JP5342985B2 - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
JP5342985B2
JP5342985B2 JP2009260276A JP2009260276A JP5342985B2 JP 5342985 B2 JP5342985 B2 JP 5342985B2 JP 2009260276 A JP2009260276 A JP 2009260276A JP 2009260276 A JP2009260276 A JP 2009260276A JP 5342985 B2 JP5342985 B2 JP 5342985B2
Authority
JP
Japan
Prior art keywords
reaction
reactor
metal
metal member
contact surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009260276A
Other languages
Japanese (ja)
Other versions
JP2011104484A (en
Inventor
弘和 阿部
秀 阿彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009260276A priority Critical patent/JP5342985B2/en
Publication of JP2011104484A publication Critical patent/JP2011104484A/en
Application granted granted Critical
Publication of JP5342985B2 publication Critical patent/JP5342985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、反応装置に関し、特に金属触媒を用いて反応を行う流通式反応装置に関する。   The present invention relates to a reactor, and more particularly to a flow reactor that performs a reaction using a metal catalyst.

自動車などの燃料電池の燃料源や各種化学原料として、水素を製造する技術の開発が進められている。とりわけ、二酸化炭素等の地球温暖化ガスの発生がなく、また、エネルギー効率が高いことから、水素燃料電池に関する技術が地球環境保護の観点で注目を集めいている。そこでは水素を直接電力に変換できることや、発生する熱を利用するコジェネレーションシステムにおいて高いエネルギー変換効率が可能なことから、最近では家庭用分散電源用途への開発も進んでいる。   Development of technology for producing hydrogen as a fuel source for fuel cells such as automobiles and various chemical raw materials is underway. In particular, since there is no generation of global warming gas such as carbon dioxide and the energy efficiency is high, technologies relating to hydrogen fuel cells are attracting attention from the viewpoint of protecting the global environment. Recently, hydrogen can be directly converted into electric power, and high energy conversion efficiency is possible in a cogeneration system that uses generated heat. Therefore, development for use in a home-use distributed power source has recently been advanced.

水素を製造する技術として、石油化学原料等の有機化合物を利用した反応改質による方法が知られている。例えば、ニッケル等の触媒の存在下、気相においてアルコール化合物と水とを反応させることにより水素ガス及び炭酸ガスを含有する反応ガスを生成する方法がある。具体的に、特許文献1及び2は、グリセリンのような多価アルコールの分解反応とそれに続く水性ガスシフト反応とにより、水素と一酸化炭素との混合ガスである水性ガスを生成する方法を開示する。そこでは、触媒を設けた反応場に、多価アルコールと水と水素とを含む原料流体を導入して流動させるといった手段が採用され、反応過程におけるすす(炭素)の生成を抑制する技術が提案されている。   As a technique for producing hydrogen, a method by reaction reforming using an organic compound such as a petrochemical raw material is known. For example, there is a method of generating a reaction gas containing hydrogen gas and carbon dioxide gas by reacting an alcohol compound with water in the gas phase in the presence of a catalyst such as nickel. Specifically, Patent Documents 1 and 2 disclose a method of generating a water gas that is a mixed gas of hydrogen and carbon monoxide by a decomposition reaction of a polyhydric alcohol such as glycerin and a subsequent water gas shift reaction. . In this technology, a technique that introduces and flows a raw material fluid containing polyhydric alcohol, water, and hydrogen into a reaction field provided with a catalyst is proposed, and a technique for suppressing the generation of soot (carbon) in the reaction process is proposed. Has been.

他方、水蒸気改質反応に用いうる反応装置として、二つ以上の金属部材が当接面で接合された接合体をなし、そこに原料導入口およびガス排出口につながるトンネル状流路が形成されたマイクロリアクターが開示されている(特許文献3参照)。そのトンネル状流路には触媒担持層が形成され、また前記接合体の少なくとも1つの面にはセラミックス絶縁層を介して配設された発熱体が設けられている。このリアクターによれば、前記接合体の当接面が所定の表面粗さ以下になるように研磨処理され上記二つ以上の金属部材が接合一体化されたため、その界面における高い気密性を実現することができる。   On the other hand, as a reaction apparatus that can be used for the steam reforming reaction, a joined body in which two or more metal members are joined at the contact surface is formed, and a tunnel-like flow path connected to the raw material inlet and the gas outlet is formed there. A microreactor is disclosed (see Patent Document 3). A catalyst-carrying layer is formed in the tunnel-like flow path, and a heating element is provided on at least one surface of the joined body via a ceramic insulating layer. According to this reactor, since the two or more metal members are joined and integrated so that the contact surface of the joined body is equal to or less than a predetermined surface roughness, high airtightness at the interface is realized. be able to.

特開2009−051703号公報JP 2009-051703 A 特開2009−051704号公報JP 2009-051704 A 特開2008−100163号公報Japanese Patent Laid-Open No. 2008-1000016

確かに、特許文献3に開示されたように金属部材の当接面を研磨して鏡面処理を施し、これによってその接合性を高めれば、両者を当接した界面はその融着により強く接合し、水蒸気改質反応のような高温(例えば600℃)の加熱流通反応において高い気密性を発揮し、合成ガスの製造に好適に対応することができる。ところが、上記のようにして融着接合した金属部材は、その接合力が極めて強く逆に分解することができず、反応流路内部の確認やメンテナンスが極めて困難となることがある。特に、反応流路がマイクロメートルオーダーともなると内部に清浄器具や洗浄媒体を挿入することが難しくなり、例えば所定の金属表面を触媒面として利用するような場合には、一回的な使用しかできないことともなる。そうなると製造効率及び製造コスト等の面で見合わないものとなってしまう。   Certainly, as disclosed in Patent Document 3, if the abutting surface of the metal member is polished and mirror-finished to improve its bondability, the interface where both abuts is strongly bonded by the fusion. In addition, it exhibits high hermeticity in a high-temperature (for example, 600 ° C.) heating flow reaction such as a steam reforming reaction, and can suitably cope with the production of synthesis gas. However, the metal member fusion-bonded as described above has a very strong bonding force and cannot be decomposed on the contrary, and confirmation and maintenance inside the reaction channel may be extremely difficult. In particular, when the reaction flow path is on the order of micrometers, it becomes difficult to insert a cleaning tool or a cleaning medium therein. For example, when a predetermined metal surface is used as a catalyst surface, it can be used only once. It will be also. If it becomes so, it will become inadequate in terms of manufacturing efficiency, manufacturing cost, etc.

以上の点に鑑み、本発明は、二つ以上の金属部材を当接してなる反応器本体の該当接面に反応流路が配置されている反応装置において、反応終了後にその当接面で両金属部材を容易に分離することができ、反応流路の内面の状態の確認や、そこに付着した生成物の検証、流路のメンテナンス等が煩雑な操作等を介さずに可能な反応装置の提供を目的とする。   In view of the above points, the present invention provides a reaction apparatus in which a reaction channel is arranged on a corresponding contact surface of a reactor body formed by contacting two or more metal members. It is possible to easily separate the metal members and to check the state of the inner surface of the reaction channel, verify the product attached thereto, maintain the channel, etc. without complicated operations. For the purpose of provision.

上記の課題は、二つ以上の金属部材が互いに面で当接した反応器本体を筐体に挿入してなる反応装置であって、前記金属部材が当接した面には反応流路が形成され、かつ、その当接した面には融着防止処理が施されていることを特徴とする反応装置によって解決された。   The above-described problem is a reaction apparatus in which a reactor main body in which two or more metal members are in contact with each other is inserted into a housing, and a reaction channel is formed on the surface in which the metal members are in contact with each other. In addition, the present invention has been solved by a reaction apparatus characterized in that the contacted surface is subjected to anti-fusing treatment.

本発明の反応装置は、二つ以上の金属部材を当接してなる反応器本体の該当接面に反応流路が配置され、反応終了後にその当接面で両金属部材を容易に分離することができ、反応流路の内面の状態の確認や、そこに付着した生成物の検証、流路のメンテナンス等が煩雑な操作等を介さずに可能である。   In the reaction apparatus of the present invention, a reaction channel is arranged on a corresponding contact surface of a reactor main body formed by contacting two or more metal members, and both metal members are easily separated at the contact surface after the reaction is completed. Thus, confirmation of the state of the inner surface of the reaction channel, verification of the product attached thereto, maintenance of the channel, and the like can be performed without complicated operations.

本発明における一実施形態としての流通式反応装置を模式的に示した一部切欠斜視図である。1 is a partially cutaway perspective view schematically showing a flow reactor as an embodiment of the present invention. FIG. 図1に示すII−II線断面の断面図である。It is sectional drawing of the II-II line cross section shown in FIG. 図1に示した流通反応装置の分解斜視図である。It is a disassembled perspective view of the flow reaction apparatus shown in FIG. 本発明における別の実施形態としての流通式反応装置の図2に対応する断面における、反応機本体のうち金属部材の断面を示した模式図であり、(a)は断面において四角形状流路を有するもの、(b)は断面において六角形状流路を有するものである。It is the schematic diagram which showed the cross section of the metal member among the reactor main bodies in the cross section corresponding to FIG. 2 of the flow-type reaction apparatus as another embodiment in this invention, (a) is a square-shaped flow path in a cross section. (B) has a hexagonal channel in cross section. 本発明におけるまた別の実施形態としての流通式反応装置の図2に対応する断面における、反応機本体のうち金属部材の断面を示した模式図であり、(a)は断面において片側の金属部材側に半円形状流路が施されたもの、(b)は断面において四角形状流路が施されたもの、(c)は断面において三角形状流路が施されたものである。It is the schematic diagram which showed the cross section of the metal member among the reactor main bodies in the cross section corresponding to FIG. 2 of the flow-type reaction apparatus as another embodiment in this invention, (a) is the metal member of one side in a cross section. The side with a semicircular channel is applied, (b) is with a rectangular channel in cross section, and (c) is with a triangular channel in cross section. 本発明におけるさらにまた別の実施形態としての流通式反応装置内の反応器本体のうち一つの金属部材の当接面を模式的に示したものであり、一つの流路範囲の途中で流路が二つに分岐後に集約するものの模式図である((a)は当接面からみた平面図であり、(b)は(a)のB−B線断面図であり、(c)は(a)のC−C線断面図である。)。The contact surface of one metal member is typically shown among the reactor main bodies in the flow-type reaction apparatus as still another embodiment of the present invention, and the flow path is in the middle of one flow path range. (A) is a plan view seen from the contact surface, (b) is a cross-sectional view taken along line BB in (a), and (c) is ( It is CC sectional view taken on the line of a). 本発明におけるさらにまた別の実施形態としての流通式反応装置内の反応器本体のうち一つの金属部材の当接面を模式的に示したものであり、それぞれ独立した二つの並行する流路を有するものの模式図である((a)は当接面からみた平面図であり、(b)は(a)のB−B線断面図である。)。FIG. 6 schematically shows a contact surface of one metal member of a reactor main body in a flow reactor according to still another embodiment of the present invention, and includes two independent parallel flow paths. It is a schematic diagram of what has ((a) is a top view seen from the contact surface, (b) is a BB sectional drawing of (a)). 実施例1で作製した金属材料(研磨処理、600℃−10時間加熱処理)の当接面におけるSEM−EDXにより観察した顕微鏡像を示す図面代用写真であり、(a)が光学顕微鏡像、(b)が二次電子像、(c)が反射電子像である。It is a drawing substitute photograph which shows the microscope image observed with SEM-EDX in the contact surface of the metal material (polishing process, 600 degreeC-10 hours heat processing) produced in Example 1, (a) is an optical microscope image, ( b) is a secondary electron image, and (c) is a reflected electron image. 実施例1で作製した金属材料(研磨処理、600℃−10時間加熱処理)の当接面におけるSEM−EDX測定により得た特性X線スペクトルである。It is the characteristic X-ray spectrum acquired by the SEM-EDX measurement in the contact surface of the metal material (Polishing process, 600 degreeC-10 hours heat processing) produced in Example 1. FIG. 実施例2で作製した金属材料(研磨処理、600℃−1時間加熱処理)の当接面におけるSEM−EDXにより観察した顕微鏡像を示す図面代用写真であり、(a)が光学顕微鏡像、(b)が二次電子像、(c)が反射電子像であるIt is a drawing substitute photograph which shows the microscope image observed by SEM-EDX in the contact surface of the metal material (polishing process, 600 degreeC-1 hour heat processing) produced in Example 2, (a) is an optical microscope image, ( b) is a secondary electron image, and (c) is a reflected electron image. 実施例2で作製した金属材料(研磨処理、600℃−1時間加熱処理)の当接面におけるSEM−EDX測定により得た特性X線スペクトルである。It is the characteristic X-ray spectrum acquired by the SEM-EDX measurement in the contact surface of the metal material (Polishing process, 600 degreeC-1 hour heat processing) produced in Example 2. FIG. 比較例で作製した金属材料(研磨処理、加熱処理なし)の当接面におけるSEM−EDXにより観察した顕微鏡像を示す図面代用写真であり、(a)が光学顕微鏡像、(b)が二次電子像、(c)が反射電子像である。It is a drawing substitute photograph which shows the microscope image observed by SEM-EDX in the contact surface of the metal material (without grinding | polishing process and heat processing) produced by the comparative example, (a) is an optical microscope image, (b) is secondary. An electronic image, (c) is a reflected electron image. 比較例で作製した金属材料(研磨処理、加熱処理なし)の当接面におけるSEM−EDX測定により得た特性X線スペクトルである。It is the characteristic X-ray spectrum acquired by the SEM-EDX measurement in the contact surface of the metal material (without grinding | polishing process and heat processing) produced by the comparative example. 実施例1で実施した気密性テストに用いた各種機器及び装置を接続した状態を示す装置説明図である。It is apparatus explanatory drawing which shows the state which connected the various apparatuses and apparatus which were used for the airtightness test implemented in Example 1. FIG.

図1は本発明における一実施形態としての流通式反応装置を模式的に示した一部切欠斜視図であり、図2は図1に示すII−II線断面の断面図であり、図1に示した流通反応装置の分解斜視図である。   FIG. 1 is a partially cutaway perspective view schematically showing a flow reactor as an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG. It is a disassembled perspective view of the shown flow reaction apparatus.

本実施形態の反応装置10は、金属部材12と金属部材13とが互いにそれらの当接面12a,13aで当接し反応器本体1をなしている。そして、該反応器本体1は支持板11,14により前記当接面に直交する方向から挟持されて筐体2の挿入孔2bに隙間無く挿入されている。本発明において隙間無くとは全く隙間無く当接していることのほか、反応装置の組付け作業時の挿抜性を考慮した若干の隙間や加工誤差による隙間があることを含む。隙間の値は特に限定されないが、例えば0.1mm〜3.0mmが好ましく、0.5mm〜1.0mmがより好ましい。また、反応器本体が単独で隙間無く挿入されていても、さらに支持板等の他の部材を介して隙間無く挿入されていてもよい。さらに、上記筐体2の上面には12個のネジ穴2mが設けられており、そこに同数のネジ3を螺合されている。該ネジの先端3aが支持板11に当接するまでネジが締められ、反応器本体1を筐体2内部でしっかりと固定し、反応装置10が構成されている。   In the reaction apparatus 10 of this embodiment, a metal member 12 and a metal member 13 are in contact with each other at their contact surfaces 12a and 13a to form the reactor body 1. The reactor body 1 is sandwiched by support plates 11 and 14 from a direction perpendicular to the contact surface and inserted into the insertion hole 2b of the housing 2 without a gap. In the present invention, the term “without a gap” includes not only a contact with no gap, but also a slight gap in consideration of insertion / extraction during assembly of the reactor and a gap due to processing errors. Although the value of a clearance gap is not specifically limited, For example, 0.1 mm-3.0 mm are preferable, and 0.5 mm-1.0 mm are more preferable. Moreover, even if the reactor main body is inserted alone without a gap, it may be further inserted with no gap through another member such as a support plate. Further, twelve screw holes 2m are provided on the upper surface of the casing 2, and the same number of screws 3 are screwed into the twelve screw holes 2m. The screw is tightened until the tip 3a of the screw comes into contact with the support plate 11, the reactor main body 1 is firmly fixed inside the housing 2, and the reaction apparatus 10 is configured.

本実施形態の反応器本体においては、前記金属部材12,13の当接面12a,13aに、入口mから出口mに連絡する反応流路6をなす溝12n,13nがそれぞれ形成されている(図2及び図3を併せて参照)。したがって、この当接面12a,13aで断面において略長方形の両金属部材12,13を当接させることにより、断面において円形であり長手方向に直線的に延びる反応流路6が形成される。そして、この反応器本体1においては、金属部材12,13が対面してなす入口m及び出口mには雌ネジ部が設けられており、この入口及び出口がなすネジ穴にジョイント4の雄ネジ部4aを螺合して取り付けることができる。このジョイントにはパイプ5がそれぞれ連繋されており、これによりパイプ5から入口mに原料物質を送り込み、反応流路6で所望の反応を進行させ、出口mから反応生成物を排出させパイプ5を介して回収することができる。 In the reactor main body of the present embodiment, the abutment surface 12a of the metal member 12, to 13a, a groove 12n which forms the reaction channel 6 communicating from the inlet m 1 to the outlet m 2, 13n are formed respectively (See also FIGS. 2 and 3). Therefore, the contact channels 12a and 13a are brought into contact with the substantially rectangular metal members 12 and 13 to form the reaction channel 6 which is circular in the cross section and linearly extends in the longitudinal direction. Then, in the reactor body 1, the inlet m 1 and outlet m 2 of metal members 12 and 13 are formed so as to face is the female screw portion is provided, the joint 4 to the screw hole which the inlet and outlet forms The male screw portion 4a can be screwed and attached. Pipes 5 are connected to the joints, respectively, so that a raw material is sent from the pipe 5 to the inlet m 1 , a desired reaction is advanced in the reaction flow path 6, and a reaction product is discharged from the outlet m 2. 5 can be recovered.

本発明の反応装置においては、反応流路をなす二つ以上の金属部材の当接面が予め融着防止処理されているという特徴を有する。この点について、上記実施形態の流通反応式装置10を例に詳しく説明する。本実施形態においては、上記のように2つの金属部材12,13が当接面12a,13aで当接し、この当接面において形成された溝12n,13nが反応流路6をなすようにされている。さらに、金属部材は筐体の挿入孔2bに挿設され支持板11,14を介して筐体2とネジ3とで挟持押圧されている。したがって、上記金属部材の当接面12a,13aは相当程度の面圧を受け互いに密接している。特に、反応流路から反応流体が漏れ出さない気密性を考慮すると十分な密閉性が要求され、通常、当接面は十分に研磨され鏡面状態に仕上げられ、かつ上述のように面圧を受け押圧されている。
このように金属部材の当接面の表面粗さが極めて小さく、かつ高面圧で密接した状態とされ、さらに高温加熱条件化におかれると、その当接面における金属の拡散接合が進行して、両者が接合した状態となる。つまり、金属材料を溶融させなくても、所定の条件で加熱ないし加圧保持すると、当接界面を越えて原子が拡散し、完全ないし十分な接合状態が得られることとなる。このような拡散接合ないし加熱により部分的に溶融が生じ接合すると、それらの部材は金属の切断加工もしくは破壊をさせなければ分割できないこととなる。本発明においては、上述の拡散接合と溶融による接合、さらには常温接合(典型的には真空状態における清浄面の金属同士の接合)等を含め「融着」という。
これに対し、本発明によれば、上記金属部材の当接面に融着防止処理が施されているため、当該表面に研磨等により鏡面処理を施し、強く押圧して密接させ、さらに所定の加熱環境下においても当接面が融着せず、容易にそこで分割可能である。つまり本発明においては、反応時には当接面において形成された反応流路の気密性を十分に維持しつつ、それと従来相反する問題を克服し、その反応終了後には特殊な器具やシビアな加工を行わずに金属部材をその当接面で分割することができる。
The reaction apparatus of the present invention is characterized in that the contact surfaces of two or more metal members forming the reaction flow path are subjected to a fusion prevention treatment in advance. This will be described in detail by taking the flow reaction type apparatus 10 of the above embodiment as an example. In the present embodiment, as described above, the two metal members 12 and 13 are brought into contact with the contact surfaces 12a and 13a, and the grooves 12n and 13n formed on the contact surfaces form the reaction flow path 6. ing. Further, the metal member is inserted into the insertion hole 2 b of the housing and is sandwiched and pressed between the housing 2 and the screw 3 via the support plates 11 and 14. Therefore, the contact surfaces 12a and 13a of the metal member receive a considerable surface pressure and are in close contact with each other. In particular, considering the airtightness that prevents the reaction fluid from leaking out from the reaction flow path, a sufficient sealing property is required. Usually, the contact surface is sufficiently polished and finished in a mirror state, and is subjected to a surface pressure as described above. It is pressed.
In this way, the surface roughness of the contact surface of the metal member is extremely small and is in close contact with a high surface pressure. Further, when subjected to high temperature heating conditions, diffusion bonding of metal on the contact surface proceeds. Thus, both are joined. That is, even if the metal material is not melted, if it is heated or pressurized and held under a predetermined condition, atoms diffuse beyond the contact interface, and a complete or sufficient bonding state is obtained. When melting and partial melting are caused by such diffusion bonding or heating, these members cannot be divided unless the metal is cut or broken. In the present invention, it is referred to as “fusion” including the above-described diffusion bonding and bonding by melting, and also room temperature bonding (typically bonding of clean surfaces of metals in a vacuum state).
On the other hand, according to the present invention, since the anti-fusing treatment is performed on the contact surface of the metal member, the surface is subjected to a mirror surface treatment by polishing or the like, strongly pressed and brought into close contact, Even in a heating environment, the contact surface does not melt and can be easily divided. In other words, in the present invention, the reaction channel formed on the contact surface at the time of the reaction is sufficiently maintained while overcoming the conventional conflicting problem, and after the reaction is completed, special equipment and severe processing are performed. The metal member can be divided at its abutment surface without doing so.

(金属部材)
本実施形態の金属部材12,13をなす材料は特に限定されないが、使用対象反応に対して触媒活性を有する金属を用いることが好ましく、当該触媒活性金属からなる材料であっても、内部を他の金属部材で構成し表面にめっき、溶射、スパッタリング、蒸着などの表面処理加工により上記触媒活性金属を付したものでもよい。高温に加熱したのちに、表面を清浄したり研磨したりして繰り返し用いることを考慮すると、上記触媒活性金属からなる材料であることが好ましい。金属材料としては特に限定されないが、加熱流通反応で活性のある金属としていえば8〜12族の金属、好ましくは第8族の鉄、ルテニウム、オスミウムなど、第9族のコバルト、ロジウム、イリジウムなど、第10族のニッケル、パラジウム、白金など、もしくはこれらの合金などが挙げられる。水蒸気改質反応に用いることを考慮すれば、工業的なコストや機械的強度及び成形性に優れるニッケルが挙げられ、なかでも純度の高い例えば純度99%以上の純ニッケルであることが好ましい。なお本発明において金属材料とは、上記のような所定の金属が作用する範囲に適用されていれば、金属以外の材料、例えば所定の無機材料を組み合わせて適用した複合体であってもよい。
(Metal member)
The material forming the metal members 12 and 13 of the present embodiment is not particularly limited, but it is preferable to use a metal having catalytic activity for the reaction to be used. It is possible to use a metal member having the above catalytically active metal attached to the surface by a surface treatment such as plating, thermal spraying, sputtering or vapor deposition. In consideration of repeated use after the surface has been heated to a high temperature, the material is preferably made of the above catalytically active metal. Although it does not specifically limit as a metal material, if it says as a metal active by a heat | fever distribution | circulation reaction, it will be group 8-12 metal, Preferably group 8 iron, ruthenium, osmium, etc., group 9 cobalt, rhodium, iridium, etc. , Group 10 nickel, palladium, platinum, etc., or alloys thereof. In consideration of use in the steam reforming reaction, nickel having excellent industrial cost, mechanical strength, and formability can be mentioned. Among them, pure nickel having high purity, for example, 99% or more is preferable. In the present invention, the metal material may be a composite that is applied in combination with a material other than a metal, for example, a predetermined inorganic material, as long as the metal material is applied in a range in which the predetermined metal acts as described above.

本実施形態において金属部材の形状は特に限定されないが、ここで示したもののように筐体の挿入孔に隙間無く挿設することを考慮すると、直方体状であることが好ましく、二つ以上の金属部材において両者が同形状であることが好ましい。   In the present embodiment, the shape of the metal member is not particularly limited. However, in consideration of being inserted in the insertion hole of the housing without a gap as shown here, it is preferably a rectangular parallelepiped shape, and two or more metals It is preferable that both of the members have the same shape.

(反応流路)
本実施形態の反応装置においては、2つの金属材料12,13の当接面側にそれぞれ断面において半円形の溝12n,13nが形成されており、これらを対面させることにより断面円形であり長手方向に直線的に延びる流路6が構成されている。該流路の形成方法は特に限定されず、例えば切削加工、研削加工、放電加工などの機械加工仕上げ、サンドブラスト加工やエッチング加工などを適宜採用することができる。流路の形態も特に上記実施形態のものに限定されず、使用対象反応に合わせて適宜設計することができる。例えば流路の断面形状では、図4のような2つの金属部材を跨ぐ断面において(a)四角形状流路、(b)六角形形状流路、さらには楕円や六角形状以上の多角形状流路であってもよい。また、図5のような金属部材の一方にのみ溝を施した、断面において(a)半円形状流路、(b)四角形状流路、(c)三角形状流路、さらにまたは四角以上の多角形状流路であってもよい。さらに、上記の変形例として、当接面側から見た流路形態は、図6のような流路入口mと流路出口mからなり、流路6が、入口から流路61に入り、分岐点6pで二つに分岐された流路62に続き、その後に分岐点6pで集約された流路63で構成されたものであってもよい。さらなる変形例として図7のような流路入口mと流路出口mを結ぶそれぞれの二つの流路6aと流路6bとからなる流路6のように、一つの当接面へ複数の流路が独立して平行する状態で形成されてあってもよい。また分岐及び集約や独立する流路の数は前記二つ以上であっても特に問題はない。その他、途中に貫通孔を介した3次元的な流路としたり、これを応用して金属部材を3つ以上重ねた多段式の反応器本体としたりしてもよい。なお、上記図6,7では片側の金属部材のみを示しているが、同じもしくは異なる形状の流路を付した別の金属部材を対応する位置で対面させた構成、あるいは流路の形成されていない金属部材を対面させた構成において流路が形成されているものとして説明している。
(Reaction channel)
In the reaction apparatus of the present embodiment, the semicircular grooves 12n and 13n are formed in the cross section on the contact surface side of the two metal materials 12 and 13, respectively. A flow path 6 extending linearly is formed. The formation method of this flow path is not specifically limited, For example, machining finishes, such as cutting, grinding, and electrical discharge machining, sandblasting, an etching process, etc. can be employ | adopted suitably. The form of the flow path is not particularly limited to that of the above embodiment, and can be appropriately designed according to the reaction to be used. For example, in the cross-sectional shape of the flow channel, in a cross-section straddling two metal members as shown in FIG. 4, (a) a rectangular flow channel, (b) a hexagonal flow channel, and a polygonal flow channel having an elliptical shape or a hexagonal shape or more. It may be. In addition, a groove is provided on only one of the metal members as shown in FIG. 5, and (a) a semicircular channel, (b) a square channel, (c) a triangular channel, or more than a square in the cross section. It may be a polygonal channel. Further, as a modification of the above, the flow channel configuration viewed from the contact surface side includes a flow channel inlet m 1 and a flow channel outlet m 2 as shown in FIG. 6, and the flow channel 6 is changed from the inlet to the flow channel 61. It may be composed of a flow path 63 that enters and is branched into two at the branch point 6p, and then aggregated at the branch point 6p. As in the flow passage 6 comprising a respective two flow paths 6a and the flow path 6b connecting the channel inlet m 1 and the flow passage outlet m 2 as shown in FIG. 7 as a further modification, a plurality to one of the abutment surfaces These channels may be formed in a state of being independently parallel. Further, there is no particular problem even if the number of branching and aggregation or independent flow paths is two or more. In addition, a three-dimensional flow path through a through hole may be used in the middle, or a multi-stage reactor main body in which three or more metal members are stacked may be applied. 6 and 7 show only one side of the metal member, a configuration in which another metal member having a flow path of the same or different shape is faced at a corresponding position or a flow path is formed. It has been described that the flow path is formed in a configuration in which no metal member is faced.

流路の寸法も特に限定されないが、水蒸気改質反応に用いる流通式反応装置としての利用を考慮すると、断面の円相当直径を0.1mm〜5.0mmとすることが好ましく、1.0mm〜3.0mmとすることがより好ましい。反応流路の長さも特に限定されることは無いが、上記水蒸気改質反応に適した長さであることを考慮すると、10mm〜300mmとすることが好ましく、50mm〜150mmとすることがより好ましい。   The dimensions of the flow path are not particularly limited, but considering the use as a flow reactor used in the steam reforming reaction, the equivalent circle diameter of the cross section is preferably 0.1 mm to 5.0 mm, preferably 1.0 mm to More preferably, it is 3.0 mm. Although the length of the reaction channel is not particularly limited, it is preferably 10 mm to 300 mm, more preferably 50 mm to 150 mm in consideration of the length suitable for the steam reforming reaction. .

流路内面には触媒が露出していることが好ましく、金属材料自体が触媒活性を有する金属で構成されている場合には上述した加工により反応流路を形成することにより、その金属面が露出し触媒として機能する。他方、所定の金属触媒層を流路内面に形成する場合には、めっき、溶射、スパッタリング、蒸着などの表面処理加工などによりこれを形成することができる。   The catalyst is preferably exposed on the inner surface of the flow path. When the metal material itself is made of a metal having catalytic activity, the metal surface is exposed by forming the reaction flow path by the above-described processing. It functions as a catalyst. On the other hand, when a predetermined metal catalyst layer is formed on the inner surface of the flow path, it can be formed by surface treatment such as plating, thermal spraying, sputtering, and vapor deposition.

(融着防止処理)
本実施形態の反応装置において、金属部材の当接面に対する融着防止処理の条件は特に限定されないが、金属部材を所定の雰囲気下で加熱処理することが好ましく、酸素含有雰囲気下で行うことがより好ましく、処理効率を考慮すれば大気中で加熱処理することがより好ましい。加熱温度は材料金属に限定されないが、例えばニッケルを金属部材とした場合では、100℃〜1000℃で処理することが好ましく、500℃〜700℃で処理することがより好ましい。また前記加熱処理のほかに、モリブデン、スズ、タンタル、クロム、タングステン、チタン、窒素、ケイ素、シリカ、カーボン、アルミナ、コバルトなどを、めっき、溶射、スパッタリング、蒸着などの表面処理加工などにより形成されてもよい。
(Fuse prevention treatment)
In the reaction apparatus of the present embodiment, the conditions for the anti-fusing treatment on the contact surface of the metal member are not particularly limited, but the metal member is preferably heat-treated in a predetermined atmosphere, and is performed in an oxygen-containing atmosphere. More preferably, it is more preferable to perform the heat treatment in the atmosphere in consideration of the treatment efficiency. Although the heating temperature is not limited to the material metal, for example, when nickel is used as the metal member, the treatment is preferably performed at 100 ° C. to 1000 ° C., more preferably at 500 ° C. to 700 ° C. In addition to the heat treatment, molybdenum, tin, tantalum, chromium, tungsten, titanium, nitrogen, silicon, silica, carbon, alumina, cobalt, etc. are formed by surface treatment such as plating, thermal spraying, sputtering, and vapor deposition. May be.

本実施形態においては、上記融着防止処理により、金属材料12,13の当接面12a,13aに傾斜的な酸化膜7(図2の円内参照)が形成されている。酸素濃度は特に限定されないが、例えば、後記実施例に記載のESCA測定によって、主要金属元素の原子数比が28atom%以上であることが好ましく、30atom%以上であることがより好ましい。本発明において上記のような優れた融着防止性を奏する理由のひとつとして、上記酸素等の元素濃度が高まり単に研磨して露出した金属表面とは異なる金属組織状態が形成されたことによると推定される。   In the present embodiment, an inclined oxide film 7 (see the circle in FIG. 2) is formed on the contact surfaces 12a and 13a of the metal materials 12 and 13 by the above-described fusion prevention process. Although the oxygen concentration is not particularly limited, for example, the atomic ratio of the main metal elements is preferably 28 atom% or more, more preferably 30 atom% or more by ESCA measurement described in Examples below. One of the reasons why the present invention has excellent anti-fusing properties as described above is presumed to be that the concentration of the element such as oxygen is increased and a metal structure state different from the metal surface exposed by simply polishing is formed. Is done.

(研磨)
金属材料の当接面における研磨方法は特に限定されず定法を採用することができ、例えば、研削砥石加工、ラップ加工、放電加工等の機械加工仕上げ、ELID研削等の電解加工仕上げなどで仕上げられる。研磨後の当接面の表面粗さ特に限定されないが、気密性を考慮すると、中心線平均粗さ(Ra)を0.001μm〜0.100μmの範囲とすることが好ましく、0.002μm〜0.010μmの範囲とすることがより好ましい。また10点平均粗さ(Rz)を1.0μm以下とすることが好ましく、0.1μm以下とすることがより好ましい。
(Polishing)
The polishing method for the contact surface of the metal material is not particularly limited, and a regular method can be adopted. For example, it is finished by machining finishing such as grinding wheel processing, lapping processing, electric discharge processing, or electrolytic processing finishing such as ELID grinding. . The surface roughness of the contact surface after polishing is not particularly limited, but considering airtightness, the center line average roughness (Ra) is preferably in the range of 0.001 μm to 0.100 μm, preferably 0.002 μm to 0 More preferably, it is in the range of 010 μm. Further, the 10-point average roughness (Rz) is preferably 1.0 μm or less, and more preferably 0.1 μm or less.

(支持板)
本実施形態において支持板11,14は部材の熱膨張係数より特に限定されず、例えばその材料として、工業的なコストや、機械的強度及び成形性に優れる、ステンレスが好ましい。また、この材料の熱膨張係数(K)として、金属部材12,13に用いた材料の熱膨張係数(K)より小さいもの(K>K)を用いることが好ましい。代表的な材料の熱膨張係数の値は例えば、0〜100℃における熱膨張係数を例示すると、ニッケル(13.3×10−6/℃)、SUS430(10.4×10−6/℃)、SUS304(17.3×10−6/℃)、SUS316(15.9×10−6/℃)であり、上記の関係を考慮するとこの中では金属部材にニッケルを用い支持板にSUS430を用いることが好ましい。
(Support plate)
In this embodiment, the support plates 11 and 14 are not particularly limited by the coefficient of thermal expansion of the member. For example, stainless steel is preferable because the material is excellent in industrial cost, mechanical strength, and formability. Further, as the thermal expansion coefficient of this material (K 2), it is preferable to use smaller ones (K 1> K 2) than the thermal expansion coefficient of the material used for the metal member 12,13 (K 1). When the value of the thermal expansion coefficients of typical materials are, for example, illustrates the thermal expansion coefficient at 0 to 100 ° C., nickel (13.3 × 10 -6 /℃),SUS430(10.4×10 -6 / ℃) a SUS304 (17.3 × 10 -6 /℃),SUS316(15.9×10 -6 / ℃), using SUS430 to the support plate using a nickel metal member in this view of the above relationship It is preferable.

このような熱膨張係数の関係は後述する筐体についても同様であり、筐体の熱膨張係数(K)を、金属部材12,13に用いた材料の熱膨張係数(K)より小さいもの(K>K)を用いることが好ましい。上記のように気密性を確保するための各種加工が金属部材の当接面に施されていれば、その部分での必要以上の面圧はなくてもよい。また、ここで規定するように金属部材の熱膨張係数(K)より大きい熱膨張係数をもつ材料を、金属部材を包囲する材料(本実施形態においては支持板及び筐体)に用いることで、加熱したときの二つ以上の金属部材の当接面における面圧を適度に和らげることができ、当接面での融着防止効果が期待できる。 Relationship such thermal expansion coefficient is the same for later-described casing, the thermal expansion coefficient of the housing of the (K 3), the thermal expansion coefficient of the material used for the metal member 12, 13 (K 1) is smaller than It is preferable to use one (K 1 > K 3 ). As long as various processes for ensuring airtightness are performed on the contact surface of the metal member as described above, it is not necessary to have a surface pressure more than necessary at that portion. Further, as defined herein, a material having a thermal expansion coefficient larger than the thermal expansion coefficient (K 1 ) of the metal member is used for the material surrounding the metal member (in this embodiment, the support plate and the casing). The surface pressure at the contact surface of two or more metal members when heated can be moderated moderately, and the effect of preventing fusion at the contact surface can be expected.

支持板の形状は特に限定されないが、金属部材との適合性及び筐体への好適な挿入形態を考慮し、金属部材を当接面に直交する方向にみたときに同一形状となるものが好ましい。厚さは特に限定されないが、5mm〜10mmであることが好ましい。この範囲の厚さとすることにより、機械加工時の材料保持が適切に行え、加工による加工歪みの抑制などが図れる。また必要以上に厚くしないことで、装置のコンパクト化を図ることができる。   The shape of the support plate is not particularly limited. However, in consideration of compatibility with the metal member and a suitable insertion form into the housing, it is preferable that the metal member has the same shape when viewed in a direction perpendicular to the contact surface. . The thickness is not particularly limited, but is preferably 5 mm to 10 mm. By setting the thickness within this range, it is possible to appropriately hold the material at the time of machining, and to suppress processing distortion due to processing. Moreover, the apparatus can be made compact by not making it thicker than necessary.

(筐体)
本実施形態において筐体2を構成する材料は特に限定されないが、好ましく用いられる材料の範囲は上記支持板と同様である。筐体の構造については挿入孔2bが施された中空構造からなり、筐体の機械的強度や挿入孔2bの各内面の平面度や平行度の精度を保つため、ブロック材料からの削り出しによる取付け面のない一体化とした構造が好ましい。挿入孔2bの加工方法は特に限定されることはなく、例えばワイヤカット放電加工などで仕上げられる。筐体の挿入孔2bの大きさは用いる反応器本体1ないし支持板の寸法によって適宜定めることが好ましく、反応器本体1を支持板で挟持したものと同一寸法の孔であるか、あるいは挿抜性を考慮して微小なクリアランスを設けた寸法としてもよい。本実施形態においては挿入孔2bが2つ設けられているが、反応流路のナンバリングアップとの関係でさらに増やしてもよい。筐体の天面には12個のネジ穴2mが設けられており、ここにネジ3が螺合される。ネジ穴2mは貫通しており、その深さはネジ3を螺合して最も深く挿し込んだときにネジ先端3aが挿入孔2bに多少突出するようにされている。換言すれば、筐体のネジ穴2mのネジ溝に対して、そのような深さに螺合して挿入しうる長さのネジ山をもつネジ3を用いることが好ましい。このネジ3の螺合によりネジ先端3aが反応器本体1の支持板11を強く押圧し、反応器本体の安定した固定状態を実現することができる。このとき、上述したような金属部材の当接面12a,13aにおける気密性及び融着防止性を考慮してネジ3を締め付けるトルクを調節することが好ましい。
(Casing)
Although the material which comprises the housing | casing 2 in this embodiment is not specifically limited, The range of the material used preferably is the same as that of the said support plate. The structure of the housing is a hollow structure provided with an insertion hole 2b. In order to maintain the mechanical strength of the housing and the accuracy of the flatness and parallelism of each inner surface of the insertion hole 2b, by cutting out from the block material An integrated structure with no mounting surface is preferred. The processing method of the insertion hole 2b is not particularly limited, and is finished by, for example, wire cut electric discharge machining. The size of the insertion hole 2b of the housing is preferably determined as appropriate depending on the dimensions of the reactor main body 1 or the support plate to be used, and is the same size as that of the reactor main body 1 held between the support plates, or the insertion / extraction property. In consideration of the above, it may be a dimension provided with a minute clearance. In the present embodiment, two insertion holes 2b are provided, but may be further increased in relation to numbering up of the reaction flow path. Twelve screw holes 2m are provided on the top surface of the housing, and the screws 3 are screwed into these. The screw hole 2m passes through, and the depth of the screw hole 3m is such that the screw tip 3a protrudes somewhat into the insertion hole 2b when the screw 3 is screwed into the deepest position. In other words, it is preferable to use the screw 3 having a screw thread having a length that can be inserted into the screw groove of the screw hole 2m of the housing by being screwed to such a depth. By screwing the screw 3, the screw tip 3 a strongly presses the support plate 11 of the reactor main body 1, and a stable fixing state of the reactor main body can be realized. At this time, it is preferable to adjust the torque for tightening the screw 3 in consideration of the airtightness and the anti-fusing property on the contact surfaces 12a and 13a of the metal member as described above.

(その他)
ジョイント4には適宜市販のもの等を用いることができ、例えば、チューブ継手、管継手などを用いることができる。本実施形態においてジョイント4にはその先端に突出する雄ネジ部4aが設けられており、金属部材12、13が当接面で当接するよう組み合わされてその端部になす雌ネジ部(入口、出口)m,mに螺合するようにされている。つまり、上記ジョイントの雄ネジ部4aのネジ山と金属部材のネジ溝13m,12m(図3参照)とが対応するようにされている。
パイプ5には適宜市販のもの等を用いることができ、例えば、ステンレスパイプ、炭素鋼パイプ、銅パイプ、チタニウムパイプなどを用いることができる。原料化合物の種類や供給量、ないし生成物の種類や回収量等に応じて適宜材質や管径を選定することができる。
(Other)
As the joint 4, a commercially available one can be used as appropriate, and for example, a tube joint, a pipe joint, or the like can be used. In this embodiment, the joint 4 is provided with a male screw portion 4a protruding at the tip thereof, and the female members (entrance, The outlet) is screwed to m 1 and m 2 . That is, the thread of the male threaded portion 4a of the joint corresponds to the thread grooves 13m and 12m (see FIG. 3) of the metal member.
As the pipe 5, a commercially available one can be used as appropriate, and for example, a stainless steel pipe, a carbon steel pipe, a copper pipe, a titanium pipe, or the like can be used. The material and the pipe diameter can be appropriately selected according to the kind and supply amount of the raw material compound, the kind and the recovery amount of the product, and the like.

本実施形態の反応装置10はその作用効果を奏する範囲でどのような反応に適用してもよく特に制限なく用いることができるが、特に加熱流通反応に用いることが好ましく、反応装置ごと加熱し反応流路を所定の温度に維持した状態で流通反応を行うことが好ましい。反応装置を加熱する方法は特に限定されないが、シーズヒーター、カートリッジヒーター、スペースヒーター等の加熱手段を反応装置10に取り付けて加熱してもよく、あるいは加熱炉の中に反応装置を設置して加熱してもよい。加熱温度としては特に限定されず使用対象反応に対応して設定すればよいが、反応装置を金属材料で構成した場合には、例えば100℃〜1000℃に加熱することが好ましい。加熱流通反応としては、例えば、有機化合物を用いた水蒸気改質反応が挙げられる。以下に、その1つである多価アルコールの改質反応について例示する。   The reaction apparatus 10 of the present embodiment may be applied to any reaction as long as it exhibits its effects, and can be used without any particular limitation. However, it is particularly preferable to use it for a heating flow reaction, and the reaction is performed by heating the entire reaction apparatus. The flow reaction is preferably performed in a state where the flow path is maintained at a predetermined temperature. The method for heating the reaction apparatus is not particularly limited, but heating may be performed by attaching a heating means such as a sheathed heater, a cartridge heater, or a space heater to the reaction apparatus 10, or the reaction apparatus is installed in a heating furnace for heating. May be. Although it does not specifically limit as heating temperature, What is necessary is just to set according to use object reaction, but when a reaction apparatus is comprised with a metal material, it is preferable to heat to 100 to 1000 degreeC, for example. Examples of the heating flow reaction include a steam reforming reaction using an organic compound. Below, the modification reaction of the polyhydric alcohol which is one of them is illustrated.

下記化学反応式(1)は、触媒が共存する反応場に、多価アルコールと水とを含む原料流体を導入して流動させることにより進行する反応を示している。すなわち、多価アルコールの分解反応によって、原料流体が反応して水素と一酸化炭素との混合ガスである水性ガス(合成ガス)を生成する。そして通常、この反応とともに、下記化学反応式(2)の水性ガスシフト反応によって、その生成した一酸化炭素が水と反応して水素を二次的に生成するものである。これらの反応を効率良く進行させる反応温度としては、例えば300℃〜1000℃が好ましく、500℃〜700℃がより好ましい。この反応に特に好適に用いられる金属触媒としてニッケルが挙げられる。   The following chemical reaction formula (1) shows a reaction that proceeds by introducing and flowing a raw material fluid containing a polyhydric alcohol and water into a reaction field where a catalyst coexists. That is, by the decomposition reaction of polyhydric alcohol, the raw material fluid reacts to produce water gas (synthetic gas) that is a mixed gas of hydrogen and carbon monoxide. Usually, along with this reaction, the produced carbon monoxide reacts with water to produce hydrogen secondary by the water gas shift reaction of the following chemical reaction formula (2). As reaction temperature which advances these reactions efficiently, 300 to 1000 degreeC is preferable, for example, and 500 to 700 degreeC is more preferable. An example of a metal catalyst that is particularly preferably used in this reaction is nickel.

上記の水蒸気改質反応においては、さらに、生成した一酸化炭素の2分子が結合し、二酸化炭素と炭素(固体)を生成させる副反応が進行することがある(化学反応式(3))。この反応が進行すると、炭素(固体)が生成するためこれがすすとなり反応容器の内面に付着することとなる。   In the above steam reforming reaction, two molecules of the generated carbon monoxide are further bonded to each other to cause a side reaction to generate carbon dioxide and carbon (solid) (chemical reaction formula (3)). As this reaction proceeds, carbon (solid) is produced, which becomes soot and adheres to the inner surface of the reaction vessel.

上記例示した多価アルコールの水蒸気改質反応にも本実施形態の反応装置10は好適に使用することができ、上記反応温度における加熱にも不具合なく対応することができる。しかも、反応終了後には軽便に反応器本体1を分解して内部の反応流路を露出させることができる。そのため、容易に金属部材の反応流路を清浄し触媒活性を示す金属面を露出させ、かつ当接面の研磨及び融着防止処理等の適宜のメンテナンスを施し、再度、速やかに合成ガスの製造の用に供することができる。   The reactor 10 of the present embodiment can also be suitably used for the steam reforming reaction of polyhydric alcohols exemplified above, and can cope with heating at the reaction temperature without any problems. Moreover, after the reaction is completed, the reactor main body 1 can be disassembled easily to expose the internal reaction flow path. For this reason, the reaction flow path of the metal member is easily cleaned to expose the metal surface exhibiting catalytic activity, and appropriate maintenance such as polishing of the contact surface and anti-fusing treatment is performed, and the synthesis gas is rapidly produced again. Can be used for

上記実施形態の反応装置によれば、必要に応じて構成材料等を選定することにより水蒸気改質反応に求められる約600℃といった高温加熱条件での反応にも適合しうるという利点を有する。このとき高温時の材料膨張による反応器と筐体に生ずる圧力でお互いが加圧される構造(自己加圧型構造)とすることで、上記反応器本体をなす金属部材の当接面での気密性を極めて高いものとすることができる。このため高温または高温高圧反応の後であっても、冷却した後には、金属部材の当接界面における分離性が極めて良好となる。   According to the reaction apparatus of the said embodiment, it has the advantage that it can adapt also to reaction on high temperature heating conditions, such as about 600 degreeC calculated | required by steam reforming reaction, by selecting a constituent material etc. as needed. At this time, by adopting a structure (self-pressurized structure) in which the pressure generated in the reactor and the casing due to material expansion at high temperature is mutually pressurized (self-pressurized structure), the air tightness at the contact surface of the metal member constituting the reactor body The property can be made extremely high. For this reason, even after the high temperature or high temperature / high pressure reaction, after cooling, the separability at the contact interface of the metal member becomes very good.

以下に、実施例に基づき本発明についてより具体的な説明するが本発明はこれに基づき限定して解釈されるものではない。   Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not construed as being limited thereto.

(実施例1)
<反応装置の作製>
図1に示した反応装置を以下の手順で準備した。金属部材として縦×横×長さ:10mm×15mm×115mmの金属ニッケル(純度99.6質量%以上)からなる材料を2つ準備した。金属部材の幅方向中央に長手方向に延びる断面半円形(直径3mm)の溝を、数値制御フライス盤で切削加工を行い、サンドブラスト加工で仕上げてそれぞれ形成した。この溝の長手方向の両端には、金属部材を精度良く重ね合わせて保持し、ネジ溝を切削加工により同時形成した。二つの金属部材の上記溝を設けた当接面をそれぞれ、平面研削盤で研削砥石加工を行い、ラップ盤で研磨仕上げを行って形成した。研磨した後の中心線表面粗さ(Ra)および10点平均粗さ(Rz)を下記の測定方法で測定した結果、中心線平均粗さ(Ra)が0.001μm、10点平均粗さ(Rz)が0.007μmであった。
(表面粗さの測定方法)
非接触式表面形状粗さ測定機(アメテック(株)製、タリサーフCCI3000[商品名])を使用し、測定長:0.35mmでの表面凹凸を測定(2回)し、測定結果の平均値から中心線平均粗さ(Ra)、10点平均粗さ(Rz)を求める。
Example 1
<Production of reaction apparatus>
The reactor shown in FIG. 1 was prepared by the following procedure. Two materials made of metallic nickel (purity: 99.6% by mass or more) of 10 mm × 15 mm × 115 mm were prepared as metal members. A groove having a semicircular cross section (diameter: 3 mm) extending in the longitudinal direction in the center in the width direction of the metal member was cut by a numerically controlled milling machine and finished by sandblasting. At both ends in the longitudinal direction of the groove, metal members were superposed and held with high accuracy, and screw grooves were simultaneously formed by cutting. The contact surfaces provided with the grooves of the two metal members were each formed by grinding a grinding wheel with a surface grinder and polishing with a lapping machine. As a result of measuring the centerline surface roughness (Ra) and 10-point average roughness (Rz) after polishing by the following measuring method, the centerline average roughness (Ra) is 0.001 μm, 10-point average roughness ( Rz) was 0.007 μm.
(Measurement method of surface roughness)
Using a non-contact type surface shape roughness measuring machine (Ametech Co., Ltd., Talysurf CCI3000 [trade name]), measuring the surface irregularities at a measurement length of 0.35 mm (twice), and the average value of the measurement results The center line average roughness (Ra) and 10-point average roughness (Rz) are obtained from the above.

次いで、上記の二つの金属部材をその溝を形成した面が空気中に露出するようにして、600℃で10時間加熱処理を行った。この加熱処理後の金属材料の当接面の状態を下記SEM−EDX測定の項に記載の顕微鏡により観察した結果を図8に示した。図8の(a)が光学顕微鏡像であり、その四角で囲んだ領域の二次電子像が(b)、反射電子像が(c)である。また、併せて、下記の条件でESCA測定及びSEM−EDX測定を行った。これらの測定結果に基づく金属材料の当接面における金属組成の結果は、まとめて下表1に示した。また、SEM−EDX測定で得られた特性X線スペクトルを図9に示しており、同図に示した測定位置(spot1〜3)は、図8(b),(c)中に四角で囲んだ数字で示している。なお、以下の実施例及び比較例において顕微鏡観察及び分析機器測定は上記と同様にして行った。   Next, the above two metal members were heat-treated at 600 ° C. for 10 hours so that the surface on which the groove was formed was exposed to the air. The result of observing the state of the contact surface of the metal material after the heat treatment with a microscope described in the following SEM-EDX measurement section is shown in FIG. FIG. 8A is an optical microscope image, in which a secondary electron image of a region surrounded by the square is (b) and a reflected electron image is (c). In addition, ESCA measurement and SEM-EDX measurement were performed under the following conditions. The results of the metal composition on the contact surface of the metal material based on these measurement results are collectively shown in Table 1 below. Moreover, the characteristic X-ray spectrum obtained by SEM-EDX measurement is shown in FIG. 9, and the measurement positions (spots 1 to 3) shown in FIG. 8 are enclosed in squares in FIGS. 8B and 8C. It is indicated by a number. In the following Examples and Comparative Examples, microscopic observation and analytical instrument measurement were performed in the same manner as described above.

(ESCA測定条件)
装置:PHI Quantera SXM(アルバック・ファイ)[商品名]
X線源:単色化Al Kα(25W、15kV)
Pass Energy:112eV Step:0.2eV
測定角度:45゜
測定面積:500×500μm
(ESCA measurement conditions)
Device: PHI Quantera SXM (ULVAC-PHI) [trade name]
X-ray source: Monochromatic Al Kα (25 W, 15 kV)
Pass Energy: 112eV Step: 0.2eV
Measurement angle: 45 °
Measurement area: 500 × 500 μm

(SEM−EDX測定条件)
SEM装置:S4300SE/N[商品名]
EDX装置:HORIBA EMAX ENERGY[商品名]
加速電圧:15kV
X線取り出し角度:30゜
X線取り込み時間:60sec
(SEM-EDX measurement conditions)
SEM equipment: S4300SE / N [trade name]
EDX equipment: HORIBA EMAX ENERGY [product name]
Acceleration voltage: 15 kV
X-ray extraction angle: 30 ° X-ray acquisition time: 60 sec

その後、互いの微細溝が対向するように金属部材を当接して反応器本体を組み立て、さらに溝を形成したのとは反対側の面に支持部材(SUS430製、縦×横×長さ:5mm×15mm×115mm)を当てた。この反応器本体を支持板で挟持したものを筐体(SUS430製、縦×横×長さ:60mm×75mm×115mm)の挿入孔に挿入した。このとき、上記筐体の挿入孔は上記反応器本体と支持板を組み合わせたものの断面と同じ形状の断面をもつようにされ、これらが孔のなかで隙間無く固定されるようにした。   Thereafter, the metal member is brought into contact with each other so that the fine grooves are opposed to each other, the reactor main body is assembled, and a support member (manufactured by SUS430, vertical x horizontal x length: 5 mm is provided on the opposite side of the groove). X 15 mm x 115 mm). What sandwiched this reactor main body with the support plate was inserted in the insertion hole of the housing | casing (The product made from SUS430, length x width x length: 60 mm x 75 mm x 115 mm). At this time, the insertion hole of the housing had a cross section having the same shape as that of the combination of the reactor main body and the support plate, and these were fixed without gaps in the hole.

さらに上記筐体の上面にある12個のネジ穴に同数のネジを螺合し、ネジの先端が反応器本体の支持板に当接するまで締め、ネジ1本あたりの締めトルクを30N・mで反応器本体を筐体内部で固定した。次いで、反応器本体において二つ以上の金属部材端部のネジ山が対面して形成されたネジ穴m1、m2にジョイント4を螺合して、パイプ5を反応器本体に連繋した。   Further, the same number of screws are screwed into the twelve screw holes on the upper surface of the casing, and tightened until the tip of the screw comes into contact with the support plate of the reactor body. The tightening torque per screw is 30 N · m. The reactor body was fixed inside the housing. Next, the joint 4 was screwed into screw holes m1 and m2 formed by facing the threads of two or more metal member ends in the reactor main body, and the pipe 5 was connected to the reactor main body.

<反応装置の気密測定方法>
水蒸気改質反応の圧力はほぼ常圧で行われるため、600℃における反応装置内の流路気密性の目標値は、窒素ガスを用いて流路内を0.3MPaに加圧設定し、その後通気している栓を全閉して0.5時間における圧力降下の割合を目標5%以下とした。これら気密測定方法を行うため図14のように各機器を接続した。窒素ガスの通気方法は、窒素ガス元栓15からバルブ16a、1次圧力調整弁17a、2次圧力調整弁17b、バルブ16bを通り、T字継手18で分岐され、一方は反応装置10、バルブ16cへ流れ、一方は分岐後に圧力計19へ流れ、圧力計で計測された電圧値をデータ収集システム20で変換し、パソコン21でモニタリングを行った。なお、窒素ガスの各接続方法はステンレスパイプを使用し、各パイプと各機器はチューブ継手で接続を行った。
<Method for measuring the tightness of the reactor>
Since the pressure of the steam reforming reaction is almost normal pressure, the target value of the channel airtightness in the reactor at 600 ° C. is set to 0.3 MPa by pressurizing the inside of the channel using nitrogen gas, and then The venting stopper was fully closed, and the rate of pressure drop at 0.5 hour was set to 5% or less. In order to perform these airtightness measuring methods, each device was connected as shown in FIG. The nitrogen gas is vented from the nitrogen gas main plug 15 through the valve 16a, the primary pressure regulating valve 17a, the secondary pressure regulating valve 17b, and the valve 16b, and branched at the T-shaped joint 18, one of which is the reactor 10 and the valve 16c. One flowed to the pressure gauge 19 after branching, and the voltage value measured by the pressure gauge was converted by the data collection system 20 and monitored by the personal computer 21. In addition, the stainless steel pipe was used for each connection method of nitrogen gas, and each pipe and each apparatus were connected with the tube joint.

<反応装置の加熱方法(600℃)>
上記の反応装置10を水蒸気改質反応で使用する温度まで加熱するため、反応装置10と接続するパイプの一部を電気炉22へ設置し、電気炉内を600℃まで昇温した。
<Method of heating reactor (600 ° C.)>
In order to heat the reactor 10 to the temperature used in the steam reforming reaction, a part of the pipe connected to the reactor 10 was installed in the electric furnace 22 and the temperature in the electric furnace was raised to 600 ° C.

<600℃加熱時の気密性テスト>
反応装置2が600℃となった後、全バルブを開けて窒素ガスを通気させて流路及びパイプ内のガスの置換をした。その後バルブ16cを閉め、2次圧力調整バルブ17bで窒素ガス圧力を0.3MPaに調整し、バルブ16aと16bを閉めて、データ収集システムを稼動させて反応流路内の圧力値を0.5時間にわたり計測を行った。その結果、漏れ率は0.96%となり目標の漏れ率5%以下であることを確認した。なお、漏れ率の結果は表2に示した。
<Airtight test at 600 ° C heating>
After the reactor 2 reached 600 ° C., all valves were opened and nitrogen gas was passed to replace the gas in the flow path and the pipe. Thereafter, the valve 16c is closed, the nitrogen gas pressure is adjusted to 0.3 MPa by the secondary pressure adjusting valve 17b, the valves 16a and 16b are closed, the data collection system is operated, and the pressure value in the reaction channel is reduced to 0.5. Measurements were taken over time. As a result, it was confirmed that the leakage rate was 0.96%, which was a target leakage rate of 5% or less. The results of the leakage rate are shown in Table 2.

<600℃加熱後の分解性>
水蒸気改質反応の反応時間は10時間を予定しているため、上記の気密性テスト終了後に連続して9.5時間を保持し、合計10時間を600℃で加熱継続を行った。その後反応装置2を常温(28℃)に戻し、電気炉22から取り出した後、大気中で反応装置の分解を行った。分解は前記の装置を組み立てる手順の逆であり、筐体から反応器本体及び支持板を取り出し、そこから支持板を取り外して、金属部材を当接面で引き離し分離した。このとき、二つの金属部材はその当接面で全く融着しておらず、特に力を入れることなく速やかに分離することが可能であった。
<Decomposability after heating at 600 ° C>
Since the reaction time of the steam reforming reaction is scheduled to be 10 hours, after completion of the above airtightness test, 9.5 hours was continuously maintained, and heating was continued at 600 ° C. for a total of 10 hours. Thereafter, the reactor 2 was returned to room temperature (28 ° C.), taken out from the electric furnace 22, and then decomposed in the atmosphere. Disassembly was the reverse of the procedure for assembling the apparatus described above. The reactor main body and the support plate were taken out from the housing, the support plate was removed therefrom, and the metal member was pulled away on the contact surface and separated. At this time, the two metal members were not fused at the contact surfaces at all, and could be quickly separated without applying any force.

この結果より、本発明によれば、二つ以上の金属部材を当接面で当接しそこに流路を設けた反応装置において、加熱流通反応における当接面での十分な気密性を保ちながら、しかも該当接面での融着を防ぎ簡便に上記金属部材を分割することができることが予測される。また、上記分割後の流路内面における生成物の確認も特別な器具や迂遠な操作によらず容易におこなうことができ、また速やかにメンテナンスを施し再利用可能であることが予測される。   As a result, according to the present invention, in the reaction apparatus in which two or more metal members are brought into contact with each other at the contact surface and a flow path is provided there, while maintaining sufficient airtightness at the contact surface in the heating flow reaction, Moreover, it is predicted that the metal member can be easily divided by preventing fusion at the corresponding contact surface. In addition, it is predicted that the product on the inner surface of the flow channel after the division can be easily confirmed regardless of a special instrument or a detour operation, and can be quickly maintained and reused.

(実施例2)
融着防止処理としての加熱処理を1時間行った以外、実施例1と同様に分析機器による測定を行った。その結果、比較例に比べて加熱処理を行うことで酸化膜が多く形成されていることが確認された。SEM−EDX測定に関しては、図10、11に示し、ESCAによる表面元素分析結果は表1に示した。
(Example 2)
Measurement with an analytical instrument was performed in the same manner as in Example 1 except that the heat treatment as a fusion prevention treatment was performed for 1 hour. As a result, it was confirmed that more oxide films were formed by performing heat treatment than in the comparative example. The SEM-EDX measurement is shown in FIGS. 10 and 11, and the results of surface elemental analysis by ESCA are shown in Table 1.

(実施例3)
金属材料をSUS430を基材とし、その表面に無電解ニッケル−りんめっき(Ni‐P)を施した後、融着防止処理としての加熱処理を10時間行った以外、実施例2と同様に分析機器による測定を行った。その結果、比較例に比べて加熱処理を行うことで酸化膜が多く形成されていることが確認された。ESCAによる表面元素分析結果は表1に示した。
(Example 3)
Analysis was performed in the same manner as in Example 2 except that SUS430 was used as a base material, electroless nickel-phosphorus plating (Ni-P) was applied to the surface, and heat treatment was performed for 10 hours as a fusion prevention treatment. Instrument measurements were taken. As a result, it was confirmed that more oxide films were formed by performing heat treatment than in the comparative example. The results of surface elemental analysis by ESCA are shown in Table 1.

(比較例)
融着防止処理としての加熱処理を行わなかった以外、実施例1と同様にして反応装置の作製、分析機器による測定、水蒸気改質反応を行った。この結果本比較例においては、反応終了後、金属材料が当接面で強固に融着しており、金槌などで衝撃を与えたが分割不可能であった。なお、金属材料の当接面(研磨処理のみを行い、加熱処理を行っていない)のSEM−EDX測定に関しては図12、13に示し、ESCAによる表面元素分析結果は表1に示した。
(Comparative example)
Except that the heat treatment as a fusion prevention treatment was not performed, the reaction apparatus was prepared, the measurement with an analytical instrument, and the steam reforming reaction were performed in the same manner as in Example 1. As a result, in this comparative example, after completion of the reaction, the metal material was firmly fused on the contact surface, and an impact was applied with a hammer or the like, but it was impossible to divide. The SEM-EDX measurement of the contact surface of the metal material (only the polishing process is performed and the heat treatment is not performed) is shown in FIGS. 12 and 13, and the surface element analysis results by ESCA are shown in Table 1.

(参考例)
融着防止処理としての加熱処理を10時間実施して、実施例1同様に反応装置の作製を行い、加熱温度を28℃で行った以外、上記と同様にして常温での気密性テストを行った。この結果、600℃の加熱時に比較して常温時では漏れが多いことから、上記実施例1採用された材料による反応装置2は高温時の材料膨張による自己加圧型構造であった。なお、漏れ率の結果は表2に示した。
(Reference example)
A heat treatment as an anti-fusing treatment was carried out for 10 hours, a reactor was prepared in the same manner as in Example 1, and a gas tightness test at room temperature was conducted in the same manner as above except that the heating temperature was 28 ° C. It was. As a result, since there are many leaks at normal temperature compared with heating at 600 ° C., the reactor 2 using the material adopted in Example 1 had a self-pressurized structure due to material expansion at high temperature. The results of the leakage rate are shown in Table 2.

(注)SEM-EDX測定の結果は各測定点(spot)の平均値として示している。また、酸素(O)とニッケル(Ni)との和が100%になるようして示しており、他の元素は含まれない。−は測定しなかったことを意味し、0はその元素が検出されなかったことを意味する。 (Note) The result of SEM-EDX measurement is shown as the average value of each measurement point (spot). Further, the sum of oxygen (O) and nickel (Ni) is shown to be 100%, and other elements are not included. -Means not measured, 0 means the element was not detected.

(注)反応装置は参考例を行った後に実施例1で使用した同一のものであり、装置毎の製作による加工誤差などの不具合については、極めて少ないものとなっている。 (Note) The reaction apparatus is the same as that used in Example 1 after performing the reference example, and there are very few problems such as processing errors due to the manufacture of each apparatus.

1 反応器本体
2 筐体
3 ネジ
4 ジョイント
5(5a、5b) パイプ
6 流路
7 融着防止処理部(酸化膜)
10 反応装置
11、14 支持板
12、13 金属部材
15 窒素ガス元栓
16a、16b、16c バルブ
17a、17b 圧力調整バルブ
18 T字継手
19 圧力計
20 データ収集システム
21 パソコン
22 電気炉
DESCRIPTION OF SYMBOLS 1 Reactor body 2 Case 3 Screw 4 Joint 5 (5a, 5b) Pipe 6 Flow path 7 Anti-fusing treatment part (oxide film)
DESCRIPTION OF SYMBOLS 10 Reaction apparatus 11, 14 Support plate 12, 13 Metal member 15 Nitrogen gas main plugs 16a, 16b, 16c Valves 17a, 17b Pressure adjusting valve 18 T-shaped joint 19 Pressure gauge 20 Data collection system 21 Personal computer 22 Electric furnace

Claims (6)

二つ以上の金属部材が互いに面で当接した反応器本体を筐体の内部隙間無く挿入してなる反応装置であって、前記金属部材が当接した面には反応流路が形成され、かつ、その当接した面には融着防止処理が施され、前記反応器本体は前記両金属部材の当接面に直交する方向から支持板を介して複数のネジにより直接押圧され、前記筐体は前記金属部材の熱膨張係数よりも小さい熱膨張係数を有し、前記反応装置を加熱した時の熱膨張による前記反応器本体と前記筐体に生ずる圧力でお互いが加圧され、前記反応装置を冷却した後は前記金属部材の当接面で分離される反応装置。 A reaction apparatus in which two or more metal members are in contact with each other on their surfaces and inserted into the inside of the housing without any gap, and a reaction channel is formed on the surface with which the metal members are in contact. And, the contact surface is subjected to a fusion prevention treatment, and the reactor body is directly pressed by a plurality of screws through a support plate from a direction orthogonal to the contact surfaces of the two metal members, The casing has a thermal expansion coefficient smaller than the thermal expansion coefficient of the metal member, and the reactor body and the casing are pressurized with each other by the pressure generated by the thermal expansion when the reactor is heated, The reaction apparatus is separated at the contact surface of the metal member after the reaction apparatus is cooled . 前記反応流路内を加熱した条件下で反応をおこなう請求項に記載の反応装置。 Reactor according to claim 1 the reaction is carried out under the conditions of heating the reaction channel. 前記反応流路内を加圧した条件下で反応をおこなう請求項1または2に記載の反応装置。 The reaction apparatus according to claim 1 or 2 , wherein the reaction is performed under a condition in which the inside of the reaction channel is pressurized. 前記反応器本体が挿抜可能とされた請求項1から3のいずれか1項に記載の反応装置。 The reaction apparatus according to any one of claims 1 to 3 , wherein the reactor main body is insertable / removable. 前記金属部材の当接面は、前記反応流路以外の当接部分において気密性を有する請求項1から4のいずれか1項に記載の反応装置。 The reaction apparatus according to any one of claims 1 to 4 , wherein the contact surface of the metal member has airtightness in a contact portion other than the reaction flow path. 前記融着防止処理が、酸素含有雰囲気に前記金属部材の当接面を露出して加熱する処理であること特徴とする請求項1から5のいずれか1項に記載の反応装置。 The anti-blocking treatment, the reactor according to any one of claims 1, wherein it is a process for heating by exposing the contact surface of the metal member in an oxygen-containing atmosphere 5.
JP2009260276A 2009-11-13 2009-11-13 Reactor Active JP5342985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009260276A JP5342985B2 (en) 2009-11-13 2009-11-13 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009260276A JP5342985B2 (en) 2009-11-13 2009-11-13 Reactor

Publications (2)

Publication Number Publication Date
JP2011104484A JP2011104484A (en) 2011-06-02
JP5342985B2 true JP5342985B2 (en) 2013-11-13

Family

ID=44228614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009260276A Active JP5342985B2 (en) 2009-11-13 2009-11-13 Reactor

Country Status (1)

Country Link
JP (1) JP5342985B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005007529A (en) * 2003-06-19 2005-01-13 Dainippon Screen Mfg Co Ltd Micro fluid device and manufacturing method of micro fluid device
JP2005154883A (en) * 2003-11-26 2005-06-16 Uchino:Kk Induction heating apparatus
JP2007007570A (en) * 2005-06-30 2007-01-18 Toray Eng Co Ltd Micro-reactor
JP4532458B2 (en) * 2006-11-27 2010-08-25 古河電気工業株式会社 Micro chemical reactor
JP2008132444A (en) * 2006-11-29 2008-06-12 Dainippon Screen Mfg Co Ltd Flow-path structure

Also Published As

Publication number Publication date
JP2011104484A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP6232099B2 (en) Microchannel process equipment
JP4234595B2 (en) Hydrogen refining apparatus, components, and fuel processing system including the same
CA2313292C (en) Compliant high temperature seals for dissimilar materials
KR100876246B1 (en) Hydrogen Purification Apparatus, Components and Fuel Processing Systems Including the Same
EP2354272A1 (en) Graphene roll-to-roll coating apparatus and graphene roll-to-roll coating method using the same
CN1674981A (en) Multi-stream microchannel device
Boeltken et al. Fabrication and testing of a planar microstructured concept module with integrated palladium membranes
JP5236736B2 (en) Pressure vessel test method
JP6366937B2 (en) Laminated leak-proof chemical processor, fabrication method and operating method
WO2006121158A1 (en) Ceramics heat exchanger
JP5342985B2 (en) Reactor
EP1829604A1 (en) Composite oxygen conductive membrane
CN103339778A (en) Device forming a seal between two spaces having mutually reactive gases, and use in high temperature steam electrolysis (HTSE) units and in solid oxide fuel cells (SOFC)
Natesan et al. Development of materials resistant to metal dusting degradation.
Song Manufacturing Process Design for a Stamped Microchannel High-Temperature Recuperator
Wilson et al. Design of a ceramic heat exchanger for sulfuric acid decomposition
Guo Inhibiting carbon growth at the initial stage of metal dusting corrosion of high temperature alloys
Roberts et al. One step biomass gas reforming-shift separation membrane reactor
Blakeley Autothermal reforming of methane for syngas production in a novel ceramic microchannel reactor
Lewinsohn et al. Joining methods for ceramic, compact, microchannel heat exchangers
Johnson et al. Probing the Surface Chemistry of Iron, Nickel and Steel Alloys in Carburizing Atmospheres
Hechanova High Temperature Heat Exchanger Project: Quarterly Progress Report July 1, 2006 through September 30, 2006
Kim et al. A Design of Sulfuric-Acid Decomposer for Nuclear Hydrogen Production System
Hechanova UNLV Research Foundation High Temperature Heat Exchanger Development: 9/08
Hechanova High Temperature Heat Exchanger Project: Quarterly Progress Report July 1, 2007 through September 30, 2007

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130531

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R151 Written notification of patent or utility model registration

Ref document number: 5342985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250