JP5346286B2 - 化学検出デバイスまたはシステムの検出能力を高めるための空気サンプラモジュール - Google Patents

化学検出デバイスまたはシステムの検出能力を高めるための空気サンプラモジュール Download PDF

Info

Publication number
JP5346286B2
JP5346286B2 JP2009518625A JP2009518625A JP5346286B2 JP 5346286 B2 JP5346286 B2 JP 5346286B2 JP 2009518625 A JP2009518625 A JP 2009518625A JP 2009518625 A JP2009518625 A JP 2009518625A JP 5346286 B2 JP5346286 B2 JP 5346286B2
Authority
JP
Japan
Prior art keywords
air
housing
vapor
flow
optical transceiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009518625A
Other languages
English (en)
Other versions
JP2009543072A (ja
Inventor
トーマス ウェイン シュナイダー,
ジェームス エバレット ペンデル−ジョーンズ,
ウェイン アームストロング,
ジェロミー レザック,
ラトネサー−シュマテ アシュニ シャナ,
クラウディア ランドルフ,
ロバート アルマッシー,
Original Assignee
エクセリス インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エクセリス インコーポレイテッド filed Critical エクセリス インコーポレイテッド
Publication of JP2009543072A publication Critical patent/JP2009543072A/ja
Application granted granted Critical
Publication of JP5346286B2 publication Critical patent/JP5346286B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N2001/022Devices for withdrawing samples sampling for security purposes, e.g. contraband, warfare agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、分光検出デバイスおよびシステムに関する。
分光技術は物質を分析するために使われ、該技術は、有害物質が固相および液相で存在しうる表面を遠隔でモニターするために開発されてきた。気相/蒸気相における有害物質を検出するために、他の技術(例えば、ガスクロマトグラフィー)を使う検出システムが公知である。
しかしながら、エアロゾル化した粒子および蒸気の検出を扱う公知のラマンシステムは存在しない。
簡単に言うと、本発明の一局面に従うと、検出デバイスとともに使用されるため空気サンプラモジュールが提供され、該モジュールは分光技術を使って表面上の液体および/または固体をモニターする。空気サンプラモジュールは、ハウジングと、該検出システムによって分析されるべき空気を収集するための取り入れ口と、該取り入れ口を通じて収集された空気中の粒子を分類し第一フローおよび第二フロー(第一フローは主に分析されるべきエアロゾル粒子を含み、第二フローは主に分析されるべき蒸気を含んでいる)を生成するハウジング内の仮想インパクターと、第一および第二のフローの粒子の分析を可能にするためにハウジングへの検出デバイスの光学トランシーバーの通信を可能にするポートとを含んでいる。このように、光学検出デバイスの空気サンプラモジュールとの結合または統合は、分光検出システムを提供し、該システムは道路、壁または他の地表面などの表面(空気サンプラモジュールの外部)に堆積した固体または液体の物質を分析する能力を有し、空気サンプラモジュールが収集する空中に浮遊するエアロゾル化した粒子および蒸気を分析する。
本発明の別の局面に従うと、空中に浮遊する脅威および空中に浮遊しない脅威を分光技術を使って分析するために、一つの方法および一つの組み合わせが提供され、該方法および該組み合わせにおいて分析されるべき空気がハウジング内に収集される。空中に浮遊するエアロゾル粒子は、ハウジング内の少なくとも第一の表面に堆積する。検出デバイスの光学トランシーバーは、ハウジング内部の表面に光学的に結合され、ハウジング内部の第一の表面に堆積した粒子の分光分析を可能にする。加えて、光学トランシーバーは、ハウジング外部の表面に光学的に結合され、ハウジングの外部の表面上の粒子の分光分析を可能にする。
本発明は、例えば、以下を提供する。
(項目1)
分光技術を用いて表面上の液体および/または固体をモニターする検出デバイスとともに使用する空気サンプラモジュールであって、該検出デバイスは光学トランシーバーを含み、該空気サンプラモジュールは、ハウジングと、分析されるべき空気を収集するための取り入れ口と、該ハウジング内の仮想インパクターであって、該仮想インパクターは分析されるべきエアロゾル粒子を含む第一のフローと、分析されるべき蒸気を含む第二のフローとを生成するために、該収集された空気を分類する、仮想インパクターと、該第一のフローおよび第二のフローの分析を可能にするために、該ハウジングへの該検出デバイスの光学トランシーバーの通信を可能にするポートとを含む、空気サンプラモジュール。
(項目2)
上記検出デバイスの光学トランシーバーの使用による分光分析のために、第一のフローに結合された、固体および/または液体のエアロゾル粒子を第一の表面上に堆積させるエアロゾル濃縮器をさらに含む、項目1に記載の空気サンプラモジュール。
(項目3)
上記検出デバイスの光学トランシーバーの使用による分光分析のために、第二のフローに結合された、蒸気を第二の表面上に濃縮する蒸気濃縮器をさらに含む、項目2に記載の空気サンプラモジュール。
(項目4)
上記蒸気収集器が加熱素子を含み、該加熱素子は新たなサンプルのために上記第二の表面の再利用を可能にするように、濃縮された蒸気を離れさせるために該蒸気を加熱する、項目3に記載の空気サンプラモジュール。
(項目5)
上記第二の表面が冷却されることにより、蒸気が凝縮して該第二の表面上に液体を生成する、項目3に記載の空気サンプラモジュール。
(項目6)
上記ハウジング内に少なくとも一つの光学素子をさらに含み、該少なくとも一つの光学素子は、上記光学トランシーバーと上記第一の表面との間にある第一の光学的経路と、該光学トランシーバーと上記第二の表面との間にある第二の光学的経路とを提供する、項目3に記載の空気サンプラモジュール。
(項目7)
上記少なくとも一つの光学素子がミラーであり、該ミラーが上記第一の光学的経路を作る第一の位置と、上記第二の光学的経路を作る第二の位置との間で可動である、項目6に記載の空気サンプラモジュール。
(項目8)
項目1に記載の空気サンプラモジュールと上記光学トランシーバーを含むラマン検出デバイスとの組み合わせであって、該光学トランシーバーは、近距離隔離または遠隔における検出を行うために、該空気サンプラモジュールの外部の表面に向けられることが可能である、組み合わせ。
(項目9)
分光検出システムであって、
a.表面上の物質の分光分析のために、該表面に光線を発して該表面からの散乱光を検出する光学トランシーバーと、
b.ハウジングと、分析されるべき空気を収集するための取り入れ口と、該ハウジング内の仮想インパクターであって、該仮想インパクターは、該取り入れ口を通じて収集された空気を分類し、分析されるべきエアロゾル粒子を主に含む第一フローと分析されるべき蒸気を主に含む第二フローとを生成する、仮想インパクターと、該第一および該第二のフローの分光分析を可能にするために該ハウジング内への該光学トランシーバーの通信を可能にする、少なくとも一つのポートとを含む、空気サンプラモジュールと
を含む、分光検出システム。
(項目10)
少なくとも一つの光学素子をさらに含み、該少なくとも一つの光学素子は、上記空気サンプラモジュールの外部表面の近距離隔離または遠隔における検出を行うために、上記光学トランシーバーと該空気サンプラモジュールの外部表面との間に光学的経路を提供可能である、項目9に記載のシステム。
(項目11)
上記空気サンプラモジュールがエアロゾル濃縮器をさらに含み、上記光学トランシーバーの使用による分光分析のために、該エアロゾル濃縮器は上記第一のフローと結合され、固体および/または液体のエアロゾル粒子を第一の表面上に堆積させる、項目9に記載のシステム。
(項目12)
上記光学トランシーバーの使用による分光分析のために、上記第二のフローと結合された蒸気濃縮器をさらに含み、該蒸気濃縮器が該第二のフローからの蒸気を第二の表面上に濃縮する、項目11に記載のシステム。
(項目13)
上記ハウジング内に少なくとも一つの光学素子をさらに含み、該少なくとも一つの光学素子は、上記光学トランシーバーと上記第一の表面との間の第一の光学的経路と、該光学トランシーバーと上記第二の表面との間の第二の光学的経路とを提供する、項目12に記載のシステム。
(項目14)
上記光学トランシーバーがラマン光線を発してラマン散乱光を検出する、項目9に記載のシステム。
(項目15)
上記空気サンプラモジュールが排出口をさらに含み、該排出口は上記ハウジング内に収集された空気を、該空気が分析された後で大気中に排出する、項目9に記載のシステム。
(項目16)
分光技術を使って、空中に浮遊する脅威および空中に浮遊しない脅威を分析する方法であって、該方法は、
a.分析されるべき空気をハウジング内に収集することと、
b.該ハウジング内で収集された空気を、エアロゾル化された液体および/または固体の粒子を含む第一のフローと、蒸気を含む第二のフローとに分類することと、
c.該エアロゾル化された液体および/または固体の粒子を該ハウジング内の第一の表面上に、該蒸気を該ハウジング内の第二の表面上に堆積させることと、
d.上記光学トランシーバーを該ハウジング内の第一の表面および第二の表面の少なくとも一つに光学的に結合し、該液体および/または固体のエアロゾル粒子もしくは該蒸気の分光分析を可能にすることと
を含む、方法。
(項目17)
上記第二のフローからの蒸気を加熱することをさらに含み、該蒸気からの液体を上記第二の表面上に濃縮する、項目16に記載の方法。
(項目18)
エアロゾル化された粒子を分析する場合には、上記光学的に結合することは、上記光学トランシーバーからの光線を上記第一の表面に向けることと、該第一の表面からの散乱光を該光学トランシーバーに向けることとを含み、蒸気を分析する場合には、該光学的に結合することは、該光学トランシーバーからの光線を上記第二の表面に向けることと、該第二の表面からの散乱光を該光学トランシーバーに向けることとを含む、項目16に記載の方法。
(項目19)
上記光学トランシーバーと上記ハウジングの外部表面との間に光学的経路を形成して、該ハウジングの外部表面上の固体および/または液体の物質の近距離隔離または遠隔における検出を行うことをさらに含む、項目16に記載の方法。
(項目20)
分光技術を使って、空中に浮遊する脅威および空中に浮遊しない脅威を分析するための方法であって、該方法は、
a.分析されるべき空気をハウジング内に収集することと、
b.該空中に浮遊する粒子を該ハウジング内の少なくとも一つの表面上に堆積させることと、
c.光学トランシーバーを該ハウジング内の該少なくとも第一の表面に光学的に結合し、該少なくとも第一の表面上に堆積した該粒子の分光分析を可能にすることと、
d.該光学トランシーバーを該ハウジングの外部の一つの表面に光学的に結合し、該ハウジングの外部の該表面上の粒子の分光分析を可能にすることと
を含む、方法。
(項目21)
上記ハウジング内に収集された空気からの蒸気を該ハウジング内の第二の表面に向けることをさらに含み、光学的に結合することは、上記光学トランシーバーを該ハウジング内の第二の表面に光学的に結合して、該第二の表面上の蒸気の分光分析を可能にすることをさらに含む、項目20に記載の方法。
(項目22)
検出デバイスと空気サンプラモジュールの組み合わせであって、該検出デバイスは、光学トランシーバーを含み、該空気サンプラモジュールは、ハウジングと、分析されるべき含んでいる空気を収集するための取り入れ口と、該空気の分析を可能にするために該検出デバイスの該光学トランシーバーの該ハウジングへの通信を可能にする少なくとも一つのポートとを含み、該組み合わせは、少なくとも一つの光学素子をさらに含み、該少なくとも一つの光学素子は、該空気サンプラモジュールの外部表面上で近距離隔離または遠隔における検出を行うために、該検出デバイスの該光学トランシーバーと該空気サンプラモジュールの外部表面との間に第一の光学的経路を提供することと、該ハウジング内に収集された空気に含まれた脅威を分析するために、該光学トランシーバーと該空気サンプラモジュールの該ポートとの間に第二の光学的経路を提供することとが可能である、組み合わせ。
図1は、本発明の一実施形態に従った空気サンプラモジュールの透視図である。 図2は、空気サンプラモジュールと検出デバイスまたはシステムとのインターフェースの仕方を示すブロック図である。 図3は、空気サンプラモジュールによって既存の検出デバイスまたはシステムに提供される能力を描いている図である。 図4は、空気サンプラモジュールが車両に搭載された検出デバイスまたはシステムとともに使用されていることを描いている概略図である。 図5は、一実施形態に従って空気サンプラモジュールが検出デバイスまたはシステムにおける光学トランシーバーへの光学的アクセスを提供する仕方を示す概略図である。 図6は、一実施形態に従って空気サンプラモジュールのエアロゾル収集器と蒸気収集器への検出器の可能な光学的経路を示すブロック図であり、該経路は該モジュールの外部の表面を分析するための光学的経路と結合している。 図7は、一実施形態に従った空気サンプラモジュールにおいて有用な公知の蒸気収集器の一タイプの透視図である。 図8は、一実施形態に従った空気サンプラモジュールにおいて有用な公知の蒸気収集器の別のタイプの拡大図である。 図9は、一実施形態に従った空気サンプラモジュールにおいて有用な公知の蒸気収集器の別のタイプの拡大図である。
ラマン分光法は、存在する化学物質の量が分光システムの最小限のSN比要件を満たす信号強度を発生させるのに十分である場合には、非常に多目的に使用でき、ほとんどの化学物質を検出、識別することができる。標的分子の低い濃度に起因して、エアロゾルは検出可能となる前に濃縮される必要がある。本発明のある実施形態によれば、既存の分光システムの機能を増大させることが可能であるか、または表面に堆積していた固体および液体を分析するシステムの以前からあった能力に加えて、空中に浮遊する粒子を含むように機能を拡張するために、そのようなシステムに統合されうる空気サンプラモジュールが提供される。
まず図1と2とを参照してみると、空気サンプラモジュールは概して参照数字10に示され、取り入れ口14、排気口15および光学インテロゲート口(optical interrogation port)16を有するハウジング12を備える。排気口15は、分析された後でハウジング12に集められた空気を排出する。空気サンプラモジュール10は、図2の100に示されているように、ラマンシステムのような既存の分光検出デバイスまたはシステムに統合されるように設計されている。空気サンプラモジュール10の機能は、分光検出システム100によって調べられうるように、蒸気とともにエアロゾル化した粒子を捕捉することである。分光検出システム100は、多様な物質について表面を遠隔分析する能力をすでに有しているシステムである。このように、空気サンプラモジュール10を検出システム100に統合またはインターフェイスさせることによって、検出システム100の能力は、物質の三相(固体、液体および気体または蒸気)すべてにおいて物質をモニターするために拡張された。例えば、かつ限定することなしに、検出システム100の能力は、物質のすべての相において、任意の従来なかった薬剤(NTA)、有毒工業薬品(TIC)および化学または生物学兵器因子(CWA)を検出するように拡張されうる。
空気サンプラモジュール10の一つの利点は、該モジュールが新たな検出技術を必要としないことである。すなわち、該モジュールは表面の化学物質検出のためすでに利用されている証明済みの検出システム100とともに使用されえ、それによって証明済みの検出システム100をエアロゾルおよび蒸気の検出に利用できるようにする。その結果、液体が地上に落ちる前にエアロゾルを探索/スキャンする、および液体が地上で検出されない場合には蒸気を探索/スキャンすることが可能である。加えて、該モジュールは地上のエアロゾル、蒸気、および固体/液体の化学物質を互いに独立に、または組み合わせた状態で探索/スキャンすることを可能にする。検出システム100の一例として、ITT Industriesによって製造販売されているLISATMラマン検出器がある。LISATMラマン検出器は、固体および液体の表面の隔離または遠隔での検出を行うことができる。
空気サンプラモジュール10を該モジュールと関連させて既存および既知の検出技術に統合することの利点は多数ある。分子の各タイプに特徴的なさまざまな振動モードからの特色ある「分光指紋」は既知であり、CWAおよびTICの既存のライブラリが収集された空気サンプルに関して利用可能である。紫外(UV)ラマン光源を使用する能力は、背景蛍光に起因する干渉およびソーラーブラインド作用に起因する昼光干渉の排除を最小化する。加えて、UVラマン共振が、特定の分光の特質の増進、および波長の減少に伴うラマン断面における二次増加を達成する。遠隔または近距離隔離からの感知は、汚染された表面の液体および/または固体相の化学物質を(表面の接触およびサンプルの調製または濃縮なしに)直接調べることによって達成される。この文脈における「隔離」という用語は、およそ数センチメートルから数メートルの範囲の距離に定義する意味で用いられている。このように、検出システム100は、ラマン光源およびサンプルの表面からラマン散乱光を検出する検出器を有している。空気サンプラモジュール10を備えた検出システム100は、稼動の際の柔軟性を有している。すなわち、検出システム100は、シングルショットの動作(on−the−move)検出モードまたは静止状態の凝視モードで稼動可能である。
図3に目を向けると、空気サンプラモジュール10の統合によって与えられる検出システム100の能力が示されている。空気サンプラモジュール10は、固体、液体または蒸気の形状である空中に浮遊する脅威をモニターする能力を提供する。空中に浮遊する脅威は、エアロゾルまたは蒸気のどちらかである。例えば、エアロゾルの脅威は大きさが1〜100ミクロンの範囲にある液体または固体の形状で空中に浮遊する粒子であり、一方、蒸気の脅威は局所化された空気塊に分散した分子(実質的に1ミクロンより小さい)であり、そこでは局所化された空気は溶剤として挙動する。蒸気の脅威は粒子状態では存在しない種類の脅威を表している。上記空気サンプラモジュールを備えた検出システム100は、200で示されているように直接表面インテロゲーションを用いて、空気サンプラモジュール10の外部ですでに表面に落下していた液体/固体の脅威についてモニターできる。より小さい液体/固体の粒子脅威については、210で示されているように、空気サンプラモジュール10のエアロゾルチャネルを調べることでモニターできる。そして、蒸気相の脅威については、220で示されているように、空気サンプラモジュール10の蒸気チャネルを調べることでモニターできる。そのような機能において、検出システム100は、空中に浮遊する脅威(エアロゾルおよび/または蒸気)のみをモニターでき、空中に浮遊する脅威を空気サンプラモジュールの外部の表面にすでに堆積した(例えば、落下した、または他の仕方で堆積した)空中に浮遊しない脅威とともにモニターでき、または空気サンプラモジュールの外部の表面に堆積している空中に浮遊しない脅威のみをモニターできる。
空気サンプラモジュール10は、さまざまな配置プラットフォームにおける検出システム100に統合可能である。図4は、空気サンプラモジュール10と統合された検出システム100が車両400上の汚染物質保護シェルター内に装着されている発明の実施形態による、移動する車両の配置プラットフォームを示している。二つの機能を行うシェルターキャブ・インターフェース・アセンブリー300が提供され、上記二つの機能は、1)車両のシェルターの完全な状態を隔離し保存する機能、および2)検出システムを空気サンプラおよび地表と光学的に連結する、すなわち以下で図6に関連して説明される機能である。可動指向性空気取り入れ口320および空気還流ふいご330を有する入出力ボックス310がある。可動指向性取り入れ口320は、空気サンプラモジュールの取り入れ口に結合され、分析されるべき空気を捕捉するために使用される。空気還流ふいご330は、排出された空気が取り入れ口320に逆流することを回避するような仕方で、空気サンプラモジュール10からの空気を大気中に排出する。検出システム100および連続運転する空気サンプラモジュール10を装備した車両400は、車両400の下側の表面および比較的高速で走行する環境における空中に浮遊する汚染をスキャンすることによって、表面の汚染(液体および/または固体)を検出する能力を提供する。
ラマン分光法は、存在する化学物質の量が該システムの最小限のSN比要件を満たす信号強度を発生させるのに十分である場合には、非常に多目的に使用でき、ほとんどの化学物質を検出、識別することができる。
図5に目を向けると、一つの実施形態に従って、空気サンプラモジュール10のコンポーネントを説明するブロック図が提供されている。空気サンプラモジュールは、収集された空気を濾過し、濾過された空気を仮想インパクター20に供給する吸気口前置フィルター18を含む。仮想インパクター20は二つの出力経路を有する。第一の出力経路またはフローはエアロゾル経路であり、空気フローが仮想インパクターによる処理の後にエアロゾル濃縮器30に向けられる。エアロゾル濃縮器30の出力は、回転ステージング機構50の上にあるエアロゾル収集器40に向けられる。仮想インパクター20からの第二の出力経路またはフローは蒸気の経路であり、空気フローが蒸気濃縮器60に向けられる。蒸気濃縮器60は、蒸気を回転ステージング機構80の上にある蒸気収集器70に排出する。
空気は加速された速度(例えば、一実施形態では40L/分)で収集され、この速度は仮想インパクター20を使って蒸気からエアロゾルを分離することを可能にする。仮想インパクター20からエアロゾル濃縮器へのエアロゾル経路はまた、「マイナーフロー」とも呼ばれるが、それは加速されたエアロゾル塊の大部分は慣性によって、より小さい量の空気に濃縮されるからである。仮想インパクター20から蒸気濃縮器60への蒸気の経路は「メジャーフロー」と呼ばれるが、それは該経路がサンプリングされた空気フローの大部分を含んでいるからである。蒸気は慣性の欠如に起因して、より大きな粒子から分離される。これら二つの出力は、空気サンプリングモジュール内に、エアロゾルと蒸気という二つの経路を作り出す。エアロゾルおよび蒸気のラマン検出または分析は、図5に示されているようにホスト検出システムにより行われる独立した測定であるが、空気サンプラモジュール10の同一の光ポートを通じて行われる。さらには、これら二つの測定は独立であるものの、以下で図6に関連して説明されるカップリング光学素子(coupling optics)を用いて、一つの構成で自動的に達成される。
吸気口前置フィルター18は機械デバイスであり、より大きな粒子が仮想インパクター20に入ること、およびエアロゾルと蒸気の経路が目詰まりすることを防ぐための自己クリーニングフィルターのように作動する。例えば、一実施形態では、吸気口前置フィルター18は大きなメッシュ入力スクリーン(mesh input screen)を含み、虫や他の屑が入らないようにする。また、このスクリーンの後に空力学的なチューブアセンブリーが続き、慣性衝突の原理に基づいて作動し、ある大きさ(例えば100マイクロメーター)より大きい粒子を分離して廃棄する。
仮想インパクター20は空中に浮遊する粒子を表面に衝突させることなく濃縮し、大きさによって選別するデバイスである。該デバイスは、複数のノズルの組み合わせを使って、エアロゾルクラウド中の直径が「カットサイズ(cut size)」を超える粒子を残りの粒子から分離する。仮想インパクター20は、吸気のフローをメジャーフローとマイナーフローに分離する。一実施形態では、メジャーフローは吸気の約90%およびカットサイズより小さい粒子の約90%に相当する。そして、マイナーフローは吸気の残りのパーセントに相当するが、カットサイズより大きい粒子の大部分(一般に70〜90%)を含んでいる。例えば、カットサイズが1ミクロンである場合には、マイナーフローは吸気に関して1〜10ミクロンの範囲の大きさの粒子を7〜9倍高い濃度で含んでいる。これに限定するものではないが、空気サンプラモジュール10において使用されうる商業的に入手可能な仮想インパクターは、MesoSystems Technology, Inc.によって製造されるMicroVIC(登録商標) Particle Concentratorである。
仮想インパクター20からのエアロゾルの経路またはチャネルは、二つの運転状態またはモードを有し、(a)エアロゾルの衝突、その後に(b)検出が続く。エアロゾル濃縮器30は、エアロゾル粒子(固体または液体)を衝突ノズルを通じてエアロゾル収集表面40へ向ける。MicroVIC(登録商標)はこれらのノズルが装着されている。エアロゾル収集表面40は、例えば、円盤またはプレートの形状をしたデバイスである。エアロゾルクラウドはエアロゾル濃縮器30を通じて加速され、エアロゾル収集器40に向けられる。エアロゾル粒子は、慣性によって、直接エアロゾル収集器40に向けられる。捕捉の効率は、エアロゾル濃縮器30の設計および粒子がその表面に衝突させられるエアロゾル収集器の基板40の設計の両方に依存する。
表面に堆積したスポットの直径は、一実施形態では、直径が約2mmまたは他の場合は検出システム光学素子が焦点を合わせ調べることが可能な大きさでありうる。例えば、一つのアルミ処理表面は、エアロゾル収集器基板40として使用されうる。エアロゾル収集器の現行の設計は、受動表面張力および若干量の残留静電引力に依存し、これらの力は固体または液体の粒子を収集器に固定させる。エアロゾル収集器40のための他の適切な材料の例は、紙、金属、またはプラスチックから製造された超微細フィルターである。
回転ステージング機構50は、エアロゾル収集表面40のためのステージング地点であり、該機構はエアロゾルを新しい、クリーンな表面に逐次的に堆積させる。
固体および液体のエアロゾル粒子は、エアロゾル収集器40の上で捕捉され、インテロゲート光線45によって示されるようにホスト検出システムによって調べられ、以下で図6に関連して説明される。
仮想インパクター20からの蒸気の経路またはチャネルは、エアロゾルの経路とは違って、三つの運転状態またはモードを有し、(a)蒸気の濃縮、(b)濃縮された蒸気の脱着、その後に(c)検出がある。検出は蒸気が濃縮器から蒸気収集器70に脱着された後で行われ、該収集器は分光インテロゲート光線75を供給する。運転に際して、該検出システムは、ラマンデータのようなデータを追跡することができ、サンプル(該検出システムの既存の能力による外部表面、蒸気またはエアロゾル)のソースを指示できる。
図は単一のインテロゲート口16を示しているが、その代わりに二つ以上のインテロゲート口を有することがあることが理解されるべきである。例えば、エアロゾルチャネル専用のインテロゲート口および蒸気チャネル専用のインテロゲート口を有することがありうる。このように、一般に、空気サンプラモジュール10は、少なくとも一つのインテロゲート口を有する。
図6に目を向けると、空気サンプラモジュール10のエアロゾル収集器40および蒸気収集器70への光学的経路が、一実施形態に従ってより詳細に示されている。参照番号110は、検出システム100(図1および2)の光学トランシーバーコンポーネントである。光学トランシーバーコンポーネント110は、インテロゲート光線(例えばラマンレーザー光源からの)を伝送し、サンプルからの散乱光を受け取る。空気サンプラモジュール10は、インテロゲート光線をエアロゾル収集器40と蒸気収集器70の両方に向けるための光学素子のネットワークを含む。一実施形態では、フリッパーミラー90があり、該ミラーは第一および第二の位置の間で可動である。第一の位置で、該ミラー90はインテロゲート光を光学トランシーバー110からエアロゾル収集器40に向け、次いでエアロゾル収集器40上のサンプルからの分散光を光学トランシーバー110に反射して戻す。第二の位置で、該ミラーは蒸気収集器70と光学トランシーバー110の間の光学的経路から外に動かされる。この第二の位置は、図6において点線で示されている。いくつかのオプションとして回転ミラー92、94および96があり、該ミラーは空気サンプラモジュール10の大きさを減少させることを可能にする光学的経路における要求された曲がりに関して、光が光学トランシーバーへ向かう、および光が該トランシーバーから来るよう向けるために提供されうる。ミラー90が第二の位置にある場合、光学トランシーバー110からの光はミラー92、94および96によって蒸気収集器70へ反射され、該蒸気収集器上のサンプルからの散乱された光はミラー96、94および92によって光学トランシーバー110へ反射して戻される。
加えて、引き続き図6を見ると、光学素子120があり、該光学素子120は空気サンプラモジュール10またはその外部にある表面600(例えば路面、地面/床、壁など)への光学トランシーバー110のための光学的経路を変更するために、調整または作動されうる。一実施形態では、光学素子120は回転ミラーでありえ、第一の位置と第二の位置との間で調整され、第一の位置で光学トランシーバー110は空気サンプラモジュール10を備えた光学的経路を有し、第二の位置で該光学トランシーバーは外部表面600を備えた光学的経路を有する。使用者がいずれかの運転モード(空気サンプラモジュールまたは外部表面)を選択することを可能にするユーザーインターフェース制御が提供され、光学素子120は使用者の選択に応じて調整される。代替として、光学素子120はビームスプリッターデバイスでありうる。光学素子120は、検出システム100、空気サンプラモジュール10、または該検出システム100および該空気サンプラモモジュール10とは別のコンポーネントの一部として含まれうる。図6は、外部表面600を備えた光学的経路を形成するときに、光学素子120が空気サンプラモジュール10と光学トランシーバー110との間の物理的経路を遮断していることを示しているが、本システムは、その代わり光学素子120が空気サンプラモジュール10への光学的経路を作成するときに物理的経路を遮断するように置かれ構成されうるように設計されえ、外部表面600を分析するときに光学トランシーバー110の物理的経路の外に動かされうることが理解されるべきである。
蒸気濃縮器60の機能を実行するための多くの技術が公知である。適切なデバイスの二つの例が、米国政府が支援しMesoSystems Technologies, Inc.によって開発された“Mesochannel”gas samplar(MGS)濃縮器、およびU.S. Naval Research Laboratoryで開発されたが商業的に利用可能なCascade Avalanche Sorbent Plate Array(CASPAR)のバージョンである。
図7は蒸気濃縮器60の例として、MGSの断面図を示している。MGSは吸着剤で覆われた小さなチャネル62で構成されている。MGSは吸着剤中心の設計を有し、そのため単純な低電力のファン64が使用されて、該チャネルを通るようにフローを押し流す。チャネル62の壁は電気的に加熱されえ、収集された汚染物質を急速に脱着するので、蒸気収集チャネルは再使用されうる。その熱は濃縮された蒸気を除去し、次いで収集器が回転ステージング機構に戻され、引き続き起こる収集のために使用される。比較的高いフロー速度のローディングフェーズでは、気相の汚染物質はチャネルの壁に吸収される。ローディングの後1分未満で、チャネルの壁は急速に加熱され、収集された汚染物質を脱着して、検出のため汚染物質を蒸気収集器70へ送る。
熱的に隔離された低熱容量の構造のマイクロ加工は、非常に低い電力での急速な加熱に関して利点を提供することで公知である。該マイクロ加工は、マイクロホットプレートセンサーに使用され、周囲より数百度高い温度で数十mWから数百mWの電力で稼動可能である。Naval Research Laboratoryの研究者たちは、マイクロ加工で作られたプレコンセントレーター設計を実証したが、該設計は小さな圧力降下を伴う大量のサンプリング(サンプリングポンプの大きさと電力要件とを最小化する鍵)を可能にするフロー設計とともに、これらの熱特性を利用する。
図8と図9とは、CASPARプレコンセントレーターを蒸気濃縮器の別の例として示し、該CASPARプレコンセントレーターは、一実施形態に従った空気サンプラモジュール10において使用されうる。CASPARデバイスは、参照番号60’で示され、薄い膜66を含み、該膜66は選択的にエッチングされた低応力の窒化ケイ素層を使って形成された狭いテザー68によって、シリコン基板に付着している。この熱隔離は、低電力で膜を急速に加熱する能力を高める。低い流動抵抗を提供するために、一連の孔部69が膜に形成され、空気フローが膜を通って垂直に流れることが可能にされる。小さい寸法の孔部69は、膜の上に堆積した吸着剤層の上で、改良された、検体の拡散捕捉を提供する。
孔部の周りに曲がりくねった線状の加熱器は、熱脱着のため膜を急速に加熱する目的で使用される。CASPARコンセントレーター技術のより典型的な吸着剤床プレコンセントレーターに対する有利な点は、限定することなしに、大きな体積流量(数十L/分)、低電力の加熱(数百mW)、および速い熱脱着(ミリセカンド熱上昇時間)を含む。
MGSタイプのデバイス(図7)またはCASPARタイプのデバイス(図8および9)のいずれかによる蒸気の濃縮は、濃縮レベルを構築するためにデバイスを通じて最小限の量の空気が処理されるまで継続されることが可能にされ、該濃縮レベルは指示されたリストの関心がある化学物質の完全な化学標識分析によって規定される。蒸気が濃縮された後、吸収された分子は蒸気収集器70上で脱着される。
ラマンインテロゲーションに関して濃縮された蒸気を収集するいくつかの方法があり、限定することなしに、冷却板、マイクロ多孔性表面または真空セルを含む。
冷却板の設計は、蒸気が冷たい表面に衝突する場合には蒸気が濃縮して液体を生成するという原理に基づいている。次いで、この液体は、収集されたエアロゾル粒子について上記で説明されたような、ラマンベースの検出システムを使って調べられうる。一実施形態では、冷却板の冷却は一体型熱電気冷却器(TEC)によってなされうる。水蒸気の収集は、蒸気濃縮器の脱着段階で乾燥した空気を使って最小化されうる。冷却板は、液体を離れさせるために、該冷却板に熱を加えることによりクリーニングされうる。
本明細書で説明されたシステムおよび方法は、その精神または本質的な特徴から逸脱することなしに、他の特定の形態で実施されうる。したがって、上記の実施形態は、あらゆる点で例示とみなされるべきであり、限定することは意図されていない。

Claims (17)

  1. 分光技術を用いて表面上の液体および/または固体をモニターする検出デバイスとともに用いられる空気サンプラモジュールであって、該検出デバイスは光学トランシーバーを含み、該空気サンプラモジュールは、ハウジングと、分析されるべき空気を収集するための取り入れ口と、該ハウジング内の仮想インパクターであって該収集された空気を分類することにより、分析されるべきエアロゾル粒子を主に含む第一のフローと、分析されるべき蒸気を主に含む第二のフローとを生成す仮想インパクターと、該第一のフローおよび第二のフローの分析を可能にするため該検出デバイスの光学トランシーバーの該ハウジングへの通信を可能にするポートとを含み、
    該空気サンプラモジュールは、
    該第一のフローに結合されたエアロゾル濃縮器であって、該検出デバイスの該光学トランシーバーを用いる分光分析のために、固体および/または液体のエアロゾル粒子を第一の表面上に堆積させるエアロゾル濃縮器と、
    該第二のフローに結合された蒸気濃縮器であって、該検出デバイスの該光学トランシーバーを用いる分光分析のために、蒸気を第二の表面上に濃縮する蒸気濃縮器と
    をさらに含む、空気サンプラモジュール。
  2. 前記蒸気収集器が加熱素子を含み、該加熱素子は新たなサンプルのために前記第二の表面の再利用を可能にするように、濃縮された蒸気を離れさせるために該蒸気を加熱する、請求項に記載の空気サンプラモジュール。
  3. 前記第二の表面が冷却されることにより、蒸気が凝縮して該第二の表面上に液体を生成する、請求項に記載の空気サンプラモジュール。
  4. 前記ハウジング内に少なくとも一つの光学素子をさらに含み、該少なくとも一つの光学素子は、前記光学トランシーバーと前記第一の表面との間にある第一の光学的経路と、該光学トランシーバーと前記第二の表面との間にある第二の光学的経路とを提供する、請求項に記載の空気サンプラモジュール。
  5. 前記少なくとも一つの光学素子がミラーであり、該ミラーは、前記第一の光学的経路を作る第一の位置と、前記第二の光学的経路を作る第二の位置との間で可動である、請求項4に記載の空気サンプラモジュール。
  6. 請求項1に記載の空気サンプラモジュールと前記光学トランシーバーを含むラマン検出デバイスとの組み合わせであって、該光学トランシーバーは、近距離隔離または遠隔における検出を行うために、該空気サンプラモジュールの外部の表面に向けられることが可能である、組み合わせ。
  7. 分光検出システムであって、
    a.表面上の物質の分光分析のために、該表面に光線を発して該表面からの散乱光を検出する光学トランシーバーと、
    b.ハウジングと、分析されるべき空気を収集するための取り入れ口と、該ハウジング内の仮想インパクターであって該取り入れ口を通じて収集された空気を分類することにより、分析されるべきエアロゾル粒子を主に含む第一フローと分析されるべき蒸気を主に含む第二フローとを生成す仮想インパクターと、該第一のフローおよび該第二のフローの分光分析を可能にするため該光学トランシーバーの該ハウジングへの通信を可能にす少なくとも一つのポートとを含空気サンプラモジュールと
    を含み、
    該空気サンプラモジュールは、
    該第一のフローに結合されたエアロゾル濃縮器であって、該光学トランシーバーを用いる分光分析のために、固体および/または液体のエアロゾル粒子を第一の表面上に堆積させるエアロゾル濃縮器と、
    該第二のフローに結合された蒸気濃縮器であって、該光学トランシーバーを用いる分光分析のために、蒸気を第二の表面上に濃縮する蒸気濃縮器と
    をさらに含む、システム。
  8. 少なくとも一つの光学素子をさらに含み、該少なくとも一つの光学素子は、前記空気サンプラモジュールの外部表面の近距離隔離または遠隔における検出を行うために、前記光学トランシーバーと該空気サンプラモジュールの外部表面との間に光学的経路を提供可能である、請求項に記載のシステム。
  9. 前記ハウジング内に少なくとも一つの光学素子をさらに含み、該少なくとも一つの光学素子は、前記光学トランシーバーと前記第一の表面との間の第一の光学的経路と、該光学トランシーバーと前記第二の表面との間の第二の光学的経路とを提供する、請求項に記載のシステム。
  10. 前記光学トランシーバーは、ラマン光線を発してラマン散乱光を検出する、請求項に記載のシステム。
  11. 前記空気サンプラモジュールは、排出口をさらに含み、該排出口は前記ハウジング内に収集された空気を、該空気が分析された後で大気中に排出する、請求項に記載のシステム。
  12. 分光技術を用いて、空中に浮遊する脅威および空中に浮遊しない脅威を分析する方法であって、該方法は、
    a.取り入れ口を介して、分析されるべき空気をハウジング内に収集することと、
    b.該ハウジング内の仮想インパクターを用いて、該ハウジング内で収集された空気を、エアロゾル化された液体および/または固体の粒子を含む第一のフローと、蒸気を含む第二のフローとに分類することと、
    c.エアロゾル濃縮器を用いて、該エアロゾル化された液体および/または固体の粒子を該ハウジング内の第一の表面上に堆積させ蒸気濃縮器を用いて、該蒸気を該ハウジング内の第二の表面上に堆積させることと、
    d.ポートを介して、前記光学トランシーバーを該ハウジング内の第一の表面および第二の表面光学的に結合することにより、該液体および/または固体のエアロゾル粒子および該蒸気の分光分析を可能にすることと
    を含む、方法。
  13. 前記第二のフローからの蒸気を加熱することをさらに含み、該蒸気からの液体を前記第二の表面上に濃縮する、請求項12に記載の方法。
  14. エアロゾル化された粒子を分析する場合には、前記光学的に結合することは、前記光学トランシーバーからの光線を前記第一の表面に向けることと、該第一の表面からの散乱光を該光学トランシーバーに向けることとを含み、蒸気を分析する場合には、該光学的に結合することは、該光学トランシーバーからの光線を前記第二の表面に向けることと、該第二の表面からの散乱光を該光学トランシーバーに向けることとを含む、請求項12に記載の方法。
  15. 前記光学トランシーバーと前記ハウジングの外部表面との間に光学的経路を形成して、該ハウジングの外部表面上の固体および/または液体の物質の近距離隔離または遠隔における検出を行うことをさらに含む、請求項12に記載の方法。
  16. 分光技術を用いて、空中に浮遊する脅威および空中に浮遊しない脅威を分析するための方法であって、該方法は、
    a.取り入れ口を介して、分析されるべき空気をハウジング内に収集することと、
    b.該収集された空気を分類することにより、分析されるべきエアロゾル粒子を主に含む第一のフローと、分析されるべき蒸気を主に含む第二のフローとを生成することと、
    エアロゾル濃縮器を用いて、該第一のフローからのエアロゾル粒子を該ハウジング内の少なくとも一つの表面上に堆積させることと、
    d.蒸気濃縮器を用いて、該第二のフローからの蒸気を該ハウジング内の第二の表面上に堆積させることと、
    ポートを介して、光学トランシーバーを該ハウジング内の第一の表面および該第二の表面に光学的に結合することにより、該第一の表面上に堆積した該エアロゾル粒子の分光分析と、該第二の表面上に堆積した該蒸気の分光分析とを可能にすることと、
    .該光学トランシーバーを該ハウジングの外部表面に光学的に結合することにより、該ハウジングの外部の該表面上の粒子の分光分析を可能にすることと
    を含む、方法。
  17. 検出デバイスと空気サンプラモジュールの組み合わせであって、該検出デバイスは、光学トランシーバーを含み、該空気サンプラモジュールは、ハウジングと、分析されるべ空気を収集するための取り入れ口と、該ハウジング内の仮想インパクターであって、該収集された空気を分類することにより、分析されるべきエアロゾル粒子を主に含む第一のフローと、分析されるべき蒸気を主に含む第二のフローとを生成する仮想インパクターと、第一のフローおよび第二のフローの分析を可能にするために該検出デバイスの該光学トランシーバーの該ハウジングへの通信を可能にする少なくとも一つのポートとを含み、該組み合わせは、少なくとも一つの光学素子をさらに含み、該少なくとも一つの光学素子は、該空気サンプラモジュールの外部表面上で近距離隔離または遠隔における検出を行うために、該検出デバイスの該光学トランシーバーと該空気サンプラモジュールの外部表面との間に第一の光学的経路を提供することと、該ハウジング内に収集された空気に含まれた脅威分析を可能にするために、該光学トランシーバーと該空気サンプラモジュールの該ポートとの間に第二の光学的経路を提供することとが可能であり、
    該空気サンプラモジュールは、
    該第一のフローに結合されたエアロゾル濃縮器であって、該検出デバイスの該光学トランシーバーを用いる分光分析のために、固体および/または液体のエアロゾル粒子を第一の表面上に堆積させるエアロゾル濃縮器と、
    該第二のフローに結合された蒸気濃縮器であって、該検出デバイスの該光学トランシーバーを用いる分光分析のために、蒸気を第二の表面上に濃縮する蒸気濃縮器と
    をさらに含む、組み合わせ。
JP2009518625A 2006-07-07 2007-07-05 化学検出デバイスまたはシステムの検出能力を高めるための空気サンプラモジュール Expired - Fee Related JP5346286B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/481,885 US7511809B2 (en) 2006-07-07 2006-07-07 Air sampler module for enhancing the detection capabilities of a chemical detection device or system
US11/481,885 2006-07-07
PCT/US2007/072830 WO2008006015A2 (en) 2006-07-07 2007-07-05 Air sampler module for enhancing the detection capabilities of a chemical detection device or system

Publications (2)

Publication Number Publication Date
JP2009543072A JP2009543072A (ja) 2009-12-03
JP5346286B2 true JP5346286B2 (ja) 2013-11-20

Family

ID=38895462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009518625A Expired - Fee Related JP5346286B2 (ja) 2006-07-07 2007-07-05 化学検出デバイスまたはシステムの検出能力を高めるための空気サンプラモジュール

Country Status (6)

Country Link
US (1) US7511809B2 (ja)
EP (1) EP2044410B1 (ja)
JP (1) JP5346286B2 (ja)
AU (1) AU2007269129B2 (ja)
ES (1) ES2558800T3 (ja)
WO (1) WO2008006015A2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7796251B2 (en) * 2006-03-22 2010-09-14 Itt Manufacturing Enterprises, Inc. Method, apparatus and system for rapid and sensitive standoff detection of surface contaminants
US7636154B1 (en) 2006-12-21 2009-12-22 Itt Manufacturing Enterprises, Inc. Modular optical detection system for point airborne and area surface substance detection
US7760352B2 (en) * 2008-03-18 2010-07-20 Itt Manufacturing Enterprises, Inc. Dual pulse single event Raman spectroscopy
US20110203931A1 (en) * 2009-07-13 2011-08-25 Enertechnix, Inc Particle Interrogation Devices and Methods
JP5545144B2 (ja) * 2010-09-14 2014-07-09 セイコーエプソン株式会社 光デバイスユニット及び検出装置
US8833140B2 (en) * 2011-07-18 2014-09-16 Bae Systems Information And Electronic Systems Integration Inc. Optically heated analyte desorber for gas chromatography analysis
USD734187S1 (en) * 2013-06-24 2015-07-14 New Cosmos Electric Co., Ltd. Gas detector
US9664658B2 (en) * 2015-01-13 2017-05-30 Src, Inc. Method, device, and system for aerosol detection of chemical and biological threats
EP3290899B1 (en) * 2015-04-28 2021-02-17 Panasonic Corporation Adsorption pump
WO2017165709A1 (en) * 2016-03-25 2017-09-28 The Regents Of The University Of California Portable micro-preconcentrator to facilitate chemical sampling and subsequent analysis
CA3043534A1 (en) 2016-12-22 2018-06-28 Envirolytics, Llc Systems and methods for mobile environmental testing and analysis
US10571445B2 (en) * 2017-05-15 2020-02-25 Hamilton Sundstrand Corporation Fielded chemical threat detectors
WO2019010417A1 (en) 2017-07-06 2019-01-10 Live-Pure, Inc. SYSTEM FOR ASSESSING THE QUALITY OF AIR AND DRINKING WATER
USD850311S1 (en) * 2018-03-06 2019-06-04 Live-Pure, Inc. Sampling device for indoor environmental hazards
US10775258B2 (en) * 2018-03-13 2020-09-15 International Business Machines Corporation Heuristic based analytics for gas leak source identification
EP3832302A1 (en) * 2019-12-02 2021-06-09 Aerosol d.o.o. A heating chamber for measuring carbonaceous aerosol, and a device comprising said chamber
USD942281S1 (en) * 2019-12-31 2022-02-01 Bitfinder, Inc. Air quality monitoring device
US11204320B2 (en) 2020-04-23 2021-12-21 Raytheon Company Aerosol transmissometer with an in-process transfer standard
CN111617515B (zh) * 2020-05-15 2021-08-17 浙江大学 一种基于阵列传感器的气液固三相分离装置及分离方法
US20240044753A1 (en) * 2022-07-07 2024-02-08 Hamilton Sundstrand Corporation Aerosol detection systems

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570494A (en) * 1984-04-11 1986-02-18 The United States Of America As Represented By The United States Department Of Energy Apparatus for sampling and characterizing aerosols
US4689052A (en) * 1986-02-19 1987-08-25 Washington Research Foundation Virtual impactor
US5932795A (en) * 1997-01-22 1999-08-03 President And Fellows Of Harvard College Methods and apparatus for continuous ambient particulate mass monitoring
US5932818A (en) * 1997-09-30 1999-08-03 The United States Of America As Represented By The United States Department Of Energy Near real time vapor detection and enhancement using aerosol adsorption
US7578973B2 (en) * 1998-11-13 2009-08-25 Mesosystems Technology, Inc. Devices for continuous sampling of airborne particles using a regenerative surface
US6821738B2 (en) * 1999-01-20 2004-11-23 The Board Of Regents For Oklahoma State University Broad spectrum bio-detection of nerve agents, organophosphates, and other chemical warfare agents
US7126687B2 (en) * 1999-08-09 2006-10-24 The United States Of America As Represented By The Secretary Of The Army Method and instrumentation for determining absorption and morphology of individual airborne particles
FR2801977B1 (fr) * 1999-12-02 2002-05-17 Commissariat Energie Atomique Amplification d'un signal de fluorescence emis par un echantillon surfacique
US6865926B2 (en) * 2000-01-25 2005-03-15 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Portland State University Method and apparatus for sample analysis
US6952945B2 (en) * 2000-01-25 2005-10-11 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Portland State University Method and apparatus for concentrating samples for analysis
US6561045B2 (en) * 2000-04-26 2003-05-13 Msp Corporation Sampler for eliminating particle-related artifacts for flue gas measurement
US6442492B1 (en) * 2000-06-22 2002-08-27 Uop Llc Controlling moisture content of vapor in calcination or oxidation zones
US6723804B1 (en) * 2000-11-03 2004-04-20 Chevron Phillips Chemical Company, Lp Monitoring and control of slurry processes for polymerizing olefins
US20020074517A1 (en) * 2000-12-15 2002-06-20 Andrew Krutchinsky High capacity and scanning speed system for sample handling and analysis
US6732569B2 (en) * 2001-01-25 2004-05-11 University Of Maryland System and method for collecting samples of atmospheric aerosol particles for near-real time analysis
KR100428048B1 (ko) * 2001-05-02 2004-04-27 한국과학기술원 냉각된 충돌판을 갖는 임팩터
JP2003050201A (ja) * 2001-08-08 2003-02-21 Toyota Motor Corp 吸着物質の分析方法および装置
WO2003060444A1 (en) * 2002-01-10 2003-07-24 Chemimage Corporation Method for detection of pathogenic microorganisms
US7244288B2 (en) * 2003-05-28 2007-07-17 Implant Sciences Corporation Pulsed vapor desorber
CN1313837C (zh) * 2002-02-21 2007-05-02 英弘精机株式会社 气象观测激光雷达系统
US6788407B1 (en) * 2002-03-18 2004-09-07 Itt Manufacturing Enterprises, Inc. Laser interrogation of surface agents
US6865196B2 (en) * 2002-05-28 2005-03-08 Itt Manufacturing Enterprises, Inc. Laser spectroscopy using a master/slave architecture
US6852527B2 (en) * 2002-06-06 2005-02-08 Inovyx, Inc. Apparatus and method for the measurement of cells in biological samples
US6688187B1 (en) * 2002-09-10 2004-02-10 The Regents Of The University Of California Aerosol sampling system
US6985818B1 (en) * 2003-02-06 2006-01-10 The United States Of America As Represented By The Secretary Of The Army Air sampling method and sensor system for spectroscopic detection and identification of chemical and biological contaminants
US6847446B2 (en) * 2003-03-25 2005-01-25 The United States Of America As Represented By The Secretary Of The Navy Chemical analysis and detection by selective adsorbent sampling and laser induced breakdown spectroscopy
US6949734B2 (en) * 2003-04-22 2005-09-27 Itt Manufacturing Enterprises, Inc. Active remote sensing using a spectral lock-in technique
US7009170B2 (en) * 2003-06-26 2006-03-07 Itt Manufacturing Enterprises, Inc. Active remote sensing using a simultaneous spectral sampling technique
JP4085941B2 (ja) * 2003-09-17 2008-05-14 株式会社日立製作所 分析装置
JP2007506106A (ja) * 2003-09-19 2007-03-15 サーノフ コーポレーション 浮遊微粒子を分類する方法および装置
US7125518B2 (en) * 2004-02-14 2006-10-24 The United States Of America As Represented By The Secretary Of The Army Aerosol particle analyzer for measuring the amount of analyte in airborne particles
US7591980B2 (en) * 2004-03-01 2009-09-22 Mesosystems Technology, Inc. Biological alarm
US7201878B2 (en) * 2004-03-26 2007-04-10 The United States Of America As Represented By The Secretary Of The Army Aerosol particle analyzer for measuring an analyte in airborne particles
US7116415B2 (en) * 2004-06-18 2006-10-03 In Technology Holding Llc Method and apparatus for detecting chemical and biological weapon components using Raman spectrum
US7141786B2 (en) * 2004-09-08 2006-11-28 General Electric Company Particle sampling preconcentrator
US7450227B2 (en) * 2004-09-22 2008-11-11 The Penn State Research Foundation Surface enhanced Raman spectroscopy (SERS) substrates exhibiting uniform high enhancement and stability

Also Published As

Publication number Publication date
WO2008006015A2 (en) 2008-01-10
EP2044410A2 (en) 2009-04-08
JP2009543072A (ja) 2009-12-03
US20080007728A1 (en) 2008-01-10
EP2044410A4 (en) 2011-11-16
EP2044410B1 (en) 2015-10-14
ES2558800T3 (es) 2016-02-08
AU2007269129B2 (en) 2010-12-09
WO2008006015A3 (en) 2009-04-09
AU2007269129A1 (en) 2008-01-10
US7511809B2 (en) 2009-03-31

Similar Documents

Publication Publication Date Title
JP5346286B2 (ja) 化学検出デバイスまたはシステムの検出能力を高めるための空気サンプラモジュール
US7333190B1 (en) Raman interrogation of threat aerosols
US9977001B2 (en) Method, device, and system for aerosol detection of chemical and biological threats
US7578973B2 (en) Devices for continuous sampling of airborne particles using a regenerative surface
US7591980B2 (en) Biological alarm
US7265669B2 (en) Networks with sensors for air safety and security
EP1377815B1 (en) Biological measurement system and method of its use.
JP4598766B2 (ja) 生物学的微粒子及び非生物学的微粒子を検出し且つ分類するためのマルチスペクトル光学方法及びシステム
US7005982B1 (en) Carrier security system
US7295308B1 (en) Air sampling method and sensor system for spectroscopic detection and identification of chemical and biological contaminants
US4942297A (en) Real time infrared aerosol analyzer
US20070224087A1 (en) Airborne material collection and detection method and apparatus
CA2430714C (en) Ram-air sample collection device for a chemical warfare agent sensor
JP2007528214A (ja) 自立監視システム
CA2470632A1 (en) System, method and apparatus for the rapid detection and analysis of airborne biological agents
US20100015601A1 (en) Biological confirmation and detection system
US20100053605A1 (en) Gas sampling device and method for collection and in-situ spectroscopic interrogation of vapors and aerosols
US7636154B1 (en) Modular optical detection system for point airborne and area surface substance detection
EP3685140B1 (en) Particulate matter detection
US20090293646A1 (en) System and method for optical detection of aerosols
US7029852B2 (en) Apparatus and method for detecting and classifying chemicals, particles, vira, and bacteria in fluids
US7631567B1 (en) Systems and methods for collecting particles from a large volume of gas into a small volume of liquid
US20110314937A1 (en) System and method for the optical detection of aerosols
Lee et al. Real-time detection of airborne biological particles using inertial impactor coupled Surface-enhanced Raman spectroscopy
Schlemmer et al. Biological aerosol warner and analyser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees