JP5348223B2 - Covering member - Google Patents

Covering member Download PDF

Info

Publication number
JP5348223B2
JP5348223B2 JP2011244077A JP2011244077A JP5348223B2 JP 5348223 B2 JP5348223 B2 JP 5348223B2 JP 2011244077 A JP2011244077 A JP 2011244077A JP 2011244077 A JP2011244077 A JP 2011244077A JP 5348223 B2 JP5348223 B2 JP 5348223B2
Authority
JP
Japan
Prior art keywords
film
coating
coated
sum
covering member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011244077A
Other languages
Japanese (ja)
Other versions
JP2012036506A (en
Inventor
護 木幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2011244077A priority Critical patent/JP5348223B2/en
Publication of JP2012036506A publication Critical patent/JP2012036506A/en
Application granted granted Critical
Publication of JP5348223B2 publication Critical patent/JP5348223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating member achieving long life in a strict cutting work condition such as increase of hardness of cutting object material. <P>SOLUTION: This coating member comprises a base material and a coating film deposited on the surface of the base material. In the coating member, at least one layer of the coating film is a hard film represented by (M<SB POS="POST">A</SB>L<SB POS="POST">D</SB>)X<SB POS="POST">R</SB>deposited by a PVD method, where M is two or more kinds of metal elements selected from Cr, Al, Ti, Hf, V, Zr, Ta, Mo, W, Y and Nb; L is at least one kind of added element selected from Mn, Cu, Ni, Co, B, Si and S; X is at least one kind of non-metal element selected from C, N and O; A is an atom ratio of M to the sum of M and L; D is an atom ratio of L to the sum of M and L; R is an atom ratio of X to the sum of M and L; and 0.90&le;A&le;0.99, 0.01&le;D&le;0.10, A+D=1, and 0.95&le;R&le;1.10 are satisfied; and the hard film shows the highest peak intensity in X-ray diffraction on the (220) plane. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、焼結合金、セラミックス、cBN焼結体、ダイヤモンド焼結体などの基材の表面に被膜を被覆した被覆部材に関する。その中でも、特にチップ、ドリル、エンドミルに代表される切削工具や各種の耐摩耗工具、耐摩耗部品に好適な被覆部材に関する。   The present invention relates to a covering member in which a surface of a base material such as a sintered alloy, ceramics, cBN sintered body, diamond sintered body, etc. is coated. In particular, the present invention relates to a covering member suitable for a cutting tool represented by a tip, a drill, an end mill, various wear-resistant tools, and wear-resistant parts.

焼結合金、セラミックス、cBN焼結体、ダイヤモンド焼結体などの基材の表面にPVD法によりTiC、TiCN、TiN、(Ti,Al)N、Al23などの被膜を被覆してなる被覆部材は、基材の高強度、高靱性と被膜の優れた耐摩耗性、耐酸化性、潤滑性、耐溶着性などを兼備しているため、切削工具、耐摩耗工具、耐摩耗部品として多用されている。これらの性能向上のために被膜の硬さや耐酸化性などが改良されてきた。 The surface of a base material such as a sintered alloy, ceramics, cBN sintered body, diamond sintered body, etc. is coated with a coating such as TiC, TiCN, TiN, (Ti, Al) N, Al 2 O 3 by the PVD method. The coated member combines the high strength and high toughness of the base material with the excellent wear resistance, oxidation resistance, lubricity, and welding resistance of the coating. It is used a lot. In order to improve these performances, the hardness and oxidation resistance of the coating have been improved.

PVD法により被覆された硬質皮膜の従来技術としては、(Ti,Al,Cr)(C,N)からなる切削工具用硬質皮膜がある(例えば、特許文献1参照。)。また、耐酸化性に優れた皮膜として、Al−Cr−N系皮膜がある。しかしながら、被削材、切削条件などの変化から、これらの皮膜を被覆した切削工具では、長寿命が得られないという問題があった。 As a conventional technique of a hard film coated by the PVD method, there is a hard film for a cutting tool made of (Ti, Al, Cr) (C, N) (for example, see Patent Document 1). Moreover, as a film excellent in oxidation resistance, there is an Al—Cr—N-based film. However, due to changes in the work material, cutting conditions, etc., there has been a problem that a long tool life cannot be obtained with a cutting tool coated with these films.

特開2003−71610号公報JP 2003-71610 A

近年、切削加工において高速度、高送り、被削材の高硬度化など厳しい加工条件が増えている。従来の被覆部材からなる切削工具では、近年の厳しい加工要求に応えられなくなってきた。本発明はこのような事情を鑑みてなされたものであり、切削加工において長寿命化を実現する被覆部材の提供を目的とする。   In recent years, severe machining conditions such as high speed, high feed, and high hardness of the work material are increasing in cutting. A cutting tool made of a conventional covering member cannot meet the recent severe processing demands. This invention is made | formed in view of such a situation, and it aims at provision of the coating | coated member which implement | achieves lifetime improvement in cutting.

従来のPVD法により被覆された(TiAl)N、(CrAl)N、(TiAlCr)Nなどの立方晶の硬質膜は、(111)面または(200)面に配向していた。本発明者は、PVD法で被覆された(TiAlSi)N、(CrAlB)N、(TiAlCrSi)Nなどの立方晶の硬質膜を被覆した被覆部材の切削性能の向上に取り組んできたところ、立方晶の硬質膜を(220)面に配向させることで、硬さが高くなり、高温における耐摩耗性が向上するとともに、耐酸化性が向上するという知見を得ることができた。本発明の硬質膜を被覆した被覆部材は、耐摩耗性および耐酸化性に優れるため、切削工具として用いると長寿命化を実現できることを見出した。   Cubic hard films such as (TiAl) N, (CrAl) N, and (TiAlCr) N coated by the conventional PVD method are oriented in the (111) plane or the (200) plane. The inventor has been working on improving the cutting performance of a coated member coated with a cubic hard film such as (TiAlSi) N, (CrAlB) N, and (TiAlCrSi) N coated by the PVD method. It was found that by aligning the hard film in the (220) plane, the hardness was increased, the wear resistance at high temperature was improved, and the oxidation resistance was improved. It has been found that the coated member coated with the hard film of the present invention is excellent in wear resistance and oxidation resistance, so that it can realize a long life when used as a cutting tool.

請求項1に係る被覆部材は、基材と基材の表面に被覆された被膜とからなり、被膜の少なくとも1層は、PVD法により被覆された(MAD)XR(但し、MはCr,Al,Ti,Hf,V,Zr,Ta,Mo,W,Y,Nbの中から選ばれた2種以上の金属元素を表し、LはMn,Cu,Ni,Co,B,Si,Sの中から選ばれた少なくとも1種の添加元素を表し、XはC,N,Oの中から選ばれた少なくとも1種の非金属元素を表し、AはMとLの合計に対するMの原子比を表し、DはMとLの合計に対するLの原子比を表し、RはMとLの合計に対するXの原子比を表し、0.90≦A≦0.99、0.01≦D≦0.10、A+D=1、0.95≦R≦1.10を満足する。)で表される硬質膜であり、硬質膜はX線回折における最高ピーク強度を(220)面に示すものである。 The covering member according to claim 1 is composed of a base material and a coating film coated on the surface of the base material, and at least one layer of the coating film is (M A L D ) X R (where M Represents two or more metal elements selected from Cr, Al, Ti, Hf, V, Zr, Ta, Mo, W, Y, and Nb, and L represents Mn, Cu, Ni, Co, B, and Si. , S represents at least one additive element selected from S, X represents at least one nonmetallic element selected from C, N, and O, and A represents the amount of M relative to the sum of M and L D represents the atomic ratio of L to the sum of M and L, R represents the atomic ratio of X to the sum of M and L, 0.90 ≦ A ≦ 0.99, 0.01 ≦ D ≦ 0.10, A + D = 1, 0.95 ≦ R ≦ 1.10), and the hard film is subject to X-ray diffraction. It shows the highest peak intensity in the (220) plane.

本発明の被覆部材の基材として、焼結合金、セラミックス、cBN焼結体、ダイヤモンド焼結体などを挙げることができる。その中でも焼結合金は耐欠損性と耐摩耗性に優れるため好ましく、その中でも超硬合金とサーメットがさらに好ましく、その中でも超硬合金がさらに好ましい。 Examples of the base material of the covering member of the present invention include sintered alloys, ceramics, cBN sintered bodies, and diamond sintered bodies. Among these, sintered alloys are preferable because they are excellent in fracture resistance and wear resistance. Among them, cemented carbide and cermet are more preferable, and cemented carbide is more preferable.

請求項1に係る被覆部材の被膜の少なくとも1層は、PVD法により被覆された(MAD)XR(但し、MはCr,Al,Ti,Hf,V,Zr,Ta,Mo,W,Y,Nbの中から選ばれた2種以上の金属元素を表し、LはMn,Cu,Ni,Co,B,Si,Sの中から選ばれた少なくとも1種の添加元素を表し、XはC,N,Oの中から選ばれた少なくとも1種の非金属元素を表し、AはMとLの合計に対するMの原子比を表し、DはMとLの合計に対するLの原子比を表し、RはMとLの合計に対するXの原子比を表し、0.90≦A≦0.99、0.01≦D≦0.10、A+D=1、0.95≦R≦1.10を満足する。)で表される立方晶系のNaCl型構造の硬質膜からなる。 At least one layer of the coating of the covering member according to claim 1, coated by PVD (M A L D) X R ( where, M is Cr, Al, Ti, Hf, V, Zr, Ta, Mo, Represents two or more metal elements selected from W, Y, and Nb, L represents at least one additive element selected from Mn, Cu, Ni, Co, B, Si, and S; X represents at least one nonmetallic element selected from C, N, and O, A represents the atomic ratio of M to the total of M and L, and D represents the atomic ratio of L to the total of M and L R represents the atomic ratio of X to the sum of M and L, 0.90 ≦ A ≦ 0.99, 0.01 ≦ D ≦ 0.10, A + D = 1, 0.95 ≦ R ≦ 1. 10 is satisfied.) And is a hard film having a cubic NaCl type structure.

Aが0.90未満になると耐摩耗性が低下し、Aが0.99を超えると耐酸化性が低下するので、Aは0.90≦A≦0.99の範囲とした。Dが0.01未満になると耐酸化性が低下し、Dが0.10を超えると耐摩耗性が低下するので、Dは0.01≦D≦0.10の範囲とした。Rが0.95未満になると非晶質の金属相が偏析して耐酸化性と硬さが低下し、Rが1.10を超えると被膜の硬さが急速に低下するので、Rは0.95≦R≦1.10の範囲とした。硬質膜として具体的には、((TiAl)0.950.05)N1.00、((TiAl)0.96Mn0.04)N1.00、((TiAl)0.970.03)N1.00、((TiAl)0.95Si0.05)N1.00、((TiCr)0.950.05)N1.00、((CrAl)0.970.03)N1.06、((CrAl)0.95Si0.05)N1.00、((CrAl)0.980.02)N0.98、((CrAl)0.900.10)N0.95、((CrZr)0.960.04)N1.07、((TiAlCr)0.95Si0.05)N1.00、((TiAlV)0.95Si0.05)N1.09、((TiAlZr)0.95Si0.05)N1.00、((CrAlZr)0.900.10)N1.09、((CrAlZr)0.95Si0.05)N1.00、((CrAlW)0.950.05)N1.00、((TiAlZrY)0.900.10)N1.00などを挙げることができる。その中でも硬質膜は、組成の異なる平均膜厚1〜100nmの薄膜が積層された積層膜であると被膜の硬さが高くなり耐摩耗性が向上するので、さらに好ましい。 When A is less than 0.90, the wear resistance decreases, and when A exceeds 0.99, the oxidation resistance decreases. Therefore, A is set in the range of 0.90 ≦ A ≦ 0.99. When D is less than 0.01, the oxidation resistance decreases, and when D exceeds 0.10, the wear resistance decreases. Therefore, D is set in the range of 0.01 ≦ D ≦ 0.10. When R is less than 0.95, the amorphous metal phase segregates and the oxidation resistance and hardness decrease, and when R exceeds 1.10, the hardness of the coating rapidly decreases. .95 ≦ R ≦ 1.10. Specifically, as the hard film, ((TiAl) 0.95 B 0.05 ) N 1.00 , ((TiAl) 0.96 Mn 0.04 ) N 1.00 , ((TiAl) 0.97 S 0.03 ) N 1.00 , ((TiAl) 0.95 Si 0.05 ) N 1.00 , ((TiCr) 0.95 B 0.05 ) N 1.00 , ((CrAl) 0.97 B 0.03 ) N 1.06 , ((CrAl) 0.95 Si 0.05 ) N 1.00 , ((CrAl) 0.98 S 0.02 ) N 0.98 , ((CrAl) 0.90 Y 0.10 ) N 0.95 , ((CrZr) 0.96 B 0.04 ) N 1.07 , ((TiAlCr) 0.95 Si 0.05 ) N 1.00 , ((TiAlV) 0.95 Si 0.05 ) N 1.09 , ((TiAlZr) 0.95 Si 0.05 ) N 1.00 , ((CrAlZr) 0.90 B 0.10 ) N 1.09 , ((CrAlZr) 0.95 Si 0.05 ) N 1.00 , ((CrAlW) 0.95 S 0.05 ) N 1.00 , ((TiAlZrY) 0.90 B 0.10 ) N 1.00, and the like. . Among them, the hard film is more preferably a laminated film in which thin films having an average film thickness of 1 to 100 nm having different compositions are laminated because the hardness of the film is increased and the wear resistance is improved.

本発明の硬質膜は、X線回折における最高ピーク強度を(220)面に示すので、従来の被膜よりも、硬さが高く、高温において優れた耐摩耗性を示すとともに、優れた耐酸化性を示す。 Since the hard film of the present invention exhibits the highest peak intensity in X-ray diffraction on the (220) plane, it is harder than conventional coatings, exhibits excellent wear resistance at high temperatures, and has excellent oxidation resistance. Indicates.

本発明の被膜は、本発明の硬質膜のみからなる単層膜、または、Cr,Al,Ti,Hf,V,Zr,Ta,Mo,W,Nb,Y,Si,Bの炭化物、窒化物、酸化物およびこれらの相互固溶体の中から選ばれた少なくとも1種からなる膜と本発明の硬質膜とを被覆した多層膜からなる。なお本発明の硬質層とともに多層化する膜として具体的には、TiN,TiCN、TiC、Al23などを挙げることができる。また、本発明の硬質層とともに多層化する膜は、PVD法またはCVD法により被覆することができる。その中でもPVD法は、本発明の硬質膜と連続的に被覆され膜間の密着性に優れるので、さらに好ましい。 The film of the present invention is a single layer film made of only the hard film of the present invention, or carbide, nitride of Cr, Al, Ti, Hf, V, Zr, Ta, Mo, W, Nb, Y, Si, B And a multilayer film in which a film made of at least one selected from oxides and their mutual solid solutions and the hard film of the present invention are coated. Specific examples of the multilayered film together with the hard layer of the present invention include TiN, TiCN, TiC, Al 2 O 3 and the like. Moreover, the film | membrane multilayered with the hard layer of this invention can be coat | covered by PVD method or CVD method. Among them, the PVD method is more preferable because it is continuously coated with the hard film of the present invention and has excellent adhesion between the films.

本発明の被膜の平均膜厚が0.5μm以上であると耐摩耗性と耐酸化性が向上し、本発明の被膜の平均膜厚が15.0μmを超えて厚くなると耐欠損性が低下するため、本発明の被膜の平均膜厚は0.5〜15.0μmの範囲が好ましい。 When the average film thickness of the coating film of the present invention is 0.5 μm or more, the wear resistance and oxidation resistance are improved, and when the average film thickness of the coating film of the present invention exceeds 15.0 μm, the chipping resistance decreases. Therefore, the average film thickness of the coating of the present invention is preferably in the range of 0.5 to 15.0 μm.

本発明の被膜の組成は、二次イオン質量分析装置(SIMS)、エネルギー分散元素分析装置(EDS)、グロー放電型分析装置(GDS)などの元素分析装置を使って測定することができる。 The composition of the film of the present invention can be measured using an elemental analyzer such as a secondary ion mass spectrometer (SIMS), an energy dispersive element analyzer (EDS), or a glow discharge analyzer (GDS).

本発明の硬質膜はPVD法により被覆される。本発明の硬質膜を被覆した被覆部材は耐欠損性に優れるので、特に耐欠損性が要求されるフライス工具、ドリルなどの転削工具に使用すると好ましい。PVD法としてアークイオンプレーティング法、スパッタリング法などを挙げることができる。その中でも被膜と基材との密着性に優れるアークイオンプレーティング法がさらに好ましい。 The hard film of the present invention is coated by the PVD method. Since the covering member coated with the hard film of the present invention is excellent in fracture resistance, it is preferably used for a milling tool, drilling tool or the like that requires fracture resistance. Examples of the PVD method include an arc ion plating method and a sputtering method. Among these, the arc ion plating method which is excellent in the adhesion between the coating and the substrate is more preferable.

従来のアークイオンプレーティング装置(以下、AIP装置という。)では、被膜を被覆する場合、炉内の圧力を2.5〜5.0Paとし、アーク放電の制御は電流値を一定とする定電流制御を行っていた。定電流制御とは炉内の放電抵抗が変わると電圧が変化して放電電流が一定になるように制御する方式である。一方、本発明の硬質膜の被覆条件は、炉内の圧力を従来の方式よりも高真空側の領域である0.5〜2.0Paとし、さらにアーク放電の制御を電圧一定とする定電圧制御とし、アーク放電電圧を高くした。すなわち、アーク放電を高い電圧で一定にして、炉内の圧力を下げると、本発明の(220)面に配向した硬質膜を得ることができる。なおアーク放電を高電圧にするとアーク放電の電流値が上昇し、基材およびAIP装置の温度が上昇する。その場合、温度上昇を防ぐためにアーク放電を間欠にするパルス制御と定電圧制御を組み合わせた電圧制御を用いても好ましい。 In a conventional arc ion plating apparatus (hereinafter referred to as AIP apparatus), when coating a film, the pressure in the furnace is set to 2.5 to 5.0 Pa, and arc discharge control is a constant current with a constant current value. I was doing control. The constant current control is a method of controlling the discharge current to be constant by changing the voltage when the discharge resistance in the furnace changes. On the other hand, the coating condition of the hard film of the present invention is a constant voltage in which the pressure in the furnace is 0.5 to 2.0 Pa, which is a higher vacuum side region than the conventional method, and the arc discharge control is constant voltage. Control and increased arc discharge voltage. That is, when the arc discharge is made constant at a high voltage and the pressure in the furnace is lowered, a hard film oriented in the (220) plane of the present invention can be obtained. When the arc discharge is set to a high voltage, the current value of the arc discharge increases, and the temperature of the base material and the AIP device increases. In that case, it is also preferable to use voltage control that combines pulse control that makes arc discharge intermittent and constant voltage control in order to prevent temperature rise.

AIP装置を用いた本発明の硬質膜の被覆条件として、具体的には、基材を573〜973Kまで加熱した後、炉内の圧力:0.5〜2.0Pa、アーク放電電圧:DC変調30〜150V(定電圧制御)、基材のバイアス電圧:−30〜−200Vにて被覆する条件を挙げることができる。 Specifically, as the coating conditions of the hard film of the present invention using the AIP apparatus, after heating the substrate to 573 to 973 K, the pressure in the furnace: 0.5 to 2.0 Pa, the arc discharge voltage: DC modulation Examples of the coating condition include 30 to 150 V (constant voltage control) and a bias voltage of the substrate of −30 to −200 V.

本発明の被覆部材は、耐摩耗性および耐酸化性に優れる。本発明の被覆部材は切削工具の長寿命化を実現する。その中でも特に、高速度加工、高送り加工、硬さの高い被削材の加工など加工条件が厳しい切削加工において長寿命化を実現する。   The covering member of the present invention is excellent in wear resistance and oxidation resistance. The covering member of the present invention realizes a long tool life. In particular, a long service life is achieved in cutting operations with severe processing conditions such as high-speed machining, high-feed machining, and machining of hard work materials.

本発明の被覆部材のX線回折測定結果の一例An example of the X-ray diffraction measurement result of the covering member of the present invention 従来の被覆部材のX線回折測定結果の一例Example of X-ray diffraction measurement result of conventional coated member

(実施例1)
基材として形状がSDKN1203AETNのK20相当超硬合金製チップを用意した。メタルボンバード用電極を含めて6極のターゲットを着装することが可能なAIP装置内に、用意した基材を装入して圧力:1×10-3Paまで真空排気を行った後、AIP装置内のヒーターで773Kまで基材を加熱した。メタルボンバードは、圧力:1×10-2Pa、基材のバイアス電位:−600V、アーク電流:100A、時間:6分というボンバード条件で行った後、発明品1〜10は表1に示す膜構成の被膜を被覆した。被膜は、各膜の金属元素と添加元素の成分比を持つターゲットを用い、N2を反応ガスとして導入し、圧力:0.6〜2.0Pa、アーク放電電圧:DC変調30〜70V(定電圧制御)、基材のバイアス電圧:−30〜−80Vというコーティング条件で被覆した。このとき、発明品1〜10は、基材側から第1層、第2層、第3層、再び第1層、第2層、第3層と繰り返して薄膜を積層した。
Example 1
A chip made of cemented carbide equivalent to K20 having a shape of SDKN1203AETN was prepared as a base material. The prepared base material is inserted into an AIP apparatus capable of mounting a 6-pole target including the metal bombardment electrode, and after evacuating to a pressure of 1 × 10 −3 Pa, the AIP apparatus The substrate was heated to 773K with the heater inside. Metal bombardment was performed under the bombardment conditions of pressure: 1 × 10 −2 Pa, substrate bias potential: −600 V, arc current: 100 A, time: 6 minutes, and the inventive products 1 to 10 are films shown in Table 1. A coating of the composition was coated. For the coating, a target having a component ratio between the metal element and the additive element of each film was used, N 2 was introduced as a reaction gas, pressure: 0.6 to 2.0 Pa, arc discharge voltage: DC modulation 30 to 70 V (constant) Voltage control), bias voltage of substrate: -30 to -80V. At this time, the inventive products 1 to 10 were repeatedly laminated with the first layer, the second layer, the third layer, and again the first layer, the second layer, and the third layer from the base material side.

Figure 0005348223
Figure 0005348223

比較品1〜6は、基材をAIP装置に入れて加熱した後、発明品1〜8と同じ条件でメタルボンバードを行った後、圧力:3.0Pa、アーク電流:120A(定電流制御)、基材のバイアス電圧:−30Vというコーティング条件で表2に示す膜構成の被膜を被覆した。なお、比較品3〜5は、基材側から第1層、第2層、再び第1層、第2層と繰り返して薄膜を積層した。 In Comparative products 1 to 6, after the base material was put in an AIP apparatus and heated, and after metal bombardment was performed under the same conditions as Invention products 1 to 8, pressure: 3.0 Pa, arc current: 120 A (constant current control) The film having the film structure shown in Table 2 was coated under the coating condition of bias voltage of substrate: −30V. In addition, the comparative products 3-5 repeated the 1st layer, the 2nd layer, the 1st layer, and the 2nd layer again from the base material side, and laminated | stacked the thin film.

Figure 0005348223
Figure 0005348223

得られた試料についてX線回折装置を用いて、Cukα1線による2θ=10〜120度のX線回折測定を行い、被膜は立方晶系のNaCl構造であることを確認し、被膜の最高ピーク強度を示す結晶面を測定した。その結果は、表3、4に示した。発明品1〜8の被膜のX線回折ピーク強度は(220)面が最も高かった。比較品1〜6の被膜のX線回折ピーク強度は、(111)面または(200)面が最も高かった。 Using the X-ray diffractometer, the sample obtained was subjected to X-ray diffraction measurement at 2θ = 10 to 120 degrees with Cukα1 line, and it was confirmed that the film had a cubic NaCl structure. Was measured. The results are shown in Tables 3 and 4. The X-ray diffraction peak intensities of the coatings of Inventions 1 to 8 were highest on the (220) plane. The X-ray diffraction peak intensities of the coatings of Comparative products 1 to 6 were highest on the (111) plane or the (200) plane.

得られた試料について、松沢精機株式会社製マイクロビッカース硬度計を用いて印加荷重50gfでの被膜の硬さを測定した。得られた値は表3、4に併記した。表3、4から発明品1〜8は比較品1〜6に比べて硬さが高いことが分かる。 About the obtained sample, the hardness of the film in 50 gf of applied loads was measured using the Matsuzawa Seiki Co., Ltd. micro Vickers hardness meter. The obtained values are shown in Tables 3 and 4. It can be seen from Tables 3 and 4 that the inventive products 1 to 8 are higher in hardness than the comparative products 1 to 6.

Figure 0005348223
Figure 0005348223

Figure 0005348223
Figure 0005348223

次に、得られた試料を用いて、被削材:SCM440、切削速度:212m/min、切り込み:2.0mm、送り:0.2mm/toothの条件で乾式フライス試験を行った。工具寿命は、逃げ面摩耗量VB=0.3mmを目安とした。切削長6mまでに逃げ面摩耗量VB=0.3mmに達しない場合は、切削長6m時の逃げ面摩耗量VBを測定した。これらの結果を表5に示す。 Next, using the obtained sample, a dry milling test was performed under the conditions of a work material: SCM440, a cutting speed: 212 m / min, a notch: 2.0 mm, and a feed: 0.2 mm / tooth. The tool life was estimated based on the flank wear amount VB = 0.3 mm. When the flank wear amount VB did not reach 0.3 mm by the cutting length of 6 m, the flank wear amount VB at the cutting length of 6 m was measured. These results are shown in Table 5.

Figure 0005348223
寿命判定:VB=0.3mm
Figure 0005348223
Life judgment: VB = 0.3mm

表5に示されるように、発明品1〜8は同じ切削長でも比較品1〜6よりも逃げ面摩耗量VBが小さい。これは耐摩耗性に優れることを示す。また、表5から発明品1〜8は、比較品1〜6よりも寿命が長いことが分かる。 As shown in Table 5, invention products 1 to 8 have a smaller flank wear amount VB than comparative products 1 to 6 even at the same cutting length. This indicates excellent wear resistance. In addition, it can be seen from Table 5 that the inventive products 1 to 8 have a longer lifetime than the comparative products 1 to 6.

市販のモリブデン基板に発明品1〜3と比較品1〜5の被膜を被覆した。被膜の耐酸化性を評価するために、大気中にて600℃から900℃まで加熱して、結晶構造の変化をX線回折法により調べた。その結果は表6に示す。 Commercially available molybdenum substrates were coated with the coatings of Inventions 1 to 3 and Comparatives 1 to 5. In order to evaluate the oxidation resistance of the coating, it was heated from 600 ° C. to 900 ° C. in the atmosphere, and the change in the crystal structure was examined by the X-ray diffraction method. The results are shown in Table 6.

Figure 0005348223
Figure 0005348223

表6に示されるように、発明品1〜3の被膜は900℃までほとんど変化が見られなった。一方、比較品1〜5の被膜は800℃以上になると被膜のX線回折ピーク強度が低下し、TiO2、Cr23、Al23などの酸化物のX線回折ピークが確認された。 As shown in Table 6, almost no change was observed up to 900 ° C. for the coatings of Inventions 1 to 3. On the other hand, the X-ray diffraction peak intensities of the coatings of Comparative products 1 to 5 decreased at 800 ° C. or higher, and X-ray diffraction peaks of oxides such as TiO 2 , Cr 2 O 3 , and Al 2 O 3 were confirmed. It was.

Claims (4)

基材と基材の表面に被覆された被膜とからなり、被膜の少なくとも1層はPVD法により被覆された(MAD)XR(但し、MはCr,Al,Ti,Hf,V,Zr,Ta,Mo,W,Y,Nbの中から選ばれた2種以上の金属元素を表し、LはMn,Cu,Ni,Co,B,Si,Sの中から選ばれた少なくとも1種の添加元素を表し、XはC,N,Oの中から選ばれた少なくとも1種の非金属元素を表し、AはMとLの合計に対するMの原子比を表し、DはMとLの合計に対するLの原子比を表し、RはMとLの合計に対するXの原子比を表し、0.90≦A≦0.99、0.01≦D≦0.10、A+D=1、0.95≦R≦1.10を満足する。)で表される硬質膜であり、硬質膜はX線回折における最高ピーク強度を(220)面に示す被覆部材。 (M A L D ) X R (where M is Cr, Al, Ti, Hf, V), which comprises a substrate and a coating coated on the surface of the substrate, and at least one layer of the coating is coated by the PVD method. , Zr, Ta, Mo, W, Y, Nb represents at least one metal element selected from the group consisting of Mn, Cu, Ni, Co, B, Si, and S. X represents at least one nonmetallic element selected from C, N, and O, A represents the atomic ratio of M to the sum of M and L, and D represents M and L Represents the atomic ratio of L to the sum of R, R represents the atomic ratio of X to the sum of M and L, 0.90 ≦ A ≦ 0.99, 0.01 ≦ D ≦ 0.10, A + D = 1, .95 ≦ R ≦ 1.10), and the hard film has a maximum peak intensity in X-ray diffraction of (220). Covering member shown in. 硬質膜は、組成の異なる平均膜厚1〜100nmの薄膜が積層された積層膜である請求項1に記載の被覆部材。   The covering member according to claim 1, wherein the hard film is a laminated film in which thin films having an average film thickness of 1 to 100 nm having different compositions are laminated. 被膜の平均膜厚は、0.1μm〜15μmである請求項1または2に記載の被覆部材。   The covering member according to claim 1 or 2, wherein an average film thickness of the coating is 0.1 µm to 15 µm. 硬質膜は、アークイオンプレーティング法により被覆された請求項1〜3のいずれか1項に記載の被覆部材。   The covering member according to any one of claims 1 to 3, wherein the hard film is coated by an arc ion plating method.
JP2011244077A 2011-11-08 2011-11-08 Covering member Active JP5348223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011244077A JP5348223B2 (en) 2011-11-08 2011-11-08 Covering member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011244077A JP5348223B2 (en) 2011-11-08 2011-11-08 Covering member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007083320A Division JP2008240079A (en) 2007-03-28 2007-03-28 Coated member

Publications (2)

Publication Number Publication Date
JP2012036506A JP2012036506A (en) 2012-02-23
JP5348223B2 true JP5348223B2 (en) 2013-11-20

Family

ID=45848794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011244077A Active JP5348223B2 (en) 2011-11-08 2011-11-08 Covering member

Country Status (1)

Country Link
JP (1) JP5348223B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9551062B2 (en) 2013-03-28 2017-01-24 Osg Corporation Hard film for machining tools and hard film-coated metal machining tool
JP6355022B2 (en) * 2013-08-30 2018-07-11 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6354947B2 (en) * 2013-08-30 2018-07-11 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
EP3722031A1 (en) * 2014-03-18 2020-10-14 Hitachi Metals, Ltd. Coated cutting tool and method for producing the same
JP6529262B2 (en) * 2015-01-07 2019-06-12 日立金属株式会社 Coated tools
EP3263256B1 (en) 2015-02-23 2019-07-31 Sumitomo Electric Industries, Ltd. Rotating tool
CN114657503B (en) * 2020-12-22 2023-10-17 比亚迪股份有限公司 Coating material, preparation method thereof and electronic product shell
CN116867590A (en) * 2021-02-19 2023-10-10 三菱综合材料株式会社 Surface-coated cutting tool

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156767A (en) * 1980-05-02 1981-12-03 Sumitomo Electric Ind Ltd Highly hard substance covering material
JP3250414B2 (en) * 1995-03-29 2002-01-28 三菱マテリアル株式会社 Method for producing cutting tool coated with titanium carbonitride layer surface
JP4112836B2 (en) * 2001-06-19 2008-07-02 株式会社神戸製鋼所 Target for forming hard coatings for cutting tools
JP3659217B2 (en) * 2001-11-15 2005-06-15 三菱マテリアル株式会社 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP2004255482A (en) * 2003-02-25 2004-09-16 Hitachi Tool Engineering Ltd Coated end mill

Also Published As

Publication number Publication date
JP2012036506A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP5348223B2 (en) Covering member
JP2008240079A (en) Coated member
JP6677932B2 (en) Surface coated cutting tool that demonstrates excellent chipping and wear resistance in heavy interrupted cutting
KR101635487B1 (en) Cutting tool
JP4967505B2 (en) Covering member
KR20130137604A (en) Cutting tool comprising multilayer coating
JP4072155B2 (en) Surface-coated cutting tool and manufacturing method thereof
KR20140133561A (en) Nanolaminated coated cutting tool
JP5174292B1 (en) Cutting tools
JP4441494B2 (en) Hard coating coated member
JP2009203489A (en) Coating member
WO2014104111A1 (en) Cutting tool
JP2009197268A (en) Coated member
JP5558558B2 (en) Cutting tools
JP4645821B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
WO2014061292A1 (en) Surface-coated cutting tool
WO2015125898A1 (en) Hard coating film and method of forming same
JP7415223B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance during heavy interrupted cutting.
JP4967396B2 (en) Si-containing composite nitride film and coated cutting tool
JP2015101748A (en) Cemented carbide and surface-coated cutting tool prepared using the same
CA2983720A1 (en) Hard coating and hard coating-covered member
WO2019171648A1 (en) Surface-coated cutting tool and method for producing same
JP2012157940A (en) Surface coating cutting tool
JP2008006574A (en) Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting of heat resistant alloy
JP5835305B2 (en) Cemented carbide and surface-coated cutting tool using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5348223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250