JP5334077B2 - Method for producing hydrogen from biomass - Google Patents

Method for producing hydrogen from biomass Download PDF

Info

Publication number
JP5334077B2
JP5334077B2 JP2005363506A JP2005363506A JP5334077B2 JP 5334077 B2 JP5334077 B2 JP 5334077B2 JP 2005363506 A JP2005363506 A JP 2005363506A JP 2005363506 A JP2005363506 A JP 2005363506A JP 5334077 B2 JP5334077 B2 JP 5334077B2
Authority
JP
Japan
Prior art keywords
hydrogen
fermentation
raw material
anaerobic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005363506A
Other languages
Japanese (ja)
Other versions
JP2007159534A (en
Inventor
浩 横山
美代子 和木
康男 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2005363506A priority Critical patent/JP5334077B2/en
Publication of JP2007159534A publication Critical patent/JP2007159534A/en
Application granted granted Critical
Publication of JP5334077B2 publication Critical patent/JP5334077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明はバイオマスを使用して水素ガスを生産する技術に関する。水素生産細菌固有の耐熱性を利用し、しかも水素生産を阻害するメタン生産菌などの水素資化細菌による水素分解・消費を抑制して、安定して水素を簡易な手段・装置によって獲得する技術に係わる。   The present invention relates to a technique for producing hydrogen gas using biomass. Technology that uses the heat resistance inherent in hydrogen-producing bacteria and suppresses hydrogen decomposition and consumption by hydrogen-utilizing bacteria such as methane-producing bacteria that inhibit hydrogen production, and stably obtains hydrogen by simple means and equipment Related to.

家畜の排泄物や食品残渣などの廃棄物を、資源循環の観点から、バイオマス資源として有効に利用し、有価的資源として回収するほかにもエネルギーとして効率的に利用する必要性は日に日に高まっている。また、近年ではエタノールやバイオディーゼルを生産するための原料として、サトウキビや菜種などエネルギー作物と呼称される作物の栽培機運が高まっている。   From the viewpoint of resource recycling, wastes such as livestock excrement and food residues are effectively used as biomass resources, and in addition to recovering them as valuable resources, there is a need for efficient use as energy. It is growing. In recent years, as a raw material for producing ethanol and biodiesel, there has been an increase in the cultivation of crops called energy crops such as sugar cane and rapeseed.

これらバイオマスからメタン醗酵で処理することにより、メタンが生産されることは従来からよく知られている。ところが、メタンガスは燃焼時に二酸化炭素や一酸化炭素に変化するため、地球温暖化の原因物質として、今日好ましくないものとして扱われている。これに対し、燃焼時に空気を汚すことのない水素は、地球温暖化の懸念がないばかりでなく、環境に対して低負荷型の次世代エネルギーとして注目されつつある。   It has been well known that methane is produced from these biomasses by treating them with methane fermentation. However, since methane gas changes to carbon dioxide and carbon monoxide during combustion, it is treated as an unfavorable substance as a cause of global warming today. In contrast, hydrogen that does not pollute the air during combustion is not only concerned about global warming, but is also attracting attention as a next-generation energy with a low load on the environment.

もっとも、従来技術では、廃棄される有機物からメタンを回収することが資源回収の根幹的手法であり、水素を生産することを主眼とするものではなかった。そして、環境問題、とりわけ地球温暖化問題を見据えて、バイオマスから水素を高い効率で生産するという着想はきわめて今日的なものである。   However, in the prior art, recovering methane from discarded organic substances is the fundamental method of resource recovery, and it was not intended to produce hydrogen. And the idea of producing hydrogen from biomass with high efficiency in anticipation of environmental problems, especially global warming, is extremely modern.

そこで、家畜の排泄物などの廃棄物からメタンガスを得ることに主眼を置いた古典的技術にかわって、水素ガスを生産することが時代の要請といえる。   Therefore, it can be said that it is a request of the times to produce hydrogen gas instead of the classic technology that focuses on obtaining methane gas from waste such as livestock excreta.

嫌気性微生物を利用して水素を生産する手段として、純粋菌である水素生産細菌を単独使用する方法と、活性汚泥やコンポスト等に含まれている微生物群を純化することなく、そのまま混合微生物群として使用する方法とがある。純粋菌を利用する手段は基質の制約や原料となるバイオマスの加熱滅菌を必要とし、多量のエネルギーを投入しなければならず、家畜の排泄物などの廃棄物に適用することは困難が伴う。これに対し、後者の混合微生物群を利用する方法は、基質の制約や原料の滅菌を必要とせず、適用範囲が広い利点がある。   As a means of producing hydrogen using anaerobic microorganisms, a method that uses pure hydrogen-producing bacteria alone and a mixed microorganism group as it is without purification of microorganism groups contained in activated sludge, compost, etc. There is a method to use as. Means using pure bacteria require substrate sterilization and heat sterilization of biomass as a raw material, a large amount of energy must be input, and it is difficult to apply to waste such as livestock excrement. On the other hand, the latter method using the mixed microorganism group does not require substrate restrictions or sterilization of raw materials, and has an advantage of wide application range.

畜糞、コンポスト、活性汚泥や嫌気性処理槽の汚泥中には、水素生産菌、メタン菌などの多種多様な微生物が含まれている。さらに、それらに含まれている微生物は単独では培養が困難であるため、未だ同定されていない、未知の、多くの微生物から構成されている。メタン醗酵や水素醗酵などの醗酵は嫌気条件を必要とするため、畜糞、コンポスト、活性汚泥や嫌気性処理槽の汚泥中に含まれる雑多な微生物の集団の中で、醗酵に関する微生物群は複合嫌気性微生物群といえる。
メタン醗酵の初期段階において水素が一時的に生産されることが知見されている。しかしながら、メタン醗酵を継続していると、水素はメタン生産細菌に喰われてしまい、実際上水素ガスを回収することは極めて困難であることも知られるに到っている。
Livestock excrement, compost, activated sludge and anaerobic treatment tank sludge contain a wide variety of microorganisms such as hydrogen producing bacteria and methane bacteria. Furthermore, since the microorganisms contained in them are difficult to culture alone, they are composed of many unknown microorganisms that have not yet been identified. Since fermentation such as methane fermentation and hydrogen fermentation requires anaerobic conditions, among the various microorganism groups contained in livestock excrement, compost, activated sludge and anaerobic treatment tank sludge, the microorganism group related to fermentation is a complex anaerobic It can be said that it is a sex microorganism group.
It has been found that hydrogen is temporarily produced in the initial stage of methane fermentation. However, when methane fermentation is continued, hydrogen is eaten by methane-producing bacteria, and it has been known that it is actually very difficult to recover hydrogen gas.

天然には、嫌気性微生物として、メタン生産菌などの水素資化細菌と水素生産菌とが共に存在し、これらがバイオマスに作用する。醗酵当初には水素も相当量生産されるが、発生した水素は水素資化細菌により、次々と喰われてしまう。つまり、嫌気性バイオリアクターに担持されたメタン生産菌は水素生産菌と共生し、効率よく水素からメタンが生産されている。   Naturally, as anaerobic microorganisms, there are both hydrogen-utilizing bacteria such as methane producing bacteria and hydrogen producing bacteria, which act on biomass. A considerable amount of hydrogen is produced at the beginning of the fermentation, but the generated hydrogen is eaten one after another by hydrogen-utilizing bacteria. In other words, the methane-producing bacteria carried in the anaerobic bioreactor coexist with the hydrogen-producing bacteria, and methane is efficiently produced from hydrogen.

水素を分解・消費してしまう水素資化細菌はメタン菌のみではない。ホモ酢酸菌も水素を喰ってしまうのである。したがって、これら水素資化細菌の水素を消費してしまう作用を抑制する条件を持続できれば、水素を安定的に取り出し得る筈である。   Methane is not the only hydrogen-utilizing bacterium that decomposes and consumes hydrogen. Homoacetic bacteria also eat hydrogen. Therefore, if conditions that suppress the action of consuming hydrogen of these hydrogen-assimilating bacteria can be maintained, hydrogen should be stably extracted.

この視点からメタン生産細菌の持つメチルレダクターゼ酵素を阻害する作用物質を添加して、水素が消費されないように処理する技術が開示されている(特開平4−346788号公報)。   From this point of view, a technique is disclosed in which an agent that inhibits the methyl reductase enzyme possessed by methane-producing bacteria is added so that hydrogen is not consumed (Japanese Patent Laid-Open No. 4-346788).

また、メタン発酵の初期段階に水素生産細菌が活動する点に着目して、バイオリアクターの装置外に、速やかに水素を分離することによって、ある程度の水素を得ることができる技術が開示されている(特開2002−272491号公報)。   In addition, focusing on the fact that hydrogen-producing bacteria are active in the initial stage of methane fermentation, a technique is disclosed that can obtain a certain amount of hydrogen by quickly separating hydrogen outside the bioreactor device. (Unexamined-Japanese-Patent No. 2002-272491).

ところが、叙述の技術には、未解決の課題が残されている。例えば、メタン生産細菌の持つメチルレダクターゼ酵素を阻害する添加剤を添加しても、もしもホモ酢酸菌が存在すれば、この水素資化菌によって水素が消費されてしまう。それぞれの水素消費細菌のためにそれぞれの酵素阻害添加薬を準備することは得策とは言えず、生産コストも嵩むこととなる。   However, unsolved problems remain in the described technique. For example, even if an additive that inhibits the methyl reductase enzyme of a methane-producing bacterium is added, if a homoacetic acid bacterium is present, hydrogen is consumed by the hydrogen-assimilating bacterium. Preparing each enzyme-inhibiting additive for each hydrogen-consuming bacterium is not a good idea and increases production costs.

水素生産に関する技術を概観すると、
(A)原料となるバイオマスを加熱滅菌して、純化した水素生産菌を接種する純粋培養系であって、通常、醗酵温度を20〜40℃の中温醗酵する場合と醗酵温度を50〜60℃とする高温醗酵とがある。
(B)雑多な微生物からなる微生物群(以下、複合嫌気性微生物群と称することがある。)を用いる複合培養系であって、水素生産菌が耐熱性である点を利用して、醗酵温度を50〜60℃に保って実施する高温水素醗酵である。この場合原料の滅菌処理が不要となる利点がある。
(C)複合嫌気性微生物群に熱処理(60〜90℃)又は煮沸による前処理を施し、熱に弱い水素資化細菌を滅菌・抑制させ、耐熱性である水素生産菌群を濃縮して利用する手法がある。この技術では、前処理の後、その培養液を醗酵温度20〜40℃の中温又は50〜60℃の高温に保って水素生産を実施する。この手法において、原料を60〜90℃に加熱する目的は、あくまでも前処理であって、この温度で水素を発生させるものではない。
特開平08−308591号公報 特開平08−294396号公報 特開平08−252089号公報 特開平07−031484号公報 特開2002−272491号公報 特開2005−013045号公報 特開2003−135089号公報
An overview of technologies related to hydrogen production
(A) A pure culture system in which biomass as a raw material is heat-sterilized and inoculated with a purified hydrogen-producing bacterium, and the fermentation temperature is usually 50 to 60 ° C. and the fermentation temperature is 20 to 40 ° C. And high temperature fermentation.
(B) A complex culture system using a group of microorganisms composed of various microorganisms (hereinafter, sometimes referred to as a complex anaerobic microorganism group), wherein the hydrogen-producing bacteria are heat-resistant, and the fermentation temperature Is a high-temperature hydrogen fermentation that is carried out at 50 to 60 ° C. In this case, there is an advantage that sterilization of the raw material is not necessary.
(C) Pretreatment by heat treatment (60-90 ° C) or boiling to the complex anaerobic microorganism group to sterilize and suppress heat-sensitive hydrogen-assimilating bacteria and concentrate and use the heat-resistant hydrogen-producing bacteria group There is a technique to do. In this technique, after the pretreatment, the culture solution is maintained at a medium temperature of fermentation at 20 to 40 ° C. or at a high temperature of 50 to 60 ° C. to carry out hydrogen production. In this method, the purpose of heating the raw material to 60 to 90 ° C. is merely a pretreatment, and does not generate hydrogen at this temperature.
JP 08-305991 A JP 08-294396 A JP 08-252089 A JP 07-031484 A JP 2002-272491 A JP 2005-013045 A JP 2003-135089 A

バイオマスから、安定した水素発酵を実現するためには、水素を生産する水素生成菌の活性を保ちつつ、何らかの手法により発生した水素を消費してしまうメタン生産菌などの水素資化細菌の活性を抑制しなければならない。実際の水素生産への適応を考慮した場合、水素醗酵の手法や操作・装置が簡便であることは、きわめて重要な要件である。前記(A)の手法では水素資化細菌による水素消費の懸念はないが、醗酵に用いる原料を滅菌処理しなければならず、コストが嵩み、実際に適用しがたい。次に(B)の手法の醗酵温度50〜60℃近傍では水素資化細菌の抑制が完全とは言えない。さらに、(C)の手法では前処理を要し、操作・装置が煩瑣・複雑となる問題点がある。   In order to realize stable hydrogen fermentation from biomass, the activity of hydrogen-producing bacteria such as methane-producing bacteria that consume hydrogen generated by some method is maintained while maintaining the activity of hydrogen-producing bacteria that produce hydrogen. Must be suppressed. In consideration of adaptation to actual hydrogen production, it is an extremely important requirement that the method, operation and equipment of hydrogen fermentation are simple. In the method (A), there is no concern about hydrogen consumption by hydrogen-assimilating bacteria, but the raw materials used for fermentation must be sterilized, which increases costs and is difficult to apply in practice. Next, in the vicinity of the fermentation temperature of 50 to 60 ° C. in the method (B), it cannot be said that suppression of hydrogen-utilizing bacteria is complete. Further, the method (C) requires pre-processing, and there is a problem that the operation / device becomes complicated and complicated.

本発明は、上述の課題を解消するものであって、簡易な手段で水素を生産し、これを家畜の糞尿等の排泄物や食餌残渣等のバイオマスから回収するものである。   The present invention solves the above-described problems, and produces hydrogen by a simple means and recovers it from biomass such as excrement such as manure of livestock and food residue.

本発明者は、家畜の糞尿を水に希釈してなるスラリーを原料として、そのスラリーに含まれている複合嫌気性微生物群をそのまま醗酵の種菌として利用し、水素醗酵の実験をした。その結果、従来から知られていた水素醗酵温度60℃のピークを超えて、70〜90℃の高温度に加熱したところ、驚くべきことに、水素醗酵温度75℃近傍に第2の水素生成ピークが存することを知見した。
この高温では、もはやメタン菌等の水素資化細菌は活性を失い、水素醗酵の阻害要因である発生した水素が消費される現象が生じないことが実験を通じて明らかにできた。そして、85℃に達すると水素生産菌も活性をほぼ失うことが判明した。
The present inventor conducted a hydrogen fermentation experiment by using a slurry obtained by diluting livestock manure in water as a raw material and using the complex anaerobic microorganism group contained in the slurry as it is as a seed for fermentation. As a result, when it was heated to a high temperature of 70 to 90 ° C. beyond the conventionally known hydrogen fermentation temperature of 60 ° C., the second hydrogen production peak was surprisingly around the hydrogen fermentation temperature of 75 ° C. I found out that there exists.
Through this experiment, it has been clarified through experiments that hydrogen-utilizing bacteria such as methane bacteria no longer have the activity at this high temperature, and the generated hydrogen, which is an inhibiting factor of hydrogen fermentation, is not consumed. And when it reached 85 degreeC, it turned out that a hydrogen producing microbe also loses activity.

つまり、本発明は、水素資化細菌よりも耐熱性が優れる水素生産細菌を、活性が維持できる限界的な高温度で機能させるとともに、水素資化細菌の活性を減殺・不活化せしめ、水素を獲得する技術であると言える。   In other words, the present invention allows hydrogen-producing bacteria, which have better heat resistance than hydrogen-utilizing bacteria, to function at a critical high temperature that can maintain the activity, and reduces and inactivates the activity of hydrogen-utilizing bacteria, It can be said that it is a technology to acquire.

具体的な解決手段は、次の通りである。   The specific solution is as follows.

請求項1に係る発明は、有機物を原料とし、畜糞中に含まれている複合嫌気性微生物群の存在下に、71℃ないし79℃の温度範囲において該原料を嫌気条件で少なくとも2日間加熱せしめることからなる、水素醗酵を利用した水素の生産方法、である。
原料が畜糞の場合、家畜の消化管由来の複合嫌気性微生物群が水素醗酵の種菌として利用できる。従来技術では、60℃以下の水素醗酵温度を利用するが、この温度域の場合水素生成量が多いことから、本発明は一見して不利のように考えられる。しかしながら、従来技術の醗酵温度60℃以下では一旦生産された水素が水素資化細菌により喰われて、失われる結果、安定した水素生産と発生した水素の回収とに困難が伴う。
The invention according to claim 1 uses organic matter as a raw material, and heats the raw material in anaerobic conditions for at least two days in the temperature range of 71 ° C. to 79 ° C. in the presence of a complex anaerobic microorganism group contained in livestock dung. This is a method for producing hydrogen using hydrogen fermentation.
When the raw material is animal dung, a complex anaerobic microorganism group derived from the digestive tract of livestock can be used as an inoculum for hydrogen fermentation. In the prior art, a hydrogen fermentation temperature of 60 ° C. or lower is used, but in the case of this temperature range, since the amount of hydrogen generation is large, the present invention seems to be disadvantageous at first glance. However, at a fermentation temperature of 60 ° C. or lower according to the prior art, once produced hydrogen is eaten and lost by hydrogen-utilizing bacteria, stable hydrogen production and recovery of generated hydrogen are difficult.

請求項2に係る発明は、請求項1に記載の水素の生産方法において、複合嫌気性微生物群が、畜糞、コンポスト、活性汚泥及び嫌気性処理槽の汚泥のいずれかであることを例示している。   The invention according to claim 2 exemplifies that in the hydrogen production method according to claim 1, the complex anaerobic microorganism group is any one of animal dung, compost, activated sludge and anaerobic treatment tank sludge. Yes.

本発明は特定の水素生産菌を添加するものではなく、また前処理を施すものでもない。あらかじめ特定の水素生産菌の活性を高めたり、弱めたりするものでもない。本発明では、特定の水素生産菌を添加する必要がなく、操作・装置を簡便にできる利点がある。醗酵温度を選択するのみによって、水素生産菌を他の嫌気性微生物(菌)よりも相対的に活動できる条件を有利にするものである。したがって、きわめて簡易な操作と装置によって水素の生産ができる。
請求項2に係る発明は、複合嫌気性微生物群が、畜糞、コンポスト、活性汚泥及び嫌気性処理槽の汚泥のいずれかである水素の生産方法である。
請求項3に係る発明は、請求項1に記載の水素の生産方法において、原料となる有機物が、家畜排泄物、生ごみ等の食品残渣、食品加工工場又は食品取り扱い作業場から排出される有機物を含む廃棄物又は廃液、サトウキビを含むエネルギー作物の群のいずれかである水素の生産方法である
請求項4に係る発明は、外部から水素醗酵の種菌を加えることなく、畜糞を原料とし、該畜糞中に含まれている複合嫌気性微生物群を種菌としてそのまま使用し、70℃超85℃以下の温度範囲において該原料を嫌気条件で少なくとも2日間加熱して水素醗酵を促進させることからなる水素の生産方法である。この場合、原料中には水素発酵を促す種菌が存在するので、水素醗酵の種菌の添加が不要である。自然状態で所定の温度に加熱することにより、水素を生産でき、これを回収することが可能となる。
The present invention does not add a specific hydrogen-producing bacterium and does not perform pretreatment. It does not increase or decrease the activity of specific hydrogen-producing bacteria in advance. In the present invention, it is not necessary to add a specific hydrogen-producing bacterium, and there is an advantage that the operation / device can be simplified. By only selecting the fermentation temperature, it is advantageous to have conditions that allow hydrogen-producing bacteria to be active relative to other anaerobic microorganisms. Therefore, hydrogen can be produced with extremely simple operation and equipment.
The invention according to claim 2 is a method for producing hydrogen, wherein the complex anaerobic microorganism group is any one of livestock excrement, compost, activated sludge and anaerobic treatment tank sludge.
The invention according to claim 3 is the method for producing hydrogen according to claim 1, wherein the organic material used as a raw material is a food residue such as livestock excrement, garbage, or an organic matter discharged from a food processing factory or a food handling workplace. This is a method for producing hydrogen, which is one of a group of energy crops including waste or waste liquid containing sugarcane.
The invention according to claim 4 uses animal feces as a raw material without adding an inoculum of hydrogen fermentation from the outside, and uses the complex anaerobic microorganism group contained in the animal feces as an inoculum as it is, more than 70 ° C. and less than 85 ° C. In this temperature range, the raw material is heated under anaerobic conditions for at least 2 days to promote hydrogen fermentation . In this case, since there are inoculums that promote hydrogen fermentation in the raw material, it is not necessary to add an inoculum for hydrogen fermentation. By heating to a predetermined temperature in a natural state, hydrogen can be produced and recovered.

本発明を詳述する。
従来技術の水素醗酵温度には、純粋菌を利用した場合の中温醗酵(20〜40℃)と複合菌を利用した高温水素醗酵(50〜60℃)とがある。本発明者は家畜排泄物などに含まれている複合嫌気性微生物群を水素醗酵の種菌として使用して、排泄物原料を水素醗酵せしめたところ、醗酵温度50〜60℃に水素生産の第1のピークがあり、さらに75℃付近に水素生産の極大点があることを、実験を通じて知見した。そこで、この第2の水素生産活動のピークを「高度高温水素醗酵(現象)」と命名することとした。この実験成果を図1のグラフに示す。横軸は水素醗酵の温度であり、縦軸は最大水素発生量であり、水素醗酵現象の醗酵温度依存性を示すものである。従来技術である醗酵温度50〜60℃では水素資化細菌による水素消費が認められるが、醗酵温度75℃近傍の高度高温水素醗酵においては水素消費が起こらないことも発見した(後述する図2参照)。この結果、75℃醗酵では安定な水素生産を促進することが可能となる。水素生産に際し、本発明では原料の前処理(熱滅菌等の処置)を省くことができ、簡易な設備であっても水素を生産できる利点が大きい。
The present invention will be described in detail.
Prior art hydrogen fermentation temperatures include medium temperature fermentation (20-40 ° C.) using pure bacteria and high temperature hydrogen fermentation (50-60 ° C.) using complex bacteria. The present inventor used a complex anaerobic microorganism group contained in livestock excrement as an inoculum of hydrogen fermentation to ferment the excrement raw material with hydrogen. As a result, the first hydrogen production was performed at a fermentation temperature of 50 to 60 ° C. Through experiments, it was found that there was a peak of hydrogen and that there was a maximum point of hydrogen production near 75 ° C. Therefore, the peak of this second hydrogen production activity was named “high-temperature high-temperature hydrogen fermentation (phenomenon)”. The results of this experiment are shown in the graph of FIG. The horizontal axis is the temperature of hydrogen fermentation, the vertical axis is the maximum hydrogen generation amount, and shows the fermentation temperature dependency of the hydrogen fermentation phenomenon. Although hydrogen consumption by hydrogen-utilizing bacteria is observed at the fermentation temperature of 50 to 60 ° C., which is a conventional technique, it has also been found that hydrogen consumption does not occur in advanced high-temperature hydrogen fermentation near the fermentation temperature of 75 ° C. (see FIG. 2 described later). ). As a result, it is possible to promote stable hydrogen production in 75 ° C. fermentation. In producing hydrogen, the present invention can omit the pretreatment of raw materials (treatment such as heat sterilization), and has a great advantage that hydrogen can be produced even with simple equipment.

図1は牛糞尿スラリーを原料とし、スラリー中に含まれている複合嫌気性微生物群を種菌として、これらをそのまま、何らの手も加えず使用し、37〜85℃の範囲での醗酵温度において、水素醗酵を実施した例である。   Fig. 1 uses cattle manure slurry as a raw material, a complex anaerobic microorganism group contained in the slurry as an inoculum, and these are used as they are without any modification at a fermentation temperature in the range of 37 to 85 ° C. It is the example which implemented hydrogen fermentation.

また、図2は、醗酵温度として55℃及び75℃を選択したときの水素醗酵における生成水素の発生量を経時的な変化として図示したグラフである。これを要するに、本発明(醗酵温度75℃)と従来技術(同55℃)との水素生産挙動の比較であって、従来技術では培養初期には水素の発生は多いが、数日を経ると、一旦発生した水素が水素資化細菌により喰われていることが判明した。これに対し、75℃の培養では水素資化細菌の活性が損なわれ、発生した水素が失われないことが明らかであり、発生した水素を容易に回収でき、安定した水素生産を可能にする。   Moreover, FIG. 2 is the graph which illustrated the generation amount of the production | generation hydrogen in hydrogen fermentation when 55 degreeC and 75 degreeC were selected as fermentation temperature as a time-dependent change. In short, this is a comparison of the hydrogen production behavior of the present invention (fermentation temperature 75 ° C.) and the prior art (55 ° C.). It was found that the hydrogen once generated was eaten by the hydrogen-assimilating bacteria. On the other hand, it is clear that culture at 75 ° C. impairs the activity of hydrogen-utilizing bacteria and does not lose the generated hydrogen. The generated hydrogen can be easily recovered and enables stable hydrogen production.

本発明の水素生産方法では、メタン生産菌のごとき水素資化細菌の活性を抑制することにより、家畜排泄物などの水素資化細菌を多量に含むバイオマスを原料とした場合の水素生産において有利に作用する。また、本発明方法では、高い醗酵温度を採択しているため、原料となるバイオマスに雑草種子や病原性微生物などが含まれている場合、それら有害物を高い醗酵温度により従来技術よりも滅菌・不活化を促進させることができる。そのため、醗酵後の処理液の液肥等の再利用に有利となる。   In the hydrogen production method of the present invention, by suppressing the activity of hydrogen-utilizing bacteria such as methane-producing bacteria, it is advantageous in hydrogen production when biomass containing a large amount of hydrogen-utilizing bacteria such as livestock excreta is used as a raw material. Works. Further, in the method of the present invention, since a high fermentation temperature is adopted, when weed seeds or pathogenic microorganisms are contained in the biomass as a raw material, these harmful substances are sterilized by higher fermentation temperature than the conventional technology. Inactivation can be promoted. Therefore, it becomes advantageous for reuse of the liquid fertilizer etc. of the processing liquid after fermentation.

本発明方法は上記の構成において醗酵温度として71℃〜79℃という「高度高温水素醗酵(現象)」を利用するものである。種々の微生物が混在する状態である活性汚泥、コンポスト、嫌気性処理槽の消化汚泥又は畜糞を利用して、家畜の糞尿を含む排泄物、食餌残渣、その他の廃棄物、サトウキビ等のエネルギー作物から水素を生産するものである。
従来技術では、60℃以下の水素醗酵温度を利用するが、この温度域の場合、醗酵当初には水素生成量が多いものの、発生した水素はメタン生産菌などの水素資化細菌に喰われてしまうことから、「高度高温水素醗酵(現象)」を利用する本発明方法が優れていることが明白である。
本発明では特定の水素生産菌を添加するものではなく、また前処理を施すものでもない。あらかじめ特定の水素生産菌の活性を高めたり、弱めたりするものでもない。本発明では特定の水素生産菌を添加する必要がなく、操作・装置を簡便にできる利点がある。醗酵温度を選択するのみによって、水素生産菌を他の嫌気性微生物(菌)よりも相対的に活動できる条件を有利にするものである。したがって、きわめて簡易な操作と装置により水素の生産ができる。
畜糞のように原料中に複合嫌気性微生物群がもともと存在する場合には、自然状態で所定の温度に加熱することにより、水素を簡易に生産でき、これを回収することが可能となる。
The method of the present invention utilizes “high-temperature high-temperature hydrogen fermentation (phenomenon)” of 71 ° C. to 79 ° C. as the fermentation temperature in the above configuration. From activated sludge, compost, digested sludge from anaerobic treatment tanks, or livestock manure, which are mixed with various microorganisms, from excreta including livestock manure, food residue, other waste, energy crops such as sugarcane It produces hydrogen.
In the prior art, a hydrogen fermentation temperature of 60 ° C. or lower is used. In this temperature range, although the amount of hydrogen produced is large at the beginning of fermentation, the generated hydrogen is eaten by hydrogen-utilizing bacteria such as methane producing bacteria. Therefore, it is apparent that the method of the present invention using “high-temperature high-temperature hydrogen fermentation (phenomenon)” is excellent.
In the present invention, a specific hydrogen-producing bacterium is not added, and no pretreatment is performed. It does not increase or decrease the activity of specific hydrogen-producing bacteria in advance. In the present invention, there is no need to add a specific hydrogen-producing bacterium, and there is an advantage that the operation / device can be simplified. By only selecting the fermentation temperature, it is advantageous to have conditions that allow hydrogen-producing bacteria to be active relative to other anaerobic microorganisms. Therefore, hydrogen can be produced with extremely simple operation and equipment.
When a complex anaerobic microorganism group originally exists in the raw material, such as animal manure, hydrogen can be easily produced and recovered by heating to a predetermined temperature in a natural state.

家畜の排泄物、食餌残渣などのバイオマスを原料とし、種々な微生物からなる複合嫌気性微生物群を添加する。畜糞のように原料中には複合嫌気性微生物群がもともと存在する場合は、複合嫌気性微生物群の添加は不要となることがある。
この複合嫌気性微生物群と混合した原料スラリーを71℃ないし79℃の温度範囲(特に好ましくは75℃程度)において嫌気条件で加熱すると、水素醗酵が起こり、水素が生産できる。
A complex anaerobic microorganism group consisting of various microorganisms is added from biomass such as livestock excrement and food residue. When a complex anaerobic microorganism group originally exists in the raw material, such as animal manure, the addition of the complex anaerobic microorganism group may be unnecessary.
When the raw material slurry mixed with this complex anaerobic microorganism group is heated under anaerobic conditions in a temperature range of 71 ° C. to 79 ° C. (particularly preferably about 75 ° C.), hydrogen fermentation occurs and hydrogen can be produced.

複合嫌気性微生物群として、畜糞、コンポスト、活性汚泥及び嫌気性処理槽の汚泥のいずれかを用いると、水素発酵が起こる。   When any one of livestock excrement, compost, activated sludge and anaerobic treatment tank sludge is used as the complex anaerobic microorganism group, hydrogen fermentation occurs.

原料としては、家畜排泄物、生ごみ等の食品残渣、食品加工工場又は食品取り扱い作業場から排出される有機物を含む廃棄物又は廃液、サトウキビを含むエネルギー作物等が適用可能であり、畜糞の場合には既に複合嫌気性微生物群が元来含まれているので、70℃超85℃以下の温度範囲において該原料を嫌気条件で加熱して水素醗酵を促進させることから、水素を生産することができる。   As raw materials, livestock excrement, food residues such as food waste, waste or waste liquid containing organic matter discharged from food processing factories or food handling workplaces, energy crops including sugar cane, etc. are applicable. Already contains a complex anaerobic microorganism group, so that hydrogen fermentation can be promoted by heating the raw material under anaerobic conditions in a temperature range of more than 70 ° C and not more than 85 ° C, so that hydrogen can be produced. .

<実施例1>
図3に示した簡易な加熱装置(温度制御手段を含む)42を備えたバイオリアクターを用いて、畜糞スラリーを原料とし、その畜糞に含まれている複合嫌気性微生物群を種菌として、75℃の醗酵温度において水素ガスの発生状態を観察した。
バイオリアクターは、バイオリアクター30の下段に複合嫌気性微生物群を含む原料スラリー40が原料投入口34から投入され、原料スラリー及び複合嫌気性微生物群40は攪拌手段32によって充分掻き混ぜられている。容器本体の上段は気相の水素ガスが溜まり次第水素回収用ガスホルダー38に貯留できる構成である。原料スラリー40は排出口36から排出できる。
これらの観察結果は既に図2に示したとおりである。
<比較例1>
従来技術の醗酵温度である55℃に設定する以外は実施例1と同様の条件において培養時間と水素生成量の関係を観測した。観測結果を図2に併記した。4日目をピークとして水素量が減少していることが判明したが、これは水素資化細菌が水素を消費したものである。
<Example 1>
Using a bioreactor equipped with the simple heating device (including temperature control means) 42 shown in FIG. 3, using animal dung slurry as a raw material, a complex anaerobic microorganism group contained in the animal dung is used as a seed fungus at 75 ° C. The generation state of hydrogen gas was observed at the fermentation temperature.
In the bioreactor, a raw material slurry 40 containing a composite anaerobic microorganism group is input to the lower stage of the bioreactor 30 from a raw material input port 34, and the raw material slurry and the composite anaerobic microorganism group 40 are sufficiently stirred by a stirring means 32. The upper stage of the container main body has a configuration in which gas phase hydrogen gas can be stored in the hydrogen recovery gas holder 38 as soon as it accumulates. The raw slurry 40 can be discharged from the discharge port 36.
These observation results are as shown in FIG.
<Comparative Example 1>
The relationship between the incubation time and the amount of hydrogen produced was observed under the same conditions as in Example 1 except that the temperature was set to 55 ° C., which is the fermentation temperature of the prior art. The observation results are shown in FIG. It turned out that the amount of hydrogen was decreasing at the peak on the 4th day, which is a hydrogen-consuming bacterium consuming hydrogen.

牛糞尿スラリーを原料とした水素醗酵の醗酵温度と水素生成量の関係を示すグラフである。It is a graph which shows the relationship between the fermentation temperature of hydrogen fermentation which used cattle manure slurry as a raw material, and the amount of hydrogen production. 牛糞尿スラリーを原料とした水素醗酵の培養時間と水素発生量との関係を示すグラフである。It is a graph which shows the relationship between the culture | cultivation time of hydrogen fermentation which used cattle manure slurry as a raw material, and the amount of hydrogen generation. 本発明の実施例となる高温度の水素醗酵装置の模式図である。It is a schematic diagram of the high temperature hydrogen fermentation apparatus used as the Example of this invention.

符号の説明Explanation of symbols

30 バイオリアクター
32 攪拌手段
34 原料投入口
36 排出口
38 水素回収用ガスホルダー
40 原料スラリー及び複合嫌気性微生物群
42 加温装置
30 Bioreactor 32 Stirring means 34 Raw material input port 36 Outlet port 38 Hydrogen recovery gas holder 40 Raw material slurry and complex anaerobic microorganism group 42 Heating device

Claims (4)

有機物を原料とし、畜糞中に含まれている複合嫌気性微生物群の存在下に、71℃ないし79℃の温度範囲において該原料を嫌気条件で少なくとも2日間加熱することからなる、水素醗酵を利用した水素の生産方法。 Utilizing an organic material as a raw material, utilizing hydrogen fermentation, comprising heating the raw material under anaerobic conditions for at least two days in the temperature range of 71 ° C. to 79 ° C. in the presence of complex anaerobic microorganisms contained in livestock dung Hydrogen production method. 複合嫌気性微生物群が、畜糞、コンポスト、活性汚泥及び嫌気性処理槽の汚泥のいずれかである請求項1に記載の水素の生産方法。   The method for producing hydrogen according to claim 1, wherein the complex anaerobic microorganism group is any one of livestock excrement, compost, activated sludge, and sludge in an anaerobic treatment tank. 原料となる有機物が、家畜排泄物、生ごみ等の食品残渣又は食品加工工場から排出される有機物を含む廃棄物又は廃液及びサトウキビを含むエネルギー作物の群のいずれかである請求項1に記載の水素の生産方法。   2. The organic material as a raw material is any one of a group of energy crops including waste or waste liquid containing organic matter discharged from a food processing factory or food residue such as livestock excrement, food waste, and sugarcane. How to produce hydrogen. 外部から水素醗酵の種菌を加えることなく、畜糞を原料とし、該畜糞中に含まれている複合嫌気性微生物群を種菌としてそのまま使用し、70℃超85℃以下の温度範囲において該原料を嫌気条件で少なくとも2日間加熱して水素醗酵を促進させることからなる水素の生産方法。   Without adding an inoculum of hydrogen fermentation from the outside, the animal dung is used as a raw material, the complex anaerobic microorganism group contained in the animal dung is used as a seed bacteria as it is, and the raw material is anaerobic in a temperature range of 70 ° C. to 85 ° C. A method for producing hydrogen comprising heating at least 2 days under conditions to promote hydrogen fermentation.
JP2005363506A 2005-12-16 2005-12-16 Method for producing hydrogen from biomass Expired - Fee Related JP5334077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005363506A JP5334077B2 (en) 2005-12-16 2005-12-16 Method for producing hydrogen from biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005363506A JP5334077B2 (en) 2005-12-16 2005-12-16 Method for producing hydrogen from biomass

Publications (2)

Publication Number Publication Date
JP2007159534A JP2007159534A (en) 2007-06-28
JP5334077B2 true JP5334077B2 (en) 2013-11-06

Family

ID=38243132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005363506A Expired - Fee Related JP5334077B2 (en) 2005-12-16 2005-12-16 Method for producing hydrogen from biomass

Country Status (1)

Country Link
JP (1) JP5334077B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015158950A1 (en) * 2014-04-16 2015-10-22 Eino Elias Hakalehto The production of hydrogen and other gaseous or liquid products in an accelerated bioprocess

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5048579B2 (en) * 2008-04-23 2012-10-17 株式会社タクマ Hydrogen recovery method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2657763B2 (en) * 1993-09-07 1997-09-24 財団法人地球環境産業技術研究機構 Microbial hydrogen production
WO2003052112A1 (en) * 2001-12-19 2003-06-26 Japan Science And Technology Corporation Method of producing hydrogen gas by using hydrogen bacteria
JP2005211782A (en) * 2004-01-29 2005-08-11 Nisso Engineering Co Ltd Hydrogen fermentation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015158950A1 (en) * 2014-04-16 2015-10-22 Eino Elias Hakalehto The production of hydrogen and other gaseous or liquid products in an accelerated bioprocess

Also Published As

Publication number Publication date
JP2007159534A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
Yao et al. Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts
Awasthi et al. A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives
Muhammad Nasir et al. Production of biogas from solid organic wastes through anaerobic digestion: a review
Ahring Perspectives for anaerobic digestion
Yu et al. Accelerated acidification by inoculation with a microbial consortia in a complex open environment
El Gnaoui et al. Anaerobic co-digestion assessment of olive mill wastewater and food waste: Effect of mixture ratio on methane production and process stability
JP3617528B1 (en) Biomass processing method
Paranjpe et al. A review on performance improvement of anaerobic digestion using co-digestion of food waste and sewage sludge
Eraky et al. A new cutting-edge review on the bioremediation of anaerobic digestate for environmental applications and cleaner bioenergy
Tawfik et al. Bioenergy production from chicken manure: A review
JP2006280362A (en) System for treating biomass
JP2006314920A (en) Method for recovering energy from biomass
Wen et al. Review on research achievements of blackwater anaerobic digestion for enhanced resource recovery
JP2004082017A (en) Methane fermentation method of organic waste and system therefor
JP5334077B2 (en) Method for producing hydrogen from biomass
US11365433B2 (en) Conversion of lignocellulosic biomass into biogas
JP2006312120A (en) Biomass treatment method
JP2006110540A (en) Efficient biogas recovery system using microorganism
JP6026689B1 (en) Methane fermentation system
JP2009172460A (en) Biogas producing method by fermentation method from electrolytically treated garbage
Mostafa et al. Biogas production from kitchen wastes: special focus on kitchen and household wastes in Egypt
JP2017148777A (en) Method and device for methane fermentation
JP2009248042A (en) Method and system for methane fermentation treatment of organic waste
Saleh et al. The potential of sustainable biogas production from animal waste
JP4183540B2 (en) Organic matter treatment method and organic matter treatment system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111012

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees