれ、例えば磁気記録媒体用ガラス基板の直径の2.3%〜7.7%の長さとすることが好ましく、直径の3.0%〜4.6%とすることがより好ましい。これは、支持する部分の範囲が狭すぎると、荷重を加えた場合に磁気記録媒体用ガラス基板がずれ落ちて破損する恐れがあるためであり、広すぎると、荷重部分との間の距離が短くなり、平坦度の変化が出にくくなり、測定の分解能が低くなるためである。   In this case, both end portions (support portions) 14 provided at two diametrical ends that contact the V-shaped block and support the glass substrate for a magnetic recording medium are surrounded by strings 141 and 142 and arcs, respectively. . And the string 141 and the string 142 are the edge part of the notch part of a V-shaped block, and are parallel. The maximum value of the distance between the chord and the arc, that is, W1 in FIG. 2, is preferably set to a length of 2.3% to 7.7% of the diameter of the glass substrate for a magnetic recording medium, for example. More preferably, it is 3.0% to 4.6% of the diameter. This is because if the range of the supporting portion is too narrow, the glass substrate for the magnetic recording medium may fall off and be damaged when a load is applied. This is because the length becomes shorter, the change in flatness is less likely to occur, and the measurement resolution becomes lower.

荷重については、磁気記録媒体用ガラス基板の中心を含む中央部に荷重を加えることができればよく、特にその配置、荷重の大きさについて限定されるものではない。   The load is not particularly limited as long as the load can be applied to the central portion including the center of the glass substrate for magnetic recording media, and the arrangement and the magnitude of the load are not particularly limited.

例えば図2に示すように、磁気記録媒体用ガラス基板の中央部に直方体の荷重(重石)を配置することによって行うことができる。この場合、荷重は前記磁気記録媒体用ガラス基板を支持する両端部を構成する弦141、142と平行になるように配置することが好ましい。また、荷重は図2(b)に示すように、弦141、142と平行な中心線から一定の距離の幅(範囲)の磁気記録媒体用ガラス基板を全て覆うように配置することが好ましい。例えば荷重(重石)として、その幅すなわち、図2中のW2の長さが磁気記録媒体用ガラス基板の直径の35%〜80%である直方体を好ましく用いることができ、55%〜75%のものをより好ましく使用することができる。   For example, as shown in FIG. 2, it can be performed by placing a rectangular parallelepiped load (weight) at the center of the glass substrate for a magnetic recording medium. In this case, it is preferable that the load be arranged so as to be parallel to the strings 141 and 142 constituting both end portions supporting the glass substrate for magnetic recording medium. Further, as shown in FIG. 2B, the load is preferably disposed so as to cover all the glass substrate for magnetic recording medium having a certain width (range) from the center line parallel to the strings 141 and 142. For example, a rectangular parallelepiped whose width, that is, the length of W2 in FIG. 2 is 35% to 80% of the diameter of the glass substrate for a magnetic recording medium can be preferably used as the load (weight). A thing can be used more preferably.

これは、例えば荷重を加える範囲が狭すぎる場合、荷重が狭い範囲に集中する、荷重が不安定となり転倒する、などによって磁気記録媒体用ガラス基板を破損する恐れがあるためであり、荷重を加える範囲が広すぎる場合、支持している両端部との間の距離が狭くなり、平坦度の変化が出にくくなり、測定の分解能が低くなるためである。   This is because, for example, if the load application range is too narrow, the glass substrate for the magnetic recording medium may be damaged due to the load being concentrated in a narrow range, the load becoming unstable and falling down, etc. This is because if the range is too wide, the distance between the supporting ends becomes narrow, the flatness hardly changes, and the measurement resolution becomes low.

荷重(重石)の縦方向の長さとしては、上記のように磁気記録媒体用のガラス基板の直径と同じ長さ、または、それ以上の長さであることが好ましい。   The longitudinal length of the load (heavy stone) is preferably the same length as the diameter of the glass substrate for the magnetic recording medium as described above, or a length longer than that.

荷重の重さとしても特に限定されるものではなく、擬弾性による変形が十分に起こり、かつ磁気記録媒体用ガラス基板を破損しない範囲であれば良く、用いる磁気記録媒体用ガラス基板の面積や強度等に応じて選択することができる。   The weight of the load is not particularly limited as long as the deformation is sufficiently caused by pseudoelasticity and does not damage the glass substrate for the magnetic recording medium, and the area and strength of the glass substrate for the magnetic recording medium to be used. It can be selected according to the like.

例えば、磁気記録媒体用ガラス基板の主平面の面積1mmあたり、0.233gf(2.28mN)の荷重になるように選択することができる。すなわち、(磁気記録媒体用ガラス基板の主平面の面積)mm×0.233gf/mm(2.28mN/mm)により計算される荷重を加えることができる。例えば、外径が65mm、内径(中央部の円孔の直径)が20mmの磁気記録媒体用ガラス基板(2.5インチの磁気記録媒体用ガラス基板)の場合、700gf(6.86N)の荷重を磁気記録媒体用ガラス基板の中央部上面に加えることになる。 For example, the load can be selected to be 0.233 gf (2.28 mN) per 1 mm 2 of the main plane area of the glass substrate for magnetic recording medium. That is, a load calculated by (area of main plane of glass substrate for magnetic recording medium) mm 2 × 0.233 gf / mm 2 (2.28 mN / mm 2 ) can be applied. For example, in the case of a magnetic recording medium glass substrate (2.5 inch magnetic recording medium glass substrate) having an outer diameter of 65 mm and an inner diameter (diameter of a circular hole in the center) of 20 mm, a load of 700 gf (6.86 N) Is added to the upper surface of the central portion of the glass substrate for a magnetic recording medium.

本発明の磁気記録媒体用ガラス基板は以下の工程1〜4を含む製造方法により、製造することができる。
(工程1)ガラス素基板から、中央部に円孔を有する円盤形状のガラス基板に加工した後、内周端面と外周端面を面取り加工する形状付与工程。
(工程2)ガラス基板の端面(内周端面及び外周端面)を研磨する端面研磨工程。
(工程3)前記ガラス基板の主平面を研磨する主平面研磨工程。
(工程4)前記ガラス基板を洗浄して乾燥する洗浄工程。
The glass substrate for magnetic recording media of the present invention can be produced by a production method including the following steps 1 to 4.
(Step 1) A shape imparting step of chamfering the inner peripheral end surface and the outer peripheral end surface after processing from a glass base substrate into a disk-shaped glass substrate having a circular hole in the center.
(Step 2) An end surface polishing step for polishing the end surfaces (the inner peripheral end surface and the outer peripheral end surface) of the glass substrate.
(Step 3) A main flat surface polishing step for polishing the main flat surface of the glass substrate.
(Step 4) A cleaning step of cleaning and drying the glass substrate.

そして、上記各工程を含む製造方法により得られた磁気記録媒体用ガラス基板はその上に磁性層などの薄膜を形成する工程をさらに行うことによって、磁気記録媒体とすることができる。   And the glass substrate for magnetic recording media obtained by the manufacturing method including the above steps can be used as a magnetic recording medium by further performing a step of forming a thin film such as a magnetic layer thereon.

ここで、(工程1)の形状付与工程は、フロート法、フュージョン法、プレス成形法、ダウンドロー法またはリドロー法で成形されたガラス素基板を、中央部に円孔を有する円盤形状のガラス基板に加工するものである。なお、用いるガラス素基板は、加工して得られた磁気記録媒体用ガラス基板が上記擬弾性変形量を充足するものであれば良く、特に限定されるものではない。例えば、アモルファスガラスや、結晶化ガラス、ガラス基板の表層に圧縮応力層(強化層)を有する強化ガラスでもよい。ガラス基板は比弾性(比ヤング率)が高いことが好ましく、例えば29GPa・cm/g以上であることが好ましく、30GPa・cm/g以上であることがより好ましい。 Here, the shape imparting step of (Step 1) includes a glass substrate having a circular shape in the center, and a glass substrate formed by a float method, a fusion method, a press forming method, a down draw method or a redraw method. To be processed. The glass base substrate used is not particularly limited as long as the glass substrate for magnetic recording medium obtained by processing satisfies the pseudo-elastic deformation amount. For example, the glass may be amorphous glass, crystallized glass, or tempered glass having a compressive stress layer (strengthening layer) on the surface layer of the glass substrate. Glass substrate is preferably high specific modulus (specific modulus), for example, is preferably 29GPa · cm 3 / g or more, more preferably 30GPa · cm 3 / g or more.

そして、(工程2)の端面研磨工程は、ガラス基板の端面(側面部と面取り部)を端面研磨するものである。   And the end surface grinding | polishing process of (process 2) end-polishes the end surface (a side part and a chamfer part) of a glass substrate.

(工程3)の主平面研磨工程については、両面研磨装置を用い、ガラス基板の主平面に研磨液を供給しながらガラス基板の上下主平面を同時に研磨するものである。本発明のガラス基板の研磨は、1次研磨のみでもよく、1次研磨と2次研磨を実施してもよく、2次研磨の後に3次研磨を実施してもよい。   About the main plane polishing process of (Process 3), the upper and lower main planes of a glass substrate are grind | polished simultaneously using a double-side polish apparatus, supplying polishing liquid to the main plane of a glass substrate. The glass substrate of the present invention may be polished only by primary polishing, primary polishing and secondary polishing may be performed, or tertiary polishing may be performed after secondary polishing.

上記(工程3)の主平面研磨工程の前において、主平面のラップ(例えば、遊離砥粒ラップ、固定砥粒ラップなど)を実施してもよい。また、各工程間にガラス基板の洗浄(工程間洗浄)やガラス基板表面のエッチング(工程間エッチング)を実施してもよい。なお、主平面のラップとは広義の主平面の研磨である。   Prior to the main plane polishing step (step 3), a main plane wrap (eg, loose abrasive wrap, fixed abrasive wrap, etc.) may be performed. In addition, glass substrate cleaning (inter-process cleaning) and glass substrate surface etching (inter-process etching) may be performed between the processes. The main plane lapping is polishing of the main plane in a broad sense.

さらに、ガラス基板の表層に圧縮応力層(強化層)を形成する強化工程(例えば、化学強化工程)を研磨工程前、または研磨工程後、あるいは研磨工程間で実施してもよい。
[第2の実施形態]
本実施の形態では、第1の実施形態で得られた磁気記録媒体用ガラス基板を用いた磁気記録媒体の製造方法について説明する。
Furthermore, you may implement the reinforcement | strengthening process (for example, chemical strengthening process) which forms a compression stress layer (strengthening layer) in the surface layer of a glass substrate before a grinding | polishing process, after a grinding | polishing process, or between grinding | polishing processes.
[Second Embodiment]
In the present embodiment, a method for manufacturing a magnetic recording medium using the glass substrate for magnetic recording medium obtained in the first embodiment will be described.

磁気記録媒体は、第1の実施形態で説明した磁気記録媒体用ガラス基板の上に磁性層等を成膜することにより磁気記録媒体(磁気ディスク)とすることができる。   The magnetic recording medium can be a magnetic recording medium (magnetic disk) by forming a magnetic layer or the like on the glass substrate for magnetic recording medium described in the first embodiment.

磁気記録媒体には水平磁気記録方式、垂直磁気記録方式があるが、ここでは垂直磁気記録方式を例に手順を以下に説明する。   The magnetic recording medium includes a horizontal magnetic recording method and a perpendicular magnetic recording method. Here, the procedure will be described below by taking the perpendicular magnetic recording method as an example.

磁気記録媒体は、少なくともその表面に磁性層、保護層、潤滑膜を備えている。そして、垂直磁気記録方式の場合、磁気ヘッドからの記録磁界を環流させる役割を果たす軟磁性材料からなる軟磁性下地層を配するのが一般的である。このため、ガラス基板表面から順に、例えば、軟磁性下地層、非磁性中間層、垂直記録用磁性層、保護層、潤滑膜のように積層されている。   The magnetic recording medium includes at least a magnetic layer, a protective layer, and a lubricating film on the surface thereof. In the case of the perpendicular magnetic recording system, a soft magnetic underlayer made of a soft magnetic material that plays a role of circulating a recording magnetic field from a magnetic head is generally provided. For this reason, in order from the glass substrate surface, for example, a soft magnetic underlayer, a nonmagnetic intermediate layer, a perpendicular recording magnetic layer, a protective layer, and a lubricating film are laminated.

各層について以下に説明する。   Each layer will be described below.

軟磁性下地層としては例えば、CoNiFe、FeCoB、CoCuFe、NiFe、FeAlSi、FeTaN、FeN、FeTaC、CoFeB、CoZrN等が使用できる。   As the soft magnetic underlayer, for example, CoNiFe, FeCoB, CoCuFe, NiFe, FeAlSi, FeTaN, FeN, FeTaC, CoFeB, CoZrN, or the like can be used.

そして、非磁性中間層は、Ru,Ru合金等から構成される。この非磁性中間層は垂直記録用磁性層のエピタキシャル成長を容易にするための機能、及び軟磁性下地層と記録用磁性層との間での磁気交換結合を断つ機能を有する。   The nonmagnetic intermediate layer is made of Ru, Ru alloy or the like. This nonmagnetic intermediate layer has a function for facilitating the epitaxial growth of the perpendicular recording magnetic layer and a function for breaking the magnetic exchange coupling between the soft magnetic underlayer and the recording magnetic layer.

垂直記録用磁性層は、磁化容易軸が基板面に対して垂直方向を向いた磁性膜であり、少なくともCo、Ptを含んでいる。そして、高い固有媒体ノイズの原因となる粒間交換結合を低減するため、良好に隔離された微粒子構造(グラニュラー構造)とするのが良い。具体的には、CoPt系合金などに酸化物(SiO、SiO、Cr、CoO、Ta、TiO等)や、Cr、B、Cu、Ta、Zrなどを添加したものを用いるのがよい。 The perpendicular recording magnetic layer is a magnetic film having an easy axis of magnetization oriented in a direction perpendicular to the substrate surface, and includes at least Co and Pt. In order to reduce intergranular exchange coupling that causes high intrinsic medium noise, a well-isolated fine particle structure (granular structure) is preferable. Specifically, an oxide (SiO 2 , SiO, Cr 2 O 3 , CoO, Ta 2 O 3 , TiO 2, etc.), Cr, B, Cu, Ta, Zr or the like added to a CoPt alloy or the like Should be used.

ここまで説明した軟磁性下地層、非磁性中間層、垂直記録用磁性層はインラインスパッタ法、DCマグネトロンスパッタ法などで連続的に製造することができる。   The soft magnetic underlayer, nonmagnetic intermediate layer, and perpendicular recording magnetic layer described so far can be continuously manufactured by an in-line sputtering method, a DC magnetron sputtering method, or the like.

次いで、保護層は垂直記録用磁性層の腐食を防ぎ、かつ、磁気ヘッドが媒体に接触した場合でも媒体表面の損傷を防ぐために設けられたものであり、垂直記録用磁性層の上に設けられる。保護層としてはC、ZrO、SiOなどを含む材料を用いることができる。 Next, the protective layer is provided to prevent corrosion of the perpendicular recording magnetic layer and to prevent damage to the surface of the medium even when the magnetic head comes into contact with the medium, and is provided on the perpendicular recording magnetic layer. . As the protective layer, a material containing C, ZrO 2 , SiO 2 or the like can be used.

その形成方法としては、例えばインラインスパッタ法、CVD法、スピンコート法などを用いることができる。   As the formation method, for example, an in-line sputtering method, a CVD method, a spin coating method, or the like can be used.

保護層の表面には磁気ヘッドと記録媒体(磁気ディスク)との摩擦を低減するために、潤滑層を形成する。潤滑層は、例えばパーフルオロポリエーテル、フッ素化アルコール、フッ素化カルボン酸などを用いることができる。潤滑層についてはディップ法、スプレー法などで形成することができる。   A lubricating layer is formed on the surface of the protective layer in order to reduce friction between the magnetic head and the recording medium (magnetic disk). For the lubricating layer, for example, perfluoropolyether, fluorinated alcohol, fluorinated carboxylic acid, or the like can be used. The lubricating layer can be formed by a dip method, a spray method, or the like.

以上、説明してきたように、第1の実施形態で説明してきた磁気記録媒体用ガラス基板上に磁性層等を形成して得られた磁気記録媒体は、サーボ情報を書き込んだ後も変位が少ないため、エラーの発生を抑制することが可能になる。   As described above, the magnetic recording medium obtained by forming a magnetic layer or the like on the glass substrate for magnetic recording medium described in the first embodiment has little displacement even after servo information is written. Therefore, it is possible to suppress the occurrence of errors.

以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。   Specific examples will be described below, but the present invention is not limited to these examples.

まず、以下の実施例、比較例における、磁気記録媒体用ガラス基板の評価方法、及び、ガラス基板表面に磁性層などの薄膜を成膜した磁気記録媒体の評価方法について説明する。
(1)擬弾性変形量
擬弾性変形量A〜Cは、第1の実施形態に説明したように、まず、磁気記録媒体用ガラス基板に荷重を加える前の平坦度F(−48h)と、荷重を48時間加えた後これを取り除いてから5時間、48時間経過時の平坦度F(5h)、F(48h)をそれぞれ測定した。
First, a method for evaluating a glass substrate for a magnetic recording medium and a method for evaluating a magnetic recording medium in which a thin film such as a magnetic layer is formed on the glass substrate surface will be described in the following Examples and Comparative Examples.
(1) Pseudoelastic deformation amount As described in the first embodiment, the pseudoelastic deformation amounts A to C are first a flatness F (−48 h) before applying a load to the glass substrate for a magnetic recording medium, and After the load was applied for 48 hours, the flatness F (5 h) and F (48 h) after the lapse of 5 hours and 48 hours after removing the load were measured.

各時間における平坦度の測定は、位相測定干渉法(フェイズシフト法)により行った。具体的には、干渉式平坦度測定機(Zygo社製、型式:Zygo GI Flat(MESA))を使用し、680nmの測定波長で測定した。   The flatness at each time was measured by a phase measurement interferometry (phase shift method). Specifically, an interference type flatness measuring device (manufactured by Zygo, model: Zygo GI Flat (MESA)) was used, and measurement was performed at a measurement wavelength of 680 nm.

その後、測定した各平坦度から以下の式により擬弾性変形量A〜Cを算出した。
(擬弾性変形量A)=|F(5h)−F(−48h)|
(擬弾性変形量B)=|F(5h)−F(48h)|
(擬弾性変形量C)=F(5h)
ここで、磁気記録媒体用ガラス基板に荷重を加える際の条件について説明する。
Thereafter, pseudoelastic deformation amounts A to C were calculated from the measured flatnesses by the following formula.
(Pseudoelastic deformation amount A) = | F (5h) −F (−48h) |
(Pseudoelastic deformation amount B) = | F (5h) −F (48h) |
(Pseudoelastic deformation amount C) = F (5 h)
Here, conditions for applying a load to the glass substrate for a magnetic recording medium will be described.

まず、図2に示すように磁気記録媒体用ガラス基板の両端部分をV字ブロックにより支持した。   First, as shown in FIG. 2, both end portions of the glass substrate for a magnetic recording medium were supported by V-shaped blocks.

支持部分14は直径方向の両端に配置されており、2つの両端部(支持部)は弦141、142と(弦により切り取られた短い方の弧である)円弧によって囲まれており、2つの両端部は同一の形状になっている。そして、弦141、142と円弧の間の距離の最大値W1は磁気記録媒体用ガラス基板の直径の3.8%になるように配置した。   The support portion 14 is disposed at both ends in the diametrical direction, and the two end portions (support portions) are surrounded by the chords 141 and 142 and an arc (which is a shorter arc cut by the chord). Both ends have the same shape. The maximum value W1 of the distance between the chords 141 and 142 and the circular arc was arranged to be 3.8% of the diameter of the magnetic recording medium glass substrate.

次に、V字ブロックによって支持された両端部分を構成する弦141、142と平行になるように、荷重15を磁気記録媒体用ガラス基板の主平面上に配置した。本実施例では、荷重のサイズとしては、その横幅、すなわち、図2中のW2が磁気記録媒体用ガラス基板の直径の67%である荷重を用いた。この場合、荷重の幅方向の中心線が磁気記録媒体用ガラス基板の中心を通るように配置する。   Next, the load 15 was arranged on the main plane of the glass substrate for magnetic recording medium so as to be parallel to the strings 141 and 142 constituting both end portions supported by the V-shaped block. In the present embodiment, as the size of the load, a load whose width, that is, W2 in FIG. 2 is 67% of the diameter of the glass substrate for magnetic recording medium was used. In this case, it arrange | positions so that the centerline of the width direction of a load may pass the center of the glass substrate for magnetic recording media.

また、縦方向については、荷重の横幅の範囲全体に渡って磁気記録媒体用ガラス基板を完全に覆るよう、磁気記録媒体用ガラス基板の直径よりも長いものを用いた。
(2)リード・ライトテスト
得られた磁気記録媒体用ガラス基板について磁性層等を形成した後、以下に説明する手順によりリード・ライトテストを行った。
Further, in the vertical direction, a material longer than the diameter of the glass substrate for magnetic recording medium was used so as to completely cover the glass substrate for magnetic recording medium over the entire range of the lateral width of the load.
(2) Read / Write Test A magnetic layer and the like were formed on the obtained glass substrate for a magnetic recording medium, and then a read / write test was performed according to the procedure described below.

具体的には、磁気記録媒体用ガラス基板に磁性層等を形成した磁気記録媒体をハードディスクドライブ(HDD)に組み込み、下記の手順にてサーボ情報を書き込んだ。その後、下記実施例の手順により、トラック密度約254TPI(Track per inch)、線記録密度約1500BPI(Bit per inch)の条件にて磁気信号を記録し、その信号を読み出すときのエラー発生の有無を確認した。   Specifically, a magnetic recording medium in which a magnetic layer or the like was formed on a glass substrate for a magnetic recording medium was incorporated into a hard disk drive (HDD), and servo information was written according to the following procedure. Thereafter, according to the procedure of the following embodiment, a magnetic signal is recorded under the condition of a track density of about 254 TPI (Track per inch) and a linear recording density of about 1500 BPI (Bit per inch), and whether or not an error occurs when the signal is read out is checked. confirmed.

本実施例では、比ヤング率が高いガラス基板数種類(表1に示す例1〜例9の磁気記録媒体用ガラス基板)について検討を行った。   In this example, several types of glass substrates with high specific Young's modulus (Example 1 to Example 9 glass substrates for magnetic recording media shown in Table 1) were examined.

Figure 0005348304
(磁気記録媒体用ガラス基板の製造)
各磁気記録媒体用ガラス基板は、表1の例1〜例9のガラス素基板を用いて、以下の手順により、直径65mm、板厚0.6mm、中央部に20mmの円孔を有するドーナツ形状に加工した。
Figure 0005348304
(Manufacture of glass substrates for magnetic recording media)
Each glass substrate for a magnetic recording medium is a donut shape having a diameter of 65 mm, a plate thickness of 0.6 mm, and a central hole of 20 mm using the glass base substrates of Examples 1 to 9 in Table 1 according to the following procedure. It was processed into.

まず、ガラス素基板から中央部に円孔を有する円盤形状ガラス基板に加工する。   First, the glass base substrate is processed into a disk-shaped glass substrate having a circular hole in the center.

この円盤形状ガラス基板の内周端面と外周端面を、面取り角度45°の磁気記録媒体用ガラス基板が得られるように面取り加工を行う(内周面取り工程、外周面取り工程)。   The inner peripheral end face and the outer peripheral end face of the disk-shaped glass substrate are chamfered so as to obtain a glass substrate for a magnetic recording medium having a chamfering angle of 45 ° (inner peripheral chamfering process, outer peripheral chamfering process).

面取り加工後、アルミナ砥粒を用いてガラス基板上下主平面をラッピング加工し、砥粒を洗浄除去する。   After chamfering, the upper and lower principal planes of the glass substrate are lapped using alumina abrasive grains, and the abrasive grains are washed and removed.

次に、磁気記録媒体用ガラス基板の外周側面部と外周面取り部を、研磨ブラシと酸化セリウム砥粒を含有する研磨液を用いて研磨し、外周側面と外周面取り部の加工変質層(傷など)を除去し、鏡面となるように外周端面を研磨加工する(外周端面研磨工程)。   Next, the outer peripheral side surface portion and outer peripheral chamfered portion of the glass substrate for magnetic recording medium are polished with a polishing liquid containing a polishing brush and cerium oxide abrasive grains, and a work-affected layer (such as scratches) on the outer peripheral side surface and outer peripheral chamfered portion. ) And the outer peripheral end face is polished so as to be a mirror surface (outer peripheral end face polishing step).

外周端面研磨後、磁気記録媒体用ガラス基板の内周側面部と内周面取り部を研磨ブラシと酸化セリウム砥粒を含有する研磨液用いて研磨し、内周側面部と内周面取り部の加工変質層(傷など)を除去し、鏡面となるように内周端面を研磨加工する(内周端面研磨工程)。内周端面研磨したガラス基板は、砥粒を洗浄除去する。   After the outer peripheral end surface is polished, the inner peripheral side surface portion and inner peripheral chamfered portion of the glass substrate for magnetic recording medium are polished with a polishing liquid containing a polishing brush and cerium oxide abrasive grains, and the inner peripheral side surface portion and inner peripheral chamfered portion are processed. The deteriorated layer (such as scratches) is removed, and the inner peripheral end face is polished so as to have a mirror surface (inner peripheral end face polishing step). The glass substrate subjected to the inner peripheral end surface polishing removes the abrasive grains.

ガラス基板の端面を加工した後、ダイヤモンド砥粒を含有する固定粒工具と研削液を用いて、ガラス基板上下主平面をラッピング加工し、洗浄する。   After processing the end face of the glass substrate, the upper and lower main planes of the glass substrate are lapped using a fixed grain tool containing diamond abrasive grains and a grinding liquid, and cleaned.

次に、研磨具として硬質ウレタン製の研磨パッドと酸化セリウム砥粒を含有する研磨液を用いて、22B型両面研磨装置(スピードファム社製、製品名:DSM22B−6PV−4MH)により上下主平面を1次研磨し、酸化セリウムを洗浄除去した。   Next, using a polishing liquid containing a hard urethane polishing pad and cerium oxide abrasive grains as a polishing tool, a 22B-type double-side polishing apparatus (product name: DSM22B-6PV-4MH manufactured by Speedfam Co., Ltd.) Was ground to remove cerium oxide.

1次研磨後のガラス基板は、研磨具として軟質ウレタン製の研磨パッドと、上記の酸化セリウム砥粒よりも平均粒径が小さい酸化セリウム砥粒を含有する研磨液を用いて、22B型両面研磨装置により上下主平面を2次研磨し、酸化セリウムを洗浄除去した。   The glass substrate after the primary polishing is a 22B double-sided polishing using a polishing pad containing a soft urethane polishing pad as a polishing tool and a cerium oxide abrasive having an average particle size smaller than that of the cerium oxide abrasive. The upper and lower main planes were secondarily polished by an apparatus, and cerium oxide was removed by washing.

2次研磨後のガラス基板は、3次研磨(仕上げ研磨)を行う。3次研磨の研磨具として軟質ウレタン製研磨パッドとコロイダルシリカを含有する研磨液を用いて、両面研磨装置により上下主平面を研磨加工した。   The glass substrate after the secondary polishing is subjected to tertiary polishing (finish polishing). Using a polishing liquid containing a soft urethane polishing pad and colloidal silica as a polishing tool for tertiary polishing, the upper and lower main planes were polished by a double-side polishing apparatus.

仕上げ研磨(3次研磨)したガラス基板は、スクラブ洗浄、洗剤溶液に浸漬した状態での超音波洗浄、純水に浸漬した状態での超音波洗浄、を順次行い(精密洗浄)、イソプロピルアルコール蒸気にて乾燥した。   The glass substrate after final polishing (tertiary polishing) is subjected to scrub cleaning, ultrasonic cleaning immersed in a detergent solution, ultrasonic cleaning immersed in pure water (precision cleaning), and isopropyl alcohol vapor. Dried.

得られた各磁気記録媒体用ガラス基板について、擬弾性変形量A〜Cの測定を行ったので結果を表2に示す。
(磁気記録媒体の製造)
次に、上記例1〜例9の磁気記録媒体用ガラス基板各100枚に下地層、磁性層、保護層、潤滑層を順次設けて磁気記録媒体を製造した。
The obtained glass substrates for magnetic recording media were measured for pseudoelastic deformation amounts A to C. Table 2 shows the results.
(Manufacture of magnetic recording media)
Next, a magnetic recording medium was manufactured by sequentially providing an underlayer, a magnetic layer, a protective layer, and a lubricating layer on each of the 100 glass substrates for magnetic recording media of Examples 1 to 9.

具体的な手順を説明すると、例1〜9それぞれの磁気記録媒体用ガラス基板の表面に、インライン型スパッタリング装置を用いて、軟磁性下地層としてNiFe層、非磁性中間層としてRu層、垂直磁気記録層としてCoCrPtSiOのグラニュラ構造層を、順次積層した。次に、CVD法にてダイヤモンドライクカーボン膜を保護層として形成した。その後、ディップ法によってパーフルオロポリエーテルを有する潤滑膜を形成し、磁気記録媒体とした。 The specific procedure will be described. On the surface of each of the glass substrates for magnetic recording media of Examples 1 to 9, using an in-line type sputtering apparatus, a NiFe layer as a soft magnetic underlayer, a Ru layer as a nonmagnetic intermediate layer, a perpendicular magnetic layer A granular structure layer of CoCrPtSiO 2 was sequentially laminated as a recording layer. Next, a diamond-like carbon film was formed as a protective layer by a CVD method. Thereafter, a lubricating film having perfluoropolyether was formed by a dip method to obtain a magnetic recording medium.

これらをそれぞれシッピングカセット(エンテグリス社製)に収納し、400mmHgの真空度でAlラミネート袋に真空包装し、48時間放置した。   Each of these was stored in a shipping cassette (manufactured by Entegris), vacuum packaged in an Al laminate bag at a vacuum degree of 400 mmHg, and left for 48 hours.

48時間後包装を開封し、磁気記録媒体を取り出してHDD装置に組み上げ、254kTPIに対応する条件でサーボ情報を書き込んだ。サーボ情報書き込みは、開封後5時間後に行った。サーボ情報書き込みから43時間後(開封後48時間後)に、HDDのリード・ライトテストを実施した。   After 48 hours, the package was opened, the magnetic recording medium was taken out, assembled into an HDD device, and servo information was written under conditions corresponding to 254 kTPI. Servo information was written 5 hours after opening. An HDD read / write test was performed 43 hours after servo information writing (48 hours after opening).

リード・ライトテストの結果を表2に示す。   Table 2 shows the results of the read / write test.

Figure 0005348304
これによると擬弾性変形緩和量Aが本発明の規定を充足する実施例の例1〜例7においては、リード・ライトテストでのエラー発生率が最も大きいものでも3%程度であり、比較例である例8、例9と比較して半分程度に抑制できていることが確認できた。
Figure 0005348304
According to this, in Examples 1 to 7 in which the pseudo-elastic deformation relaxation amount A satisfies the provisions of the present invention, even the highest error occurrence rate in the read / write test is about 3%. It was confirmed that it was suppressed to about half compared with Examples 8 and 9 which are.

エラーの発生率が高かった例8、9の磁気ディスクの欠点を解析したところ、外周部分にエラーが集中していることが確認された。その原因は以下のように考えられる。   When the defects of the magnetic disks of Examples 8 and 9 where the error occurrence rate was high were analyzed, it was confirmed that errors were concentrated on the outer peripheral portion. The cause is considered as follows.

シッピングカセット内に保持された磁気記録媒体は、真空包装による大気からの圧力で変形し、開包後はそれぞれの擬弾性特性に従って徐々に元の形状に戻る。しかしながら、擬弾性特性に劣る例8、9では、サーボ情報書き込み時に、まだ元の形状に戻りきっておらず、その後元の形状に戻るため、以後のリード・ライトテスト時にサーボ情報の位置ずれが発生したものと考えられる。   The magnetic recording medium held in the shipping cassette is deformed by the pressure from the atmosphere by vacuum packaging, and after opening, gradually returns to its original shape according to the respective pseudoelastic characteristics. However, in Examples 8 and 9, which are inferior in pseudo-elasticity characteristics, the servo information has not yet returned to its original shape at the time of servo information writing, and then returns to the original shape. It is thought that it occurred.

形状の変化は外周ほど顕著なため、外周部にエラーが集中したものと推認される。   Since the change in shape is more conspicuous at the outer periphery, it is assumed that errors are concentrated on the outer periphery.

比較例である例8は、本件等で用いた他のガラス基板と比較しても比弾性が高く、フラッタリングが抑えられるため、磁気記録媒体の実装評価においてエラーの発生が抑制されるはずだが、上記のようにエラーの発生率が高かった。これは、例8の磁気記録媒体用ガラス基板の疑弾性変形量が大きいことに起因していると考えられる。これらの結果から、磁気記録媒体のエラーの発生を充分に抑制するためには、従来考えられていたように磁気記録媒体用ガラス基板として比弾性が高いガラス基板を用いるだけでは不充分であり、磁気記録媒体用ガラス基板の疑弾性変形量が小さいものを用いる必要があることが分かる。   Example 8 which is a comparative example has high specific elasticity even when compared with other glass substrates used in this case and the like, and fluttering is suppressed, so that the occurrence of errors should be suppressed in the evaluation of mounting of the magnetic recording medium. As mentioned above, the incidence of errors was high. This is considered to be caused by the large amount of pseudoelastic deformation of the glass substrate for magnetic recording medium of Example 8. From these results, in order to sufficiently suppress the occurrence of errors in the magnetic recording medium, it is not sufficient to use a glass substrate having a high specific elasticity as a glass substrate for a magnetic recording medium, as conventionally considered, It can be seen that it is necessary to use a glass substrate for a magnetic recording medium having a small amount of pseudoelastic deformation.

さらに、擬弾性変形量B、Cについても本発明の規定を充足する例1〜6については、特にエラーの発生率が多いものでも1%であり、エラーの発生を特に抑制できていることが確認できた。   Furthermore, with respect to the examples 1 to 6 that satisfy the provisions of the present invention for the pseudoelastic deformation amounts B and C, even when the error occurrence rate is particularly high, it is 1%, and the occurrence of errors can be particularly suppressed. It could be confirmed.

以上の本実施例の結果から、擬弾性変形量が所定の範囲の磁気記録媒体用ガラス基板を選択することによって、エラー(読み取り/書き込みエラー)発生を抑制した磁気記録媒体とすることができることが分かる。   From the results of the present embodiment, it is possible to obtain a magnetic recording medium in which errors (reading / writing errors) are suppressed by selecting a glass substrate for magnetic recording medium whose pseudoelastic deformation amount is in a predetermined range. I understand.

13 磁気記録媒体用ガラス基板
14 両端部
15 荷重
13 Glass substrate for magnetic recording medium 14 Both ends 15 Load

Claims (6)

円盤形状のガラス基板の主平面を研磨する主平面研磨工程を有する磁気記録媒体用ガラス基板の製造方法であって、
前記主平面研磨工程後の磁気記録媒体用ガラス基板において、
前記磁気記録媒体用ガラス基板の対向する2箇所に設けられた弦と円弧によって囲まれ、前記弦と前記円弧との間の距離の最大値は前記磁気記録媒体用ガラス基板の直径の2.3%〜7.7%の長さである、直径方向の両端部を下面側から支持し、前記磁気記録媒体用ガラス基板の直径の35〜80%の長さの幅であり、該幅方向の中心線は前記磁気記録媒体用ガラス基板の中心を通り、前記弦と平行である前記磁気記録媒体用ガラス基板の中央領域上面に、(磁気記録媒体用ガラス基板の主平面の面積)mm×2.28mN/mmにより計算される荷重を48時間加えた後に荷重を取り除き、荷重を取り除いた後5時間経過時の平坦度と、
荷重を加える前の平坦度との差の絶対値を擬弾性変形量Aとした場合に、
前記擬弾性変形量Aを4.2μm以下とすることを特徴とする磁気記録媒体用ガラス基板の製造方法。
A method for producing a glass substrate for a magnetic recording medium comprising a main plane polishing step for polishing a main plane of a disk-shaped glass substrate,
In the glass substrate for a magnetic recording medium after the main surface polishing step,
The magnetic recording medium glass substrate is surrounded by a string and a circular arc provided at two opposing positions, and the maximum value of the distance between the string and the circular arc is 2.3 of the diameter of the magnetic recording medium glass substrate. The both ends in the diametrical direction having a length of% to 7.7% are supported from the lower surface side, and the width is 35 to 80% of the diameter of the glass substrate for a magnetic recording medium. A center line passes through the center of the magnetic recording medium glass substrate and is parallel to the chord on the upper surface of the central region of the magnetic recording medium glass substrate (area of the main plane of the magnetic recording medium glass substrate) mm 2 × After removing the load after adding the load calculated by 2.28 mN / mm 2 for 48 hours, the flatness at the time of 5 hours after removing the load,
When the absolute value of the difference from the flatness before applying a load is the pseudoelastic deformation amount A,
A method for producing a glass substrate for a magnetic recording medium, wherein the pseudoelastic deformation amount A is 4.2 μm or less.
前記主平面研磨工程後の磁気記録媒体用ガラス基板において、
前記磁気記録媒体用ガラス基板の対向する2箇所に設けられた弦と円弧によって囲まれ、前記弦と前記円弧との間の距離の最大値は前記磁気記録媒体用ガラス基板の直径の2.3%〜7.7%の長さである、直径方向の両端部を下面側から支持し、前記磁気記録媒体用ガラス基板の直径の35〜80%の長さの幅であり、該幅方向の中心線は前記磁気記録媒体用ガラス基板の中心を通り、前記弦と平行である前記磁気記録媒体用ガラス基板の中央領域上面に、(磁気記録媒体用ガラス基板の主平面の面積)mm×2.28mN/mmにより計算される荷重を48時間加えた後に荷重を取り除き、荷重を取り除いた後5時間経過時の平坦度と、
荷重を取り除いた後48時間経過時の平坦度との差の絶対値を擬弾性変形量Bとした場合に、
前記擬弾性変形量Bを3.0μm以下とする請求項1に記載の磁気記録媒体用ガラス基板の製造方法。
In the glass substrate for a magnetic recording medium after the main surface polishing step,
The magnetic recording medium glass substrate is surrounded by a string and a circular arc provided at two opposing positions, and the maximum value of the distance between the string and the circular arc is 2.3 of the diameter of the magnetic recording medium glass substrate. The both ends in the diametrical direction having a length of% to 7.7% are supported from the lower surface side, and the width is 35 to 80% of the diameter of the glass substrate for a magnetic recording medium. A center line passes through the center of the magnetic recording medium glass substrate and is parallel to the chord, on the upper surface of the central region of the magnetic recording medium glass substrate (area of the main plane of the magnetic recording medium glass substrate) mm 2 × After removing the load after adding the load calculated by 2.28 mN / mm 2 for 48 hours, the flatness at the time of 5 hours after removing the load,
When the absolute value of the difference from the flatness after 48 hours after removing the load is the pseudoelastic deformation amount B,
The method for producing a glass substrate for a magnetic recording medium according to claim 1, wherein the pseudoelastic deformation amount B is 3.0 μm or less.
前記主平面研磨工程後の磁気記録媒体用ガラス基板において、
前記磁気記録媒体用ガラス基板の対向する2箇所に設けられた弦と円弧によって囲まれ、前記弦と前記円弧との間の距離の最大値は前記磁気記録媒体用ガラス基板の直径の2.3%〜7.7%の長さである、直径方向の両端部を下面側から支持し、前記磁気記録媒体用ガラス基板の直径の35〜80%の長さの幅であり、該幅方向の中心線は前記磁気記録媒体用ガラス基板の中心を通り、前記弦と平行である前記磁気記録媒体用ガラス基板の中央領域上面に、(磁気記録媒体用ガラス基板の主平面の面積)mm×2.28mN/mmにより計算される荷重を48時間加えた後に荷重を取り除き、荷重を取り除いた後、5時間経過時の平坦度である擬弾性変形量Cを5.5μm以下とする請求項1または2に記載の磁気記録媒体用ガラス基板の製造方法。
In the glass substrate for a magnetic recording medium after the main surface polishing step,
The magnetic recording medium glass substrate is surrounded by a string and a circular arc provided at two opposing positions, and the maximum value of the distance between the string and the circular arc is 2.3 of the diameter of the magnetic recording medium glass substrate. The both ends in the diametrical direction having a length of% to 7.7% are supported from the lower surface side, and the width is 35 to 80% of the diameter of the glass substrate for a magnetic recording medium. A center line passes through the center of the magnetic recording medium glass substrate and is parallel to the chord, on the upper surface of the central region of the magnetic recording medium glass substrate (area of the main plane of the magnetic recording medium glass substrate) mm 2 × 2. A load calculated by 2.28 mN / mm 2 is applied for 48 hours, and then the load is removed. After removing the load, the amount of pseudoelastic deformation C, which is flatness after 5 hours, is set to 5.5 μm or less. The glass substrate for magnetic recording media according to 1 or 2 A manufacturing method of a board.
磁気記録媒体用ガラス基板において、
前記磁気記録媒体用ガラス基板の対向する2箇所に設けられた弦と円弧によって囲まれ、前記弦と前記円弧との間の距離の最大値は前記磁気記録媒体用ガラス基板の直径の2.3%〜7.7%の長さである、直径方向の両端部を下面側から支持し、前記磁気記録媒体用ガラス基板の直径の35〜80%の長さの幅であり、該幅方向の中心線は前記磁気記録媒体用ガラス基板の中心を通り、前記弦と平行である前記磁気記録媒体用ガラス基板の中央領域上面に、(磁気記録媒体用ガラス基板の主平面の面積)mm×2.28mN/mmにより計算される荷重を48時間加えた後に荷重を取り除き、荷重を取り除いた後5時間経過時の平坦度と、
荷重を加える前の平坦度との差の絶対値を擬弾性変形量Aとした場合に、
前記擬弾性変形量Aが4.2μm以下である磁気記録媒体用ガラス基板を用いたことを特徴とする磁気記録媒体の製造方法。
In a glass substrate for a magnetic recording medium,
The magnetic recording medium glass substrate is surrounded by a string and a circular arc provided at two opposing positions, and the maximum value of the distance between the string and the circular arc is 2.3 of the diameter of the magnetic recording medium glass substrate. The both ends in the diametrical direction having a length of% to 7.7% are supported from the lower surface side, and the width is 35 to 80% of the diameter of the glass substrate for a magnetic recording medium. A center line passes through the center of the magnetic recording medium glass substrate and is parallel to the chord, on the upper surface of the central region of the magnetic recording medium glass substrate (area of the main plane of the magnetic recording medium glass substrate) mm 2 × After removing the load after adding the load calculated by 2.28 mN / mm 2 for 48 hours, the flatness at the time of 5 hours after removing the load,
When the absolute value of the difference from the flatness before applying a load is the pseudoelastic deformation amount A,
A magnetic recording medium manufacturing method using a glass substrate for a magnetic recording medium having a pseudoelastic deformation amount A of 4.2 μm or less.
磁気記録媒体用ガラス基板において、
前記磁気記録媒体用ガラス基板の対向する2箇所に設けられた弦と円弧によって囲まれ、前記弦と前記円弧との間の距離の最大値は前記磁気記録媒体用ガラス基板の直径の2.3%〜7.7%の長さである、直径方向の両端部を下面側から支持し、前記磁気記録媒体用ガラス基板の直径の35〜80%の長さの幅であり、該幅方向の中心線は前記磁気記録媒体用ガラス基板の中心を通り、前記弦と平行である前記磁気記録媒体用ガラス基板の中央領域上面に、(磁気記録媒体用ガラス基板の主平面の面積)mm×2.28mN/mmにより計算される荷重を48時間加えた後に荷重を取り除き、荷重を取り除いた後5時間経過時の平坦度と、
荷重を取り除いた後48時間経過時の平坦度との差の絶対値を擬弾性変形量Bとした場合に、
前記擬弾性変形量Bが3.0μm以下である磁気記録媒体用ガラス基板を用いる請求項4に記載の磁気記録媒体の製造方法。
In a glass substrate for a magnetic recording medium,
The magnetic recording medium glass substrate is surrounded by a string and a circular arc provided at two opposing positions, and the maximum value of the distance between the string and the circular arc is 2.3 of the diameter of the magnetic recording medium glass substrate. The both ends in the diametrical direction having a length of% to 7.7% are supported from the lower surface side, and the width is 35 to 80% of the diameter of the glass substrate for a magnetic recording medium. A center line passes through the center of the magnetic recording medium glass substrate and is parallel to the chord, on the upper surface of the central region of the magnetic recording medium glass substrate (area of the main plane of the magnetic recording medium glass substrate) mm 2 × After removing the load after adding the load calculated by 2.28 mN / mm 2 for 48 hours, the flatness at the time of 5 hours after removing the load,
When the absolute value of the difference from the flatness after 48 hours after removing the load is the pseudoelastic deformation amount B,
The method for producing a magnetic recording medium according to claim 4, wherein a glass substrate for magnetic recording medium having a pseudo elastic deformation amount B of 3.0 μm or less is used.
磁気記録媒体用ガラス基板において、
前記磁気記録媒体用ガラス基板の対向する2箇所に設けられた弦と円弧によって囲まれ、前記弦と前記円弧との間の距離の最大値は前記磁気記録媒体用ガラス基板の直径の2.3%〜7.7%の長さである、直径方向の両端部を下面側から支持し、前記磁気記録媒体用ガラス基板の直径の35〜80%の長さの幅であり、該幅方向の中心線は前記磁気記録媒体用ガラス基板の中心を通り、前記弦と平行である前記磁気記録媒体用ガラス基板の中央領域上面に、(磁気記録媒体用ガラス基板の主平面の面積)mm×2.28mN/mmにより計算される荷重を48時間加えた後に荷重を取り除き、荷重を取り除いた後、5時間経過時の平坦度である擬弾性変形量Cが5.5μm以下である磁気記録媒体用ガラス基板を用いる請求項4または5に記載の磁気記録媒体の製造方法。
In a glass substrate for a magnetic recording medium,
The magnetic recording medium glass substrate is surrounded by a string and a circular arc provided at two opposing positions, and the maximum value of the distance between the string and the circular arc is 2.3 of the diameter of the magnetic recording medium glass substrate. The both ends in the diametrical direction having a length of% to 7.7% are supported from the lower surface side, and the width is 35 to 80% of the diameter of the glass substrate for a magnetic recording medium. A center line passes through the center of the magnetic recording medium glass substrate and is parallel to the chord, on the upper surface of the central region of the magnetic recording medium glass substrate (area of the main plane of the magnetic recording medium glass substrate) mm 2 × 2. Magnetic recording in which the load calculated by 2.28 mN / mm 2 is applied for 48 hours, then the load is removed, and after removing the load, the pseudoelastic deformation amount C, which is flatness after 5 hours, is 5.5 μm or less. A glass substrate for medium is used or claim 4 or 6. A method for producing a magnetic recording medium according to 5.
JP2012231336A 2012-10-19 2012-10-19 Method for manufacturing glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium Expired - Fee Related JP5348304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012231336A JP5348304B2 (en) 2012-10-19 2012-10-19 Method for manufacturing glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012231336A JP5348304B2 (en) 2012-10-19 2012-10-19 Method for manufacturing glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011282327A Division JP5310834B2 (en) 2011-12-22 2011-12-22 Glass substrate for magnetic recording medium and magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2013134804A JP2013134804A (en) 2013-07-08
JP5348304B2 true JP5348304B2 (en) 2013-11-20

Family

ID=48911389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012231336A Expired - Fee Related JP5348304B2 (en) 2012-10-19 2012-10-19 Method for manufacturing glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JP5348304B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5920403B2 (en) * 2013-06-21 2016-05-18 旭硝子株式会社 Method for manufacturing magnetic recording medium and magnetic recording medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040145A (en) * 2009-07-17 2011-02-24 Ohara Inc Method for manufacturing substrate for information storage medium

Also Published As

Publication number Publication date
JP2013134804A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP6332321B2 (en) Glass substrate and magnetic recording medium for magnetic recording medium
US10607647B2 (en) Magnetic disk substrate with specified changes in height or depth between adjacent raised or lowered portions and an offset portion on a main surface within a range of 92.0 to 97.0% in a radial direction from a center, a magnetic disk with substrate and magnetic disk device
JP2006236561A (en) Glass substrate for magnetic recording medium, and magnetic recording medium
JP5029777B1 (en) GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDING MEDIUM USING THE GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM
JP5915718B1 (en) Glass substrate for magnetic disk and magnetic disk
CN103978422A (en) Method for manufacturing glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
JP5348304B2 (en) Method for manufacturing glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium
JP5310834B2 (en) Glass substrate for magnetic recording medium and magnetic recording medium
JP2013073658A (en) Glass substrate for magnetic recording medium
JP2017199442A (en) Method of manufacturing substrate for magnetic recording medium, and packing body of substrate for magnetic recording medium
JP5212530B2 (en) GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDING MEDIUM USING THE GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM
JP5067498B1 (en) Glass substrate for magnetic recording medium and magnetic recording medium
JP5781845B2 (en) HDD glass substrate, HDD glass substrate manufacturing method, and HDD magnetic recording medium
JP4977795B1 (en) GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDING MEDIUM USING THE GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM
JP5494747B2 (en) Manufacturing method of glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
WO2017110109A1 (en) Glass substrate for magnetic recording medium and magnetic recording medium
CN104230164B (en) The manufacturing method and magnetic recording media of magnetic recording media
WO2014045653A1 (en) Method for manufacturing glass substrate for information recording medium
JP5234740B2 (en) Magnetic disk substrate manufacturing method and magnetic disk manufacturing method
JP2013089280A (en) Method of manufacturing magnetic recording medium glass substrate and method of manufacturing magnetic recording medium
JPWO2014002825A1 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM AND METHOD FOR PRODUCING GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

LAPS Cancellation because of no payment of annual fees