JP5341671B2 - External gear pump and brake device having the same - Google Patents

External gear pump and brake device having the same Download PDF

Info

Publication number
JP5341671B2
JP5341671B2 JP2009191871A JP2009191871A JP5341671B2 JP 5341671 B2 JP5341671 B2 JP 5341671B2 JP 2009191871 A JP2009191871 A JP 2009191871A JP 2009191871 A JP2009191871 A JP 2009191871A JP 5341671 B2 JP5341671 B2 JP 5341671B2
Authority
JP
Japan
Prior art keywords
gear
pressure chamber
region
gears
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009191871A
Other languages
Japanese (ja)
Other versions
JP2011043106A (en
Inventor
雅記 御簾納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2009191871A priority Critical patent/JP5341671B2/en
Publication of JP2011043106A publication Critical patent/JP2011043106A/en
Application granted granted Critical
Publication of JP5341671B2 publication Critical patent/JP5341671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、一対のギヤの回転によりポンプ作用をなす外接ギヤポンプ及びそれを備えたブレーキ装置に関する。   The present invention relates to an external gear pump that performs pumping action by rotation of a pair of gears, and a brake device including the external gear pump.

特許文献1には、ギヤポンプの閉じ込み領域に溝を形成することで、高回転時のキャビテーションに起因する振動や騒音の抑制を図っている。   In Patent Document 1, a groove is formed in a closed region of the gear pump, thereby suppressing vibration and noise caused by cavitation during high rotation.

特開2003−113781号公報JP 2003-113781 A

しかしながら、上記従来技術では十分な容積効率が得られず、ポンプ性能の低下を招いていた。   However, the above prior art cannot obtain a sufficient volumetric efficiency, resulting in a decrease in pump performance.

本発明の目的は、振動や騒音を抑制しつつ高いポンプ効率を達成可能な外接ギヤポンプを提供することにある。   An object of the present invention is to provide an external gear pump that can achieve high pump efficiency while suppressing vibration and noise.

上記目的を達成するため、本発明の外接ギヤポンプでは、膨張行程時に低圧室と第1の閉じ込み領域とを連通する第1の連通溝と、圧縮工程時に高圧室と第1の閉じ込み領域とを連通する第2の連通溝とを設け、第1の閉じ込み領域内であって、第1及び第2の連通溝との連通が遮断された遮断区間内に所定体積の最小値がくるようにした。   In order to achieve the above object, in the external gear pump of the present invention, the first communication groove that communicates the low pressure chamber and the first confinement region during the expansion stroke, the high pressure chamber and the first confinement region during the compression process, A second communication groove that communicates with the first and second communication grooves, so that the minimum value of the predetermined volume is within the first confinement region and within the blocking section where the communication with the first and second communication grooves is blocked. I made it.

よって、本発明にあっては、振動や騒音を抑制しつつ高いポンプ効率を得ることができる。   Therefore, in the present invention, high pump efficiency can be obtained while suppressing vibration and noise.

実施例1のハウジング内に収装されたギヤポンプの側面図である。It is a side view of the gear pump housed in the housing of the first embodiment. 実施例1のギヤポンプ部分の上面図である。It is a top view of the gear pump part of Example 1. 実施例1のギヤポンプの分解斜視図である。It is a disassembled perspective view of the gear pump of Example 1. FIG. 噛み合い部体積とギヤ回転角度との関係を表す特性図である。It is a characteristic view showing the relationship between a meshing part volume and a gear rotation angle. 閉じ込み開始時、最小閉じ込み時及び閉じ込み終了時の各ギヤの噛み合いの状態を表す図である。It is a figure showing the state of engagement of each gear at the time of the start of closing, the time of the minimum closing, and the end of closing. 連通溝の位置と容積効率の低下代との関係を表す特性図である。It is a characteristic view showing the relationship between the position of a communicating groove and the reduction margin of volumetric efficiency. 実施例1の吐出側連通溝と吸入側連通溝を表すサイドプレートの正面図である。It is a front view of the side plate showing the discharge side communication groove and the suction side communication groove of Example 1. 実施例1の閉じ込み開始時、最小閉じ込み時及び閉じ込み終了時の各ギヤの噛み合いの状態と各溝の位置関係を表す図である。It is a figure showing the meshing state of each gear and the positional relationship of each groove | channel at the time of the closing start of Example 1, the time of the minimum closing, and the end of closing. 吐出側連通溝と吸入側連通溝を表すサイドプレートの正面図である。It is a front view of the side plate showing a discharge side communication groove and a suction side communication groove. 実施例2の吐出側連通溝と吸入側連通溝を表すサイドプレートの正面図である。6 is a front view of a side plate showing a discharge side communication groove and a suction side communication groove of Example 2. FIG.

本発明の実施例1について図面と共に説明する。実施例1の外接型ギヤポンプ60は、自動車のブレーキシステムに適用されるポンプであり、公知のアンチロックブレーキ制御や、車両挙動制御、自動ブレーキ制御、もしくはブレーキバイワイヤシステムに搭載されるものである。油圧回路構成や制御システムには特に影響されないため、説明を省略する。
(ギヤポンプについて)
図1はハウジング30内に収装されたギヤポンプ60の側面図、図2はギヤポンプ部分の上面図、図3はギヤポンプの分解斜視図である。図1〜図3に示すように、ギヤポンプ60は、ハウジング30に形成されたポンプ収装孔37内に収装されている。ギヤポンプ60は、図外のモータ等に接続された駆動軸61Aに設けられた駆動ギヤ61と、従動軸62Aに設けられた従動ギヤ62と、駆動軸61A及び従動軸62Aの軸方向両側に設けられた一対の側板63,64と、シールブロック65とから構成されている。駆動軸61Aにはモータの駆動軸が接続されている。支持孔63A,63Bが設けられた側板63と、支持孔64A,64Bが設けられた側板64とを、駆動軸61A及び従動軸62Aに対し軸方向両側から挿入する。これにより駆動ギヤ61と従動ギヤ62が互いに噛み合って回転するように軸支する。また、側板64と駆動ギヤ61及び従動ギヤ62の側面との間は、回転摺動する摺動面を有する。この摺動面により吸入通路と接続された低圧室とギヤポンプ60の外周に形成された高圧室とを液密にシールしている。この側板63,64は硬度の高い材質から構成されている。尚、側板64の側面部分の形状に関する詳細については後述する。
側板63,64には、シールブロック65との当接面側に円弧状の切り欠き63C,64Cが設けられている。切り欠き63Cは、支持孔63Aと63Bの間に、また切り欠き64Cは支持孔64Aと64Bの間に形成されている。この切り欠き63C,64Cは、軸方向に側板63,64の全幅にわたって形成され、低圧室の一部を構成する。側板63とハウジング30との間、及び側板64とハウジング30との間には、それぞれシールリング66が設けられている。シールリング66は側板63,64及びシールブロック65に形成される低圧室とハウジング30との間を液密にシールするよう構成されている。
シールブロック65には、側板63,64との当接面側に、駆動ギヤ61及び従動ギヤ62の歯先に沿って凹湾曲状に切り欠かれた凹湾曲面65A,65Bが設けられている。また、凹湾曲面65A,65Bの間であって、切り欠き63C,64Cと当接する位置には、円弧状の円弧溝65Cがシールブロック65の全幅にわたって設けられ、これら切り欠き63C,64C及び円弧溝65Cによって低圧室が形成される。
凹湾曲面65A,65Bと各ギヤ61,62との間にはギヤの回転角に係らず常時、排出側閉じ込み領域(第2の閉じ込み領域)が形成されるように設計されている(図7参照)。一方、各ギヤ61,62の噛み合い部分には常時、吸入側閉じ込み領域(第1の閉じ込み領域)が形成されるように設計されている。また、排出側閉じ込み領域において閉じ込められるブレーキ液の体積が吸入側閉じ込み領域において閉じ込められるブレーキ液の体積より大きくなるように形成されている。すなわち、ギヤポンプ60が回転駆動すると、吸入側閉じ込み領域に一旦閉じ込められた作動流体が低圧室に流れ込む流量よりも、低圧室から排出側閉じ込み領域を経由して流れ出す流量のほうが多くなることを意味する。これにより、ギヤポンプ60による圧力上昇を達成する。以下、吸入側閉じ込み領域において、ブレーキ液が高圧室に開口した状態から閉じ込められる態様を圧縮行程とし、一旦閉じ込められた流体が低圧室に流れ込む態様を、閉じ込み領域が圧縮から膨張に転じる行程と記載する。
上述の側板63,64にシールブロック65を金属コイルばね67により着脱可能に巻結しポンプ組立体を構成することで、切り欠き63C,64C及び円弧溝65Cにより、吸入通路に連通した低圧室が形成される。尚、シールブロック65は、側板63,64の硬度よりも低い硬度を有するアルミ系の材質から構成されているが、樹脂等で構成してもよい。また、シールブロックと側板とを別部材から構成しているが、一体部材から構成してもよい。この場合、金属コイルばね等は不要であることはいうまでもない。
A first embodiment of the present invention will be described with reference to the drawings. The external gear pump 60 of the first embodiment is a pump that is applied to a brake system of an automobile, and is mounted on a known antilock brake control, vehicle behavior control, automatic brake control, or brake-by-wire system. The description is omitted because it is not particularly affected by the hydraulic circuit configuration and the control system.
(About gear pump)
1 is a side view of the gear pump 60 housed in the housing 30, FIG. 2 is a top view of the gear pump portion, and FIG. 3 is an exploded perspective view of the gear pump. As shown in FIGS. 1 to 3, the gear pump 60 is housed in a pump housing hole 37 formed in the housing 30. The gear pump 60 is provided on both sides in the axial direction of the drive gear 61 provided on the drive shaft 61A connected to a motor or the like (not shown), the driven gear 62 provided on the driven shaft 62A, and the drive shaft 61A and the driven shaft 62A. A pair of side plates 63 and 64 and a seal block 65 are formed. The drive shaft of the motor is connected to the drive shaft 61A. The side plate 63 provided with the support holes 63A and 63B and the side plate 64 provided with the support holes 64A and 64B are inserted into the drive shaft 61A and the driven shaft 62A from both axial sides. As a result, the drive gear 61 and the driven gear 62 are pivotally supported so as to mesh with each other and rotate. Further, there is a sliding surface that rotates and slides between the side plate 64 and the side surfaces of the drive gear 61 and the driven gear 62. The sliding surface seals the low pressure chamber connected to the suction passage and the high pressure chamber formed on the outer periphery of the gear pump 60 in a liquid-tight manner. The side plates 63 and 64 are made of a material having high hardness. Details regarding the shape of the side surface portion of the side plate 64 will be described later.
The side plates 63 and 64 are provided with arc-shaped notches 63C and 64C on the contact surface side with the seal block 65, respectively. The notch 63C is formed between the support holes 63A and 63B, and the notch 64C is formed between the support holes 64A and 64B. The notches 63C and 64C are formed over the entire width of the side plates 63 and 64 in the axial direction and constitute a part of the low-pressure chamber. Seal rings 66 are provided between the side plate 63 and the housing 30 and between the side plate 64 and the housing 30, respectively. The seal ring 66 is configured to liquid-tightly seal between the low pressure chamber formed in the side plates 63 and 64 and the seal block 65 and the housing 30.
The seal block 65 is provided with concave curved surfaces 65A and 65B cut out in a concave curved shape along the tooth tips of the drive gear 61 and the driven gear 62 on the contact surface side with the side plates 63 and 64. . Further, an arcuate arc groove 65C is provided across the entire width of the seal block 65 at a position between the concave curved surfaces 65A and 65B and in contact with the notches 63C and 64C, and the notches 63C and 64C and the arcs. A low pressure chamber is formed by the groove 65C.
It is designed so that a discharge side confinement region (second confinement region) is always formed between the concave curved surfaces 65A and 65B and the gears 61 and 62 regardless of the rotation angle of the gear ( (See FIG. 7). On the other hand, it is designed such that a suction side confining region (first confining region) is always formed in the meshing portion of each gear 61 and 62. Further, the volume of the brake fluid confined in the discharge side confinement region is formed to be larger than the volume of the brake fluid confined in the suction side confinement region. That is, when the gear pump 60 is driven to rotate, the flow rate of the working fluid once confined in the suction side confinement region flows out from the low pressure chamber via the discharge confinement region more than the flow rate of flow into the low pressure chamber. means. Thereby, the pressure rise by the gear pump 60 is achieved. Hereinafter, in the suction side confinement region, the mode in which the brake fluid is confined from the state opened to the high pressure chamber is referred to as a compression stroke, and the mode in which the confined fluid flows into the low pressure chamber is referred to as the stroke in which the confinement region is changed from compression to expansion. It describes.
The seal block 65 is detachably wound around the side plates 63 and 64 by the metal coil spring 67 to constitute a pump assembly, whereby the low pressure chamber communicated with the suction passage is formed by the notches 63C and 64C and the arc groove 65C. It is formed. The seal block 65 is made of an aluminum material having a hardness lower than that of the side plates 63 and 64, but may be made of a resin or the like. Moreover, although the seal block and the side plate are made of separate members, they may be made of an integral member. In this case, it goes without saying that a metal coil spring or the like is unnecessary.

(閉じ込み領域に関して)
上述したように、各ギヤ61,62の噛み合い部分には、吸入側閉じ込み領域が形成される。この空間の体積(以下、噛み合い部体積と記載する。)は、ギヤの回転に伴って、閉じ込み開始から減少を始め、変曲点を持ち、増加に転じる二次曲線状の特性を有する。図4は噛み合い部体積とギヤ回転角度との関係を表す特性図、図5は閉じ込み開始時、最小閉じ込み時及び閉じ込み終了時の各ギヤの噛み合いの状態を表す図である。各ギヤ61,62は、その基本的な設計形状によってギヤの噛み合い点により閉じ込み開始・終了時の位置(回転角度)が決まる。以下、図5の閉じ込められた領域をA,閉じ込められた領域よりも手前の回転角度に位置する高圧領域をB,閉じ込められた領域を過ぎた回転角度に位置する低圧領域をC、と分けて説明する。閉じ込み開始時とは、領域Cと領域Aが噛み合いによって画成された後、領域Bと領域Aとが噛み合いによって更に画成された瞬間を意味する。この閉じ込み開始角度からギヤ回転角度が進むと、領域A,B,Cは画成されたまま領域Aが閉じ込み開始時の噛み合い部体積よりも小さくなってゆき、最小の体積である最小閉じ込み角度を迎える。次に、この最小閉じ込み角度から回転角度が進むと、領域Aが増大して噛み合い部体積が増大し、閉じ込み開始角度と略同体積の閉じ込み終了角度を迎える。このとき、領域Bと領域Aは画成されたまま領域Aと領域Cとの間の噛み合い点が離れ、領域Aと領域Cとが連通する。
上述のように、閉じ込み領域Aを形成すると、回転に応じて領域Aにおける噛み合い部体積の圧縮・膨張を繰り返すため、これらは振動や異音を引き起こす虞がある。特に、自動車用ブレーキオイルに適用した場合、このブレーキオイルは圧縮率が小さく、非常に大きな圧力変動が発生し、油撃となって耐久性の悪化等を招くおそれがある。また、油撃により側板が持ち上げられると、ギヤ側面と側板との間のシール性能が得られず、高圧室と低圧室とが連通してしまい、吐出性能の低下を招く虞がある。更に、閉じ込み終了時直後の低圧室では、低圧室の体積が噛み合い部体積分だけ一気に増大し負圧へと変化する。このように低圧室の体積変動量が大きいと、作動流体内に気泡が析出し、析出した気泡の消失に伴って異音を生じるおそれもある。
(Regarding the confinement area)
As described above, the suction side confinement region is formed in the meshing portion of the gears 61 and 62. The volume of this space (hereinafter referred to as the meshing portion volume) has a characteristic of a quadratic curve that starts to decrease from the start of confinement, has an inflection point, and starts to increase as the gear rotates. FIG. 4 is a characteristic diagram showing the relationship between the meshing portion volume and the gear rotation angle, and FIG. 5 is a diagram showing the meshing state of each gear at the start of closing, at the time of minimum closing, and at the end of closing. The positions (rotation angles) at the start and end of closing of each gear 61 and 62 are determined by the meshing point of the gear according to the basic design shape. Hereinafter, the confined region in FIG. 5 is divided into A, the high pressure region located at a rotation angle before the confined region is divided into B, and the low pressure region located at a rotation angle past the confined region is divided into C. explain. “At the start of closing” means the moment when region B and region A are further defined by meshing after region C and region A are defined by meshing. When the gear rotation angle advances from this closing start angle, the area A becomes smaller than the meshing portion volume at the start of closing while the areas A, B, and C are defined, and the minimum closing is the minimum volume. It ’s an angle. Next, when the rotation angle advances from this minimum closing angle, the region A increases and the meshing portion volume increases, reaching a closing end angle that is substantially the same volume as the closing start angle. At this time, the engagement point between the region A and the region C is separated while the region B and the region A are defined, and the region A and the region C communicate with each other.
As described above, when the confinement region A is formed, the meshing portion volume in the region A is repeatedly compressed and expanded in accordance with the rotation, which may cause vibration and noise. In particular, when applied to automobile brake oil, this brake oil has a low compression rate, and a very large pressure fluctuation occurs, which may cause oil hammering and deteriorate durability. Further, when the side plate is lifted by the oil hammer, the sealing performance between the side surface of the gear and the side plate cannot be obtained, and the high pressure chamber and the low pressure chamber communicate with each other, which may cause a decrease in discharge performance. Furthermore, in the low-pressure chamber immediately after the end of the closing, the volume of the low-pressure chamber increases at a stroke by the meshing portion volume and changes to negative pressure. When the volume fluctuation amount of the low-pressure chamber is large as described above, bubbles are precipitated in the working fluid, and there is a possibility that abnormal noise is generated as the deposited bubbles disappear.

以上の観点から、従来では、図4に示す位置関係となるように、側板の摺動面上に溝を形成している。この溝は、領域B側から延び閉じ込み領域A内と連通する溝と、領域C側から延び閉じ込み領域A内と連通する溝である。以下、領域Bと領域Aとを連通する溝を吐出側連通溝M1とし、領域Cと領域Aとを連通する溝を吸入側連通溝M2と記載する。従来例では、キャビテーション防止の観点から、吐出側連通溝M1を変曲点よりも閉じ込み区間後半部分まで延在させ、遮断区間開始位置が最小閉じ込み角度(すなわち変曲点)を通過した後となるように形成する。そして、一旦閉じ込めた作動流体は、作動流体が閉じ込められた区間である遮断区間において体積を増大させ、その後、吸入側連通溝M2と連通するように形成する。これにより、閉じ込みが開始される体積を比較的大きめに設定し、遮断区間で僅かに膨張させた上で低圧側と連通することで、低圧室における体積変動を抑制し、キャビテーションを抑制している。
しかし、遮断区間において体積変動が生じているため、やはりキャビテーションの発生が懸念される。加えて、ギヤポンプ60の容積効率の観点からすると、このような設計は非常に効率が悪い。図6は連通溝の位置と容積効率の低下代との関係を表す特性図である。ここで、容積効率とは、排出側閉じ込み領域の体積と吸入側閉じ込み領域の体積との関係を表し、両者の体積の差が大きいほど容積効率の低下が小さく、両者の体積の差が小さいほど容積効率の低下が大きくなる。従来例のような位置に連通溝M1,M2を配置した場合、排出側閉じ込み領域(図7参照)の体積と吸入側閉じ込み領域の体積との間に十分な差を設けることができず、容積効率は大きく低下してしまう。
From the above viewpoint, conventionally, grooves are formed on the sliding surface of the side plate so as to have the positional relationship shown in FIG. This groove extends from the region B side and communicates with the inside of the enclosed region A, and extends from the region C side and communicates with the inside of the enclosed region A. Hereinafter, a groove that communicates the region B and the region A is referred to as a discharge-side communication groove M1, and a groove that communicates the region C and the region A is referred to as a suction-side communication groove M2. In the conventional example, from the viewpoint of preventing cavitation, the discharge side communication groove M1 extends from the inflection point to the latter half of the closing section, and after the blocking section start position passes the minimum closing angle (ie, the inflection point). It forms so that it becomes. Then, the working fluid once confined is formed so as to increase in volume in a blocking section, which is a section in which the working fluid is confined, and then communicate with the suction side communication groove M2. As a result, the volume at which the confinement is started is set to be relatively large, and after being slightly expanded in the shut-off section and communicating with the low pressure side, the volume fluctuation in the low pressure chamber is suppressed, and the cavitation is suppressed. Yes.
However, since volume fluctuation occurs in the cut-off section, there is still concern about the occurrence of cavitation. In addition, from the viewpoint of volumetric efficiency of the gear pump 60, such a design is very inefficient. FIG. 6 is a characteristic diagram showing the relationship between the position of the communication groove and the reduction in volumetric efficiency. Here, volumetric efficiency represents the relationship between the volume of the discharge side confinement region and the volume of the suction side confinement region. The larger the volume difference between the two, the smaller the decrease in volumetric efficiency. The smaller the volume, the greater the reduction in volumetric efficiency. When the communication grooves M1 and M2 are arranged at the positions as in the conventional example, a sufficient difference cannot be provided between the volume of the discharge side confinement region (see FIG. 7) and the volume of the suction side confinement region. The volumetric efficiency is greatly reduced.

そこで、実施例1では、遮断区間での体積変動が小さく、かつ、容積効率が高くなるように、各溝の位置を調整し、閉じ込み開始と閉じ込み終了の間に変曲点を有する構成とした。図7は実施例1の吐出側連通溝M1と吸入側連通溝M2を表すサイドプレートの正面図である。側板63の側面には、各ギヤの側面と摺動接触しない基底部631と、この基底部631からギヤ側に隆起され各ギヤの側面と摺動接触するシール部632とを有する。シール部632は、各軸の外周を取り囲むように形成された円環部632aと、左右の円環部632aを地続きにして吸入側閉じ込み領域を形成する吸入側閉じ込み部632bと、シールブロック65との間で排出側閉じ込み領域を形成する排出側閉じ込み部632cとを有する。吸入側閉じ込み部632bの高圧室側かつ従動軸62A寄りには吐出側連通溝M1が形成されている。吸入側閉じ込み部632bの低圧室側かつ駆動軸62A寄りには吸入側連通溝M2が形成されている。これら各溝M1,M2は、断面三角形状であって、その断面積が高圧室側もしくは低圧室側に向かうに連れて大きくなるように形成されている。尚、断面形状は三角に限らず四角でも曲面でもよい。また、駆動軸62Aが図7中左側にある例を示したが、図9に示すように、駆動軸62Aが右側にある場合には、各溝M1,M2の位置関係を反転させればよい。   Therefore, in the first embodiment, the position of each groove is adjusted so that the volume fluctuation in the shut-off section is small and the volumetric efficiency is high, and the inflection point is provided between the closing start and the closing end. It was. FIG. 7 is a front view of the side plate showing the discharge side communication groove M1 and the suction side communication groove M2 of the first embodiment. The side surface of the side plate 63 includes a base portion 631 that does not slide contact with the side surface of each gear, and a seal portion 632 that protrudes from the base portion 631 toward the gear side and contacts the side surface of each gear. The seal portion 632 includes an annular portion 632a formed so as to surround the outer periphery of each shaft, a suction side confinement portion 632b that forms a suction side confinement region with the left and right annular portions 632a as a ground, and a seal A discharge side confinement portion 632c that forms a discharge side confinement region with the block 65; A discharge side communication groove M1 is formed on the suction side confining portion 632b on the high pressure chamber side and near the driven shaft 62A. A suction side communication groove M2 is formed on the suction side confining portion 632b on the low pressure chamber side and near the drive shaft 62A. Each of the grooves M1 and M2 has a triangular cross section and is formed so that its cross-sectional area increases toward the high pressure chamber side or the low pressure chamber side. The cross-sectional shape is not limited to a triangle, and may be a square or a curved surface. Further, the example in which the drive shaft 62A is on the left side in FIG. 7 is shown, but as shown in FIG. 9, when the drive shaft 62A is on the right side, the positional relationship between the grooves M1 and M2 may be reversed. .

図8は閉じ込み開始時、最小閉じ込み時及び閉じ込み終了時の各ギヤの噛み合いの状態と各溝の位置関係を表す図、図4はギヤ回転角度と各溝による連通の関係を表わす図である。吸入側閉じ込み領域の開始回転角度において、吐出側連通溝M1が領域Bと領域Aとを連通しているため、実際に流体の閉じ込みはまだなされていない。ギヤ回転角度が所定角度θ1に到達すると、吐出側連通溝M1による領域Bと領域Aとの連通が遮断され、遮断区間に入る。遮断区間進入時における閉じ込められた流体の体積は、最小閉じ込み量とほとんど同じか僅かに大きい程度である。この状態で、更にギヤ回転角度がθ0だけ増大すると最小閉じ込み角度に到達する。このとき、閉じ込められた作動流体の容積は元々小さいため、最小閉じ込み角度に到達しても液圧変動は小さい。更に、ギヤ回転角度がθ0だけ増大すると、遮断区間が終了し、吸入側連通溝M2による領域Aと領域Cとが連通される。この連通時において、遮断区間で閉じ込められた体積は非常に小さいため、低圧室における体積増大による変動も小さくなり、振動やキャビテーションの発生を抑制できる。また、吐出側連通溝M1及び吸入側連通溝M2の流路断面積が徐々に変化するよう構成されているため、これによっても振動や異音の発生を抑制できる。
図6は連通溝の位置と容積効率の低下代との関係を表す特性図である。実施例1に示す位置に吐出側連通溝M1と吸入側連通溝M2とを配置した場合、排出側閉じ込み領域の体積と吸入側閉じ込み領域の体積との差を大きくすることができ、容積効率の低下を抑制することができる。尚、容積効率の低下が5%以内に抑制できれば、従来技術に比べて極めて高い効率を得ることができるものである。よって、吐出側連通溝M1と吸入側連通溝M2の位置を容積効率の低下が5%以内を達成する位置関係に規定することが望ましい。
以上説明したように、実施例1にあっては下記の作用効果を得ることができる。
(1)膨張行程時に低圧室と吸入側閉じ込み領域(第1の閉じ込み領域)とを連通する吐出側連通溝M1(第1の連通溝)と、圧縮工程時に高圧室と吸入側閉じ込み領域とを連通する吸入側連通溝M2(第2の連通溝)とを設け、吸入側閉じ込み領域内であって、吐出側及び吸入側連通溝M1,M2との連通が遮断された遮断区間内に所定体積の最小値を有する、言い換えると、噛み合い部体積が最小となる回転角度を有する。よって、振動や異音を抑制しつつ、高い容積効率を得ることができる。
FIG. 8 is a diagram showing the meshing state of each gear and the positional relationship of each groove at the start of closing, at the minimum closing time and at the end of closing, and FIG. 4 is a diagram showing the relationship between the gear rotation angle and the communication by each groove. It is. Since the discharge side communication groove M1 communicates the region B and the region A at the starting rotation angle of the suction side confinement region, the fluid is not actually confined yet. When the gear rotation angle reaches the predetermined angle θ1, the communication between the region B and the region A by the discharge side communication groove M1 is cut off, and the cut-off zone is entered. The volume of the trapped fluid when entering the shut-off zone is almost the same as or slightly larger than the minimum confinement amount. In this state, when the gear rotation angle is further increased by θ0, the minimum closing angle is reached. At this time, since the volume of the confined working fluid is originally small, the hydraulic pressure fluctuation is small even when the minimum confinement angle is reached. Further, when the gear rotation angle is increased by θ0, the blocking section is ended, and the region A and the region C are communicated by the suction side communication groove M2. At the time of this communication, since the volume confined in the shut-off section is very small, the fluctuation due to the volume increase in the low pressure chamber is also reduced, and the occurrence of vibration and cavitation can be suppressed. In addition, since the flow passage cross-sectional areas of the discharge side communication groove M1 and the suction side communication groove M2 are configured to gradually change, it is possible to suppress the occurrence of vibration and noise.
FIG. 6 is a characteristic diagram showing the relationship between the position of the communication groove and the reduction in volumetric efficiency. When the discharge side communication groove M1 and the suction side communication groove M2 are arranged at the position shown in the first embodiment, the difference between the volume of the discharge side confining region and the volume of the suction side confining region can be increased. A decrease in efficiency can be suppressed. If the decrease in volumetric efficiency can be suppressed within 5%, extremely high efficiency can be obtained as compared with the prior art. Therefore, it is desirable to define the positions of the discharge side communication groove M1 and the suction side communication groove M2 in a positional relationship that achieves a reduction in volumetric efficiency within 5%.
As described above, the following operational effects can be obtained in the first embodiment.
(1) A discharge-side communication groove M1 (first communication groove) that communicates the low-pressure chamber and the suction side confinement region (first confinement region) during the expansion stroke, and the high-pressure chamber and the suction side confinement during the compression process. An inhalation section provided with a suction side communication groove M2 (second communication groove) that communicates with the region, and within the suction side confinement region, in which the communication between the discharge side and the suction side communication grooves M1, M2 is interrupted The rotation angle has a minimum value of the predetermined volume inside, in other words, the engagement portion volume is minimum. Therefore, high volumetric efficiency can be obtained while suppressing vibration and abnormal noise.

次に、実施例2について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。図10は実施例2の吐出側連通溝M1a,M1bと吸入側連通溝M2a,M2bを表すサイドプレートの正面図である。図10に示すように、予め二本の溝を形成しても構わない。他方の溝は、ギヤの側面によってシールされるからである。このように自動車のブレーキシステムの油圧回路に用いられる小型外接式タンデムギヤポンプのシールブロックに適用する場合には、系統ごとに駆動ギヤと従動ギヤの関係を気にすることなく組み付けることができる。これにより、誤組み付けを防ぐことができ、また、同じ部品を製造すればよいため製造コストを低減することもできる。   Next, Example 2 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described. FIG. 10 is a front view of the side plate showing the discharge side communication grooves M1a and M1b and the suction side communication grooves M2a and M2b according to the second embodiment. As shown in FIG. 10, two grooves may be formed in advance. This is because the other groove is sealed by the side surface of the gear. Thus, when applied to a seal block of a small external tandem gear pump used in a hydraulic circuit of an automobile brake system, the system can be assembled without worrying about the relationship between the drive gear and the driven gear for each system. As a result, erroneous assembly can be prevented, and the manufacturing cost can be reduced because the same parts need only be manufactured.

(他の実施例)
以上、本発明を実施例に基づいて説明したが、本発明の具体的な構成は、各実施例に示した構成に限定されるものではなく、発明の要旨を逸脱しない設計変更等があっても本発明に含まれる。実施例では、自動車のブレーキシステムに採用されるポンプについて説明したが、他のシステムに使用されるポンプでもよい。また、シールブロックを備えた構成に限らず、ハウジング等の間で排出側閉じ込み領域を確保するポンプであっても問題なく適用できる。尚、容積効率の低下が5%以内に抑制できれば、従来技術に比べて極めて高い効率を得ることができるものである。よって、吐出側連通溝M1と吸入側連通溝M2の位置を容積効率の低下が5%以内を達成する位置関係に規定することが望ましい。具体的にはギヤ回転角度θ1及びθ2で挟まれるギヤ回転角度範囲内において容積効率低下代が5%以上となるような領域を持たないように設計することで、必ずしも体積が最小となる区間を備えていなくても同様の作用効果が得られる。
(Other examples)
The present invention has been described based on the embodiments. However, the specific configuration of the present invention is not limited to the configurations shown in the embodiments, and there are design changes and the like that do not depart from the gist of the invention. Are also included in the present invention. In the embodiment, the pump used in the brake system of the automobile has been described. However, a pump used in another system may be used. Further, the present invention is not limited to the configuration provided with the seal block, and can be applied without problems even to a pump that secures a discharge side confinement region between housings and the like. If the decrease in volumetric efficiency can be suppressed within 5%, extremely high efficiency can be obtained as compared with the prior art. Therefore, it is desirable to define the positions of the discharge side communication groove M1 and the suction side communication groove M2 in a positional relationship that achieves a reduction in volumetric efficiency within 5%. Specifically, by designing so as not to have an area where the volumetric efficiency reduction margin is 5% or more within the gear rotation angle range sandwiched between the gear rotation angles θ1 and θ2, the section where the volume is necessarily minimized Even if it is not provided, the same effect can be obtained.

30 ハウジング
37 ポンプ収装孔
60 ギヤポンプ
61 駆動ギヤ
62 従動ギヤ
63 側板
64 側板
65 シールブロック
M1 吐出側連通溝
M1a,M1b 吐出側連通溝
M2 吸入側連通溝
M2a,M2b 吸入側連通溝
30 Housing 37 Pump receiving hole 60 Gear pump 61 Drive gear 62 Driven gear 63 Side plate 64 Side plate 65 Seal block M1 Discharge side communication groove M1a, M1b Discharge side communication groove M2 Suction side communication groove M2a, M2b Suction side communication groove

Claims (6)

駆動源により駆動される駆動ギヤと、
前記駆動ギヤに噛み合いにより回転する従動ギヤと、
前記両ギヤの側面が摺動する摺動面を備えた側板と、
前記各ギヤの噛み合いにより形成される所定体積内にブレーキ液を閉じ込める第1の閉じ込み領域と、前記各ギヤの歯溝により形成され前記所定体積よりも大きなブレーキ液量を閉じ込める第2の閉じ込み領域とを有し、ブレーキ液を低圧室から高圧室へ圧送する外接ギヤポンプにおいて、
前記側板に、膨張行程時に前記低圧室と前記第1の閉じ込み領域とを連通する第1の連通溝と、圧縮程時に前記高圧室と前記第1の閉じ込み領域とを連通する第2の連通溝とを設け、
前記第1の連通溝は前記ギヤのうち一方のギヤの側面にのみ面するように形成され、前記第2の連通溝は前記ギヤのうち他方のギヤの側面にのみ面するように形成され、
前記第1の閉じ込み領域内であって、前記第1及び第2の連通溝との連通が遮断された遮断区間内に前記所定体積の最小値を有するよう構成されていることを特徴とする外接ギヤポンプ。
A drive gear driven by a drive source;
A driven gear that rotates by meshing with the drive gear;
A side plate having a sliding surface on which the side surfaces of both gears slide;
A first confinement region for confining brake fluid in a predetermined volume formed by the meshing of each gear, and a second confinement for confining a brake fluid amount larger than the predetermined volume formed by a tooth groove of each gear. An external gear pump that pumps brake fluid from the low pressure chamber to the high pressure chamber,
The side plate, a second communicating with the first communication groove, and the high pressure chamber during compression line extent and said first closed narrowing region which communicates with said first closed narrowing region and the low-pressure chamber during the expansion stroke With a communication groove,
The first communication groove is formed so as to face only the side surface of one gear of the gears, and the second communication groove is formed so as to face only the side surface of the other gear of the gears,
It is configured to have a minimum value of the predetermined volume within the first confinement region and within a blocking section where communication with the first and second communication grooves is blocked. External gear pump.
駆動により駆動された駆動ギヤと、
前記駆動ギヤに噛み合いにより回転する従動ギヤと、
前記両ギヤの側面に配置された側板と、
各ギヤの回転により前記各ギヤの噛み合い領域に設けられた両ギヤの噛み合いにより形成された閉じ込み領域と、
前記閉じ込み領域が膨張及び圧縮することでブレーキ液を低圧室から高圧室へ圧送する外接ギヤポンプを備え、前記圧送されたブレーキ液により制動力を発生させるブレーキ装置において、
前記側板は、前記ギヤのうち一方のギヤの側面のみに面するように形成された第1の溝と、前記ギヤのうち他方のギヤの側面のみに面するように形成された第2の溝とを備え、
前記閉じ込み領域を前記両ギヤの第1の回転角範囲において前記第1の溝を介して前記低圧室と連通する第1区間と、第2回転角の範囲において前記第2の溝を介して前記高圧室と連通する第2区間と、前記第1区間が形成された範囲と第2区間の間に形成され前記低圧室及び高圧室と非連通状態とした第3区間を設け、該第3区間に噛み合い部体積が最小となる回転角度を有することを特徴とするブレーキ装置。
A drive gear driven by a drive source ;
A driven gear that rotates by meshing with the drive gear;
Side plates disposed on the side surfaces of the two gears;
A closed region formed by meshing of both gears provided in the meshing region of each gear by rotation of each gear;
A brake device that includes an external gear pump that pumps brake fluid from a low-pressure chamber to a high-pressure chamber by expanding and compressing the confinement region, and generates a braking force by the pumped brake fluid.
The side plate has a first groove formed to face only the side surface of one of the gears, and a second groove formed to face only the side surface of the other gear of the gears. And
A first section communicating with the low-pressure chamber through the first groove in the first rotation angle range of the two gears; and a second section in the second rotation angle range through the second groove. A second section that communicates with the high-pressure chamber; a third section that is formed between the range in which the first section is formed and the second section and is not in communication with the low-pressure chamber and the high-pressure chamber; A brake device characterized in that the section has a rotation angle at which the engagement portion volume is minimized.
駆動源により駆動される駆動ギヤと、
前記駆動ギヤに噛み合いにより回転する従動ギヤと、
前記両ギヤの側面に配置された側板と、
前記各ギヤの噛み合いにより形成される所定体積内にブレーキ液を閉じ込める第1の閉じ込み領域と、前記各ギヤの歯溝により形成され前記所定体積よりも大きなブレーキ液量を閉じ込める第2の閉じ込み領域とを有し、ブレーキ液を低圧室から高圧室へ圧送する外接ギヤポンプにおいて、
前記側板に、膨張行程時に前記低圧室と前記第1の閉じ込み領域とを連通する第1の連通溝と、圧縮工程時に前記高圧室と前記第1の閉じ込み領域とを連通する第2の連通溝とを設け、
前記第1の連通溝は前記ギヤのうち一方のギヤの歯先円と歯底円との間に面するように形成され、前記第2の連通溝は前記ギヤのうち他方のギヤの歯先円と歯底円との間に面するように形成され、
前記第1の連通溝と前記第2の連通溝を、容積効率の低下が5%以内となる範囲で設定したことを特徴とする外接ギヤポンプ。
A drive gear driven by a drive source;
A driven gear that rotates by meshing with the drive gear;
Side plates disposed on the side surfaces of the two gears;
A first confinement region for confining brake fluid in a predetermined volume formed by the meshing of each gear, and a second confinement for confining a brake fluid amount larger than the predetermined volume formed by a tooth groove of each gear. An external gear pump that pumps brake fluid from the low pressure chamber to the high pressure chamber,
A first communication groove that communicates the low pressure chamber and the first confinement region during the expansion stroke and a second communication channel that communicates the high pressure chamber and the first confinement region during the compression process. A communication groove,
The first communication groove is formed so as to face between a tooth tip circle and a tooth bottom circle of one of the gears, and the second communication groove is a tooth tip of the other gear of the gears. Formed to face between the circle and the root circle,
An external gear pump characterized in that the first communication groove and the second communication groove are set in a range in which a decrease in volumetric efficiency is within 5%.
請求項1に記載の外接ギヤポンプにおいて、  The external gear pump according to claim 1,
前記第1及び第2の連通溝は、前記遮断区間において前記一方及び他方のギヤの側面にのみ面するように形成されていることを特徴とする外接ギヤポンプ。  The external gear pump, wherein the first and second communication grooves are formed so as to face only the side surfaces of the one and the other gears in the blocking section.
請求項2に記載のブレーキ装置において、  The brake device according to claim 2,
前記第1及び第2の溝は、前記第3区間において前記一方及び他方のギヤの側面にのみ面するように形成されていることを特徴とするブレーキ装置。  The brake device according to claim 1, wherein the first and second grooves are formed so as to face only the side surfaces of the one and the other gears in the third section.
請求項3に記載の外接ギヤポンプにおいて、  The external gear pump according to claim 3,
前記第1の連通溝は、前記第1の閉じ込領域の閉じ込み終了時において前記一方のギヤの歯先円と歯底円との間に面するように形成され、  The first communication groove is formed to face between the tooth tip circle and the tooth bottom circle of the one gear at the end of closing of the first closing region,
前記第2の連通溝は、前記第1の閉じ込領域の閉じ込み開始時において前記他方のギヤの歯先円と歯底円との間に面するように形成されていることを特徴とする外接ギヤポンプ。  The second communication groove is formed so as to face between a tip circle and a root circle of the other gear at the start of closing of the first closing region. External gear pump.
JP2009191871A 2009-08-21 2009-08-21 External gear pump and brake device having the same Expired - Fee Related JP5341671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009191871A JP5341671B2 (en) 2009-08-21 2009-08-21 External gear pump and brake device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009191871A JP5341671B2 (en) 2009-08-21 2009-08-21 External gear pump and brake device having the same

Publications (2)

Publication Number Publication Date
JP2011043106A JP2011043106A (en) 2011-03-03
JP5341671B2 true JP5341671B2 (en) 2013-11-13

Family

ID=43830699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009191871A Expired - Fee Related JP5341671B2 (en) 2009-08-21 2009-08-21 External gear pump and brake device having the same

Country Status (1)

Country Link
JP (1) JP5341671B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4098876A4 (en) * 2020-01-30 2023-11-01 Shimadzu Corporation Gear pump or gear motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162102U (en) * 1974-11-12 1976-05-17
JP3761645B2 (en) * 1996-11-07 2006-03-29 カヤバ工業株式会社 Gear pump discharge amount changing method and gear pump
JP3830313B2 (en) * 1999-09-06 2006-10-04 株式会社ジェイテクト Gear pump
JP2003113781A (en) * 2001-10-03 2003-04-18 Koyo Seiko Co Ltd Gear pump
JP2009030516A (en) * 2007-07-26 2009-02-12 Toyota Industries Corp Gear pump

Also Published As

Publication number Publication date
JP2011043106A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
EP1674727B1 (en) Trochoid oil pump
JP4842341B2 (en) Gear pump and gear pump for brake device
JP5149190B2 (en) Variable displacement vane pump
JP4888158B2 (en) Electric pump unit and electric oil pump
JP6182821B2 (en) Variable displacement vane pump
EP1710437A2 (en) Oil Pump
KR20150105458A (en) Variable displacement pump with multiple pressure chambers
JP4824526B2 (en) Variable displacement vane pump and method of manufacturing variable displacement vane pump
JP5494465B2 (en) Scroll compressor
JP5583494B2 (en) Variable displacement vane pump
JP5396364B2 (en) Variable displacement vane pump
JP5341671B2 (en) External gear pump and brake device having the same
JP5778783B2 (en) Internal gear pump for hydraulic vehicle brake system
US20040234393A1 (en) Oil pump structure
KR20150070392A (en) Piston provided to hydraulic rotator, and hydraulic rotator
JP5587598B2 (en) Oil pump relief valve
KR20090111703A (en) A gear pump
JP2010096011A (en) Internal gear pump
JP4960815B2 (en) Variable displacement pump
JP4821660B2 (en) Single screw compressor
US20100061872A1 (en) Gear Pump
JPH11343982A (en) Trochoid oil pump
JP2009228642A (en) Oil pump
JP4770216B2 (en) Gear pump or motor
JP7037458B2 (en) Pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130808

R150 Certificate of patent or registration of utility model

Ref document number: 5341671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees