JP5334873B2 - 暗号処理システム、鍵生成装置、鍵委譲装置、暗号化装置、復号装置、暗号処理方法及び暗号処理プログラム - Google Patents
暗号処理システム、鍵生成装置、鍵委譲装置、暗号化装置、復号装置、暗号処理方法及び暗号処理プログラム Download PDFInfo
- Publication number
- JP5334873B2 JP5334873B2 JP2010002709A JP2010002709A JP5334873B2 JP 5334873 B2 JP5334873 B2 JP 5334873B2 JP 2010002709 A JP2010002709 A JP 2010002709A JP 2010002709 A JP2010002709 A JP 2010002709A JP 5334873 B2 JP5334873 B2 JP 5334873B2
- Authority
- JP
- Japan
- Prior art keywords
- vector
- key
- basis
- encryption
- dec
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 title claims description 163
- 238000003672 processing method Methods 0.000 title claims 2
- 239000013598 vector Substances 0.000 claims abstract description 1039
- 238000000034 method Methods 0.000 claims abstract description 93
- 230000009977 dual effect Effects 0.000 claims abstract description 51
- 230000005540 biological transmission Effects 0.000 claims abstract description 42
- 238000003860 storage Methods 0.000 claims description 36
- 230000014509 gene expression Effects 0.000 claims description 29
- 238000004364 calculation method Methods 0.000 claims description 27
- 239000000284 extract Substances 0.000 claims description 10
- 239000000047 product Substances 0.000 description 63
- 230000006870 function Effects 0.000 description 29
- 238000004891 communication Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 17
- 238000009826 distribution Methods 0.000 description 17
- 230000009466 transformation Effects 0.000 description 13
- 239000003643 water by type Substances 0.000 description 12
- 238000012546 transfer Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 230000005477 standard model Effects 0.000 description 4
- 238000013507 mapping Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 241000257303 Hymenoptera Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003121 nonmonotonic effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09C—CIPHERING OR DECIPHERING APPARATUS FOR CRYPTOGRAPHIC OR OTHER PURPOSES INVOLVING THE NEED FOR SECRECY
- G09C1/00—Apparatus or methods whereby a given sequence of signs, e.g. an intelligible text, is transformed into an unintelligible sequence of signs by transposing the signs or groups of signs or by replacing them by others according to a predetermined system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0819—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
- H04L9/083—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) involving central third party, e.g. key distribution center [KDC] or trusted third party [TTP]
- H04L9/0833—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) involving central third party, e.g. key distribution center [KDC] or trusted third party [TTP] involving conference or group key
- H04L9/0836—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) involving central third party, e.g. key distribution center [KDC] or trusted third party [TTP] involving conference or group key using tree structure or hierarchical structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/006—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols involving public key infrastructure [PKI] trust models
- H04L9/007—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols involving public key infrastructure [PKI] trust models involving hierarchical structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/30—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
- H04L9/3066—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy involving algebraic varieties, e.g. elliptic or hyper-elliptic curves
- H04L9/3073—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy involving algebraic varieties, e.g. elliptic or hyper-elliptic curves involving pairings, e.g. identity based encryption [IBE], bilinear mappings or bilinear pairings, e.g. Weil or Tate pairing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/08—Randomization, e.g. dummy operations or using noise
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Security & Cryptography (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Computing Systems (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Algebra (AREA)
- Storage Device Security (AREA)
- Complex Calculations (AREA)
Description
この発明は、安全性が高い述語暗号及び述語鍵秘匿方式を提供することを目的とする。特に、権限委譲を可能とした述語暗号及び述語鍵秘匿方式を提供することを目的とする。
数1に示すペアリング演算によって関連付けられた双対ベクトル空間である空間Vと空間V*とを用いて述語暗号処理を行う暗号処理システムであり、
前記空間Vにおける所定の基底Bを構成する基底ベクトルbi(i=1,...,n,...,S,...,N)(Nは3以上の整数,Sはn+1以上N−1以下の整数,nは1以上N−2以下の整数)のうちの基底ベクトルbi(i=S+1,...,N)を除いた少なくとも基底ベクトルbi(i=1,...,n+1)を有する基底B^と、所定の属性情報とが公開鍵として与えられ、前記基底B^の基底ベクトルbi(i=1,...,n)のうちの少なくとも一部の基底ベクトルに対する係数として属性情報を設定するとともに、前記基底ベクトルbn+1に対する係数として所定の情報を設定したベクトルを暗号ベクトルc1として処理装置により生成する暗号化装置と、
前記空間V*の基底B*におけるベクトルであって、基底B*を構成する基底ベクトルb* i(i=1,...,n,...,S,...,N)の基底ベクトルb* i(i=1,...,n)うちの少なくとも一部の基底ベクトルに対する係数として述語情報を設定するとともに、前記基底B*の基底ベクトルb* n+1に対する係数として所定の値を設定したベクトルを鍵ベクトルk* L,decとして、前記暗号化装置が生成した暗号ベクトルc1と前記鍵ベクトルk* L,decとについて、処理装置により数1に示すペアリング演算e(c1,k* L,dec)を行い前記暗号ベクトルc1を復号して前記所定の情報に関する値を抽出する復号装置と
を備えることを特徴とする。
以下の説明において、処理装置は後述するCPU911等である。記憶装置は後述するROM913、RAM914、磁気ディスク920等である。通信装置は後述する通信ボード915等である。入力装置は後述するキーボード902、通信ボード915等である。出力装置は後述するRAM914、磁気ディスク920、通信ボード915、LCD901等である。つまり、処理装置、記憶装置、通信装置、入力装置、出力装置はハードウェアである。
Aがランダムな変数または分布であるとき、数101は、Aの分布に従いAからyをランダムに選択することを表す。つまり、数101において、yは乱数である。
この実施の形態では、後の実施の形態で説明する「権限委譲を有する述語暗号(Predicate Encryption with Delegation)」や「権限委譲を有する述語鍵秘匿方式(Predicate Key Encapsulation Mechanism with Delegation)」を実現する基礎となる概念と、権限委譲を有する述語暗号(述語鍵秘匿方式)の基本構成について説明する。
第1に、権限委譲を有する述語暗号(述語鍵秘匿方式)の一種である「権限委譲を有する内積述語暗号(内積述語鍵秘匿方式)」という概念を説明する。後の実施の形態で説明する権限委譲を有する述語暗号(述語鍵秘匿方式)は、権限委譲を有する内積述語暗号(内積述語鍵秘匿方式)である。権限委譲を有する内積述語暗号という概念を説明するに当たり、まず「権限委譲」という概念を説明する。また、併せて、「階層的(Hierarchial)な権限委譲」という概念を説明する。次に、「内積述語暗号」を説明する。そして、階層的な権限委譲という概念を内積述語暗号に加えた「階層的内積述語暗号(階層的内積述語鍵秘匿方式)」を説明する。さらに、階層的内積述語暗号の理解を深めるため、階層的内積述語暗号の応用例を説明する。
第2に、ベクトル空間における階層的内積述語暗号を説明する。この実施の形態及び以下の実施の形態では、階層的述語暗号と階層的述語鍵秘匿方式とをベクトル空間において実現する。ここでは、まず、「基底」と「基底ベクトル」について説明する。次に、「ベクトル空間における内積述語暗号」について説明する。そして、「ベクトル空間における階層構造の実現方法」について説明する。さらに、理解を深めるため、階層構造の実現例を説明する。
第3に、この実施の形態及び後の実施の形態に係る「階層的述語暗号」と「階層的述語鍵秘匿方式」との基本構成を説明する。併せて、階層的述語暗号と階層的述語鍵秘匿方式とを実行する「暗号処理システム10」の概要を説明する。
第4に、階層的述語鍵秘匿方式や階層的述語暗号を実現するための概念を説明する。ここでは、「双線形ペアリンググループ」、「ベクトル空間Vとベクトル空間V*」、「標準的な双対基底A,A*」、「ペアリング演算」、「基底変換」、「ディストーション写像」を説明する。
第5に、階層的述語鍵秘匿方式と階層的述語暗号とを実現するための空間である「双対ペアリングベクトル空間(Dual Pairing Vector Spaces,DPVS)」という豊かな数学的構造を有する空間を説明する。
そして、第6に、以上の説明を踏まえ、後の実施の形態で詳細に説明する階層的述語暗号と階層的述語鍵秘匿方式との実現方法を簡単に説明する。
<第1−1.権限委譲(階層的な権限委譲)という概念>
図1は、「権限委譲(階層的な権限委譲)」という概念を説明するための図である。
権限委譲とは、上位の鍵を有する利用者が、その鍵(上位の鍵)よりも機能が制限された下位の鍵を生成することである。
図1では、Root(鍵生成装置)は、マスター秘密鍵を用いて、第1層目(Level−1)の利用者へ秘密鍵を生成する。つまり、Rootは、第1層目の利用者1,2,3それぞれへ鍵1,2,3を生成する。そして、例えば、利用者1であれば、鍵1を用いて、利用者1の下位(第1層目)の利用者である利用者11,12,13それぞれへ鍵11,12,13を生成することができる。ここで、利用者1が有する鍵1よりも、利用者11,12,13が有する鍵11,12,13は機能が制限されている。機能が制限されているとは、その秘密鍵によって復号できる暗号文が限定されているということである。つまり、上位の秘密鍵で復号できる暗号文の一部の暗号文のみ下位の秘密鍵で復号できることを意味する。すなわち、利用者1が有する鍵1で復号できる暗号文のうち、一部の暗号文のみ利用者11,12,13が有する鍵11,12,13で復号することができる。また、通常は、鍵11と鍵12と鍵13とが復号できる暗号文は異なる。一方、鍵11と鍵12と鍵13が復号できる暗号文は、鍵1で復号することができる。
また、図1に示すように、各秘密鍵が階層(レベル)分けされていることを「階層的」という。つまり、図1に示すように、階層的に下位の鍵を生成することを「階層的な権限委譲」と呼ぶ。
次に、「内積述語暗号」について説明する。
まず、述語暗号とは、述語情報fvに属性情報xを入力した場合に1(True)となる場合(fv(x)=1となる場合)に、暗号文を復号できる暗号方式である。通常、暗号文に属性情報xが埋め込まれ、秘密鍵に述語情報fvが埋め込まれる。つまり、述語暗号では、属性情報xに基づき暗号化された暗号文cを、述語情報fvに基づき生成された秘密鍵SKfにより復号する。述語暗号は、例えば、述語情報fvが条件式であり、属性情報xがその条件式への入力情報であり、入力情報(属性情報x)が条件式(述語情報fv)を満たせば(fv(x)=1)、暗号文を復号できる暗号方式であるとも言える。
なお、述語暗号について詳しくは非特許文献16に記載されている。
階層的内積述語暗号(階層的内積述語鍵秘匿方式)とは、上述した「階層的な権限委譲」という概念を有する「内積述語暗号」である。
図3は、属性情報と述語情報との階層構造を示す図である。
図3において、符号が対応する属性情報と述語情報とは対応する(つまり、内積が0となる)ものとする。つまり、属性1と述語1との内積は0となり、属性11と述語11との内積は0となり、属性12と述語12との内積は0となり、属性13と述語13との内積は0となるとする。すなわち、属性1により暗号化された暗号文c1は、述語1に基づき生成された秘密鍵k1であれば復号できる。また、属性11により暗号化された暗号文c11は、述語11に基づき生成された秘密鍵k11であれば復号できる。属性12と述語12、属性13と述語13についても同様のことが言える。
上記の通り、階層的内積述語暗号は階層的な権限委譲システムを有する。そのため、述語1に基づき生成された秘密鍵k1と、述語11とに基づき、秘密鍵k11を生成することができる。つまり、上位の秘密鍵k1を有する利用者は、その秘密鍵k1と下位の述語11とから、秘密鍵k1の下位の秘密鍵k11を生成することができる。同様に、秘密鍵k1と述語12とから秘密鍵k12を生成でき、秘密鍵k1と述語13とから秘密鍵k13を生成できる。
また、下位の秘密鍵に対応する鍵(公開鍵)で暗号化された暗号文を上位の秘密鍵で復号できる。一方、上位の秘密鍵に対応する鍵(公開鍵)で暗号化された暗号文は、下位の秘密鍵で復号できない。つまり、属性11、属性12、属性13により暗号化された暗号文c11、c12、c13は、述語1に基づき生成された秘密鍵k1であれば復号できる。一方、属性1により暗号化された暗号文c1は、述語11、述語12、述語13に基づき生成された秘密鍵k11、k12、k13では復号できない。すなわち、属性11、属性12、属性13と述語1との内積は0となる。一方、属性1と述語11、述語12、述語13との内積は0とならない。
図4は、後述する階層的内積述語暗号の応用例である階層的IDベース暗号(Hierarchial Identifier Based Encryption,HIBE)の例を示す図である。なお、階層的IDベース暗号とは、IDベース暗号が階層的になった暗号処理である。IDベース暗号は、述語暗号の一種であり、暗号文に含まれるIDと秘密鍵に含まれるIDとが一致する場合に暗号文を復号できるマッチング述語暗号である。
図4に示す例では、Root(鍵生成装置)は、マスター秘密鍵skとA会社のIDである「A」とに基づき、ID「A」に対応する秘密鍵(鍵A)を生成する。例えば、A会社のセキュリティ担当者は、鍵Aと各部門のIDとに基づき、そのIDに対応する秘密鍵を生成する。例えば、セキュリティ担当者は、営業部門のIDである「A−1」に対応する秘密鍵(鍵1)を生成する。次に、例えば、各部門の管理者は、その部門の秘密鍵とその部門に属する各課のIDとに基づき、そのIDに対応する秘密鍵を生成する。例えば、営業部門の管理者は、営業1課のIDである「A−11」に対応する秘密鍵(鍵11)を生成する。
ここで、営業1課のID「A−11」に対応する秘密鍵である鍵11により、営業1課のID「A−11」で暗号化された暗号文を復号することができる。しかし、鍵11により、営業2課や営業3課のIDで暗号化された暗号文は復号することはできない。また、鍵11により、営業部門のIDで暗号化された暗号文は復号することができない。
営業部門のID「A−1」に対応する秘密鍵である鍵1により、営業部門のID「A−1」で暗号化された暗号文を復号することができる。また、鍵1により、営業部門に属する課のIDで暗号化された暗号文を復号することができる。つまり、鍵1により、営業1課、営業2課、営業3課のIDで暗号化された暗号文を復号することができる。しかし、鍵1により、製造部門(ID:A−2)やスタッフ部門(ID:A−3)のIDで暗号化された暗号文は復号することができない。また、鍵1により、A会社のIDで暗号化された暗号文は復号することができない。
A会社のID「A」に対応する秘密鍵である鍵Aにより、A会社のID「A」で暗号化された暗号文を復号することができる。また、A会社に属する各部門や、その部門に属する課のIDで暗号化された暗号文を復号することができる。
つまり、後の実施の形態で説明する階層的述語鍵秘匿方式と階層的述語暗号とは、IDベース暗号や検索可能暗号等へ幅広い応用が可能である。
階層的述語鍵秘匿方式と階層的述語暗号とは、後述する双対ペアリングベクトル空間という高次元ベクトル空間において実現される。そこで、ベクトル空間における階層的内積述語暗号を説明する。
まず、ベクトル空間の説明において使用する「基底」と「基底ベクトル」とについて簡単に説明する。
図5は、基底と基底ベクトルとを説明するための図である。
図5は、2次元ベクトル空間におけるベクトルvを示す。ベクトルvは、c1a1+c2a2である。また、ベクトルvは、y1b1+y2b2である。ここで、a1,a2を基底Aにおける基底ベクトルといい、基底A:=(a1,a2)と表す。また、b1,b2を基底Bにおける基底ベクトルといい、基底B:=(b1,b2)と表す。また、c1,c2,y1,y2は、各基底ベクトルに対する係数である。図5では、2次元ベクトル空間であったため、各基底における基底ベクトルは2個であった。しかし、N次元ベクトル空間であれば、各基底における基底ベクトルはN個である。
次に、ベクトル空間における内積述語暗号を説明する。
上記の通り、内積述語暗号とは、属性情報xと述語情報fvとの内積が所定の値(ここでは、0)の場合に、fv(x)=1となる述語暗号である。属性情報xと述語情報fvとがベクトルであった場合、つまり属性ベクトルx→と述語ベクトルv→とであった場合、内積述語は数109のように定義される。
次に、ベクトル空間における階層構造の実現方法を説明する。
図6は、ベクトル空間における階層構造の実現方法の一例を説明するための図である。
ここで扱うベクトル空間は、高次元(N次元)ベクトル空間であるとする。つまり、ベクトル空間における所定の基底Cには、基底ベクトルci(i=1,...,N)のN個の基底ベクトルが存在する。
N個の基底ベクトルのうちのn個の基底ベクトル(基底ベクトルci(i=1,...,n))を階層構造を表すために使用する。また、基底ベクトルci(i=1,...,n)を、基底ベクトルci(i=1,...,μ1)と、基底ベクトルci(i=μ1+1,...,μ2)と、...、基底ベクトルci(i=μd−1+1,...,n)とのd個に分割する。ここで、dは、階層の深さを表す数となる。
そして、μ1個の基底ベクトルci(i=1,...,μ1)を第1層目の属性情報や述語情報を表すために割り当てる。また、μ2−μ1個の基底ベクトルci(i=μ1+1,...,μ2)を第2層目の属性情報や述語情報を表すために割り当てる。以下同様に、μd−μd−1個の基底ベクトルci(i=μd−1+1,...,μd(=n))を第d層目の属性情報や述語情報を表すために割り当てる。
また、第L層目の属性情報によって暗号文を生成する場合には、第L層目の属性情報だけでなく、第1層目から第L層目までの属性情報を用いて暗号文を生成する。同様に、第L層目の述語情報によって秘密鍵を生成する場合には、第L層目の述語情報だけでなく、第1層目から第L層目までの述語情報を用いて秘密鍵を生成する。つまり、第L層目の属性情報によって暗号文を生成する場合や、第L層目の述語情報によって秘密鍵を生成する場合には、第1層目から第L層目までに割り当てられたμL個の基底ベクトルci(i=1,...,μL)を用いる。例えば、第3層目の属性情報によって暗号文を生成する場合には、第1層目から第3層目までに割り当てられたμ3個の基底ベクトルci(i=1,...,μ3)を用いて、第1層目から第3層目までの属性情報を用いて暗号文を生成する。同様に、第3層目の述語情報によって秘密鍵を生成する場合には、第1層目から第3層目までに割り当てられたμ3個の基底ベクトルci(i=1,...,μ3)を用いて、第1層目から第3層目までの述語情報を表して秘密鍵を生成する。つまり、下位の層で使用される属性情報や述語情報には、上位の層で使用される属性情報や述語情報が含まれる。これにより、属性情報と述語情報とに階層構造を持たせる。そして、この属性情報と述語情報とに階層構造を利用して、内積述語暗号に権限委譲システムを持たせる。
属性空間ΣL(L=1,...,d)を、第L層目の属性情報を表すために割り当てられた空間であるとする。ここで、各ΣLは、数111である。
ここで、簡単な例を用いて階層構造を説明する。ここでは、3つの階層を備え、各階層が2次元で構成された6次元空間を用いて説明する。つまり、μ→:=(n,d;μ1,...,μd)=(6,3;2,4,6)である。
第1層目の述語ベクトルv→ 1:=(v1,v2)に基づき生成された第1層目の秘密鍵sk1を有する利用者は、第1層目の秘密鍵sk1と第2層目の述語ベクトルv→ 2:=(v3,v4)に基づき第2層目の秘密鍵sk2を生成することができる。つまり、第2層目の秘密鍵sk2は、述語ベクトル(v→ 1,v→ 2)に基づき生成される。同様に、第2層目の秘密鍵sk2を有する利用者は、第2層目の秘密鍵sk2と第3層目の述語ベクトルv→ 3:=(v5,v6)に基づき第3層目の秘密鍵sk3を生成することができる。つまり、第3層目の秘密鍵sk3は、述語ベクトル(v→ 1,v→ 2,v→ 3)に基づき生成される。
第1層目の述語ベクトルv→ 1に基づき生成された第1層目の秘密鍵sk1は、(v→ 1,(0,0),(0,0))により生成された秘密鍵である。そのため、第1層目の秘密鍵sk1は、属性ベクトル(x→ 1,(*,*),(*,*)):=((x1,x2),(*,*),(*,*))により暗号化された暗号文を、v→ 1・x→ 1=0である場合には復号できる。なぜなら、(*,*)・(0,0)=0であるためである。ここで、“*”は、任意の値を示す。
同様に、第2層目の述語ベクトル(v→ 1,v→ 2)に基づき生成された第2層目の秘密鍵sk2は、(v→ 1,v→ 2,(0,0))により生成された秘密鍵である。そのため、第2層目の秘密鍵sk2は、属性ベクトル(x→ 1,x→ 2,(*,*)):=((x1,x2),(x3,x4),(*,*))により暗号化された暗号文を、v→ 1・x→ 1=0かつv→ 2・x→ 2=0である場合には復号できる。
しかし、第2層目の秘密鍵sk2は、第1層目の属性ベクトルx→ 1:=(x1,x2)(つまり、(x→ 1,(*,*),(*,*))により暗号化された暗号文を復号することはできない。なぜなら、v→ 2=(0,0)でなければ、(*,*)・v→ 2≠0であり、v→ 2・x→ 2≠0であるためである。そのため、第2層目の秘密鍵sk2は、親である秘密鍵鍵sk2よりも限定された能力のみを有していると言える。
<第3−1.階層的述語暗号>
階層的述語暗号の構成を簡単に説明する。
階層的述語暗号は、Setup、GenKey、Enc、Dec、DelegateL(L=1,...,d−1)の5つの確率的多項式時間アルゴリズムを備える。
(Setup)
Setupアルゴリズムでは、セキュリティパラメータ1λと階層情報μ→とが入力され、マスター公開鍵pkとマスター秘密鍵skとが出力される。マスター秘密鍵skは最も上位の鍵である。
(GenKey)
GenKeyアルゴリズムでは、マスター公開鍵pkとマスター秘密鍵skと数119に示す述語ベクトルが入力され、数120に示す第L層目の秘密鍵が出力される。
Encアルゴリズムでは、マスター公開鍵pkと数121に示す属性ベクトルと平文情報mとが入力され、暗号文cが出力される。つまり、Encアルゴリズムでは、平文情報mを埋め込み、数121に示す属性ベクトルにより暗号化された暗号文cが出力される。
Decアルゴリズムでは、マスター公開鍵pkと数122に示す第L層目の秘密鍵と暗号文cとが入力され、平文情報m又は識別情報⊥が出力される。識別情報⊥とは、復号に失敗したことを示す情報である。つまり、Decアルゴリズムでは、暗号文cを第L層目の秘密鍵で復号して、平文情報mを抽出する。また、復号に失敗した場合には識別情報⊥を出力する。
DelegateLでは、マスター公開鍵pkと数123に示す第L層目の秘密鍵と数124に示す第L+1層目の述語ベクトルとが入力され、数125に示す第L+1層目の秘密鍵が出力される。つまり、DelegateLアルゴリズムでは、下位の秘密鍵が出力される。
階層的述語鍵秘匿方式の構成を簡単に説明する。
階層的述語鍵秘匿方式は、階層的述語暗号と同様に、Setup、GenKey、Enc、Dec、DelegateL(L=1,...,d−1)の5つの確率的多項式時間アルゴリズムを備える。
(Setup)
Setupアルゴリズムでは、セキュリティパラメータ1λと階層情報μ→とが入力され、マスター公開鍵pkとマスター秘密鍵skとが出力される。マスター秘密鍵skは最も上位の鍵である。
(GenKey)
GenKeyアルゴリズムでは、マスター公開鍵pkとマスター秘密鍵skと数126に示す述語ベクトルが入力され、数127に示す第L層目の秘密鍵が出力される。
Encアルゴリズムでは、マスター公開鍵pkと数128に示す属性ベクトルとが入力され、暗号文cとセッション鍵Kとが出力される。つまり、Encアルゴリズムでは、所定の情報(ρ)を埋め込み、数128に示す属性ベクトルにより暗号化された暗号文cと、所定の情報(ρ)から生成したセッション鍵Kとが出力される。
Decアルゴリズムでは、マスター公開鍵pkと数129に示す第L層目の秘密鍵と暗号文cとが入力され、セッション鍵K又は識別情報⊥が出力される。識別情報⊥とは、復号に失敗したことを示す情報である。つまり、Decアルゴリズムでは、暗号文cを第L層目の秘密鍵で復号して、所定の情報(ρ)に関する情報を抽出し、セッション鍵Kを生成する。また、復号に失敗した場合には識別情報⊥を出力する。
DelegateLアルゴリズムでは、マスター公開鍵pkと数130に示す第L層目の秘密鍵と数131に示す第L+1層目の述語ベクトルとが入力され、数132に示す第L+1層目の秘密鍵が出力される。つまり、DelegateLアルゴリズムでは、下位の秘密鍵が出力される。
暗号処理システム10について説明する。暗号処理システム10は、上述した階層的述語暗号と階層的述語鍵秘匿方式とのアルゴリズムを実行する。
図7は、暗号処理システム10の構成図である。
暗号処理システム10は、鍵生成装置100、暗号化装置200、復号装置300、鍵委譲装置400を備える。なお、ここでは、復号装置300は、鍵委譲装置400を備えるものとする。また、上述したように、暗号処理システム10は、階層的な暗号処理を実行するものであるため、暗号処理システム10は、複数の暗号化装置200、複数の復号装置300、複数の鍵委譲装置400を備えるものとする。
鍵生成装置100は、階層的述語鍵秘匿方式と階層的述語暗号とのSetup、GenKeyアルゴリズムを実行する。
暗号化装置200は、階層的述語鍵秘匿方式と階層的述語暗号とのEncアルゴリズムを実行する。
復号装置300は、階層的述語鍵秘匿方式と階層的述語暗号とのDecアルゴリズムを実行する。
鍵委譲装置400は、階層的述語鍵秘匿方式と階層的述語暗号とのDelegateLアルゴリズムを実行する。
(S101:鍵生成ステップ)
鍵生成装置100は、Setupアルゴリズムを実行してマスター公開鍵pkとマスター秘密鍵skとを生成する。また、鍵生成装置100は、生成したマスター公開鍵pkとマスター秘密鍵skと、所定の復号装置300(第L層目の復号装置300)に対応する述語ベクトルv→ L(v→ L=(v1,...,vi)(i=μL))とに基づき、GenKeyアルゴリズムを実行して第L層目の秘密鍵を生成する。そして、鍵生成装置100は、生成したマスター公開鍵pkを公開(配布)するとともに、第L層目の秘密鍵を前記所定の復号装置300へ秘密裡に配布する。なお、鍵生成装置100は、マスター秘密鍵を秘密裡に保持する。
(S102:暗号化ステップ)
暗号化装置200は、(S101)で鍵生成装置100が配布したマスター公開鍵pkと、前記復号装置300の属性ベクトルx→ L(x→ L=(x1,...,xi)(i=μL))とに基づき、Encアルゴリズムを実行して暗号文cを生成する。なお、階層的述語鍵秘匿方式であれば、暗号化装置200は、セッション鍵Kも併せて生成する。そして、暗号化装置200は、生成した暗号文cを前記復号装置300へネットワーク等を介して送信する。なお、属性ベクトルx→ Lは、公開されているものとしてもよいし、暗号化装置200が鍵生成装置100や復号装置300から取得するものとしてもよい。
(S103:復号ステップ)
復号装置300は、(S101)で鍵生成装置100が配布したマスター公開鍵pkと第L層目の秘密鍵とに基づき、アルゴリズムDecを実行して、暗号化装置200から受信した暗号文cを復号する。復号装置300は、暗号文cを復号した結果、階層的述語鍵秘匿方式であればセッション鍵Kを取得し、階層的述語暗号であれば平文情報mを取得する。復号装置300は、復号に失敗した場合には識別情報⊥を出力する。
(S201:鍵委譲ステップ)
第L層目の鍵委譲装置400(第L層目の復号装置300が備える鍵委譲装置400)は、(S101)で鍵生成装置100が配布したマスター公開鍵pkと、鍵生成装置100又は第L−1層目の鍵委譲装置400が配布した第L層目の秘密鍵と、第L+1層目の復号装置300に対応する述語ベクトルv→ L+1(v→ L+1=(vi,...,vj)(i=μL+1,j=μL+1))とに基づき、アルゴリズムDelegateLを実行して第L+1層目の秘密鍵を生成する。そして、第L層目の鍵委譲装置400は、生成した秘密鍵を第L+1層目の復号装置300へ秘密裡に配布する。
(S202:暗号化ステップ)
暗号化装置200は、(S101)で鍵生成装置100が配布したマスター公開鍵pkと、第L+1層目までの復号装置300の属性ベクトルx→ 1から属性ベクトルx→ L+1(x→ i(i=1,...,L+1)(=(x1,...,xi)(i=μL+1)))とに基づき、Encアルゴリズムを実行して暗号文cを生成する。なお、階層的述語鍵秘匿方式であれば、暗号化装置200は、セッション鍵Kも併せて生成する。そして、暗号化装置200は、生成した暗号文cを前記復号装置300へネットワーク等を介して送信する。なお、属性ベクトルx→ 1から属性ベクトルx→ L+1(x→ i(i=1,...,L+1))は、公開されているものとしてもよいし、暗号化装置200が鍵生成装置100や復号装置300から取得するものとしてもよい。
(S203:復号ステップ)
復号装置300は、(S101)で鍵生成装置100が配布したマスター公開鍵pkと、(S201)で第L層目の鍵委譲装置400が配布した秘密鍵とに基づき、アルゴリズムDecを実行して、暗号化装置200から受信した暗号文cを復号する。復号装置300は、暗号文cを復号した結果、階層的述語鍵秘匿方式であればセッション鍵Kを取得し、階層的述語暗号であれば平文情報mを取得する。
次に、上述した階層的述語暗号と階層的述語鍵秘匿方式との各アルゴリズムを実現するために必要となる概念を説明する。
ここでは、非対称ペアリンググループの直積により後述する双対ペアリングベクトル空間を構成する例を用いて、暗号処理を実現する方法を説明する。しかし、双対ペアリングベクトル空間は、非対称ペアリンググループの直積により実現されるものに限定されない。つまり、他の方法により構成された双対ペアリングベクトル空間においても、以下に説明する暗号処理は実現可能である。なお、双対ペアリングベクトル空間の典型的な3つの例が、非特許文献17に記載されている。
双線形ペアリンググループ(q,G1,G2,GT,g1,g2,gT)を説明する。
双線形ペアリンググループ(q,G1,G2,GT,g1,g2,gT)は、位数qの3つの巡回群G1,G2,GTの組である。g1はG1の生成元であり、g2はG2の生成元である。そして、双線形ペアリンググループ(q,G1,G2,GT,g1,g2,gT)は、以下の非退化双線形ペアリングの条件を満たす。
(条件:非退化双線形ペアリング)
多項式時間で計算可能な数133に示す非退化双線形ペアリングが存在すること。
1次元空間の巡回群を高次元空間(高次元ベクトル空間)へ拡張する。つまり、数134に示すように、G1とG2との直積によりN次元ベクトル空間VとN次元ベクトル空間V*とを構築する。
N次元ベクトル空間Vの標準基底Aと、N次元ベクトル空間V*の標準基底A*とを説明する。
数135は、標準基底Aと標準基底A*とを示す。
標準基底Aと標準基底A*とが数136に示す条件を満たすことについて補足する。
まず、e(ai,a* i)=gTであることについて説明する。一例として、e(a1,a* 1)について計算する。上記の通り、a1=(g1,0,...,0)であり、a* 1=(g2,0,...,0)である。したがって、e(a1,a* 1)=e(g1,g2)×e(0,0)×,...,×e(0,0)である。ここで、上記の通り、e(g1,g2)=gTである。また、e(0,0)=e(0・g1,0・g2)=e(g1,g2)0であるから、e(0,0)=1である。したがって、e(a1,a* 1)=gTとなる。他のe(ai,a* i)についても同様の計算が成立し、e(ai,a* i)=gTとなる。
次に、e(ai,a* j)=1(i≠j)であることについて説明する。一例として、e(a1,a* 2)について計算する。上記の通り、a1=(g1,0,...,0)であり、a* 2=(0,g2,0,...,0)である。したがって、e(a1,a* 2)=e(g1,0)×e(0,g2)×e(0,0)×,...,×e(0,0)である。e(g1,0)=e(g1,0・g2)=e(g1,g2)0であるから、e(g1,0)=1である。同様に、e(0,g2)=1である。また、上記の通り、e(0,0)=1である。したがって、e(ai,a* j)=1となる。他のe(ai,a* j)についても同様の計算が成立し、e(ai,a* j)=1となる。
したがって、標準基底Aと標準基底A*とにおいて、e(ai,a* i)=gTであり、e(ai,a* j)=1(i≠j)である。
N次元ベクトル空間V,V*におけるペアリング演算eを数137に示すように定義する。
標準基底Aと標準基底A*とから他の基底Bと基底B*とへ変換する基底変換方法について説明する。図10は、基底変換方法を説明するための図である。
空間Vにおける標準基底Aから空間Vにおける他の基底B:=(b1,...,bN)へ変換する。ここでは、数139に示す一様に選択された線形変換Xを用いて、数140に示すように空間Vにおける標準基底Aから空間Vにおける他の基底Bに変換する。
Xを用いることにより、空間V*における標準基底A*から空間V*における基底B*:=(b* 1,...,b* N)を効率的に計算できる。ここでは、数141に示すようにXを用いて、空間V*における基底B*を計算する。
標準基底Aにおける空間Vの生成元xに対するディストーション写像という線形変換について説明する。
空間Vの標準基底Aにおけるディストーション写像φi,jは、数143に示す写像である。
空間V*の標準基底A*におけるディストーション写像φ* i,jも、空間Vの標準基底Aにおけるディストーション写像φi,jと同様に表すことができる。
第4で説明した概念を踏まえて、双対ペアリングベクトル空間について説明する。後述する階層的述語暗号と階層的述語鍵秘匿方式とは、双対ペアリングベクトル空間において実現される。
双対ペアリングベクトル空間(q,V,V*,GT,A,A*)は、素数位数qと、Fq上の2つのN次元ベクトル空間V,V*と、位数qの巡回群GTと、空間Vの標準基底A:=(a1,...,aN−1)と、空間V*の標準基底A*:=(a* 1,...,a* N−1)とを有する空間である。そして、双対ペアリングベクトル空間(q,V,V*,GT,A,A*)は、以下の(1)非退化双線形ペアリングが存在する、(2)標準基底A,A*が双対正規直交基底である、(3)ディストーション写像が存在するという3つの条件を満たす空間である。
空間Vの標準基底Aと空間V*の標準基底A*とが双対正規直交基底であること。
つまり、空間Vの標準基底Aと空間V*の標準基底A*とが、数149に示す条件を満たすことが2つ目の条件である。
多項式時間で計算可能なディストーション写像φi,jとφ* i,jが存在すること。
つまり、数150に示す空間Vの準同型φi,jと空間V*の準同型φ* i,jが多項式時間で計算可能であることが3つ目の条件である。
上述した概念(上記第4参照)と、双対ペアリングベクトル空間(上記第5参照)とを踏まえて、上述した暗号処理システム10(上記第3参照)が階層的述語暗号と階層的述語鍵秘匿方式とを実現する方法を簡単に説明する。
暗号処理システム10は、双対ペアリングベクトル空間(q,V,V*,GT,A,A*)において内積述語暗号を実現する。なお、ここで、空間V,V*は、いずれもn+4次元空間である。
鍵生成装置100は、第4−5で説明した基底変換により、標準基底A,A*から正規直交基底B:=(b1,...,bn+4)と、B*:=(b* 1,...,b* n+4)とを生成する。鍵生成装置100は、基底B:=(b1,...,bn+4)のうちの基底ベクトル基底ベクトルbi(i=1,...,n+2)からなる基底B^:=(b1,...,bn+2)を生成する。そして、基底B^をマスター公開鍵pkとし、基底B*をマスター秘密鍵skとする。さらに、鍵生成装置100は、述語ベクトルv→(v→=(v1,...,vn)∈Fn qから秘密鍵k*を数151のように生成して復号装置300へ秘密裡に送信する。
なお、以下の説明において、添え字の「dec」は「decryption」の略であり、添え字に「dec」とあるものは、暗号文の復号に用いられる鍵ベクトルである。また、添え字の「ran」は「randomization」の略であり、添え字に「ran」とあるものは、下位の鍵ベクトルの所定の基底ベクトルに対する係数をランダム化するためのランダム化ベクトルである。また、添え字の「del」は「delegation」の略であり、添え字に「del」とあるものは、下位の鍵ベクトルを生成するための鍵生成用ベクトルである。
まず、k* 2,decを生成する場合、σ2,0(v3k* 1,del,3+v4k* 1,del,4)を、k* 1,decに加える。k* 2,ran,jを生成する場合、σ2,j(v3k* 1,del,3+v4k* 1,del,4)を0に加える(j=1,2,3)。k* 2,del,jを生成する場合、σ2,j(v3k* 1,del,3+v4k* 1,del,4)をψ+k* 1,del,jに加える(j=5,6)。ここで、σ2,j(j=0,1,2,3,5,6)と、ψ+とは一様に選択された値である。
また、第2層目の秘密鍵の(v1b* 1+v2b* 2)とb* 7とb* 8との係数の値をランダム化する(一様に分布させる)。そこで、k* 2,decを生成する場合、さらに(α0,1k* 1,ran,1+α0,2k* 1,ran,2)を加える。k* 2,ran,jを生成する場合、(αj,1k* 1,ran,1+αj,2k* 1,ran,2)を加える(j=1,2,3)。k* 2,del,jを生成する場合、(αj,1k* 1,ran,1+αj,2k* 1,ran,2)を加える(j=5,6)。ここで、αj,1とαj,2と(j=0,1,2,3,5,6)は一様に選択された値である。
つまり、第2層目の秘密鍵鍵k→* 2:=(k* 2,dec,k* 2,ran,1,k* 2,ran,2,k* 2,ran,3,k* 2,del,5,k* 2,del,6)が数160のように生成される。
この実施の形態では、実施の形態1で説明した概念に基づき、階層的述語暗号を実現する暗号処理システム10について説明する。
図11は、階層的述語暗号を実現する暗号処理システム10の機能を示す機能ブロック図である。暗号処理システム10は、上述したように、鍵生成装置100、暗号化装置200、復号装置300、鍵委譲装置400を備える。また、ここでも、復号装置300が鍵委譲装置400を備えるものとする。
図12は、鍵生成装置100の動作を示すフローチャートである。図13は、暗号化装置200の動作を示すフローチャートである。図14は、復号装置300の動作を示すフローチャートである。図15は、鍵委譲装置400の動作を示すフローチャートである。
図16は、双対ペアリングベクトル空間の基底の構造を示す概念図である。
マスター鍵生成部110は、数161を計算して、マスター公開鍵pkとマスター秘密鍵skとを処理装置により生成してマスター鍵記憶部120に記憶する。
(2)マスター鍵生成部110は、標準基底Aから基底Bを生成するための線形変換Xを処理装置によりランダムに選択する。
(3)マスター鍵生成部110は、選択した線形変換Xに基づき、基底A:=(a1,...,aN)から基底B:=(b1,...,bN)を処理装置により生成する。
(4)マスター鍵生成部110は、基底Bにおける基底ベクトルbi(i=1,...,n+2)を有する基底ベクトルB^:=(b1,...,bn,bn+1,bn+2)を処理装置により生成する。
(5)マスター鍵生成部110は、基底A*:=(a* 1,...,a* N)から基底B*:=(b* 1,...,b* N)を生成するための線形変換(XT)−1を線形変換Xから処理装置により生成する。
(6)マスター鍵生成部110は、生成した線形変換(XT)−1に基づき、基底A*から基底B*:=(b* 1,...,b* N)を処理装置により生成する。
(7)マスター鍵生成部110は、生成した線形変換Xと基底B*とをマスター秘密鍵skとし、生成した基底B^を含む(1λ,q,V,V*,GT,A,A*,B^)をマスター公開鍵pkとする。そして、マスター鍵記憶部120は、マスター鍵生成部110が生成したマスター公開鍵pkとマスター秘密鍵skとを記憶装置に記憶する。
なお、双対ペアリングベクトル空間の次元数は、N(=n+2+r+s)であるとした。ここで、nは、階層情報μ→が有する階層構造をあらわすために割り当てられている基底数を表すnである。つまり、ここでは、階層構造をあらわすために割り当てられている基底数nに加え、2+r+s個の基底ベクトルが設けられている。
図16に示すように、N(=n+2+r+s)個の基底ベクトルのうち、n個の基底ベクトルが述語ベクトルや属性ベクトルのために割り当てられている。述語ベクトルや属性ベクトルのために割り当てられている基底ベクトルの構造は、図6に示す構造と同様である。残り2+r+s個の基底ベクトルのうちのn+1番目の基底ベクトルは、セッション鍵を生成する情報のための基底ベクトルである。n+2番目の基底ベクトルは、暗号文c1をランダム化するための基底ベクトルである。n+3番目からn+2+r番目までの基底ベクトルは、鍵k* Lをランダム化するための基底ベクトルである。n+2+r+1番目からn+2+r+s番目までの基底ベクトルは、使用しない。
鍵ベクトル生成部130は、マスター公開鍵pkとマスター秘密鍵skと、数163に示す述語ベクトル(v→ 1,...,v→ L)とに基づき、数164を計算して、第L層目(レベルL)の秘密鍵の先頭要素である鍵ベクトルk* L,decを処理装置により生成する。
(2)鍵ベクトル生成部130は、基底ベクトルb* i(i=1,...,μL)に対する係数として、生成した乱数σ0,tでランダム化した述語ベクトルの各要素を設定して、ベクトルvvを処理装置により生成する。つまり、基底ベクトルb* i(i=1,...,μL)に対する係数には、述語ベクトルの各要素が埋め込まれる。
(3)鍵ベクトル生成部130は、基底ベクトルb* i(i=n+2+1,...,n+2+r)に対する係数として、生成した乱数η0,hを設定して、ベクトルrvを処理装置により生成する。
(4)鍵ベクトル生成部130は、生成したベクトルvvとベクトルrvとを、基底ベクトルb* n+1に対する係数として1を設定したベクトルに加算して、鍵ベクトルk* L,decを生成する。
ランダム化ベクトル生成部140は、マスター公開鍵pkとマスター秘密鍵skと、数163に示す述語ベクトル(v→ 1,...,v→ L)とに基づき、数165を計算して、ランダム化ベクトルk* L,ran,j(j=1,...,L+1)を生成する。ランダム化ベクトルk* L,ran,j(j=1,...,L+1)は、下位の鍵のうち、述語ベクトルの各要素が埋め込まれる基底ベクトルに対する係数を一様に分布させるためのベクトルである。なお、ランダム化ベクトルk* L,ran,jは、第L層目の秘密鍵のj番目の要素である。
(2)ランダム化ベクトル生成部140は、j=1,...,L+1の各jについて、基底ベクトルb* i(i=1,...,μL)に対する係数として、乱数σj,tでランダム化した述語ベクトルの各要素を設定して、ベクトルvvjを処理装置により生成する。つまり、基底ベクトルb* i(i=1,...,μL)に対する係数には、述語ベクトルの各要素が埋め込まれる。
(3)ランダム化ベクトル生成部140は、j=1,...,L+1の各jについて、基底ベクトルb* i(i=n+2+1,...,n+2+r)に対する係数として、乱数ηj,hを処理装置により設定して、ベクトルrvjを処理装置により生成する。
(4)ランダム化ベクトル生成部140は、j=1,...,L+1の各jについて、生成したベクトルvvjとベクトルrvjと加算して、ランダム化ベクトルk* L,ran,j(j=1,...,L+1)を生成する。
鍵生成用ベクトル生成部150は、マスター公開鍵pkとマスター秘密鍵skと、数163に示す述語ベクトル(v→ 1,...,v→ L)とに基づき、数166を計算して、鍵生成用ベクトルk* L,del,j(j=μL+1,...,n)を処理装置により生成する。鍵生成用ベクトルk* L,del,j(j=μL+1,...,n)は、下位の秘密鍵(下位の鍵ベクトル)を生成するためのベクトルである。なお、鍵生成用ベクトルk* L,del,jは、第L層目の秘密鍵のj番目の要素である。
(2)鍵生成用ベクトル生成部150は、j=μL+1,...,nの各jについて、基底ベクトルb* i(i=1,...,μL)に対する係数として、乱数σj,tでランダム化した述語ベクトルの各要素を設定して、ベクトルvvjを処理装置により生成する。つまり、基底ベクトルb* i(i=1,...,μL)に対する係数には、述語ベクトルの各要素が埋め込まれる。
(3)鍵生成用ベクトル生成部150は、j=μL+1,...,nの各jについて、基底ベクトルb* jに対する係数として乱数ψを設定して、ベクトルψvjを処理装置により生成する。
(4)鍵生成用ベクトル生成部150は、j=μL+1,...,nの各jについて、基底ベクトルb* i(i=n+2+1,...,n+2+r)に対する係数として、乱数ηj,hを処理装置により設定して、ベクトルrvjを処理装置により生成する。
(5)鍵生成用ベクトル生成部150は、j=μL+1,...,nの各jについて、ベクトルvvjと、ベクトルψvjと、ベクトルdvjとを加算して、鍵生成用ベクトルk* L,del,j(j=μL+1,...,n)を生成する。
鍵配布部160は、マスター鍵生成部110が生成したマスター公開鍵と、鍵ベクトル生成部130とランダム化ベクトル生成部140と鍵生成用ベクトル生成部150とが生成した鍵情報k→* Lとを復号装置300へ通信装置を介して送信する。また、鍵配布部160は、マスター公開鍵を暗号化装置200へ通信装置を介して送信する。ここで、鍵情報k→* Lは秘密裡に復号装置300へ送信されるが、鍵情報k→* Lを秘密裡に復号装置300へ送信する方法に関しては、どのような方法であっても構わない。例えば、従来の暗号処理を使用して送信してもよい。
なお、以下の処理の前に、公開鍵取得部250は、マスター公開鍵pkと、復号装置300の述語情報ベクトルに対応する属性情報ベクトルを取得しているものとする。
送信情報設定部210は、マスター公開鍵pkに基づき、数168を処理装置により計算して送信情報ベクトルζvを生成する。
(2)送信情報設定部210は、マスター公開鍵pkに含まれる基底B^の基底ベクトルbn+1に対する係数として乱数ζを処理装置により設定して、送信情報ベクトルζvを生成する。
暗号ベクトル生成部220は、マスター公開鍵pkと、数169に示す属性ベクトル(x→ 1,...,x→ L)とに基づき、数170を処理装置により計算して暗号ベクトルc1を生成する。
(2)暗号ベクトル生成部220は、マスター公開鍵pkに含まれる基底Bの基底ベクトルbi(i=1,...,μL)に対する係数として属性ベクトルの各要素を処理装置により設定する。つまり、基底ベクトルbi(i=1,...,μL)に対する係数には、属性ベクトルの各要素が埋め込まれる。また、暗号ベクトル生成部220は、基底ベクトルbi(i=μL+1,...,n)に対する係数として乱数を処理装置により設定する。これにより、暗号ベクトル生成部220は、ベクトルxvを生成する。
(3)暗号ベクトル生成部220は、マスター公開鍵pkに含まれる基底Bの基底ベクトルbn+2に対する係数として乱数δn+2を処理装置により設定して、ベクトルrvを生成する。
(4)暗号ベクトル生成部220は、生成したベクトルxvとベクトルrvとを、送信情報設定部210が生成した送信情報ベクトルζvに加算して暗号ベクトルc1を処理装置により生成する。
なお、ベクトルrvは、安全性を高くするために加えられるものであり、必須の要素ではない。
データ送信部240は、暗号ベクトル生成部220が生成した暗号ベクトルc1と、暗号情報生成部230が生成した暗号情報c2とを復号装置300へ通信装置を介して送信する。
ベクトル入力部310は、暗号化装置200のデータ送信部240が送信した暗号ベクトルc1と暗号情報c2とを通信装置を介して受信して入力する。
ペアリング演算部330は、マスター公開鍵pkと第L層目の秘密鍵の先頭要素である鍵ベクトルk* L,decとに基づき、数173を処理装置により計算して平文情報m’を生成する。
ここで、暗号化装置200が暗号化に用いた属性ベクトルx→ i(i=1,...,h)と、復号装置300が復号に用いた鍵ベクトルの述語ベクトルv→ i(i=1,...,L)とについて、L≦hであり、全てのi(i=1,...,L)についてx→ i・v→ i=0であれば、数174に示すように、暗号ベクトルc1と鍵ベクトルk* L,decとについてペアリング演算eを行うことにより、gζ Tを得ることができる。
鍵ベクトル取得部410は、第L層目の秘密鍵の先頭要素である鍵ベクトルk* L,decと、ランダム化ベクトルk* L,ran,j(j=1,...,L+1)と、鍵生成用ベクトルk* L,del,j(j=μL+1,...,n)とを含む第L層目の秘密鍵(鍵情報k→* L)を通信装置を介して取得する。
鍵ベクトル生成部420は、マスター公開鍵pkと鍵情報k→* Lと数176に示す述語ベクトルv→ L+1とに基づき、数177を計算して、第L+1層目の秘密鍵の先頭要素である鍵ベクトルk* L+1,decを処理装置により生成する。
(2)鍵ベクトル生成部420は、i=1,...,L+1の各iについて、ランダム化ベクトルk* L,ran,iの係数を乱数α0,i倍したベクトルを加算して、ベクトルrvを処理装置により生成する。なお、ランダム化ベクトルk* L,ran,i(i=1,...,L+1)における基底ベクトルb* i(i=1,...,μL)に対する係数には、述語ベクトルの各要素が埋め込まれている。そのため、ベクトルrvにおける基底ベクトルb* i(i=1,...,μL)に対する係数には、乱数倍された述語ベクトルの各要素が埋め込まれる。
(3)鍵ベクトル生成部420は、鍵生成用ベクトルk* L,del,i(i=μL+1,...,μL+1)の係数に述語ベクトルv→ L+1の各要素を設定したベクトルを加算し、乱数σ0倍してベクトルvvを処理装置により生成する。つまり、基底ベクトルb* i(i=μL+1,...,μL+1)に対する係数には、述語ベクトルの各要素が埋め込まれる。
(4)鍵ベクトル生成部420は、鍵ベクトルk* L,decと、ベクトルrvとベクトルvvとを加算して、鍵ベクトルk* L+1,decを処理装置により生成する。
ランダム化ベクトル生成部430は、マスター公開鍵pkと鍵情報k→* Lと数176に示す述語ベクトルv→ L+1とに基づき、数178を計算して、ランダム化ベクトルk* L,ran,j(j=1,...,L+2)を生成する。ランダム化ベクトルk* L,ran,j(j=1,...,L+2)は、下位の鍵のうち、述語ベクトルの各要素が埋め込まれる基底ベクトルに対する係数を一様に分布させるためのベクトルである。なお、ランダム化ベクトルk* L,ran,jは、第L+1層目の秘密鍵のj番目の要素である。
(2)ランダム化ベクトル生成部430は、j=1,...,L+2の各jについて、ランダム化ベクトルk* L,ran,i(i=1,...,L+1)の係数を乱数αj,i(i=1,...,L+1)倍してベクトルrvjを処理装置により生成する。上述したように、ランダム化ベクトルk* L,ran,i(i=1,...,L+1)における基底ベクトルb* i(i=1,...,μL)に対する係数には、述語ベクトルの各要素が埋め込まれている。そのため、ベクトルrvjにおける基底ベクトルb* i(i=1,...,μL)に対する係数には、乱数倍された述語ベクトルの各要素が埋め込まれる。
(3)ランダム化ベクトル生成部430は、j=1,...,L+2の各jについて、鍵生成用ベクトルk* L,del,i(i=μL+1,...,μL+1)の係数に述語ベクトルの各要素を設定したベクトルを加算し、乱数σj倍してベクトルvvjを処理装置により生成する。つまり、基底ベクトルb* i(i=μL+1,...,μL+1)に対する係数には、述語ベクトルの各要素が埋め込まれる。
(4)ランダム化ベクトル生成部430は、j=1,...,L+2の各jについて、生成したベクトルrvjとベクトルvvjとを加算して、ランダム化ベクトルk* L+1,ran,jを処理装置により生成する。
鍵生成用ベクトル生成部440は、マスター公開鍵pkと鍵情報k→* Lと数176に示す述語ベクトルv→ L+1とに基づき、数179を計算して、鍵生成用ベクトルk* L+1,del,j(j=μL+1+1,...,n)を処理装置により生成する。鍵生成用ベクトルk* L+1,del,j(j=μL+1+1,...,n)は、下位の秘密鍵(下位の鍵ベクトル)を生成するためのベクトルである。なお、鍵生成用ベクトルk* L+1,del,jは、第L+1層目の秘密鍵のj番目の要素である。
(2)鍵生成用ベクトル生成部440は、j=μL+1+1,...,nの各jについて、ランダム化ベクトルk* L,ran,i(i=1,...,L+1)の係数を乱数αj,i倍したベクトルrvjを処理装置により生成する。上述したように、ランダム化ベクトルk* L,ran,i(i=1,...,L+1)における基底ベクトルb* i(i=1,...,μL)に対する係数には、述語ベクトルの各要素が埋め込まれている。そのため、ベクトルrvjにおける基底ベクトルb* i(i=1,...,μL)に対する係数には、乱数倍された述語ベクトルの各要素が埋め込まれる。
(3)鍵生成用ベクトル生成部440は、j=μL+1+1,...,nの各jについて、鍵生成用ベクトルk* L,del,i(i=μL+1,...,μL+1)の係数に述語ベクトルの各要素を設定したベクトルを加算し、乱数σj倍してベクトルvvjを処理装置により生成する。つまり、基底ベクトルb* i(i=μL+1,...,μL+1)に対する係数には、述語ベクトルの各要素が埋め込まれる。
(4)鍵生成用ベクトル生成部440は、j=μL+1+1,...,nの各jについて、鍵生成用ベクトルk* L,del,jの係数を乱数ψ’倍して、ベクトルψvjを処理装置により生成する。なお、鍵生成用ベクトルk* L,del,jにおける基底ベクトルb* j(j=μL+1+1,...,n)に対する係数には、述語ベクトルの要素が埋め込まれている。そのため、ベクトルψvj(j=μL+1+1,...,n)における基底ベクトルb* jに対する係数には、乱数倍された述語ベクトルの要素が埋め込まれる。
(5)鍵生成用ベクトル生成部440は、j=μL+1+1,...,nの各jについて、生成したベクトルrvjと、ベクトルvvjと、ベクトルψvjとを加算して、鍵生成用ベクトルk* L+1,del,j(j=μL+1+1,...,n)を処理装置により生成する。
鍵配布部440は、鍵ベクトル生成部420とランダム化ベクトル生成部430と鍵生成用ベクトル生成部440とが生成した鍵情報k→* L+1を下位の復号装置300へ通信装置を介して送信する。ここで、鍵情報k→* L+1は秘密裡に復号装置300へ送信されるが、鍵情報k→* L+1を秘密裡に復号装置300へ送信する方法に関しては、どのような方法であっても構わない。例えば、従来の暗号処理を使用して送信してもよい。
この理由は、主に以下の(1)から(3)の3点である。
(1)暗号処理に利用している空間VとV*とは、N(=n+2+r+s)次元であるのに対して、暗号化装置200が暗号ベクトルc1を生成するのに利用している基底ベクトルは、基底ベクトルbi(i=1,...,n+2)のn+2次元のみである。また、復号装置300が復号に利用している基底ベクトルは、基底ベクトル基底ベクトルb* i(i=1,...,n+2+r)のn+2+r次元のみである。つまり、暗号処理では、空間VとV*のうち、s次元分(基底ベクトルbn+2+r+1,...,bn+2+r+s)を使用しない。言い替えれば、暗号処理で使用するn+2+r次元の空間よりもs次元だけ次元数の多い空間においてマスター秘密鍵やマスター公開鍵が生成される。そのため、暗号処理で使用するn+2+r次元の空間でマスター秘密鍵やマスター公開鍵を生成する場合に比べ、マスター秘密鍵やマスター公開鍵を生成するのに用いられる線形変換X等のランダム要素がs次元分だけ増える。ランダム要素が増えることにより安全性が高くなる。
(2)鍵生成装置100が生成する鍵ベクトルk* L,decと、ランダム化ベクトルk* L,ran,j(j=1,...,L+1)と、鍵生成用ベクトルk* L,del,j(j=μL+1,...,n)とにランダム要素が加えられている。つまり、鍵ベクトルk* L,decと、ランダム化ベクトルk* L,ran,j(j=1,...,L+1)と、鍵生成用ベクトルk* L,del,j(j=μL+1,...,n)とのそれぞれに、基底ベクトルb* n+3に乱数を設定している。鍵ベクトルk* L,decと、ランダム化ベクトルk* L,ran,j(j=1,...,L+1)と、鍵生成用ベクトルk* L,del,j(j=μL+1,...,n)とにランダム要素が加えられることにより、安全性が高くなる。
(3)鍵委譲装置400が下位の鍵を生成する場合に、ランダム化ベクトルを用いて生成する。これにより、下位の鍵の所定の基底ベクトルに対する係数をランダム化することができ、下位の鍵を生成することによって、鍵の安全性が劣化しない。
ここで、ランダム化ベクトルを用いない場合、鍵情報→k* Lから生成される2つの下位の鍵ベクトルk* L+1,dec(A)と鍵ベクトルk* L+1,dec(B)とは、数181のようになる。
しかし、ランダム化ベクトルを用いる場合、鍵情報k→* Lから生成される2つの下位の鍵ベクトルk* L+1,dec(A)と鍵ベクトルk* L+1,dec(B)とは、数182のようになる。
rが0の場合には、鍵ベクトルk* L,decと、ランダム化ベクトルk* L,ran,j(j=1,...,L+1)と、鍵生成用ベクトルk* L,del,j(j=μL+1,...,n)とにランダム要素が加えられない。
なお、上述したように、(S402)において、暗号化装置200が基底ベクトルbn+2を用いて、ベクトルrvを生成することは必須ではない。ベクトルrvを生成しないのであれば、N(=n+1+r+s)次元ベクトル空間で暗号処理を実現できる。
したがって、権限委譲のない暗号処理であれば、Nは2以上の整数であり、権限委譲を有する暗号処理であれば、Nは3以上の整数である。
図17は、階層的述語鍵秘匿方式を実現する暗号処理システム10の機能を示す機能ブロック図である。
ここで、鍵生成装置100の処理と鍵委譲装置400の処理とは、上述した階層的述語暗号の場合と同様である。そこで、ここでは、暗号化装置200の処理と復号装置300の処理とのみを説明する。
図18は、暗号化装置200の動作を示すフローチャートである。図19は、復号装置300の動作を示すフローチャートである。
図17に示す暗号化装置200は、図11に示す暗号化装置200が備える機能に加え、セッション鍵生成部260を備える。なお、図17に示す暗号化装置200は、図11に示す暗号化装置200が備える暗号情報生成部230は備えていない。
(S701)と(S702)とは、(S401)と(S402)と同様である。
(S703:データ送信ステップ)では、(S702)で暗号ベクトル生成部220が生成した暗号ベクトルc1を復号装置300へ通信装置を介して送信する。つまり、階層的述語鍵秘匿方式では、平文情報mを埋め込んだ暗号情報c2は生成されず、復号装置300へ送信されない。
(S704:セッション鍵生成ステップ)では、セッション鍵生成部260が数183を処理装置により計算してセッション鍵Kを生成する。
図17に示す復号装置300は、図11に示す復号装置300と同様の機能構成である。
(S801:ベクトル入力ステップ)
ベクトル入力部310は、暗号化装置200のデータ送信部240が送信した暗号ベクトルc1を通信装置を介して受信して入力する。
ペアリング演算部330は、マスター公開鍵pkと第L層目の秘密鍵の先頭要素である鍵ベクトルk* L,decとに基づき、数185を処理装置により計算してセッション鍵Kを生成する。
実施の形態3では、実施の形態2で説明した階層的述語暗号と階層的述語鍵秘匿方式とよりも一般化された権限委譲を有する述語暗号について説明する。
そして、第L層目の鍵ベクトルk* L,decを数164に示すように計算した。つまり、第L層目の鍵ベクトルk* L,decは、基底ベクトルb* i(i=1,...,L)に対する係数として述語ベクトルの各要素を割り当てられ、基底ベクトルb* i(i=L+1,...,n)に対する係数として0を割り当てられた。
また、第L層目の暗号ベクトルc1を数170に示すように計算した。つまり、第L層目の暗号ベクトルc1は、基底ベクトルbi(i=1,...,L)に対する係数として属性ベクトルの各要素を割り当てられ、基底ベクトルbi(i=L+1,...,n)に対する係数として乱数を割り当てられた。
これにより、階層的に権限委譲することが実現された。
そして、鍵ベクトルk* L,decは、基底ベクトルb* i(i=1,...,n)に対する係数として述語ベクトルの各要素を割り当てられる。また、第L層目の暗号ベクトルc1は、基底ベクトルbi(i=1,...,n)に対する係数として属性ベクトルの各要素を割り当てられる。
つまり、n個の基底ベクトルについて階層構造という概念はない。また、秘密鍵が階層的に権限委譲される概念はない。そのため、実施の形態2で説明した暗号方式に比べ、より自由度の高い権限委譲が可能となる。
図20は、権限委譲を有する述語暗号を実現する暗号処理システム10の機能を示す機能ブロック図である。なお、図20に示す暗号処理システム10が備える機能は、図11に示す暗号処理システム10が備える機能と同様である。
権限委譲を有する述語暗号を実現する場合における実施の形態3に係る暗号処理システム10の動作の流れは、実施の形態2に係る暗号処理システム10の動作の流れと同様である。そこで、図20と、図12から図16とに基づき、実施の形態3に係る暗号処理システム10の機能と動作とについて説明する。
(S301:マスター鍵生成ステップ)
実施の形態2における(S301)と同様に、マスター鍵生成部110は、数187を計算して、マスター公開鍵pkとマスター秘密鍵skとを処理装置により生成してマスター鍵記憶部120に記憶する。
鍵ベクトル生成部130は、マスター公開鍵pkとマスター秘密鍵skと、数188に示す述語ベクトル(v→ 1,...,v→ L)とに基づき、数189を計算して、第L層目(レベルL)の秘密鍵の先頭要素である鍵ベクトルk* L,decを処理装置により生成する。
ランダム化ベクトル生成部140は、マスター公開鍵pkとマスター秘密鍵skと、数188に示す述語ベクトル(v→ 1,...,v→ L)とに基づき、数190を計算して、ランダム化ベクトルk* L,ran,j(j=1,...,L+1)を生成する。
鍵生成用ベクトル生成部150は、マスター公開鍵pkとマスター秘密鍵skと、数188に示す述語ベクトル(v→ 1,...,v→ L)とに基づき、数191を計算して、鍵生成用ベクトルk* L,del,j(j=1,...,n)を処理装置により生成する。
実施の形態2における(S305)と同様に、鍵配布部160は、マスター鍵生成部110が生成したマスター公開鍵と、鍵ベクトル生成部130とランダム化ベクトル生成部140と鍵生成用ベクトル生成部150とが生成した鍵情報k→* Lとを復号装置300へ通信装置を介して送信する。また、鍵配布部160は、マスター公開鍵を暗号化装置200へ通信装置を介して送信する。
(S401:送信情報設定ステップ)
実施の形態2における(S401)と同様に、送信情報設定部210は、マスター公開鍵pkに基づき、数193を処理装置により計算して送信情報ベクトルζvを生成する。
暗号ベクトル生成部220は、マスター公開鍵pkと、数194に示す属性ベクトル(x→ 1,...,x→ L)とに基づき、数195を処理装置により計算して暗号ベクトルc1を生成する。
実施の形態2における(S404)と同様に、データ送信部240は、暗号ベクトル生成部220が生成した暗号ベクトルc1と、暗号情報生成部230が生成した暗号情報c2とを復号装置300へ通信装置を介して送信する。
(S501:ベクトル入力ステップ)
実施の形態2における(S501)と同様に、ベクトル入力部310は、暗号化装置200のデータ送信部240が送信した暗号ベクトルc1と暗号情報c2とを通信装置を介して受信して入力する。
実施の形態2における(S502)と同様に、ペアリング演算部330は、マスター公開鍵pkと第L層目の秘密鍵の先頭要素である鍵ベクトルk* L,decとに基づき、数198を処理装置により計算して平文情報m’を生成する。
(S601:鍵情報k→* L取得ステップ)
実施の形態2における(S601)と同様に、鍵ベクトル取得部410は、第L層目の秘密鍵の先頭要素である鍵ベクトルk* L,decと、ランダム化ベクトルk* L,ran,j(j=1,...,L+1)と、鍵生成用ベクトルk* L,del,j(j=1,...,n)とを含む第L層目の秘密鍵(鍵情報k→* L)を通信装置を介して取得する。
鍵ベクトル生成部420は、マスター公開鍵pkと鍵情報k→* Lと数200に示す述語ベクトルv→ L+1とに基づき、数201を計算して、第L+1層目の秘密鍵の先頭要素である鍵ベクトルk* L+1,decを処理装置により生成する。
ランダム化ベクトル生成部430は、マスター公開鍵pkと鍵情報k→* Lと数200に示す述語ベクトルv→ L+1とに基づき、数202を計算して、ランダム化ベクトルk* L+1,ran,j(j=1,...,L+2)を生成する。
鍵生成用ベクトル生成部440は、マスター公開鍵pkと鍵情報k→* Lと数200に示す述語ベクトルv→ L+1とに基づき、数203を計算して、鍵生成用ベクトルk* L+1,del,j(j=1,...,n)を処理装置により生成する。
実施の形態2における(S605)と同様に、鍵配布部450は、鍵ベクトル生成部420とランダム化ベクトル生成部430と鍵生成用ベクトル生成部440とが生成した鍵情報k→* L+1を下位の復号装置300へ通信装置を介して送信する。
以上の実施の形態では、双対ベクトル空間において暗号処理を実現する方法について説明した。この実施の形態では、双対加群において暗号処理を実現する方法について説明する。
図21は、鍵生成装置100、暗号化装置200、復号装置300、鍵委譲装置400のハードウェア構成の一例を示す図である。
図21に示すように、鍵生成装置100、暗号化装置200、復号装置300、鍵委譲装置400は、プログラムを実行するCPU911(Central・Processing・Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)を備えている。CPU911は、バス912を介してROM913、RAM914、LCD901(Liquid Crystal Display)、キーボード902(K/B)、通信ボード915、磁気ディスク装置920と接続され、これらのハードウェアデバイスを制御する。磁気ディスク装置920(固定ディスク装置)の代わりに、光ディスク装置、メモリカード読み書き装置などの記憶装置でもよい。磁気ディスク装置920は、所定の固定ディスクインタフェースを介して接続される。
ファイル群924には、上記の説明において「マスター公開鍵pk」、「マスター秘密鍵sk」、「暗号ベクトルc」、「鍵ベクトル」等の情報やデータや信号値や変数値やパラメータが、「ファイル」や「データベース」の各項目として記憶される。「ファイル」や「データベース」は、ディスクやメモリなどの記録媒体に記憶される。ディスクやメモリなどの記憶媒体に記憶された情報やデータや信号値や変数値やパラメータは、読み書き回路を介してCPU911によりメインメモリやキャッシュメモリに読み出され、抽出・検索・参照・比較・演算・計算・処理・出力・印刷・表示などのCPU911の動作に用いられる。抽出・検索・参照・比較・演算・計算・処理・出力・印刷・表示のCPU911の動作の間、情報やデータや信号値や変数値やパラメータは、メインメモリやキャッシュメモリやバッファメモリに一時的に記憶される。
また、上記の説明において「〜部」として説明するものは、「〜回路」、「〜装置」、「〜機器」、「〜手段」、「〜機能」であってもよく、また、「〜ステップ」、「〜手順」、「〜処理」であってもよい。また、「〜装置」として説明するものは、「〜回路」、「〜機器」、「〜手段」、「〜機能」であってもよく、また、「〜ステップ」、「〜手順」、「〜処理」であってもよい。さらに、「〜処理」として説明するものは「〜ステップ」であっても構わない。すなわち、「〜部」として説明するものは、ROM913に記憶されたファームウェアで実現されていても構わない。或いは、ソフトウェアのみ、或いは、素子・デバイス・基板・配線などのハードウェアのみ、或いは、ソフトウェアとハードウェアとの組み合わせ、さらには、ファームウェアとの組み合わせで実施されても構わない。ファームウェアとソフトウェアは、プログラムとして、ROM913等の記録媒体に記憶される。プログラムはCPU911により読み出され、CPU911により実行される。すなわち、プログラムは、上記で述べた「〜部」としてコンピュータ等を機能させるものである。あるいは、上記で述べた「〜部」の手順や方法をコンピュータ等に実行させるものである。
Claims (35)
- 数1に示すペアリング演算によって関連付けられた双対ベクトル空間である空間Vと空間V*とを用いて述語暗号処理を行う暗号処理システムであり、
前記空間Vにおける所定の基底Bを構成する基底ベクトルbi(i=1,...,n,...,S,...,N)(Nは3以上の整数,Sはn+1以上N−1以下の整数,nは1以上N−2以下の整数)のうちの基底ベクトルbi(i=S+1,...,N)を除いた少なくとも基底ベクトルbi(i=1,...,n+1)を有する基底B^と、所定の属性情報とが公開鍵として与えられ、前記基底B^の基底ベクトルbi(i=1,...,n)のうちの少なくとも一部の基底ベクトルに対する係数として属性情報を設定するとともに、前記基底ベクトルbn+1に対する係数として所定の情報を設定したベクトルを暗号ベクトルc1として処理装置により生成する暗号化装置と、
前記空間V*の基底B*におけるベクトルであって、基底B*を構成する基底ベクトルb* i(i=1,...,n,...,S,...,N)の基底ベクトルb* i(i=1,...,n)うちの少なくとも一部の基底ベクトルに対する係数として述語情報を設定するとともに、前記基底B*の基底ベクトルb* n+1に対する係数として所定の値を設定したベクトルを鍵ベクトルk* L,decとして、前記暗号化装置が生成した暗号ベクトルc1と前記鍵ベクトルk* L,decとについて、処理装置により数1に示すペアリング演算e(c1,k* L,dec)を行い前記暗号ベクトルc1を復号して前記所定の情報に関する値を抽出する復号装置と
を備えることを特徴とする暗号処理システム。
- 前記復号装置は、前記基底B*を構成する基底ベクトルb*i(i=1,...,n,...,R,...,S,...,N)(Nは4以上の整数,Sはn+2以上N−1以下の整数,Rはn+1以上S−1以下の整数,nは1以上N−3以下の整数)の基底ベクトルb*i(i=1,...,n)うちの少なくとも一部の基底ベクトルに述語情報を設定し、前記基底B*の基底ベクトルb*n+1に対する係数として所定の値を設定し、基底ベクトルb*i(i=R+1,...,S)に対する係数として乱数値を設定したベクトルを鍵ベクトルk*L,decとして、前記暗号ベクトルc1と前記鍵ベクトルk*L,decとについて、前記ペアリング演算e(c1,k*L,dec)を行う
ことを特徴とする請求項1に記載の暗号処理システム。 - 前記暗号処理システムは、さらに、
前記基底B*を構成する基底ベクトルb* i(i=1,...,n,...,R,...,S,...,N)のうち、基底ベクトルb* i(i=0,...,n)の少なくとも一部の基底ベクトルに対する係数として述語情報を設定し、基底ベクトルb* n+1に対する係数として所定の値を設定し、基底ベクトルb* i(i=R+1,...,S)に対する係数として乱数値を設定したベクトルを鍵ベクトルk* L,decとして処理装置により生成する鍵生成装置を備え、
前記復号装置は、前記鍵生成装置が生成した鍵ベクトルk* L,decを取得して、取得した鍵ベクトルk* L,decと暗号ベクトルc1とについて前記ペアリング演算を行う
ことを特徴とする請求項2に記載の暗号処理システム。 - 前記暗号処理システムは、さらに、
前記鍵生成装置が生成した鍵ベクトルk* L,decが復号可能な暗号ベクトルのうちの一部の暗号ベクトルを復号可能なベクトルであって、述語情報を設定した基底ベクトルに対する係数として一様に分布させた値を持つ乱数値を設定したベクトルを鍵ベクトルk* L+1,decとして生成する鍵委譲装置
を備えることを特徴とする請求項3に記載の暗号処理システム。 - 述語暗号における秘密鍵である鍵ベクトルk* L,decを生成する鍵生成装置であって、数2に示すペアリング演算によって関連付けられた双対ベクトル空間である空間Vと空間V*とのうちの前記空間Vにおける所定の基底Bを構成する基底ベクトルbi(i=1,...,n,...,S,...,N)(Nは3以上の整数,Sはn+1以上N−1以下の整数,nは1以上N−2以下の整数)のうちの基底ベクトルbi(i=S+1,...,N)を除いた少なくとも基底ベクトルbi(i=1,...,n+1)を有する基底B^が公開鍵として与えられた場合における秘密鍵である鍵ベクトルk* L,decを生成する鍵生成装置であり、
前記空間V*における所定の基底B*を記憶装置に記憶するマスター鍵記憶部と、
前記マスター鍵記憶部が記憶した前記基底B*を構成する基底ベクトルb* i(i=1,...,n,...,S,...,N)のうち、基底ベクトルb* i(i=1,...,n)の少なくとも一部の基底ベクトルb* i(i=1,...,μL)に対する係数として述語情報を設定するとともに、基底ベクトルb* n+1に対する係数として所定の値を設定したベクトルを鍵ベクトルk* L,decとして処理装置により生成する鍵ベクトル生成部と
を備えることを特徴とする鍵生成装置。
- 前記鍵ベクトル生成部は、前記基底B*を構成する基底ベクトルb* i(i=1,...,n,...,R,...,S,...,N)(Nは4以上の整数,Sはn+2以上N−1以下の整数,Rはn+1以上S−1以下の整数,nは1以上N−3以下の整数)のうち、基底ベクトルb* i(i=1,...,n)の少なくとも一部の基底ベクトルb* i(i=1,...,μL)に対する係数として述語情報を設定するとともに、基底ベクトルb* n+1に対する係数として所定の値を設定し、基底ベクトルb* i(i=R+1,...,S)に対する係数として乱数値を設定したベクトルを鍵ベクトルk* L,decとして処理装置により生成する
ことを特徴とする請求項5に記載の鍵生成装置。 - 前記鍵生成装置は、さらに、
前記鍵ベクトル生成部が生成した鍵ベクトルk* L,decで復号可能な暗号ベクトルのうちの一部の暗号ベクトルを復号可能な鍵ベクトルk* L+1,decを生成するためのベクトルであって、少なくともj=μL+1,...,nの各jについて、基底ベクトルb* jに対する係数として乱数値が設定されるとともに、基底ベクトルb* i(i=R+1,...,S)の一部の基底ベクトルに対する係数として乱数値が設定された少なくともn−μL個のベクトルを鍵生成用ベクトルk* L,del,jとして処理装置により生成する鍵生成用ベクトル生成部と、
前記鍵生成用ベクトル生成部が生成した鍵生成用ベクトルk* L,del,jで生成される鍵ベクトルk* L+1,decのうち、述語情報が設定される基底ベクトルの係数に一様に分布した値を設定するためのベクトルであって、基底ベクトルb* i(i=1,...,μL)に対する係数として乱数値倍された述語情報が設定されるとともに、基底ベクトルb* i(i=R+1,...,S)の一部の基底ベクトルに対する係数として乱数値が設定された少なくともL+1個のベクトルをランダム化ベクトルk* L,ran,jとして処理装置により生成するランダム化ベクトル生成部と
を備えることを特徴とする請求項6に記載の鍵生成装置。 - 述語暗号における秘密鍵である鍵ベクトルk* L,decで復号可能な暗号ベクトルのうちの一部の暗号ベクトルを復号可能な鍵ベクトルk* L+1,decを生成する鍵委譲装置であって、数9に示すペアリング演算によって関連付けられた双対ベクトル空間である空間Vと空間V*とのうちの前記空間Vにおける所定の基底Bを構成する基底ベクトルbi(i=1,...,n,...,R,...,S,...,N)(Nは4以上の整数,Sはn+2以上N−1以下の整数,Rはn+1以上S−1以下の整数,nは1以上N−3以下の整数)のうちの基底ベクトルbi(i=S+1,...,N)を除いた少なくとも基底ベクトルbi(i=1,...,n+1)を有する基底B^が公開鍵として与えられた場合における秘密鍵である鍵ベクトルk* L+1,decを生成する鍵委譲装置であり、
前記基底B*を構成する基底ベクトルb* i(i=1,...,n,...,R,...,S,...,N)のうち、基底ベクトルb* i(i=1,...,n)の少なくとも一部の基底ベクトルb* i(i=1,...,μL)に対する係数として述語情報が設定され、基底ベクトルb* n+1に対する係数として所定の値が設定され、基底ベクトルb* i(i=R+1,...,S)に対する係数として乱数値が設定された鍵ベクトルk* L,decを取得する鍵ベクトル取得部と、
少なくともj=μL+1,...,nの各jについて、基底ベクトルb* jに対する係数として乱数値が設定されるとともに、基底ベクトルb* i(i=R+1,...,S)に対する係数として乱数値が設定された少なくともn−μL個の鍵生成用ベクトルk* L,del,jを取得する鍵生成用ベクトル取得部と、
前記鍵生成用ベクトル取得部が取得した前記鍵生成用ベクトルk* L,del,jの少なくとも一部の前記鍵生成用ベクトルk* L,del,jの各基底ベクトルの係数を述語情報倍し、前記鍵ベクトル取得部が取得した前記鍵ベクトルk* L,decに加算して鍵ベクトルk* L+1,decを生成する鍵ベクトル生成部と
を備えることを特徴とする鍵委譲装置。
- 前記鍵委譲装置は、さらに、
基底ベクトルb* i(i=1,...,μL)に対する係数として乱数値倍された述語情報が設定されるとともに、基底ベクトルb* i(i=R+1,...,S)に対する係数として乱数値が設定された少なくともL+1個のランダム化ベクトルk* L,ran,jを取得するランダム化ベクトル取得部を備え、
前記鍵ベクトル生成部は、前記ランダム化ベクトル取得部が取得した前記ランダム化ベクトルk* L,ran,jの少なくとも一部の前記ランダム化ベクトルk* L,ran,jの各基底ベクトルの係数を乱数値倍し、前記鍵ベクトルk* L+1,decにさらに加算して鍵ベクトルk* L+1,decを生成する
ことを特徴とする請求項12に記載の鍵委譲装置。 - 前記鍵委譲装置は、さらに、
前記鍵ベクトル生成部が生成した鍵ベクトルk* L+1,decで復号可能な暗号ベクトルのうちの一部の暗号ベクトルを復号可能な鍵ベクトルk* L+2,decを生成するためのベクトルであって、少なくともj=μL+1+1,...,nの各jについて、基底ベクトルb* jに対する係数として乱数値を設定した少なくともn−μL+1個のベクトルを鍵生成用ベクトルk* L+1,del,jとして処理装置により生成する鍵生成用ベクトル生成部と、
前記鍵生成用ベクトル生成部が生成した鍵生成用ベクトルk* L+1,del,jで生成される鍵ベクトルk* L+2,decのうち、述語情報が設定される基底ベクトルの係数に一様に分布した値を設定するためのベクトルであって、基底ベクトルb* i(i=1,...,μL)に対する係数として乱数値倍された述語情報が設定した少なくともL+2個のベクトルをランダム化ベクトルk* L+1,ran,jとして処理装置により生成するランダム化ベクトル生成部と
を備えることを特徴とする請求項13に記載の鍵委譲装置。 - ペアリング演算によって関連付けられた双対ベクトル空間である空間Vと空間V*とにおいて実現される述語暗号処理における暗号文である暗号ベクトルc1を生成する暗号化装置であり、
前記空間Vにおける所定の基底Bを構成する基底ベクトルbi(i=1,...,n,...,S,...,N)(Nは3以上の整数,Sはn+1以上N−1以下の整数,nは1以上N−2以下の整数)のうちの基底ベクトルbi(i=S+1,...,N)を除いた少なくとも基底ベクトルbi(i=1,...,n+1)を有する基底B^を取得するとともに、所定の属性情報を取得する公開鍵取得部と、
前記公開鍵取得部が取得した基底B^におけるベクトルであって、基底ベクトルbn+1に対する係数として所定の情報を設定したベクトルを送信情報ベクトルζvとして処理装置により生成する送信情報設定部と、
前記基底B^の前記基底ベクトルbi(i=1,...,n)のうちの少なくとも一部の基底ベクトルに対する係数として前記属性情報を設定した属性情報ベクトルを、前記送信情報設定部が生成した送信情報ベクトルζvに加算して暗号ベクトルc1を処理装置により生成する暗号ベクトル生成部と
を備えることを特徴とする暗号化装置。 - 数31に示すペアリング演算によって関連付けられた双対ベクトル空間である空間Vと空間V*とにおいて実現される述語暗号処理における暗号文を復号する復号装置であり、
前記空間Vにおける所定の基底Bを構成する基底ベクトルbi(i=1,...,n,...,S,...,N)(Nは3以上の整数,Sはn+1以上N−1以下の整数,nは1以上N−2以下の整数)のうちの基底ベクトルbi(i=S+1,...,N)を除いた少なくとも少なくとも基底ベクトルbi(i=1,...,n+1)を有する基底B^が公開鍵として与えられた場合に生成される暗号文である暗号ベクトルc1であって、前記基底B^の基底ベクトルbi(i=1,...,n)のうち少なくとも基底ベクトルbi(i=1,...,μh)に対する係数として属性情報が設定されるとともに、前記基底ベクトルbn+1に対する係数として所定の情報が設定されたベクトルである暗号ベクトルc1を入力するベクトル入力部と、
前記空間V*における所定の基底B*の基底ベクトルb* i(i=1,...,n,...,S,...,N)のうち、基底ベクトルb* i(i=1,...,n)の少なくとも基底ベクトルb* i(i=1,...,μL)(μL≦μh)に対する係数として述語情報vi(i=1,...,μL)が設定され、基底ベクトルb* n+1に対する係数として所定の値が設定された鍵ベクトルk* L,decを記憶装置に記憶する鍵ベクトル記憶部と、
前記ベクトル入力部が入力した暗号ベクトルc1と、前記鍵ベクトル記憶部が記憶した鍵ベクトルk* L,decとについて処理装置により数31に示すペアリング演算を行い、前記暗号ベクトルc1から前記所定の情報に関する値を抽出するペアリング演算部と
を備えることを特徴とする復号装置。
- 前記鍵ベクトル記憶部は、前記基底B*を構成する基底ベクトルb* i(i=1,...,n,...,R,...,S,...,N)(Nは4以上の整数,Sはn+2以上N−1以下の整数,Rはn+1以上S−1以下の整数,nは1以上N−3以下の整数)の少なくとも基底ベクトルb* i(i=1,...,μL)(μL≦μh)に対する係数として述語情報vi(i=1,...,μL)が設定され、基底ベクトルb* n+1に対する係数として所定の値が設定され、基底ベクトルb* i(i=R+1,...,S)の一部の基底ベクトルに対する係数として所定の値が設定された鍵ベクトルk* L,decを記憶する
ことを特徴とする請求項23に記載の復号装置。 - 数46に示すペアリング演算によって関連付けられた双対加群である空間Vと空間V*とを用いて述語暗号処理を行う暗号処理システムであり、
前記空間Vにおける所定の基底Bを構成する基底ベクトルbi(i=1,...,n,...,S,...,N)(Nは3以上の整数,Sはn+1以上N−1以下の整数,nは1以上N−2以下の整数)のうちの基底ベクトルbi(i=S+1,...,N)を除いた少なくとも基底ベクトルbi(i=1,...,n+1)を有する基底B^と、所定の属性情報とが公開鍵として与えられ、前記基底B^の基底ベクトルbi(i=1,...,n)のうちの少なくとも一部の基底ベクトルに対する係数として属性情報を設定するとともに、前記基底ベクトルbn+1に対する係数として所定の情報を設定したベクトルを暗号ベクトルc1として処理装置により生成する暗号化装置と、
前記空間V*の基底B*におけるベクトルであって、基底B*を構成する基底ベクトルb* i(i=1,...,n,...,S,...,N)の基底ベクトルb* i(i=1,...,n)うちの少なくとも一部の基底ベクトルに対する係数として述語情報を設定するとともに、前記基底B*の基底ベクトルb* n+1に対する係数として所定の値を設定したベクトルを鍵ベクトルk* L,decとして、前記暗号化装置が生成した暗号ベクトルc1と前記鍵ベクトルk* L,decとについて、処理装置により数46に示すペアリング演算e(c1,k* L,dec)を行い前記暗号ベクトルc1を復号して前記所定の情報に関する値を抽出する復号装置と
を備えることを特徴とする暗号処理システム。
- 述語暗号における秘密鍵である鍵ベクトルk* L,decを生成する鍵生成装置であって、数47に示すペアリング演算によって関連付けられた双対加群である空間Vと空間V*とのうちの前記空間Vにおける所定の基底Bを構成する基底ベクトルbi(i=1,...,n,...,S,...,N)(Nは3以上の整数,Sはn+1以上N−1以下の整数,nは1以上N−2以下の整数)のうちの基底ベクトルbi(i=S+1,...,N)を除いた少なくとも基底ベクトルbi(i=1,...,n+1)を有する基底B^が公開鍵として与えられた場合における秘密鍵である鍵ベクトルk* L,decを生成する鍵生成装置であり、
前記空間V*における所定の基底B*を記憶装置に記憶するマスター鍵記憶部と、
前記マスター鍵記憶部が記憶した前記基底B*を構成する基底ベクトルb* i(i=1,...,n,...,S,...,N)のうち、基底ベクトルb* i(i=1,...,n)の少なくとも一部の基底ベクトルb* i(i=1,...,μL)に対する係数として述語情報を設定するとともに、基底ベクトルb* n+1に対する係数として所定の値を設定したベクトルを鍵ベクトルk* L,decとして処理装置により生成する鍵ベクトル生成部と
を備えることを特徴とする鍵生成装置。
- 述語暗号における秘密鍵である鍵ベクトルk* L,decで復号可能な暗号ベクトルのうちの一部の暗号ベクトルを復号可能な鍵ベクトルk* L+1,decを生成する鍵委譲装置であって、数48に示すペアリング演算によって関連付けられた双対加群である空間Vと空間V*とのうちの前記空間Vにおける所定の基底Bを構成する基底ベクトルbi(i=1,...,n,...,R,...,S,...,N)(Nは4以上の整数,Sはn+2以上N−1以下の整数,Rはn+1以上S−1以下の整数,nは1以上N−3以下の整数)のうちの基底ベクトルbi(i=S+1,...,N)を除いた少なくとも基底ベクトルbi(i=1,...,n+1)を有する基底B^が公開鍵として与えられた場合における秘密鍵である鍵ベクトルk* L+1,decを生成する鍵委譲装置であり、
前記基底B*を構成する基底ベクトルb* i(i=1,...,n,...,R,...,S,...,N)のうち、基底ベクトルb* i(i=1,...,n)の少なくとも一部の基底ベクトルb* i(i=1,...,μL)に対する係数として述語情報が設定され、基底ベクトルb* n+1に対する係数として所定の値が設定され、基底ベクトルb* i(i=R+1,...,S)に対する係数として乱数値が設定された鍵ベクトルk* L,decを取得する鍵ベクトル取得部と、
少なくともj=μL+1,...,nの各jについて、基底ベクトルb* jに対する係数として乱数値が設定されるとともに、基底ベクトルb* i(i=R+1,...,S)に対する係数として乱数値が設定された少なくともn−μL個の鍵生成用ベクトルk* L,del,jを取得する鍵生成用ベクトル取得部と、
前記鍵生成用ベクトル取得部が取得した前記鍵生成用ベクトルk* L,del,jの少なくとも一部の前記鍵生成用ベクトルk* L,del,jの各基底ベクトルの係数を述語情報倍し、前記鍵ベクトル取得部が取得した前記鍵ベクトルk* L,decに加算して鍵ベクトルk* L+1,decを生成する鍵ベクトル生成部と
を備えることを特徴とする鍵委譲装置。
- ペアリング演算によって関連付けられた双対加群である空間Vと空間V*とにおいて実現される述語暗号処理における暗号文である暗号ベクトルc1を生成する暗号化装置であり、
前記空間Vにおける所定の基底Bを構成する基底ベクトルbi(i=1,...,n,...,S,...,N)(Nは3以上の整数,Sはn+1以上N−1以下の整数,nは1以上N−2以下の整数)のうちの基底ベクトルbi(i=S+1,...,N)を除いた少なくとも基底ベクトルbi(i=1,...,n+1)を有する基底B^を取得するとともに、所定の属性情報を取得する公開鍵取得部と、
前記公開鍵取得部が取得した基底B^におけるベクトルであって、基底ベクトルbn+1に対する係数として所定の情報を設定したベクトルを送信情報ベクトルζvとして処理装置により生成する送信情報設定部と、
前記基底B^の前記基底ベクトルbi(i=1,...,n)のうちの少なくとも一部の基底ベクトルに対する係数として前記属性情報を設定した属性情報ベクトルを、前記送信情報設定部が生成した送信情報ベクトルζvに加算して暗号ベクトルc1を処理装置により生成する暗号ベクトル生成部と
を備えることを特徴とする暗号化装置。 - 数49に示すペアリング演算によって関連付けられた双対加群である空間Vと空間V*とにおいて実現される述語暗号処理における暗号文を復号する復号装置であり、
前記空間Vにおける所定の基底Bを構成する基底ベクトルbi(i=1,...,n,...,S,...,N)(Nは3以上の整数,Sはn+1以上N−1以下の整数,nは1以上N−2以下の整数)のうちの基底ベクトルbi(i=S+1,...,N)を除いた少なくとも少なくとも基底ベクトルbi(i=1,...,n+1)を有する基底B^が公開鍵として与えられた場合に生成される暗号文である暗号ベクトルc1であって、前記基底B^の基底ベクトルbi(i=1,...,n)のうち少なくとも基底ベクトルbi(i=1,...,μh)に対する係数として属性情報が設定されるとともに、前記基底ベクトルbn+1に対する係数として所定の情報が設定されたベクトルである暗号ベクトルc1を入力するベクトル入力部と、
前記空間V*における所定の基底B*の基底ベクトルb* i(i=1,...,n,...,S,...,N)のうち、基底ベクトルb* i(i=1,...,n)の少なくとも基底ベクトルb* i(i=1,...,μL)(μL≦μh)に対する係数として述語情報vi(i=1,...,μL)が設定され、基底ベクトルb* n+1に対する係数として所定の値が設定された鍵ベクトルk* L,decを記憶装置に記憶する鍵ベクトル記憶部と、
前記ベクトル入力部が入力した暗号ベクトルc1と、前記鍵ベクトル記憶部が記憶した鍵ベクトルk* L,decとについて処理装置により数49に示すペアリング演算を行い、前記暗号ベクトルc1から前記所定の情報に関する値を抽出するペアリング演算部と
を備えることを特徴とする復号装置。
- 数50に示すペアリング演算によって関連付けられた双対ベクトル空間である空間Vと空間V*とを用いて述語暗号処理を行う暗号処理方法であり、
処理装置が、前記空間Vにおける所定の基底Bを構成する基底ベクトルbi(i=1,...,n,...,S,...,N)(Nは3以上の整数,Sはn+1以上N−1以下の整数,nは1以上N−2以下の整数)のうちの基底ベクトルbi(i=S+1,...,N)を除いた少なくとも基底ベクトルbi(i=1,...,n+1)を有する基底B^と、所定の属性情報とが公開鍵として与えられ、前記基底B^の基底ベクトルbi(i=1,...,n)のうちの少なくとも一部の基底ベクトルに対する係数として属性情報を設定するとともに、前記基底ベクトルbn+1に対する係数として所定の情報を設定したベクトルを暗号ベクトルc1として生成する暗号化ステップと、
処理装置が、前記空間V*の基底B*におけるベクトルであって、基底B*を構成する基底ベクトルb* i(i=1,...,n,...,S,...,N)の基底ベクトルb* i(i=1,...,n)うちの少なくとも一部の基底ベクトルに対する係数として述語情報を設定するとともに、前記基底B*の基底ベクトルb* n+1に対する係数として所定の値を設定したベクトルを鍵ベクトルk* L,decとして、前記暗号化装置が生成した暗号ベクトルc1と前記鍵ベクトルk* L,decとについて、数50に示すペアリング演算e(c1,k* L,dec)を行い前記暗号ベクトルc1を復号して前記所定の情報に関する値を抽出する復号ステップと
を備えることを特徴とする暗号処理方法。
- 数51に示すペアリング演算によって関連付けられた双対ベクトル空間である空間Vと空間V*とを用いて述語暗号処理を行う暗号処理プログラムであり、
処理装置が、前記空間Vにおける所定の基底Bを構成する基底ベクトルbi(i=1,...,n,...,S,...,N)(Nは3以上の整数,Sはn+1以上N−1以下の整数,nは1以上N−2以下の整数)のうちの基底ベクトルbi(i=S+1,...,N)を除いた少なくとも基底ベクトルbi(i=1,...,n+1)を有する基底B^と、所定の属性情報とが公開鍵として与えられ、前記基底B^の基底ベクトルbi(i=1,...,n)のうちの少なくとも一部の基底ベクトルに対する係数として属性情報を設定するとともに、前記基底ベクトルbn+1に対する係数として所定の情報を設定したベクトルを暗号ベクトルc1として生成する暗号化処理と、
処理装置が、前記空間V*の基底B*におけるベクトルであって、基底B*を構成する基底ベクトルb* i(i=1,...,n,...,S,...,N)の基底ベクトルb* i(i=1,...,n)うちの少なくとも一部の基底ベクトルに対する係数として述語情報を設定するとともに、前記基底B*の基底ベクトルb* n+1に対する係数として所定の値を設定したベクトルを鍵ベクトルk* L,decとして、前記暗号化装置が生成した暗号ベクトルc1と前記鍵ベクトルk* L,decとについて、数51に示すペアリング演算e(c1,k* L,dec)を行い前記暗号ベクトルc1を復号して前記所定の情報に関する値を抽出する復号処理と
を備えることを特徴とする暗号処理プログラム。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010002709A JP5334873B2 (ja) | 2010-01-08 | 2010-01-08 | 暗号処理システム、鍵生成装置、鍵委譲装置、暗号化装置、復号装置、暗号処理方法及び暗号処理プログラム |
US13/521,104 US8929542B2 (en) | 2010-01-08 | 2010-12-20 | Cryptographic processing system, key generation device, key delegation device, encryption device, decryption device, cryptographic processing method, and cryptographic processing program |
PCT/JP2010/072912 WO2011083678A1 (ja) | 2010-01-08 | 2010-12-20 | 暗号処理システム、鍵生成装置、鍵委譲装置、暗号化装置、復号装置、暗号処理方法及び暗号処理プログラム |
KR1020127019705A KR101310439B1 (ko) | 2010-01-08 | 2010-12-20 | 암호 처리 시스템, 키 생성 장치, 키 위양 장치, 암호화 장치, 복호 장치, 암호 처리 방법 및 암호 처리 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체 |
CN201080065341.7A CN102822883B (zh) | 2010-01-08 | 2010-12-20 | 密码处理系统、密钥生成装置、密钥转让装置、加密装置、解密装置、密码处理方法以及密码处理程序 |
ES10842191T ES2955589T3 (es) | 2010-01-08 | 2010-12-20 | Sistema de procesamiento criptográfico, dispositivo de generación de clave, dispositivo de delegación de clave, dispositivo de cifrado, dispositivo de descifrado, procedimiento de procesamiento criptográfico y programa de procesamiento criptográfico |
EP10842191.8A EP2523178B1 (en) | 2010-01-08 | 2010-12-20 | Cryptographic processing system, key generation device, key delegation device, encryption device, decryption device, cryptographic processing method, and cryptographic processing program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010002709A JP5334873B2 (ja) | 2010-01-08 | 2010-01-08 | 暗号処理システム、鍵生成装置、鍵委譲装置、暗号化装置、復号装置、暗号処理方法及び暗号処理プログラム |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2011141472A JP2011141472A (ja) | 2011-07-21 |
JP2011141472A5 JP2011141472A5 (ja) | 2012-07-05 |
JP5334873B2 true JP5334873B2 (ja) | 2013-11-06 |
Family
ID=44305415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010002709A Active JP5334873B2 (ja) | 2010-01-08 | 2010-01-08 | 暗号処理システム、鍵生成装置、鍵委譲装置、暗号化装置、復号装置、暗号処理方法及び暗号処理プログラム |
Country Status (7)
Country | Link |
---|---|
US (1) | US8929542B2 (ja) |
EP (1) | EP2523178B1 (ja) |
JP (1) | JP5334873B2 (ja) |
KR (1) | KR101310439B1 (ja) |
CN (1) | CN102822883B (ja) |
ES (1) | ES2955589T3 (ja) |
WO (1) | WO2011083678A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10848471B2 (en) | 2017-09-25 | 2020-11-24 | Ntt Communications Corporation | Communication apparatus, communication method, and program |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5677273B2 (ja) | 2011-11-18 | 2015-02-25 | 三菱電機株式会社 | 暗号処理システム、暗号処理方法、暗号処理プログラム及び鍵生成装置 |
JP5680007B2 (ja) * | 2012-03-06 | 2015-03-04 | 三菱電機株式会社 | 暗号システム、暗号方法及び暗号プログラム |
JP5730805B2 (ja) * | 2012-04-04 | 2015-06-10 | 日本電信電話株式会社 | 格子問題に基づく階層型内積暗号システム,格子問題に基づく階層型内積暗号方法,装置 |
EP2945313B1 (en) * | 2013-01-12 | 2017-09-06 | Mitsubishi Electric Corporation | Key generation device, key generation program, concealed data search system, and key distribution method |
JP5901803B2 (ja) * | 2013-01-16 | 2016-04-13 | 三菱電機株式会社 | 情報処理装置及び情報処理方法及びプログラム |
JP5841955B2 (ja) * | 2013-01-21 | 2016-01-13 | 日本電信電話株式会社 | 関数型暗号システム及び方法 |
EP2860905A1 (en) * | 2013-10-09 | 2015-04-15 | Thomson Licensing | Method for ciphering a message via a keyed homomorphic encryption function, corresponding electronic device and computer program product |
US10965459B2 (en) | 2015-03-13 | 2021-03-30 | Fornetix Llc | Server-client key escrow for applied key management system and process |
US10931653B2 (en) * | 2016-02-26 | 2021-02-23 | Fornetix Llc | System and method for hierarchy manipulation in an encryption key management system |
US10205713B2 (en) * | 2017-04-05 | 2019-02-12 | Fujitsu Limited | Private and mutually authenticated key exchange |
US12099997B1 (en) | 2020-01-31 | 2024-09-24 | Steven Mark Hoffberg | Tokenized fungible liabilities |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070223686A1 (en) * | 2004-09-16 | 2007-09-27 | Shidong Li | Methods and apparatus for data and signal encryption and decryption by irregular subspace leaping |
JP2008011092A (ja) * | 2006-06-28 | 2008-01-17 | Fuji Xerox Co Ltd | 暗号化コンテンツ検索方式 |
CN101335615B (zh) * | 2008-05-30 | 2010-12-29 | 北京飞天诚信科技有限公司 | 用于usb key音频加解密装置密钥协商的方法 |
CN101404577B (zh) * | 2008-10-30 | 2010-04-21 | 南京大学 | 一种融合多种保密技术的保密通信方法 |
JP5349261B2 (ja) * | 2009-04-23 | 2013-11-20 | 三菱電機株式会社 | 暗号処理システム、鍵生成装置、鍵委譲装置、暗号化装置、復号装置、暗号処理方法及び暗号処理プログラム |
EP2423903B1 (en) * | 2009-04-24 | 2014-07-16 | Nippon Telegraph And Telephone Corporation | Encryption apparatus, deccryption apparatus, encryption method, decryption method, security method, program, and recording medium |
JP5269210B2 (ja) * | 2010-01-15 | 2013-08-21 | 三菱電機株式会社 | 秘匿検索システム及び暗号処理システム |
-
2010
- 2010-01-08 JP JP2010002709A patent/JP5334873B2/ja active Active
- 2010-12-20 EP EP10842191.8A patent/EP2523178B1/en active Active
- 2010-12-20 KR KR1020127019705A patent/KR101310439B1/ko active IP Right Grant
- 2010-12-20 ES ES10842191T patent/ES2955589T3/es active Active
- 2010-12-20 CN CN201080065341.7A patent/CN102822883B/zh active Active
- 2010-12-20 US US13/521,104 patent/US8929542B2/en active Active
- 2010-12-20 WO PCT/JP2010/072912 patent/WO2011083678A1/ja active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10848471B2 (en) | 2017-09-25 | 2020-11-24 | Ntt Communications Corporation | Communication apparatus, communication method, and program |
Also Published As
Publication number | Publication date |
---|---|
US20130039489A1 (en) | 2013-02-14 |
CN102822883A (zh) | 2012-12-12 |
JP2011141472A (ja) | 2011-07-21 |
EP2523178A4 (en) | 2017-07-26 |
KR20120112654A (ko) | 2012-10-11 |
ES2955589T3 (es) | 2023-12-04 |
US8929542B2 (en) | 2015-01-06 |
WO2011083678A1 (ja) | 2011-07-14 |
CN102822883B (zh) | 2015-05-13 |
EP2523178A1 (en) | 2012-11-14 |
KR101310439B1 (ko) | 2013-09-24 |
EP2523178B1 (en) | 2023-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5769401B2 (ja) | 暗号処理システム、鍵生成装置、鍵委譲装置、暗号化装置、復号装置、暗号処理方法及びプログラム | |
JP5334873B2 (ja) | 暗号処理システム、鍵生成装置、鍵委譲装置、暗号化装置、復号装置、暗号処理方法及び暗号処理プログラム | |
JP5424974B2 (ja) | 暗号処理システム、鍵生成装置、暗号化装置、復号装置、署名処理システム、署名装置及び検証装置 | |
JP5349261B2 (ja) | 暗号処理システム、鍵生成装置、鍵委譲装置、暗号化装置、復号装置、暗号処理方法及び暗号処理プログラム | |
JP5693206B2 (ja) | 暗号処理システム、鍵生成装置、暗号化装置、復号装置、暗号処理方法及び暗号処理プログラム | |
JP5618881B2 (ja) | 暗号処理システム、鍵生成装置、暗号化装置、復号装置、暗号処理方法及び暗号処理プログラム | |
JP5680007B2 (ja) | 暗号システム、暗号方法及び暗号プログラム | |
JP5606344B2 (ja) | 署名処理システム、鍵生成装置、署名装置、検証装置、署名処理方法及び署名処理プログラム | |
JP5921410B2 (ja) | 暗号システム | |
JP5606351B2 (ja) | 暗号処理システム、鍵生成装置、暗号化装置、復号装置、鍵委譲装置、暗号処理方法及び暗号処理プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120523 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130730 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5334873 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |