JP5343516B2 - Negative electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode for lithium secondary battery - Google Patents

Negative electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode for lithium secondary battery Download PDF

Info

Publication number
JP5343516B2
JP5343516B2 JP2008285797A JP2008285797A JP5343516B2 JP 5343516 B2 JP5343516 B2 JP 5343516B2 JP 2008285797 A JP2008285797 A JP 2008285797A JP 2008285797 A JP2008285797 A JP 2008285797A JP 5343516 B2 JP5343516 B2 JP 5343516B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
material layer
electrode active
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008285797A
Other languages
Japanese (ja)
Other versions
JP2010113964A (en
Inventor
尊夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008285797A priority Critical patent/JP5343516B2/en
Publication of JP2010113964A publication Critical patent/JP2010113964A/en
Application granted granted Critical
Publication of JP5343516B2 publication Critical patent/JP5343516B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To make cycle characteristics better through restraint of degradation of electrode energy density of a lithium secondary battery. <P>SOLUTION: The lithium secondary battery 20 is provided with a negative electrode for lithium secondary battery 23 equipped with a negative electrode collector 11 with its surface made coarse, a negative electrode active material layer 12 mainly composed of amorphous silicon and uniformly formed on a surface of the negative electrode collector 11 and a negative electrode binder 13 formed on a surface of the negative electrode active material layer 12. By using the negative electrode collector 11 with its surface coarse, stress concentration in the negative electrode active material layer generated by expansion and contraction of the negative electrode active material accompanying with charging and discharging is alleviated, thus pulverization or peeling of the negative electrode active material layer are restrained. Further, since the negative electrode binder 13 is formed on the surface of the negative electrode active material layer, the negative electrode active material layer is hardly dropped off from the negative electrode collector so as to restrain degradation of conductivity. Moreover, since unnecessary volume part without active material does no exist on the surface of the negative electrode collector 11, degradation of electrode energy density can be restrained. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、リチウム2次電池用負極、リチウム2次電池及びリチウム2次電池用負極の製造方法に関する。   The present invention relates to a negative electrode for a lithium secondary battery, a lithium secondary battery, and a method for producing a negative electrode for a lithium secondary battery.

従来、リチウム2次電池としては、負極活物質としてシリコンを代表とする14族元素やこれらの酸化物と金属間化合物を形成する材料を用いることにより高容量化を図ることが提案されている。しかし、これらの材料は充放電におけるリチウムの吸蔵放出に伴う体積変化が大きいために、活物質粒子の割れや集電体からの剥離などが発生しやすくサイクル特性が劣化する。   Conventionally, it has been proposed to increase the capacity of a lithium secondary battery by using a group 14 element typified by silicon or a material that forms an intermetallic compound with these oxides as a negative electrode active material. However, since these materials have a large volume change due to insertion and extraction of lithium during charging and discharging, cracking of active material particles, peeling from the current collector, and the like are likely to occur, and the cycle characteristics deteriorate.

そこで、例えば特許文献1では、シリコンを負極活物質とするリチウム2次電池において、シリコンを含む活物質を集電体上に複数の島領域状に形成し、この複数の島領域を覆うように導電性保護膜を形成することによって充放電に伴う活物質の膨張収縮を導電性保護膜で吸収させ、活物質の集電体からの剥離などを抑制し、サイクル特性の劣化を制御することが提案されている。
特開2008−117574号公報
Therefore, in Patent Document 1, for example, in a lithium secondary battery using silicon as a negative electrode active material, an active material containing silicon is formed in a plurality of island regions on a current collector so as to cover the plurality of island regions. By forming a conductive protection film, the conductive protection film absorbs the expansion and contraction of the active material that accompanies charge and discharge, suppresses peeling of the active material from the current collector, and controls deterioration of cycle characteristics. Proposed.
JP 2008-117574 A

しかしながら、特許文献1に記載された負極では、島領域間の空隙に導電性保護膜が存在することによってサイクル特性は良好となるが、集電体表面に活物質のない不要な体積部分が存在するため、電極エネルギー密度が低下するという問題があった。   However, in the negative electrode described in Patent Document 1, the cycle characteristics are improved due to the presence of the conductive protective film in the voids between the island regions, but there is an unnecessary volume portion having no active material on the current collector surface. Therefore, there has been a problem that the electrode energy density is lowered.

本発明は、このような課題に鑑みなされたものであり、電極エネルギー密度の低下を抑制し、サイクル特性が良好なリチウム2次電池用負極、リチウム2次電池及びリチウム2次電池用負極の製造方法を提供することを目的とする。   This invention is made | formed in view of such a subject, manufacture of the negative electrode for lithium secondary batteries, lithium secondary battery, and negative electrode for lithium secondary batteries which suppresses the fall of an electrode energy density and has favorable cycling characteristics. It aims to provide a method.

上述した目的を達成するために、本発明者らは、粗面化した負極集電体の表面に非晶質シリコンを主成分とする負極活物質層を一様に形成し、さらにその表面に負極バインダーを形成したリチウム2次電池用負極を作成し、これを負極とするリチウム2次電池を作成したところ、電極エネルギー密度の低下を抑制し、サイクル特性を良好にすることができることを見いだし、本発明を完成するに至った。   In order to achieve the above object, the present inventors uniformly formed a negative electrode active material layer mainly composed of amorphous silicon on the surface of the roughened negative electrode current collector, and further formed on the surface. When a negative electrode for a lithium secondary battery in which a negative electrode binder is formed and a lithium secondary battery using the negative electrode as a negative electrode is prepared, it is found that the reduction in electrode energy density can be suppressed and cycle characteristics can be improved. The present invention has been completed.

即ち、本発明のリチウム2次電池用負極は、表面が粗面化された負極集電体と、非晶質シリコンを主成分とし前記負極集電体表面に一様に形成された負極活物質層と、前記負極活物質層の表面に形成された負極バインダーと、を備えたものである。   That is, the negative electrode for a lithium secondary battery according to the present invention includes a negative electrode current collector having a roughened surface, and a negative electrode active material having amorphous silicon as a main component and uniformly formed on the surface of the negative electrode current collector. And a negative electrode binder formed on the surface of the negative electrode active material layer.

また、本発明のリチウム2次電池は、正極活物質を含む正極と、上述のリチウム2次電池用負極と、前記正極と前記負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、を備えたものである。   Moreover, the lithium secondary battery of the present invention includes a positive electrode containing a positive electrode active material, the above-described negative electrode for a lithium secondary battery, an ion conductive medium that is interposed between the positive electrode and the negative electrode and conducts lithium ions, It is equipped with.

さらに、本発明のリチウム2次電池用負極の製造方法は、表面が粗面化された負極集電体上に非晶質シリコンを主成分とする負極活物質層を一様に形成する負極活物質層形成工程と、前記負極活物質層表面に負極バインダーを形成する負極バインダー形成工程と、を含むものである。   Furthermore, in the method for producing a negative electrode for a lithium secondary battery according to the present invention, a negative electrode active material layer in which a negative electrode active material layer containing amorphous silicon as a main component is uniformly formed on a negative electrode current collector whose surface is roughened. It includes a material layer forming step and a negative electrode binder forming step of forming a negative electrode binder on the surface of the negative electrode active material layer.

このリチウム2次電池用負極、リチウム2次電池及びリチウム2次電池の製造方法ではでは、サイクル特性を良好にできる。このような効果が得られる理由として、粗面化された負極集電体上に負極活物質層を形成することにより、充放電に伴う負極活物質の膨張収縮によって発生する負極活物質層内の応力集中が緩和され、負極活物質層の微粉化や剥離が抑制されることが考えられる。さらに、前記負極活物質層表面に負極バインダーを形成することによって、負極活物質層が負極集電体から脱落しにくくなり導電率の低下が抑制されることが考えられる。また、このリチウム2次電池用負極では、集電体表面に活物質のない不要な体積部分が存在しないため、電極エネルギー密度の低下を抑制することができると考えられる。   In this negative electrode for a lithium secondary battery, a lithium secondary battery, and a method for producing a lithium secondary battery, cycle characteristics can be improved. The reason why such an effect is obtained is that, by forming a negative electrode active material layer on the roughened negative electrode current collector, the negative electrode active material layer generated by expansion and contraction of the negative electrode active material accompanying charge / discharge It is conceivable that the stress concentration is relaxed and the pulverization and peeling of the negative electrode active material layer are suppressed. Furthermore, it is conceivable that by forming a negative electrode binder on the surface of the negative electrode active material layer, the negative electrode active material layer is less likely to drop off from the negative electrode current collector, and the decrease in conductivity is suppressed. Moreover, in this negative electrode for lithium secondary batteries, since the unnecessary volume part which does not have an active material does not exist in the collector surface, it is thought that the fall of an electrode energy density can be suppressed.

本発明のリチウム2次電池用負極は、表面が粗面化された負極集電体と、非晶質シリコンを主成分とし負極集電体表面に一様に形成された負極活物質層と、負極活物質層の表面に形成された負極バインダーと、を備えたものである。このリチウム2次電池用負極は、リチウムイオン2次電池やリチウム空気電池などのリチウム2次電池の負極として利用することができる。このうち、リチウムイオン2次電池の負極に利用するのが好ましい。   The negative electrode for a lithium secondary battery according to the present invention includes a negative electrode current collector having a roughened surface, a negative electrode active material layer formed mainly of amorphous silicon and uniformly formed on the surface of the negative electrode current collector, And a negative electrode binder formed on the surface of the negative electrode active material layer. The negative electrode for a lithium secondary battery can be used as a negative electrode for a lithium secondary battery such as a lithium ion secondary battery or a lithium air battery. Among these, it is preferable to utilize for the negative electrode of a lithium ion secondary battery.

本発明のリチウム2次電池用負極において、負極集電体は、表面が粗面化されている。負極集電体は、導電性材料で形成されたものであれば特に限定されないが、例えば、銅やステンレス鋼、ニッケルメッキ鋼などの金属で形成されている箔を用いることができる。表面は粗面化されていればよいが、その表面粗さRzjis(μm)は0.4μm以上であることが好ましく、4.5μm以上7μm以下であることがより好ましい。表面粗さRzjisが0.4μm以上では負極活物質層の厚さを確保しやすく、4.5μm以上では負極活物質層の厚さをより確保しやすい。また、集電体の表面に凹凸を形成するには、それに見合う負極集電体の厚さが必要となるが、表面粗さRzjisが7μm以下では、負極集電体の厚さを30μm程度に抑えることができるため、電極エネルギー密度の低下を抑制できる。ここで、表面粗さRzjisは、十点平均粗さともいい、JIS−B0601:2001附属書1(参考)に基づいて求めた表面粗さをいう。   In the negative electrode for a lithium secondary battery of the present invention, the negative electrode current collector has a roughened surface. The negative electrode current collector is not particularly limited as long as it is formed of a conductive material. For example, a foil formed of a metal such as copper, stainless steel, or nickel-plated steel can be used. The surface may be roughened, but the surface roughness Rzjis (μm) is preferably 0.4 μm or more, and more preferably 4.5 μm or more and 7 μm or less. When the surface roughness Rzjis is 0.4 μm or more, it is easy to ensure the thickness of the negative electrode active material layer, and when it is 4.5 μm or more, it is easy to secure the thickness of the negative electrode active material layer. Further, in order to form irregularities on the surface of the current collector, the thickness of the negative electrode current collector corresponding to the unevenness is required, but when the surface roughness Rzjis is 7 μm or less, the thickness of the negative electrode current collector is about 30 μm. Since it can suppress, the fall of an electrode energy density can be suppressed. Here, the surface roughness Rzjis is also referred to as ten-point average roughness, and refers to the surface roughness determined based on JIS-B0601: 2001 Annex 1 (reference).

本発明のリチウム2次電池用負極において、負極活物質層は、非晶質シリコンを主成分とし、負極集電体上に一様に形成されたものである。ここで、一様に形成とは、負極集電体上に島領域状に形成されたものではないことをいう。即ち、負極集電体表面にある程度の広がりを有して形成されていればよく、集電体表面を完全に覆うものでなくてもよいし、組成や厚さが不均一であってもよいし、厚さ方向に多層構造や傾斜材構造を有していてもよい。なお、非晶質シリコンを主成分とするとは、非晶質シリコンのみから成る場合のほか、非晶質シリコン以外のもの(不純物や添加物など)を含む場合を含む。また、負極活物質層は、その厚さt(μm)がt≦Rzjis/2を満たすように形成されていることが好ましい。一般に、シリコンは充放電に伴う体積変化が400%程度であるといわれており、平均的には1辺あたり1.6倍程度変化すると考えられる。非晶質シリコンの空隙率(密度)を勘案すると、t≦Rzjis/1.85を満たすことが好ましく、t≦Rzjis/2を満たすことがさらに好ましい。こうすれば、充放電サイクルの繰り返しにおいても、非晶質シリコン層の体積変化を負極集電体の表面粗さRzjisの範囲内、つまり表面の凹凸の間に収まるようにすることができ、負極集電体と負極活物質層との剥離を抑制することができると考えられる。この非晶質シリコン層の厚さは0.8μm以上であると電極エネルギー密度を十分大きくすることができ、5μm以下であると負極活物質層内で非晶質シリコンの粒子径が大きくなり過ぎずサイクル特性が低下しないため0.8μm以上5μm以下であることが好ましい。さらに、この負極活物質層の主成分である非晶質シリコンは密度が2.1g/cm3以上であることが好ましく、特に負極集電体に接している負極活物質の密度は2.1g/cm3以上であることが好ましい。非晶質シリコンの密度が2.1g/cm3以上であれば、導電性が確保され、サイクル特性の低下を抑制することができる。一方で、負極活物質層の最表層には密度が2.0g/cm3以上2.1g/cm3未満の非晶質シリコン層が形成されていることが好ましい。こうすれば、負極バインダーが負極活物質層内により浸透しやすくなるため、サイクル特性の向上に効果を奏することが期待される。この場合、導電性を確保するため、密度が2.0g/cm3以上2.1g/cm3未満の非晶質シリコンの厚さは1μm以下であることが好ましく、0.2μm程度であることがより好ましい。なお、シリコンの密度は2.33g/cm3 であるため、非晶質シリコンの密度はこれ未満であることは明らかである。 In the negative electrode for a lithium secondary battery of the present invention, the negative electrode active material layer is mainly composed of amorphous silicon and is uniformly formed on the negative electrode current collector. Here, uniform formation means that it is not formed in an island region on the negative electrode current collector. That is, it is sufficient that the negative electrode current collector surface is formed to have a certain extent, and it may not completely cover the current collector surface, or the composition and thickness may be non-uniform. However, it may have a multilayer structure or an inclined material structure in the thickness direction. Note that the term “mainly composed of amorphous silicon” includes not only the case of being made of only amorphous silicon but also the case of containing other than amorphous silicon (such as impurities and additives). The negative electrode active material layer is preferably formed so that the thickness t (μm) satisfies t ≦ Rzjis / 2. In general, silicon is said to have a volume change of about 400% due to charging / discharging, and on average, it is considered to change about 1.6 times per side. Considering the porosity (density) of amorphous silicon, it is preferable to satisfy t ≦ Rzjis / 1.85, and it is more preferable to satisfy t ≦ Rzjis / 2. In this way, the volume change of the amorphous silicon layer can be kept within the range of the surface roughness Rzjis of the negative electrode current collector, that is, between the irregularities on the surface, even in repeated charge / discharge cycles. It is considered that peeling between the current collector and the negative electrode active material layer can be suppressed. If the thickness of the amorphous silicon layer is 0.8 μm or more, the electrode energy density can be sufficiently increased, and if it is 5 μm or less, the particle diameter of the amorphous silicon becomes too large in the negative electrode active material layer. Since the cycle characteristics do not deteriorate, the thickness is preferably 0.8 μm or more and 5 μm or less. Further, the amorphous silicon as the main component of the negative electrode active material layer preferably has a density of 2.1 g / cm 3 or more, and in particular, the density of the negative electrode active material in contact with the negative electrode current collector is 2.1 g. / Cm 3 or more is preferable. When the density of the amorphous silicon is 2.1 g / cm 3 or more, conductivity is ensured and deterioration of cycle characteristics can be suppressed. On the other hand, it is preferable that an amorphous silicon layer having a density of 2.0 g / cm 3 or more and less than 2.1 g / cm 3 is formed on the outermost layer of the negative electrode active material layer. By doing so, the negative electrode binder is more easily penetrated into the negative electrode active material layer, and therefore, it is expected to have an effect on improving the cycle characteristics. In this case, in order to ensure conductivity, the thickness of the amorphous silicon having a density of 2.0 g / cm 3 or more and less than 2.1 g / cm 3 is preferably 1 μm or less, and about 0.2 μm. Is more preferable. Since the density of silicon is 2.33 g / cm 3 , it is clear that the density of amorphous silicon is less than this.

本発明のリチウム2次電池用負極において、負極活物質層の表面には負極バインダーが形成されている。負極バインダーは、負極活物質層の表面を略覆うように形成されていればよく、全部覆うように形成されていてもよいし、一部覆わない部分があってもよい。また、負極バインダーは、その一部が負極活物質層に浸透していてもよい。負極活物質層表面に負極バインダーが形成されることにより充放電に伴う負極活物質層の脱落を抑制することができる。また、充放電に伴う負極活物質の体積変化に伴って負極活物質層内にバインダー成分が入り込み、負極活物質層内に生じる応力集中を緩和することも期待される。負極バインダーは非晶質シリコン重量に対して5%以上100%以下となるように形成されていればよい。負極バインダー量が5%以上であればバインダーの添加効果が得られ、100%以下であれば電極エネルギー密度の低下を抑制できる。また、50%以下であれば、高い容量維持率が得られるため好ましい。さらに、20%以下であればサイクル後の負荷特性も良好になるためより好ましい。負極バインダーとしてはポリイミド樹脂、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどを用いることができ、熱可塑性であることが好ましい。   In the negative electrode for a lithium secondary battery of the present invention, a negative electrode binder is formed on the surface of the negative electrode active material layer. The negative electrode binder only needs to be formed so as to substantially cover the surface of the negative electrode active material layer. The negative electrode binder may be formed so as to cover the entire surface, or there may be a portion that is not partially covered. Further, a part of the negative electrode binder may penetrate into the negative electrode active material layer. By forming the negative electrode binder on the surface of the negative electrode active material layer, it is possible to prevent the negative electrode active material layer from falling off due to charge / discharge. In addition, it is expected that the binder component enters the negative electrode active material layer as the volume of the negative electrode active material changes due to charge / discharge, and the stress concentration generated in the negative electrode active material layer is alleviated. The negative electrode binder should just be formed so that it may become 5% or more and 100% or less with respect to an amorphous silicon weight. If the amount of the negative electrode binder is 5% or more, the effect of adding the binder is obtained, and if it is 100% or less, the decrease in the electrode energy density can be suppressed. Moreover, if it is 50% or less, since a high capacity | capacitance maintenance factor is obtained, it is preferable. Furthermore, if it is 20% or less, the load characteristics after the cycle are also good, which is more preferable. As the negative electrode binder, polyimide resin, polyvinylidene fluoride, polytetrafluoroethylene, or the like can be used, and it is preferably thermoplastic.

本発明のリチウム2次電池用負極において、負極バインダーを負極活物質層の表面に形成した後、リチウム2次電池用負極全体が熱処理されていることが好ましい。本発明の負極バインダーは融点より高い温度で熱処理されると、結着力が増加し、サイクル特性をさらに向上させる。例えばポリイミドは300℃〜500℃で熱処理されていることが好ましく、熱分解を避けるために500℃以下で熱処理されていることが好ましい。ポリフッ化ビニリデンは160℃以上で熱処理されていることが好ましいが、350℃以上では熱分解するため350℃以下で熱処理されていることが好ましい。ポリテトラフルオロエチレンの融点は327℃でこの温度より高い温度で熱処理されていることが好ましい。熱処理時の雰囲気は真空下、窒素雰囲気下、アルゴン雰囲気下などの不活性ガス雰囲気下で行われていることが好ましい。水素雰囲気などの還元性雰囲気下で行われていてもよい。   In the negative electrode for a lithium secondary battery of the present invention, it is preferable that the entire negative electrode for a lithium secondary battery is heat-treated after the negative electrode binder is formed on the surface of the negative electrode active material layer. When the negative electrode binder of the present invention is heat-treated at a temperature higher than the melting point, the binding force increases and the cycle characteristics are further improved. For example, polyimide is preferably heat treated at 300 ° C. to 500 ° C., and preferably heat treated at 500 ° C. or lower in order to avoid thermal decomposition. Polyvinylidene fluoride is preferably heat-treated at 160 ° C. or higher, but is preferably heat-treated at 350 ° C. or lower because it is thermally decomposed at 350 ° C. or higher. The melting point of polytetrafluoroethylene is preferably 327 ° C. and heat-treated at a temperature higher than this temperature. The atmosphere during the heat treatment is preferably performed under an inert gas atmosphere such as a vacuum, a nitrogen atmosphere, or an argon atmosphere. It may be performed in a reducing atmosphere such as a hydrogen atmosphere.

本発明のリチウム2次電池は、正極活物質を含む正極と、上述したリチウム2次電池用負極と、正極と負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、を備えたものである。   A lithium secondary battery of the present invention includes a positive electrode including a positive electrode active material, a negative electrode for a lithium secondary battery described above, and an ion conductive medium that is interposed between the positive electrode and the negative electrode and conducts lithium ions. It is.

本発明のリチウム2次電池の正極は、例えば正極活物質に導電材及びバインダーを混合し、適当な溶剤を加えてペースト状の正極合材としたものを、正極集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成することができる。正極集電体としては、導電性材料で形成されたものであれば特に限定されないが、例えば、アルミニウムや銅、ステンレス鋼、ニッケルメッキ鋼などの金属で形成されている箔やメッシュを用いることができる。正極活物質としては、リチウムと遷移金属元素とを含む酸化物、又はポリアニオン系化合物を用いることができる。具体的には、例えばリチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウム鉄複合リン酸化物などが挙げられる。導電材は、正極の電気伝導性を確保するためのものであり、例えばカーボンブラック、アセチレンブラック、天然黒鉛、人造黒鉛、コークス類などの炭素物質粉末状体の1種又は2種以上を混合したものを用いることができる。バインダーは、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴムなどの含フッ素樹脂、或いはポリプロピレン、ポリエチレンなどの熱可塑性樹脂などを用いることができる。正極活物質、導電材、バインダーを分散させる溶剤としては、例えばN−メチル−2−ピロリドンなどの有機溶剤を用いることができる。   The positive electrode of the lithium secondary battery of the present invention is obtained by, for example, applying a paste-like positive electrode mixture by mixing a positive electrode active material with a conductive material and a binder and adding an appropriate solvent onto the surface of the positive electrode current collector. And it can compress and form so that an electrode density may be raised as needed. The positive electrode current collector is not particularly limited as long as it is formed of a conductive material. For example, a foil or mesh formed of a metal such as aluminum, copper, stainless steel, or nickel-plated steel may be used. it can. As the positive electrode active material, an oxide containing lithium and a transition metal element or a polyanionic compound can be used. Specifically, for example, lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide, lithium iron composite phosphorus oxide, and the like can be given. The conductive material is for ensuring the electrical conductivity of the positive electrode. For example, one or more of carbon powder materials such as carbon black, acetylene black, natural graphite, artificial graphite, and cokes are mixed. Things can be used. The binder plays a role of connecting the active material particles and the conductive material particles. For example, a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene is used. be able to. As the solvent for dispersing the positive electrode active material, the conductive material, and the binder, for example, an organic solvent such as N-methyl-2-pyrrolidone can be used.

本発明のリチウム2次電池において、イオン伝導媒体は、支持塩を有機溶媒に溶かした非水電解液やイオン性液体、ゲル電解質、固体電解質などを用いることができる。支持塩としては、例えば、LiPF6,LiClO4,LiAsF6,LiBF4,Li(CF3SO22N,Li(CF3SO3),LiN(C25SO2)などの公知の支持塩を用いることができる。支持塩の濃度としては、0.1〜2.0Mであることが好ましく、0.8〜1.2Mであることがより好ましい。有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ−ブチロラクトン(γ−BL)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)など従来の2次電池やキャパシタに使われる有機溶媒が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。また、イオン性液体としては、特に限定されるものではないが、1−メチル−3−プロピルイミダゾリウムビス(トリフルオロスルホニル)イミドや1−エチル−3−ブチルイミダゾリウムテトラフルオロボレートなどを用いることができる。ゲル電解質としては、特に限定されるものではないが、例えば、ポリフッ化ビニリデンやポリエチレングリコール、ポリアクリロニトリルなどの高分子類またはアミノ酸誘導体やソルビトール誘導体などの糖類に、支持塩を含む電解液を含ませてなるゲル電解質が挙げられる。固体電解質としては、無機固体電解質や有機固体電解質などが挙げられる。無機固体電解質としては、例えば、Liの窒化物、ハロゲン化物、酸素酸塩などがよく知られている。なかでも、Li4SiO4、Li4SiO4−LiI−LiOH、xLi3PO4−(1−x)Li4SiO4、Li2SiS3、Li3PO4−Li2S−SiS2、硫化リン化合物などが挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。有機固体電解質としては、例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリホスファゼン、ポリエチレンスルフィド、ポリヘキサフルオロプロピレンなどやこれらの誘導体が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。 In the lithium secondary battery of the present invention, as the ion conductive medium, a nonaqueous electrolytic solution, an ionic liquid, a gel electrolyte, a solid electrolyte, or the like in which a supporting salt is dissolved in an organic solvent can be used. Examples of the supporting salt include known LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , Li (CF 3 SO 2 ) 2 N, Li (CF 3 SO 3 ), LiN (C 2 F 5 SO 2 ), and the like. Supporting salts can be used. The concentration of the supporting salt is preferably 0.1 to 2.0M, and more preferably 0.8 to 1.2M. As an organic solvent, for example, ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (γ-BL), diethyl carbonate (DEC), dimethyl carbonate (DMC) and the like are used for conventional secondary batteries and capacitors. An organic solvent is mentioned. These may be used alone or in combination. Further, the ionic liquid is not particularly limited, but 1-methyl-3-propylimidazolium bis (trifluorosulfonyl) imide, 1-ethyl-3-butylimidazolium tetrafluoroborate, or the like is used. Can do. The gel electrolyte is not particularly limited. For example, a polymer such as polyvinylidene fluoride, polyethylene glycol, or polyacrylonitrile, or a saccharide such as an amino acid derivative or sorbitol derivative is added with an electrolyte containing a supporting salt. And a gel electrolyte. Examples of the solid electrolyte include inorganic solid electrolytes and organic solid electrolytes. Well-known inorganic solid electrolytes include, for example, Li nitrides, halides, oxyacid salts, and the like. Among them, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, xLi 3 PO 4 - (1-x) Li 4 SiO 4, Li 2 SiS 3, Li 3 PO 4 -Li 2 S-SiS 2, sulfide Examples thereof include phosphorus compounds. These may be used alone or in combination. Examples of the organic solid electrolyte include polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyvinylidene fluoride, polyphosphazene, polyethylene sulfide, polyhexafluoropropylene, and derivatives thereof. These may be used alone or in combination.

本発明のリチウム2次電池は、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、2次電池の使用範囲に耐え得る組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の微多孔フィルムが挙げられる。これらは単独で用いてもよいし、複合して用いてもよい。   The lithium secondary battery of the present invention may include a separator between the negative electrode and the positive electrode. The separator is not particularly limited as long as it is a composition that can withstand the usage range of the secondary battery. For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or a microporous film of an olefin resin such as polyethylene or polypropylene Is mentioned. These may be used alone or in combination.

本発明のリチウム2次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。このリチウムイオン2次電池の一例を図1に示す。図1は、コイン型電池20の構成の概略を表す断面図である。このコイン型電池20は、カップ形状の電池ケース21と、この電池ケース21の内部に設けられた正極22と、正極22に対してセパレータ24を介して対向する位置に設けられた負極23と、支持塩を含む非水電解液27と、絶縁材により形成されたガスケット25と、電池ケース21の開口部に配設されガスケット25を介して電池ケース21を密封する封口板26と、を備えている。この正極22は正極集電体14と正極活物質15とを備えている。また、この負極23は、非晶質シリコンを主成分とし、表面が粗面化された負極集電体11の表面に一様に形成された負極活物質層12と、負極活物質層12の表面に形成された負極バインダー13とを備えている。   The shape of the lithium secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing etc. which are used for an electric vehicle etc. An example of this lithium ion secondary battery is shown in FIG. FIG. 1 is a cross-sectional view schematically showing the configuration of the coin-type battery 20. The coin-type battery 20 includes a cup-shaped battery case 21, a positive electrode 22 provided inside the battery case 21, a negative electrode 23 provided at a position facing the positive electrode 22 via a separator 24, A non-aqueous electrolyte solution 27 containing a supporting salt, a gasket 25 formed of an insulating material, and a sealing plate 26 disposed in the opening of the battery case 21 and sealing the battery case 21 via the gasket 25. Yes. The positive electrode 22 includes a positive electrode current collector 14 and a positive electrode active material 15. In addition, the negative electrode 23 is composed of a negative electrode active material layer 12 composed mainly of amorphous silicon and uniformly formed on the surface of the negative electrode current collector 11 whose surface is roughened, and the negative electrode active material layer 12. And a negative electrode binder 13 formed on the surface.

本発明のリチウム2次電池用負極の製造方法は、(1)負極集電体の表面を粗面化する粗面化工程と、(2)表面が粗面化された負極集電体上に非晶質シリコンを主成分とする負極活物質層を一様に形成する負極活物質層形成工程と、(3)負極活物質層表面に負極バインダーを形成する負極バインダー形成工程と、(4)負極バインダー形成工程の後に負極バインダーの融点以上の温度で熱処理する熱処理工程、を含むものとしてもよい。   The method for producing a negative electrode for a lithium secondary battery of the present invention comprises (1) a roughening step for roughening the surface of the negative electrode current collector, and (2) a negative electrode current collector having a roughened surface. A negative electrode active material layer forming step for uniformly forming a negative electrode active material layer mainly composed of amorphous silicon; (3) a negative electrode binder forming step for forming a negative electrode binder on the surface of the negative electrode active material layer; and (4). A heat treatment step of performing a heat treatment at a temperature equal to or higher than the melting point of the negative electrode binder after the negative electrode binder forming step may be included.

(1)粗面化工程
リチウム2次電池用負極の製造方法で使用する表面が粗面化された負極集電体は、粗面化工程により製造してもよい。負極集電体の材料は、導電性材料で形成されたものであれば特に限定されないが、例えば、銅やステンレス鋼、ニッケルメッキ鋼などの金属で形成されている箔を用いることができる。粗面化工程は、負極集電体の表面を粗面化するものであればよいが、例えば電解法などにより負極集電体の金属を析出させ、その表面を粗化処理してもよい。これにより、表面粗さRzjisをコントロールすることができる。表面粗さは、上述したように、Rzjis(μm)を0.4μm以上とすることがことが好ましく、4.5μm以上7μm以下とすることがより好ましい。
(1) Roughening step The negative electrode current collector having a roughened surface used in the method for producing a negative electrode for a lithium secondary battery may be produced by a roughening step. The material of the negative electrode current collector is not particularly limited as long as it is formed of a conductive material. For example, a foil formed of a metal such as copper, stainless steel, or nickel-plated steel can be used. The roughening step is not particularly limited as long as the surface of the negative electrode current collector is roughened. For example, the surface of the negative electrode current collector may be precipitated by an electrolytic method or the like, and the surface thereof may be roughened. Thereby, the surface roughness Rzjis can be controlled. As described above, the surface roughness is preferably such that Rzjis (μm) is 0.4 μm or more, and more preferably 4.5 μm or more and 7 μm or less.

(2)負極活物質層形成工程
次に、表面が粗面化された負極集電体の表面に、非晶質シリコンを主成分とする負極活物質層を一様に形成する。負極活物質層の形成方法は特に限定されないが、負極集電体表面に結着剤などを使用せずに直接非晶質シリコンを堆積させる方法、例えば、スパッタリング法、PVD法、CVD法、液体急冷法、電着法、蒸着法、溶射法、またはめっき法からなる群のうちの1又は2以上の方法により形成することが好ましい。中でも、スパッタリング法を用いることがことがより好ましい。また、負極活物質層は、上述したようにt≦Rzjis/1.85を満たすように形成することが好ましく、t≦Rzjis/2を満たすように形成することがさらに好ましい。こうすれば、充放電サイクルの繰り返しにおいても、非晶質シリコン層の体積変化を負極集電体の表面粗さRzjisの範囲内、つまり表面の凹凸の間に収まるようにすることができ、負極集電体と負極活物質層との剥離を抑制することができると考えられる。この非晶質シリコン層の厚さは0.8μm以上であると電極エネルギー密度を十分大きくすることができ、5μm以下であると負極活物質層内で非晶質シリコンの粒子径が大きくなり過ぎずサイクル特性が低下しないため0.8μm以上5μm以下となるように形成することが好ましい。さらに、この負極活物質層の主成分である非晶質シリコンは密度が2.1g/cm3以上となるように形成することが好ましく、特に負極集電体に接している負極活物質の密度は2.1g/cm3以上となるように形成することが好ましい。非晶質シリコンの密度が2.1g/cm3以上であれば、導電性が確保され、サイクル特性の低下を抑制することができる。一方で、負極活物質層の最表層には密度が2.0g/cm3以上2.1g/cm3未満の非晶質シリコン層を形成することが好ましい。負極バインダーが負極活物質層内により浸透しやすくなるため、サイクル特性の向上に効果を奏することが期待される。この場合、導電性を確保するため、密度が2.0g/cm3以上2.1g/cm3未満の非晶質シリコンの厚さは1μm以下となるように形成することが好ましく、0.2μm程度になるように形成することがより好ましい。
(2) Negative electrode active material layer formation process Next, the negative electrode active material layer which has an amorphous silicon as a main component is uniformly formed in the surface of the negative electrode collector whose surface was roughened. A method for forming the negative electrode active material layer is not particularly limited, but a method of directly depositing amorphous silicon on the surface of the negative electrode current collector without using a binder, for example, a sputtering method, a PVD method, a CVD method, a liquid It is preferable to form by one or more methods of the group consisting of a rapid cooling method, an electrodeposition method, a vapor deposition method, a thermal spraying method, or a plating method. Among these, it is more preferable to use a sputtering method. Further, as described above, the negative electrode active material layer is preferably formed so as to satisfy t ≦ Rzjis / 1.85, and more preferably formed so as to satisfy t ≦ Rzjis / 2. In this way, the volume change of the amorphous silicon layer can be kept within the range of the surface roughness Rzjis of the negative electrode current collector, that is, between the irregularities on the surface, even in repeated charge / discharge cycles. It is considered that peeling between the current collector and the negative electrode active material layer can be suppressed. If the thickness of the amorphous silicon layer is 0.8 μm or more, the electrode energy density can be sufficiently increased, and if it is 5 μm or less, the particle diameter of the amorphous silicon becomes too large in the negative electrode active material layer. Since the cycle characteristics are not deteriorated, it is preferably formed to be 0.8 μm or more and 5 μm or less. Further, the amorphous silicon as the main component of the negative electrode active material layer is preferably formed so as to have a density of 2.1 g / cm 3 or more, particularly the density of the negative electrode active material in contact with the negative electrode current collector. Is preferably formed to be 2.1 g / cm 3 or more. When the density of the amorphous silicon is 2.1 g / cm 3 or more, conductivity is ensured and deterioration of cycle characteristics can be suppressed. On the other hand, the outermost layer of the anode active material layer is preferably the density to form an amorphous silicon layer is less than 2.0 g / cm 3 or more 2.1 g / cm 3. Since the negative electrode binder is more easily penetrated into the negative electrode active material layer, it is expected to be effective in improving cycle characteristics. In this case, in order to ensure conductivity, the amorphous silicon having a density of 2.0 g / cm 3 or more and less than 2.1 g / cm 3 is preferably formed to have a thickness of 1 μm or less, and 0.2 μm. It is more preferable to form so that it may become a grade.

(3)負極バインダー形成工程
次に、上述の負極活物質層の表面に負極バインダーを形成する。負極バインダーの形成には例えば、ドクターブレード法などを用いることができる。負極バインダーは、負極活物質層の表面を略覆うように形成すればよく、全部覆ってもよいし、一部覆わない部分があってもよい。また、負極バインダーは、その一部が負極活物質層に浸透してもよい。負極活物質層上に負極バインダーが形成されることにより充放電に伴う負極活物質層の脱落を抑制することができる。また、充放電に伴う負極活物質の体積変化に伴って負極活物質層内にバインダー成分が入り込み、負極活物質層内に生じる応力集中を緩和することも期待される。負極バインダーは非晶質シリコン重量に対して5%以上100%以下となるように形成すればよい。負極バインダー量が5%以上でバインダーの添加効果が得られ、100%以下であれば電極エネルギー密度の低下を抑制できる。また、50%以下であれば、高い容量維持率が得られるため好ましい。さらに、20%以下であればサイクル後の負荷特性も良好になるためより好ましい。負極バインダーとしてはポリイミド樹脂、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどを用いることができ、熱可塑性であることが好ましい。
(3) Negative electrode binder formation process Next, a negative electrode binder is formed in the surface of the above-mentioned negative electrode active material layer. For example, a doctor blade method or the like can be used to form the negative electrode binder. The negative electrode binder may be formed so as to substantially cover the surface of the negative electrode active material layer, and may be entirely covered or may be partially uncovered. A part of the negative electrode binder may penetrate into the negative electrode active material layer. By forming the negative electrode binder on the negative electrode active material layer, it is possible to prevent the negative electrode active material layer from dropping off due to charge / discharge. In addition, it is expected that the binder component enters the negative electrode active material layer as the volume of the negative electrode active material changes due to charge / discharge, and the stress concentration generated in the negative electrode active material layer is alleviated. The negative electrode binder may be formed so as to be 5% or more and 100% or less with respect to the amorphous silicon weight. When the amount of the negative electrode binder is 5% or more, the effect of adding the binder is obtained, and when the amount is 100% or less, the decrease in the electrode energy density can be suppressed. Moreover, if it is 50% or less, since a high capacity | capacitance maintenance factor is obtained, it is preferable. Furthermore, if it is 20% or less, the load characteristics after the cycle are also good, which is more preferable. As the negative electrode binder, polyimide resin, polyvinylidene fluoride, polytetrafluoroethylene, or the like can be used, and it is preferably thermoplastic.

(4)熱処理工程
上述の負極バインダーを形成したリチウム2次電池用負極は、さらに負極バインダーの融点より高い温度で熱処理することが好ましい。本発明の負極バインダーは融点より高い温度で熱処理すると、結着力が増加し、サイクル特性をさらに向上させる。例えばポリイミドは300℃〜500℃で熱処理することが好ましく、熱分解を避けるために500℃以下で熱処理することが好ましい。ポリフッ化ビニリデンは160℃以上で熱処理することが好ましいが、350℃以上では熱分解するため350℃以下で熱処理することが好ましい。ポリテトラフルオロエチレンの融点は327℃でこの温度より高い温度で熱処理することが好ましい。熱処理時の雰囲気は真空下、窒素雰囲気下、アルゴン雰囲気下などの不活性ガス雰囲気下で行うことが好ましい。水素雰囲気などの還元性雰囲気下で行ってもよい。
(4) Heat treatment step The negative electrode for a lithium secondary battery in which the negative electrode binder is formed is preferably heat-treated at a temperature higher than the melting point of the negative electrode binder. When the negative electrode binder of the present invention is heat-treated at a temperature higher than the melting point, the binding force increases and the cycle characteristics are further improved. For example, polyimide is preferably heat treated at 300 ° C. to 500 ° C., and is preferably heat treated at 500 ° C. or lower in order to avoid thermal decomposition. Polyvinylidene fluoride is preferably heat-treated at 160 ° C. or higher, but is preferably heat-treated at 350 ° C. or lower because it is thermally decomposed at 350 ° C. or higher. Polytetrafluoroethylene has a melting point of 327 ° C. and is preferably heat-treated at a temperature higher than this temperature. The atmosphere during the heat treatment is preferably performed in an inert gas atmosphere such as a vacuum, a nitrogen atmosphere, or an argon atmosphere. You may carry out in reducing environment, such as hydrogen atmosphere.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態においては、製造方法は粗面化工程を含んでいるが、粗面化済みの負極集電体を用いてこの工程を省略してもよい。また、上述した実施形態においては、製造方法は熱処理工程を含むものとしたが、この工程を省略してもよい。   For example, in the above-described embodiment, the manufacturing method includes a roughening step, but this step may be omitted by using a roughened negative electrode current collector. In the embodiment described above, the manufacturing method includes a heat treatment step, but this step may be omitted.

[実験例1]
リチウム2次電池用負極を以下のようにして作製した。まず、負極集電体として、電解法によって表面に銅を析出させることにより表面粗さRzjisを7μmとした粗面化銅からなる厚さ30μm、直径100mmの電解箔を用意した。この電解箔からなる負極集電体上に、スパッタリング装置(トッキ社製ロードロック式スパッタ成膜装置)を用いて、密度2.1g/cm3の非晶質シリコンからなる負極活物質層を厚さ3μmとなるように堆積させた(t≦Rzjis/2)。このときの堆積条件を表1に示す。具体的には、スパッタリング装置のチャンバ内を5×10-5Paまで真空排気した後、チャンバ内にアルゴンを導入し、チャンバ内のガス圧が0.5Paになるようにガス圧を安定させた後、チャンバ内のガス圧が安定した状態で高周波電源によりシリコンのスパッタ源に高周波電圧を所定時間印加し、非晶質シリコンを負極集電体上に堆積させた。非晶質シリコンの密度の測定は、ガラス小片上(20mm×20mm)に上記条件でスパッタリング処理を行い、シリコンの厚さを測定し、これとは別に、大きなアルミ箔上(100mmφ)に同様の条件でスパッタリング処理を行い、堆積したシリコンの重量を測定し、この厚さと面積、重量を用いて算出した。なお、本明細書に記載の非晶質シリコンの密度はこの方法に準じて測定した。
[Experiment 1]
A negative electrode for a lithium secondary battery was produced as follows. First, as a negative electrode current collector, an electrolytic foil having a thickness of 30 μm and a diameter of 100 mm made of roughened copper having a surface roughness Rzjis of 7 μm by depositing copper on the surface by an electrolytic method was prepared. A negative electrode active material layer made of amorphous silicon having a density of 2.1 g / cm 3 is formed on the negative electrode current collector made of the electrolytic foil by using a sputtering apparatus (load lock type sputtering film forming apparatus manufactured by Tokki Co., Ltd.). The film was deposited to a thickness of 3 μm (t ≦ Rzjis / 2). The deposition conditions at this time are shown in Table 1. Specifically, after the inside of the chamber of the sputtering apparatus was evacuated to 5 × 10 −5 Pa, argon was introduced into the chamber, and the gas pressure was stabilized so that the gas pressure in the chamber was 0.5 Pa. Thereafter, a high frequency voltage was applied to a silicon sputtering source for a predetermined time by a high frequency power source in a state where the gas pressure in the chamber was stable, and amorphous silicon was deposited on the negative electrode current collector. For the measurement of the density of amorphous silicon, sputtering is performed on a small piece of glass (20 mm × 20 mm) under the above-mentioned conditions, and the thickness of silicon is measured. Separately, the same is applied to a large aluminum foil (100 mmφ). Sputtering was performed under the conditions, the weight of the deposited silicon was measured, and the thickness, area and weight were calculated. Note that the density of the amorphous silicon described in this specification was measured according to this method.

Figure 0005343516
Figure 0005343516

次に、負極集電体上に非晶質シリコンを堆積させて得た電極上にポリフッ化ビニリデン(PVdF)を12%含有したN−メチルピロリドン(NMP)溶液を用いてPVdFが負極活物質層重量に対して5%になるように滴下しドクターブレードを用いて電極上に均一に分散させた。その後、電極を減圧下(5Pa以下)、80℃で3時間以上乾燥させ、得られた電極を2.05cm2の面積に切り抜き、実験例1の負極を得た。 Next, the negative electrode active material layer was obtained by using an N-methylpyrrolidone (NMP) solution containing 12% polyvinylidene fluoride (PVdF) on the electrode obtained by depositing amorphous silicon on the negative electrode current collector. The solution was dropped so as to be 5% based on the weight, and was uniformly dispersed on the electrode using a doctor blade. Thereafter, the electrode was dried under reduced pressure (5 Pa or less) at 80 ° C. for 3 hours or longer, and the obtained electrode was cut out to an area of 2.05 cm 2 to obtain the negative electrode of Experimental Example 1.

次に、二極セルを以下のようにして作製した。まず、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比で30:70の割合で混合した非水溶媒に6フッ化リン酸リチウムを1mol/Lになるように添加して非水電解液を調製した。そして、上記の負極を作用極とし、これと略同じ面積のリチウム箔(厚さ300μm)を対極とし、この作用極と対極との間にセパレータ(東燃タピルス)を介し、調製した非水電解液を満たして二極セルを作製した。   Next, a bipolar cell was produced as follows. First, lithium hexafluorophosphate is added to a nonaqueous solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 30:70 so as to be 1 mol / L, and nonaqueous electrolysis is performed. A liquid was prepared. A non-aqueous electrolyte prepared using the above negative electrode as a working electrode, a lithium foil (thickness of 300 μm) having the same area as the counter electrode, and a separator (Tonyo Tapils) between the working electrode and the counter electrode. A bipolar cell was fabricated by satisfying

次に、以下のようにして充放電試験を実施した。まず、作製した二極セルを用い、0.1C(0.4mA)で0.01Vまで作用極を還元(充電)したのち、0.1Cで1.5Vまで作用極を酸化(放電)して初期充電容量Qcp(mAh)及び初期放電容量Qdp(mAh)を測定し、(Qdp/Qcp)×100で表される初期充放電効率(%)を算出した。続いて、0.2C(0.8mA)で50サイクル充放電を行い、充放電サイクルの1サイクル目の放電容量Qd1(mAh)と50サイクル目での放電容量Qd50(mAh)を測定し、(Qd50/Qd1)×100で表される容量維持率(%)を算出した。さらにその後、20℃において1C(4mA)、0.05C(0.2mA)の負荷特性を測定し、0.05C電流値での充電容量に対する1C電流値での充電容量の比(以下1C/0.05C値とする)を求めた。その結果を表2に示す。表2には負極集電体の銅箔厚さ(μm)と表面粗さRzjis(μm)、負極活物質層の密度(g/cm3)と厚さ(μm)、負極バインダーの負極活物質層重量に対する割合(%)と熱処理温度(℃)を示した。また、初期充放電効率(%)、サイクル容量維持率(%)、1C/0.05C値を示した。なお、表2には後述する実験例2〜19のデータも示した。 Next, a charge / discharge test was performed as follows. First, using the produced bipolar cell, the working electrode was reduced (charged) to 0.01 V at 0.1 C (0.4 mA), and then the working electrode was oxidized (discharged) to 1.5 V at 0.1 C. The initial charge capacity Qcp (mAh) and the initial discharge capacity Qdp (mAh) were measured, and the initial charge / discharge efficiency (%) represented by (Qdp / Qcp) × 100 was calculated. Subsequently, 50 cycles of charge and discharge were performed at 0.2 C (0.8 mA), and the discharge capacity Qd1 (mAh) at the first cycle of the charge and discharge cycle and the discharge capacity Qd50 (mAh) at the 50th cycle were measured. The capacity retention ratio (%) represented by Qd50 / Qd1) × 100 was calculated. Thereafter, load characteristics of 1 C (4 mA) and 0.05 C (0.2 mA) are measured at 20 ° C., and the ratio of the charge capacity at the 1 C current value to the charge capacity at the 0.05 C current value (hereinafter referred to as 1 C / 0). .05C value). The results are shown in Table 2. Table 2 shows the copper foil thickness (μm) and surface roughness Rzjis (μm) of the negative electrode current collector, the density (g / cm 3 ) and thickness (μm) of the negative electrode active material layer, and the negative electrode active material of the negative electrode binder The ratio (%) to the layer weight and the heat treatment temperature (° C.) are shown. Further, initial charge / discharge efficiency (%), cycle capacity retention rate (%), and 1C / 0.05C values were shown. Table 2 also shows data of Experimental Examples 2 to 19 described later.

Figure 0005343516
Figure 0005343516

[実験例2]
負極集電体である銅箔の厚さを18μm、表面粗さRzjisを4.5μmとし、負極活物質層の厚さを2μmとした以外は、実験例1と同様に負極及び二極セルを作製し、1C電流値が2.7mA、0.2C電流値が0.54mA、0.1C電流値が0.27mA、0.05C電流値が0.135mAである以外は実験例1と同様の条件で電気化学特性を評価した。
[Experiment 2]
The negative electrode and the bipolar cell were formed in the same manner as in Experimental Example 1, except that the thickness of the copper foil as the negative electrode current collector was 18 μm, the surface roughness Rzjis was 4.5 μm, and the thickness of the negative electrode active material layer was 2 μm. 1C current value is 2.7 mA, 0.2C current value is 0.54 mA, 0.1C current value is 0.27 mA, 0.05C current value is the same as Example 1 except that the current value is 0.135 mA. The electrochemical properties were evaluated under the conditions.

[実験例3]
負極活物質層の厚さを1μmとしたこと以外は実験例1と同様に負極及び二極セルを作成し、1C電流値が1.6mA、0.2C電流値が0.32mA、0.1C電流値が0.16mA、0.05C電流値が0.08mAである以外は実験例1と同様の条件で電気化学特性を評価した。
[Experiment 3]
A negative electrode and a bipolar cell were prepared in the same manner as in Experimental Example 1 except that the thickness of the negative electrode active material layer was 1 μm, and the 1C current value was 1.6 mA, the 0.2C current value was 0.32 mA, and 0.1 C. The electrochemical characteristics were evaluated under the same conditions as in Experimental Example 1 except that the current value was 0.16 mA and the 0.05C current value was 0.08 mA.

[実験例4]
負極活物質層を2層構造とし、銅箔表面には第1層として密度2.1g/cm3の非晶質シリコンを厚さ0.8μmとなるように堆積させ、その表面に第2層として密度2.0g/cm3の非晶質シリコンを厚さ0.2μmとなるように堆積させた。このときの非晶質シリコンの堆積条件を表1に示す。それ以外は実験例1と同様に負極及び二極セルを作成し、1C電流値が1.5mA、0.2C電流値が0.3mA,0.1C電流値が0.15mA、0.05C電流値が0.075mAである以外は実験例1と同様の条件で電気化学特性を評価した。
[Experimental Example 4]
The negative electrode active material layer has a two-layer structure, and amorphous silicon having a density of 2.1 g / cm 3 is deposited as a first layer on the surface of the copper foil to a thickness of 0.8 μm, and a second layer is formed on the surface. As a result, amorphous silicon having a density of 2.0 g / cm 3 was deposited to a thickness of 0.2 μm. Table 1 shows the deposition conditions of the amorphous silicon at this time. Otherwise, a negative electrode and a bipolar cell were prepared in the same manner as in Experimental Example 1, and the 1C current value was 1.5 mA, the 0.2C current value was 0.3 mA, the 0.1C current value was 0.15 mA, and the 0.05C current. The electrochemical characteristics were evaluated under the same conditions as in Experimental Example 1 except that the value was 0.075 mA.

[実験例5]
負極バインダー形成後の電極をアルゴン気流中300℃で12時間熱処理をしたこと以外は実験例4と同様に負極及び二極セルを作成し、実験例4と同様の条件で電気化学特性を評価した。
[Experimental Example 5]
A negative electrode and a bipolar cell were prepared in the same manner as in Experimental Example 4 except that the electrode after forming the negative electrode binder was heat-treated at 300 ° C. for 12 hours in an argon stream, and electrochemical characteristics were evaluated under the same conditions as in Experimental Example 4. .

[実験例6〜8]
負極バインダー形成後の電極をアルゴン気流中300℃で12時間熱処理したこと以外は実験例3と同様に実験例6の負極及び二極セルを作成した。また、負極バインダー形成後の電極をアルゴン気流中200℃で12時間熱処理したこと以外は実験例3と同様に実験例7の負極及び二極セルを作成した。また、負極バインダー形成後の電極をアルゴン気流中140℃で12時間熱処理をしたこと以外は実験例3と同様に実験例8の負極及び二極セルを作成した。これらを使用して実験例3と同様の条件で電気化学特性を評価した。
[Experimental Examples 6 to 8]
The negative electrode and bipolar cell of Experimental Example 6 were prepared in the same manner as in Experimental Example 3, except that the electrode after forming the negative electrode binder was heat-treated at 300 ° C. for 12 hours in an argon stream. Moreover, the negative electrode and bipolar cell of Experimental example 7 were created similarly to Experimental example 3 except having heat-processed the electrode after negative electrode binder formation at 200 degreeC in argon stream for 12 hours. Further, the negative electrode and the bipolar cell of Experimental Example 8 were prepared in the same manner as in Experimental Example 3, except that the electrode after the formation of the negative electrode binder was heat-treated at 140 ° C. for 12 hours in an argon stream. Using these, the electrochemical characteristics were evaluated under the same conditions as in Experimental Example 3.

[実験例9〜12]
PVdFが負極活物質層重量に対して10%となるように形成したこと以外は実験例3と同様に実験例9の負極及び二極セルを作成した。また、PVdFが負極活物質層重量に対して20%となるように形成したこと以外は実験例3と同様に実験例10の負極及び二極セルを作成した。また、PVdFが負極活物質層重量に対して50%となるように形成したこと以外は実験例3と同様に実験例11の負極及び二極セルを作成した。また、PVdFが負極活物質層重量に対して100%となるように形成したこと以外は実験例3と同様に実験例12の負極及び二極セルを作成した。これらを使用して、実験例3と同様の条件で電気化学特性を評価した。
[Experimental Examples 9 to 12]
A negative electrode and a bipolar cell of Experimental Example 9 were prepared in the same manner as in Experimental Example 3 except that PVdF was formed to be 10% with respect to the weight of the negative electrode active material layer. Further, the negative electrode and the bipolar cell of Experimental Example 10 were prepared in the same manner as in Experimental Example 3, except that PVdF was formed to be 20% with respect to the weight of the negative electrode active material layer. Moreover, the negative electrode and bipolar cell of Experimental example 11 were created similarly to Experimental example 3 except having formed so that PVdF might be 50% with respect to the negative electrode active material layer weight. Moreover, the negative electrode and bipolar cell of Experimental example 12 were created similarly to Experimental example 3 except having formed so that PVdF might be 100% with respect to the negative electrode active material layer weight. Using these, the electrochemical characteristics were evaluated under the same conditions as in Experimental Example 3.

[実験例13〜16]
負極バインダーを形成しないこと以外は実験例1と同様に負極及び二極セルを作成し、実験例1と同様の条件で電気化学特性を評価した(実験例13)。また、負極バインダーを形成しないこと以外は実験例2と同様に負極及び二極セルを作成し、実験例2と同様の条件で電気化学特性を評価した(実験例14)。また、負極バインダーを形成しないこと以外は実験例3と同様に負極及び二極セルを作成し、実験例3と同様の条件で電気化学特性を評価した(実験例15)。また、負極バインダーを形成しないこと以外は実験例4と同様に負極及び二極セルを作成し、実験例4と同様の条件で電気化学特性を評価した(実験例16)。
[Experimental Examples 13 to 16]
A negative electrode and a bipolar cell were prepared in the same manner as in Experimental Example 1 except that no negative electrode binder was formed, and electrochemical characteristics were evaluated under the same conditions as in Experimental Example 1 (Experimental Example 13). Moreover, except not forming a negative electrode binder, the negative electrode and the bipolar cell were created similarly to Experimental Example 2, and the electrochemical characteristics were evaluated on the same conditions as Experimental Example 2 (Experimental Example 14). Moreover, a negative electrode and a bipolar cell were prepared in the same manner as in Experimental Example 3 except that no negative electrode binder was formed, and electrochemical characteristics were evaluated under the same conditions as in Experimental Example 3 (Experimental Example 15). In addition, a negative electrode and a bipolar cell were prepared in the same manner as in Experimental Example 4 except that no negative electrode binder was formed, and electrochemical characteristics were evaluated under the same conditions as in Experimental Example 4 (Experimental Example 16).

[実験例17、18]
負極集電体の表面粗さRzjisを0.25μmとしたこと以外は実験例15と同様に実験例17の負極及び二極セルを作成した。また、負極活物質層の非晶質シリコン密度を2.0g/cm3としたこと以外は実験例15と同様に実験例18の負極及び二極セルを作成した。これらを用いて、実験例3と同様の条件で電気化学特性を評価した。
[Experimental Examples 17 and 18]
The negative electrode and the bipolar cell of Experimental Example 17 were prepared in the same manner as Experimental Example 15 except that the surface roughness Rzjis of the negative electrode current collector was 0.25 μm. Further, the negative electrode and the bipolar cell of Experimental Example 18 were prepared in the same manner as in Experimental Example 15 except that the amorphous silicon density of the negative electrode active material layer was 2.0 g / cm 3 . Using these, the electrochemical characteristics were evaluated under the same conditions as in Experimental Example 3.

[実験例19]
負極活物質層の厚さを5μmとしたこと以外は実験例15と同様に負極及び二極セルを作製し、1C電流値が6.5mA、0.2C電流値が1.3mA、0.1C電流値が0.65mA、0.05C電流値が0.325mAである以外は実験例3と同様の条件で電気化学特性評価した。
[Experimental Example 19]
A negative electrode and a bipolar cell were prepared in the same manner as in Experimental Example 15 except that the thickness of the negative electrode active material layer was 5 μm, and the 1C current value was 6.5 mA, the 0.2C current value was 1.3 mA, and 0.1 C. The electrochemical characteristics were evaluated under the same conditions as in Experimental Example 3 except that the current value was 0.65 mA and the 0.05C current value was 0.325 mA.

[試験結果]
実験例1〜19の結果によると、負極活物質層表面に負極バインダー(PVdF)を形成した実験例1〜12は負極バインダーを形成していない実験例13〜19と比較して、容量維持率が良好であった。これは、負極活物質層表面に負極バインダーを形成したことによって、負極活物質層が負極集電体から脱落しにくくなり、導電率の低下が抑制されたためと考えられる。ここで、PVdF量が5%である実験例1〜8ではいずれも容量維持率だけでなく、サイクル後負荷特性も良好であった。一方、PVdF量を10〜50%に増やした実験例9〜11では、PVdF量が5%である実験例3と同等以上の容量維持率を示したが、サイクル後負荷特性(1C/0.05C値)は低い値を示した。しかし、大電流を必要としないような機器においては、サイクル後負荷特性(1C/0.05C値)が低くても容量維持率が良好であれば、好ましい場合も考えられる。負極集電体は表面粗さが4.5μm及び7μmで容量維持率及びサイクル後負荷特性が良好であった。また、負極活物質層厚さ(t)と負極集電体の表面粗さ(Rzjis)がt≦Rzjis/2を満たしている場合、容量維持率及びサイクル後負荷特性が良好であった。熱処理をした実験例5〜8においては、PVdFの融点より低い140℃で熱処理した実験例8は、熱処理をしていない実験例3と同等の結果であったが、PVdFの融点より高い200℃、300℃で熱処理した実験例5〜7は容量維持率及びサイクル後負荷特性が大きく向上した。これは、負極バインダーが融点より高い温度で熱処理されたことにより結着力が増加し、負極活物質の脱落が抑制されたためと考えられる。負極活物質層の密度は、負極集電体に接している負極活物質層の密度が2.1g/cm3以上であれば良好であったが、最表層として低密度(2.0g/cm3)の非晶質シリコンを形成した実験例4では上述の熱処理をしなくても、サイクル後負荷特性が熱処理したものと同等に向上していた。なお、負極バインダーを形成していない実験例の中で、負極集電体の表面粗さRzjisが小さい(0.25μm)実験例17の容量維持率及びサイクル後負荷特性が著しく低いことから、負極バインダーを形成する場合においても、負極集電体表面の粗さRzjisは0.25μmより大きくしたほうがよいと推測される。
[Test results]
According to the results of Experimental Examples 1 to 19, Experimental Examples 1 to 12 in which the negative electrode binder (PVdF) was formed on the surface of the negative electrode active material layer were compared with Experimental Examples 13 to 19 in which the negative electrode binder was not formed. Was good. This is presumably because the negative electrode active material layer was less likely to fall off the negative electrode current collector and the decrease in conductivity was suppressed by forming the negative electrode binder on the surface of the negative electrode active material layer. Here, in each of Experimental Examples 1 to 8 in which the PVdF amount was 5%, not only the capacity retention rate but also the cycle post-load characteristics were good. On the other hand, in Experimental Examples 9 to 11 in which the PVdF amount was increased to 10 to 50%, the capacity retention rate was equal to or higher than that of Experimental Example 3 in which the PVdF amount was 5%, but the cycle post-load characteristics (1C / 0. 05C value) showed a low value. However, in a device that does not require a large current, it may be preferable if the capacity retention rate is good even if the post-cycle load characteristics (1C / 0.05C value) are low. The negative electrode current collector had a surface roughness of 4.5 μm and 7 μm, and had a good capacity retention ratio and good load characteristics after cycling. Moreover, when the negative electrode active material layer thickness (t) and the surface roughness (Rzjis) of the negative electrode current collector satisfy t ≦ Rzjis / 2, the capacity retention ratio and the cycle post-load characteristics were good. In Experimental Examples 5 to 8 in which heat treatment was performed, Experimental Example 8 in which heat treatment was performed at 140 ° C. lower than the melting point of PVdF was the same result as Experimental Example 3 in which heat treatment was not performed. In Experimental Examples 5 to 7, which were heat-treated at 300 ° C., the capacity retention ratio and the cycle post-load characteristics were greatly improved. This is presumably because the binding force increased due to the heat treatment of the negative electrode binder at a temperature higher than the melting point, and the loss of the negative electrode active material was suppressed. The density of the negative electrode active material layer was good when the density of the negative electrode active material layer in contact with the negative electrode current collector was 2.1 g / cm 3 or more, but the density of the outermost layer was low (2.0 g / cm In the experimental example 4 in which the amorphous silicon of 3 ) was formed, the cycle post-load characteristics were improved to be equal to those after the heat treatment without the above heat treatment. Among the experimental examples in which the negative electrode binder was not formed, the negative electrode current collector had a small surface roughness Rzjis (0.25 μm). Even in the case of forming the binder, it is presumed that the roughness Rzjis of the negative electrode current collector surface should be larger than 0.25 μm.

コイン型電池20の一例を示す構成の概略を表す断面図である。2 is a cross-sectional view illustrating an outline of a configuration illustrating an example of a coin-type battery 20. FIG.

符号の説明Explanation of symbols

11 負極集電体、12 負極活物質層、13 負極バインダー、14 正極集電体、15 正極活物質、20 コイン型電池、21 電池ケース、22 正極、23 負極、24 セパレータ、25 ガスケット、26 封口板、27 非水電解液。   DESCRIPTION OF SYMBOLS 11 Negative electrode collector, 12 Negative electrode active material layer, 13 Negative electrode binder, 14 Positive electrode collector, 15 Positive electrode active material, 20 Coin type battery, 21 Battery case, 22 Positive electrode, 23 Negative electrode, 24 Separator, 25 Gasket, 26 Sealing Plate, 27 non-aqueous electrolyte.

Claims (7)

表面が粗面化された負極集電体と、
非晶質シリコンを主成分とし前記負極集電体表面に一様に形成された負極活物質層と、
前記負極活物質層の表面に形成された負極バインダーと、
を備え、前記負極バインダーの融点以上の温度で熱処理されている、リチウム2次電池用負極。
A negative electrode current collector having a roughened surface;
A negative electrode active material layer composed mainly of amorphous silicon and uniformly formed on the surface of the negative electrode current collector;
A negative electrode binder formed on the surface of the negative electrode active material layer;
The Bei example, the is heat treated at a temperature above the melting point of the negative electrode binder, a negative electrode for a lithium secondary battery.
前記リチウム2次電池用負極は、前記負極活物質層の最表層の密度が2.0g/cm3以上2.1g/cm3未満である請求項1に記載のリチウム2次電池用負極。 The negative electrode for a rechargeable lithium battery, the negative active negative electrode for a lithium secondary battery of claim 1 density of the outermost surface layer is less than 2.0 g / cm 3 or more 2.1 g / cm 3 of the material layer. 前記リチウム2次電池用負極は、前記負極集電体の表面粗さRzjisが4.5μm≦Rzjis≦7μmを満たし、前記負極活物質層の厚さがRzjis/2以下であり、前記負極活物質層のうち少なくとも前記負極集電体に接している負極活物質の密度が2.1g/cm3以上である、請求項1又は2に記載のリチウム2次電池用負極。 In the negative electrode for a lithium secondary battery, the negative electrode current collector has a surface roughness Rzjis of 4.5 μm ≦ Rzjis ≦ 7 μm, a thickness of the negative electrode active material layer is Rzjis / 2 or less, and the negative electrode active material at least the negative density of the negative electrode active material electrode current collector to have contact is 2.1 g / cm 3 or more, according to claim 1 or 2 negative electrode for a lithium secondary battery according to the layers. 正極活物質を含む正極と、
請求項1〜のいずれか1項に記載のリチウム2次電池用負極と、
前記正極と前記負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、
を備えたリチウム2次電池。
A positive electrode including a positive electrode active material;
The negative electrode for a lithium secondary battery according to any one of claims 1 to 3 ,
An ion conductive medium that is interposed between the positive electrode and the negative electrode and conducts lithium ions;
Lithium secondary battery comprising
表面が粗面化された負極集電体上に非晶質シリコンを主成分とする負極活物質層を一様に形成する負極活物質層形成工程と、
前記負極活物質層表面に負極バインダーを形成する負極バインダー形成工程と、
前記負極バインダー形成工程の後に、前記負極バインダーの融点以上の温度で熱処理する熱処理工程と、
を含むリチウム2次電池用負極の製造方法。
A negative electrode active material layer forming step of uniformly forming a negative electrode active material layer mainly composed of amorphous silicon on a negative electrode current collector having a roughened surface;
A negative electrode binder forming step of forming a negative electrode binder on the negative electrode active material layer surface;
After the negative electrode binder forming step, a heat treatment step of performing a heat treatment at a temperature equal to or higher than the melting point of the negative electrode binder,
The manufacturing method of the negative electrode for lithium secondary batteries containing this.
前記負極活物質層形成工程では、前記負極活物質層の最表層に密度が2.0g/cm3以上2.1g/cm3未満である負極活物質層を形成する、請求項に記載のリチウム2次電池用負極の製造方法。 Wherein the negative electrode active material layer forming step, the density in the outermost layer of the negative electrode active material layer to form the anode active material layer is less than 2.0 g / cm 3 or more 2.1 g / cm 3, according to claim 5 A method for producing a negative electrode for a lithium secondary battery. 前記負極活物質層形成工程では、表面粗さRzjisが4.5μm≦Rzjis≦7μmを満たす負極集電体を使用し、前記負極活物質層の厚さがRzjis/2以下で少なくとも前記負極集電体に接する負極活物質の密度が2.1g/cm3以上となるように負極活物質層を形成する、請求項5又は6に記載のリチウム2次電池用負極の製造方法。
In the negative electrode active material layer forming step, a negative electrode current collector satisfying a surface roughness Rzjis of 4.5 μm ≦ Rzjis ≦ 7 μm is used, and the negative electrode active material layer has a thickness of Rzjis / 2 or less and at least the negative electrode current collector. The manufacturing method of the negative electrode for lithium secondary batteries of Claim 5 or 6 which forms a negative electrode active material layer so that the density of the negative electrode active material which touches a body may be 2.1 g / cm < 3 > or more.
JP2008285797A 2008-11-06 2008-11-06 Negative electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode for lithium secondary battery Expired - Fee Related JP5343516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008285797A JP5343516B2 (en) 2008-11-06 2008-11-06 Negative electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008285797A JP5343516B2 (en) 2008-11-06 2008-11-06 Negative electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2010113964A JP2010113964A (en) 2010-05-20
JP5343516B2 true JP5343516B2 (en) 2013-11-13

Family

ID=42302376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008285797A Expired - Fee Related JP5343516B2 (en) 2008-11-06 2008-11-06 Negative electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5343516B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761740B2 (en) * 2011-03-25 2015-08-12 国立研究開発法人産業技術総合研究所 Electrode and electrode forming method
JP2014160540A (en) * 2011-06-16 2014-09-04 Panasonic Corp Lithium ion secondary battery anode and manufacturing method therefor, and lithium ion secondary battery using the same
CN102683656B (en) * 2012-04-26 2014-10-29 宁波杉杉新材料科技有限公司 High-performance porous film silicon-based negative electrode material of lithium ion cell and preparation method thereof
KR101984727B1 (en) 2016-11-21 2019-05-31 주식회사 엘지화학 Electrode and lithium secondary battery comprising the same
JP6451889B1 (en) * 2017-07-18 2019-01-16 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2017212236A (en) * 2017-09-11 2017-11-30 学校法人慶應義塾 Sintered body
JP2021190261A (en) * 2020-05-28 2021-12-13 シャープ株式会社 Metal-air battery
CN114784220A (en) * 2022-04-29 2022-07-22 三一技术装备有限公司 Dry method electrode preparation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0302834D0 (en) * 2003-02-07 2003-03-12 Aea Technology Battery Systems Secondary cell with tin anode
JP4338506B2 (en) * 2003-12-03 2009-10-07 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JP4501963B2 (en) * 2007-05-28 2010-07-14 ソニー株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2010113964A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP5209964B2 (en) Lithium secondary battery
KR101950544B1 (en) Active material for secondary batteries, secondary battery, and electronic device
JP5343516B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode for lithium secondary battery
WO2013018486A1 (en) Active substance for nonaqueous electrolyte secondary cell, method for producing same, and negative electrode using active substance
KR20180058197A (en) Positive electrode for secondary battery, method for preparing the same, and secondary battery comprising the same
US10044072B2 (en) Lithium secondary battery pack, as well as electronic device, charging system, and charging method using said pack
JP2010165471A (en) Lithium secondary battery
KR20150050504A (en) Negative active material for lithium secondary battery and method of preparing for the same
KR101862433B1 (en) Lithium-ion capacitor
JP5505480B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
WO2011065538A1 (en) Non-aqueous electrolyte rechargeable battery
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP5664685B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
US20140227562A1 (en) Lithium secondary-battery pack, electronic device using same, charging system, and charging method
CN111213260A (en) Anode, anode preparation method and lithium ion battery
KR102204167B1 (en) Battery module for starting power devices
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
US20130337324A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP5304196B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode for lithium secondary battery
US9705135B2 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6119641B2 (en) Cylindrical non-aqueous electrolyte secondary battery
JP5625318B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP5846031B2 (en) Lithium ion secondary battery and non-aqueous electrolyte
CN110521030B (en) Nonaqueous electrolyte storage element
WO2015037522A1 (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

LAPS Cancellation because of no payment of annual fees