JP5333976B2 - Vanadium crystallized composite oxide and production method - Google Patents

Vanadium crystallized composite oxide and production method Download PDF

Info

Publication number
JP5333976B2
JP5333976B2 JP2011260957A JP2011260957A JP5333976B2 JP 5333976 B2 JP5333976 B2 JP 5333976B2 JP 2011260957 A JP2011260957 A JP 2011260957A JP 2011260957 A JP2011260957 A JP 2011260957A JP 5333976 B2 JP5333976 B2 JP 5333976B2
Authority
JP
Japan
Prior art keywords
vanadium
oxide
composite oxide
glass
crystallized composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011260957A
Other languages
Japanese (ja)
Other versions
JP2013103875A (en
Inventor
明 森重
Original Assignee
株式会社東海産業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東海産業 filed Critical 株式会社東海産業
Priority to JP2011260957A priority Critical patent/JP5333976B2/en
Publication of JP2013103875A publication Critical patent/JP2013103875A/en
Application granted granted Critical
Publication of JP5333976B2 publication Critical patent/JP5333976B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Glass Compositions (AREA)
  • Catalysts (AREA)

Description

発明の詳細な説明Detailed Description of the Invention

酸化バナジウムを主成分とするガラス混合物を、結晶化する温度または、結晶化する温度以上で熱処理し長波長域まで活性するバンドギャップを有するバナジウム結晶化複合酸化物及び製造法を特徴とする。  It is characterized by a vanadium crystallization composite oxide having a band gap that is activated by heat treatment of a glass mixture containing vanadium oxide as a main component at a crystallization temperature or at a temperature higher than the crystallization temperature and a long wavelength region, and a manufacturing method.

本発明は、太陽による自然光や蛍光灯及びLEDなどの人工光に反応する光反応性材、さらにその光反応性材を用いた太陽電池や光触媒の分野、またセンサーの分野の技術に関する。  The present invention relates to a photoreactive material that reacts to natural light from the sun, artificial light such as a fluorescent lamp and an LED, and further to the field of solar cells and photocatalysts using the photoreactive material, and the field of sensors.

従来技術Conventional technology

酸化チタンなどは光を照射することにより光反応を示すことが知られている。例えば、光触媒によれば、太陽光により水を分解し酸素と水素が得られる。一方、酸化チタンは光照射によって強力な触媒機能発揮することが知られており、有機物の存在下で光触媒を作用させることにより有機物を分解することが知られている。このため、消臭、汚れの除去、大腸菌などの殺菌用として応用されている。その他、光照射により光触媒が、超親水性を示すことが知られている。すなわち、酸化チタンでコーティングした面に光照射して、液滴を垂らすと全面に広がる性質が発現するため、外壁やミラーに使用することによりセルフクリーニング効果を発揮する。光触媒関連の技術動向として、効率的に光触媒作用を示すような材料が求められている。従来、酸化チタンであれば主として400nm以下の紫外光に吸収ピークがあり、光の利用効率が低かった。このような技術課題に対して、他の酸化物、窒素ドープなどの不純物を注入することにより可視光応答型の光触媒として利用することが提案されている(特許文献1)。  It is known that titanium oxide or the like shows a photoreaction when irradiated with light. For example, according to the photocatalyst, oxygen and hydrogen are obtained by decomposing water with sunlight. On the other hand, titanium oxide is known to exhibit a strong catalytic function when irradiated with light, and is known to decompose organic matter by causing the photocatalyst to act in the presence of the organic matter. For this reason, it is applied for deodorizing, removing dirt, and sterilizing Escherichia coli. In addition, it is known that a photocatalyst exhibits superhydrophilicity when irradiated with light. That is, when the surface coated with titanium oxide is irradiated with light and a droplet is dropped, the property of spreading over the entire surface appears. Therefore, the self-cleaning effect is exhibited by using it on the outer wall or mirror. As a technical trend related to photocatalyst, a material that efficiently exhibits photocatalysis is demanded. Conventionally, in the case of titanium oxide, there is an absorption peak mainly in ultraviolet light of 400 nm or less, and the light use efficiency is low. For such a technical problem, it has been proposed to use it as a visible light responsive photocatalyst by injecting impurities such as other oxides and nitrogen dope (Patent Document 1).

太陽電池として酸化チタンを用いた色素増感太陽電池が提案されている。大きな特徴としては、シリコン太陽電池に比べ有機色素や酸化チタンを用いるため、資源の制約が少ないことや、非常に簡便な設備や技術で安価にかつ大量に製造できる点が挙げられる。  A dye-sensitized solar cell using titanium oxide has been proposed as a solar cell. Major features include the fact that organic dyes and titanium oxide are used compared to silicon solar cells, so that there are fewer resource restrictions and that they can be manufactured in large quantities at a low cost with very simple equipment and technology.

色素増感太陽電池の光電エネルギー変換効率は、変換効率の改善がなされ、可視光のほぼ全域(400〜800nm)を吸収し、耐候性にも優れるが提案がされている(特許文献2、特許文献3)。
特開2006−272036号公報 特開2004−171815号公報 特開2005−166615号公報
The photoelectric energy conversion efficiency of the dye-sensitized solar cell has been proposed with improved conversion efficiency, absorbing almost the entire visible light range (400 to 800 nm) and excellent weather resistance (Patent Document 2, Patent) Reference 3).
JP 2006-272036 A JP 2004-171815 A JP 2005-166615 A

従来技術で述べた酸化チタンは、バンドギャップは3.2eV(「Light−Induced Redox Reactions in Nanocrystalline Systems」、「Chemical Reviews VOL.95 No.1」、(1995年)、Anders Hagfeldt、Michael Gratzel 著、American Chemical Society発行、53頁 Fig.3 Band edge position of several semiconductors in contact with aqueous electrolyte at pH 1. Reprinted with permission from American Chemical Society.より)であり、387nmより短波長の光で反応吸収(光閉じ込め効果による光触媒活性能の向上」、「会報光触媒VOL.9 第9回シンポジウム“光触媒反応の最近の展開”」、(2002年)、縫田知宏、金井信宏、橋本和仁、渡辺俊也、大崎壽著、光機能材料研究会発行、45頁 Fig.3 単膜の吸収スペクトルと多層膜におけるTiO吸収スペクトルの計算結果より)するが、可視光域まで反応させ可視応答型太陽電池への応用としてルテニウム系色素での増感効果、さらに不純物ドープによる方法が提案されている。しかし、ルテニウム系の色素が高価であり使用可能な種類も限定されていることから十分な変換効率が得られていない。また不純物ドープによる方法は色素より更に変換効率が悪く実用化が困難であるという問題があった。Titanium oxide described in the prior art has a band gap of 3.2 eV (“Light-Induced Redox Reactions in Nanocrystalline Systems”, “Chemical Reviews VOL. 95 No. 1”, 1995, Anders H). Published by American Chemical Society, page 53, from Fig. 3 Band edge position of several semiconductors in contact with a sequen te sri m e m e te s i m e r e r c e r e r e r e n s i n s e m e n e n e m e s i n e m e r e r c e n s i n e n e n e m e n e m e n i n e n e m e n e s e m e n i n e n i n e n e i n e n i n e n e i n e n c i n e n c i n e n c i n e n i n e n c i n e n i n e n i n e i n e n i n e i n e n e n i n e n e n e n i n e n. Absorption of reaction with light having a wavelength shorter than m (improvement of photocatalytic activity due to light confinement effect), “News of photocatalysis VOL.9 9th Symposium“ Recent development of photocatalytic reaction ”” (2002), Tomohiro Nida, Nobuhiro Kanai, Kazuhito Hashimoto, Toshiya Watanabe, Satoshi Osaki, published by the Society for Optical Functional Materials, page 45 Fig.3 Calculation results of absorption spectrum of single film and TiO 2 absorption spectrum of multilayer film) As an application to a visible-response solar cell, a sensitizing effect with a ruthenium-based dye and a method using impurity doping have been proposed. However, since ruthenium-based dyes are expensive and the types that can be used are limited, sufficient conversion efficiency cannot be obtained. Further, the impurity doping method has a problem that the conversion efficiency is lower than that of the dye and the practical use is difficult.

本発明はこのような問題を解決し、色素を使用する必要がなく、また不純物ドープすると言う工程を行うことも必要なく長波長域まで光反応する新規光反応性材を提供することを目的とする。  An object of the present invention is to solve such problems, and to provide a novel photoreactive material that does not require the use of a dye and that does not need to be doped with impurities, and that can photoreact up to a long wavelength region. To do.

本発明者は鋭意検討の上、導電性を有する酸化バナジウムを主成分とするガラス混合物を従来の常識に反して結晶化させ、当該結晶化物が長波長域まで光反応することを見出した。すなわち、通常、酸化バナジウムを主成分とする混合物から導電性ガラスを作製するためには、当該混合物を溶融温度で加熱処理した後、ガラス化のために急冷することが通常行われるが、ここで急冷するのではなくあえて自然冷却すれば酸化バナジウムを主成分とするガラス混合物が結晶化することを見出した。また、既に一度ガラス化されたものを再度、結晶化温度以上で熱処理をし、その後自然冷却することによっても酸化バナジウムを主成分とするガラス混合物が結晶化することを見出した。さらに、前記の方法で結晶化された物質であるバナジウム結晶化複合酸化物は、光反応性材として長波長域まで活性を有することまでをも見出したのである。本発明者が見出したバナジウム結晶化複合酸化物は、バンドギャップが組成により1.0〜2.5eVとすることができ、吸収波長域を300〜1000nmの吸収域の広範囲を有するものとなる。  The present inventor has intensively studied to crystallize a glass mixture mainly composed of conductive vanadium oxide, contrary to conventional common sense, and found that the crystallized product photoreacts up to a long wavelength region. That is, usually, in order to produce a conductive glass from a mixture containing vanadium oxide as a main component, the mixture is usually heat-treated at a melting temperature and then rapidly cooled for vitrification. It was found that a glass mixture containing vanadium oxide as a main component crystallizes if it is naturally cooled rather than rapidly cooled. Further, it has been found that a glass mixture containing vanadium oxide as a main component is crystallized by subjecting the material already vitrified once to a heat treatment at a temperature equal to or higher than the crystallization temperature and then naturally cooling. Furthermore, the present inventors have also found that the vanadium crystallized composite oxide, which is a substance crystallized by the above-described method, has activity up to a long wavelength region as a photoreactive material. The vanadium crystallized composite oxide found by the present inventors can have a band gap of 1.0 to 2.5 eV depending on the composition, and has an absorption wavelength range of 300 to 1000 nm.

すなわち、本発明は、酸化バナジウムを主成分とするガラス混合物を結晶化させたバナジウム結晶化複合酸化物であることを特徴とし、また、光音響分光法による測定において1.0〜2.5eVのバンドギャップエネルギーを有するバナジウム結晶化複合酸化物である。これを換言すれば、本発明のバナジウム結晶化複合酸化物は、300〜1000nmの範囲の光に反応する光反応性材であるといえる。  That is, the present invention is characterized in that it is a vanadium crystallized complex oxide obtained by crystallizing a glass mixture containing vanadium oxide as a main component, and is 1.0 to 2.5 eV in measurement by photoacoustic spectroscopy. It is a vanadium crystallized composite oxide having band gap energy. In other words, the vanadium crystallized composite oxide of the present invention can be said to be a photoreactive material that reacts with light in the range of 300 to 1000 nm.

また、本発明は、酸化バナジウムを主成分に含むガラス混合物を調整する工程と、前記ガラス混合物を溶融及び急冷しガラス組成物を得る工程と、前記ガラス組成物を結晶化温度以上で熱処理を施す工程と、前記熱処理後に自然冷却して結晶化させる工程とを備えるバナジウム結晶化複合酸化物の製造方法である。さらに本発明は、酸化バナジウムを主成分に含むガラス混合物を調整する工程と、前記ガラス混合物を溶融処理する工程と、溶融されたガラス混合物を自然冷却して結晶化させる工程とを備えるバナジウム結晶化複合酸化物の製造方法である。  The present invention also includes a step of preparing a glass mixture containing vanadium oxide as a main component, a step of obtaining a glass composition by melting and quenching the glass mixture, and subjecting the glass composition to a heat treatment at a crystallization temperature or higher. A method for producing a vanadium crystallized composite oxide comprising a step and a step of crystallizing by natural cooling after the heat treatment. Furthermore, the present invention provides a step of adjusting a glass mixture containing vanadium oxide as a main component, a step of melting the glass mixture, and a step of naturally cooling the molten glass mixture to crystallize the vanadium crystallization. This is a method for producing a composite oxide.

以下、本発明のバナジウム結晶化複合酸化物及びその製造方法について説明する。本発明は、前述のように酸化バナジウムを主成分とするガラス混合物を結晶化させたバナジウム結晶化複合酸化物であるが、ガラス混合物からガラス組成物を形成した上で製造する方法とガラス混合物から直接製造する方法があるため、酸化バナジウムを主成分とするガラス混合物の構成を説明した上、2通りのバナジウム結晶化複合酸化物の製造方法を説明し、得られたバナジウム結晶化複合酸化物について説明する。さらに各実施例に基づいて作製されたバナジウム結晶化複合酸化物の評価について説明する。なお、以下の記載はあくまで最良形態に係るものであるため、当該記載によって本発明の技術的範囲は限定されるものではない。  Hereinafter, the vanadium crystallized composite oxide of the present invention and the manufacturing method thereof will be described. The present invention is a vanadium crystallized composite oxide obtained by crystallizing a glass mixture containing vanadium oxide as a main component as described above. From the method of manufacturing a glass composition from a glass mixture and the glass mixture Since there is a method of direct production, the composition of the glass mixture mainly composed of vanadium oxide is explained, and then two kinds of production methods of vanadium crystallized composite oxide are explained, and the obtained vanadium crystallized composite oxide is explained. explain. Furthermore, the evaluation of the vanadium crystallized composite oxide produced based on each example will be described. In addition, since the following description concerns only the best form to the last, the technical scope of this invention is not limited by the said description.

《酸化バナジウムを主成分とするガラス混合物》
本最良形態に係る酸化バナジウムを主成分とするガラス混合物は、酸化バナジウムを50〜98モル%含有するものをいい、酸化バリウム、酸化鉄を含むことがさらに好適であり、その他、リン酸、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化ストロンチウム、酸化ホウ素、酸化ケイ素、酸化ジルコニウム、酸化銀、ヨウ化銀、酸化リチウム、ヨウ化リチウム、酸化アルミニウム、酸化セシウム、ヨウ化ナトリウム、酸化インジウム、酸化錫、酸化アンチモン、酸化レニウム等を含んでいてもよい。また、酸化バリウムや酸化鉄を含む場合、酸化バリウムを好適に1〜40モル%含有し、酸化鉄を1〜20モル%含有するものが特に好ましい。更に、酸化バリウム(B)と酸化バナジウム(V)のモル比(B:V)は、好適には5:90〜35:50である。また、酸化鉄(F)と酸化バナジウム(V)のモル比(F:V)は、好適には5:90〜15:50である。但し、どのような組成とするかは、電気・電子材料の種類や用途等により変動するものであるので、酸化バナジウムを50〜98モル%含有するということ以外には前記範囲に何ら限定はない。
《Glass mixture mainly composed of vanadium oxide》
The glass mixture containing vanadium oxide as the main component according to the best mode is one containing 50 to 98 mol% of vanadium oxide, more preferably containing barium oxide and iron oxide, and in addition, phosphoric acid and oxidation. Sodium, potassium oxide, calcium oxide, strontium oxide, boron oxide, silicon oxide, zirconium oxide, silver oxide, silver iodide, lithium oxide, lithium iodide, aluminum oxide, cesium oxide, sodium iodide, indium oxide, tin oxide, It may contain antimony oxide, rhenium oxide, and the like. Moreover, when it contains barium oxide and iron oxide, 1-40 mol% suitably contains barium oxide, and what contains 1-20 mol% iron oxide is especially preferable. Furthermore, the molar ratio (B: V) of barium oxide (B) to vanadium oxide (V) is preferably 5:90 to 35:50. Moreover, the molar ratio (F: V) of iron oxide (F) and vanadium oxide (V) is preferably 5:90 to 15:50. However, since the composition depends on the type and use of the electric / electronic material, there is no limitation on the above range except that 50 to 98 mol% of vanadium oxide is contained. .

《ガラス混合物からガラス組成物を経て製造する方法》
酸化バナジウムを主成分とするガラス混合物からガラス組成物の製造は、公知の方法により製造することができる。例えば、特許第3854985号や特開2004−2181、特開2004−331416、特開2003−277101に開示されているように、酸化バナジウム、酸化バリウム、酸化鉄等のガラス混合物を溶融温度で熱処理することで溶融し、その後急冷することによって得ることができる。ここでは急冷とは、通常毎秒1〜10℃の速度で行い、ガラス転移点が得られる条件を言う。なお、ここでできたガラス組成物の電気伝導度は、25℃において10−13S・cm−1以上で好適であり、10−9S・cm−1以上でより好適であり、10−7S・cm−1以上で更に好適である。ここで、電気伝導度は、四端子法により測定された体積抵抗率を意味する。
<< Method for producing from glass mixture through glass composition >>
The glass composition can be produced from a glass mixture containing vanadium oxide as a main component by a known method. For example, as disclosed in Japanese Patent No. 3854985, Japanese Patent Application Laid-Open No. 2004-2181, Japanese Patent Application Laid-Open No. 2004-331416, Japanese Patent Application Laid-Open No. 2003-277101, a glass mixture of vanadium oxide, barium oxide, iron oxide or the like is heat-treated at a melting temperature. It can be obtained by melting and then rapidly cooling. Here, rapid cooling refers to conditions under which glass transition point is usually obtained at a rate of 1 to 10 ° C. per second. The electrical conductivity of the glass composition made here is preferably 10 −13 S · cm −1 or more at 25 ° C., more preferably 10 −9 S · cm −1 or more, and 10 −7. S · cm −1 or more is more preferable. Here, electrical conductivity means volume resistivity measured by the four probe method.

次に、前記ガラス組成物を該組成物の結晶化温度以上で一定時間熱処理をする。より具体的には熱処理温度として400℃〜800℃の範囲、より好ましくは450℃〜650℃、時間としては10分〜60分、熱処理雰囲気として大気中で行う。その後、同加熱炉内で室温になるまで自然冷却させる。なお、自然冷却とは、表面と内部の温度差が無く、ガラス転移点が発生しない結晶化される条件を言う。  Next, the glass composition is heat-treated at a temperature equal to or higher than the crystallization temperature of the composition. More specifically, the heat treatment temperature is in the range of 400 ° C. to 800 ° C., more preferably 450 ° C. to 650 ° C., the time is 10 minutes to 60 minutes, and the heat treatment atmosphere is performed in the air. Then, it is naturally cooled to room temperature in the same heating furnace. In addition, natural cooling refers to a condition for crystallization without a temperature difference between the surface and the inside and without generating a glass transition point.

《ガラス混合物から直接製造する方法》
本発明では、酸化バナジウムを主成分に含むガラス混合物を調整した後に溶融処理する工程と、前述のように急冷して一旦ガラス組成物を形成するのではなく、あえて自然冷却することで結晶化させバナジウム結晶化複合酸化物を得ることもできる。この場合の溶融する方法は公知の方法でよく、公知の急冷に替えて自然冷却をすれば足りる。なお、ここでの自然冷却も、表面と内部の温度差が無くガラス転移点が発生しない結晶化される条件を言う。これにより、一度の熱処理工程でよくなり、製造工程を短縮することができる。
<< Method of manufacturing directly from glass mixture >>
In the present invention, after preparing a glass mixture containing vanadium oxide as a main component, it is melt-treated, and as described above, it is not cooled to form a glass composition once, but it is crystallized by natural cooling. A vanadium crystallized composite oxide can also be obtained. The melting method in this case may be a known method, and natural cooling is sufficient instead of the known rapid cooling. Here, natural cooling also refers to conditions for crystallization where there is no temperature difference between the surface and the interior and no glass transition point is generated. Thereby, a single heat treatment process is sufficient, and the manufacturing process can be shortened.

《バナジウム結晶化複合酸化物の光反応特性》
バナジウム結晶化複合酸化物の光反応特性評価は、光音響効果を用いた分光法を用いて行うことができる。光音響分光法では、試料に断続的に光を照射し、試料に吸収された光エネルギーが熱として放出されることにより生じる周期的な熱変化を音波として検出するものであり、その音波をエネルギー変化した結果が図1である。
<< Photoreaction characteristics of vanadium crystallized complex oxide >>
The photoreaction characteristics of the vanadium crystallized composite oxide can be evaluated using a spectroscopic method using a photoacoustic effect. In photoacoustic spectroscopy, a sample is irradiated with light intermittently, and periodic thermal changes that occur when light energy absorbed by the sample is released as heat are detected as sound waves. The changed result is shown in FIG.

図1では、本発明のバナジウム結晶化複合酸化物の組成を変えたものを2種類示したものである。組成A(20BaO・70V・10FeO)は2.2eV、組成B(25BaO・55V・10FeO・3AL・7SiO)は1.2eVのバンドギャップエネルギーであることが示されている。つまりバナジウム結晶化複合酸化物は、組成の調整によってバンドギャップエネルギーや吸収領域を調整(組成Aと組成Bの結果からすれば、1030〜500nm)出来る特性を有する。なお酸化チタンは、バンドギャップエネルギーが3.2eVであり、387nmより短波長の光を吸収するが、バナジウム結晶化複合酸化物のバンドギャップは、上述のとおり組成をさらに変化させれば、最終的には、紫外領域から可視領域の吸収、およそ1.0〜2.5eVのバンドギャップエネルギーの範囲で調整することができる。FIG. 1 shows two types of the vanadium crystallized composite oxide of the present invention with different compositions. Composition A (20BaO · 70V 2 O 5 · 10FeO) has a band gap energy of 2.2 eV, and Composition B (25BaO · 55V 2 O 5 · 10FeO · 3AL 2 O 3 · 7SiO 2 ) has a band gap energy of 1.2 eV. Has been. That is, the vanadium crystallized composite oxide has a characteristic that the band gap energy and the absorption region can be adjusted by adjusting the composition (1030 to 500 nm according to the results of the composition A and the composition B). Titanium oxide has a band gap energy of 3.2 eV and absorbs light having a wavelength shorter than 387 nm. However, the band gap of the vanadium crystallized composite oxide can be finally changed by changing the composition as described above. Can be adjusted in the range of absorption from the ultraviolet region to the visible region and a band gap energy of about 1.0 to 2.5 eV.

《バナジウム結晶化複合酸化物の構造特性》
次に、バナジウム結晶化複合酸化物が結晶化されている状態を説明する。図2は、バナジウム結晶化複合酸化物について示差熱分析(DTA)を測定した結果であり、バナジウム結晶化複合酸化物が結晶1ピークと結晶2のピークが発生し結晶物が構成されること(結晶化されていること)がわかる。また、図3は、バナジウム結晶化複合酸化物のX線回折(XRD)結果であり、これによれば、図2の結晶ピーク1がBa−V−Oのピークであり、結晶ピーク2がFe−V−Oのピークであることが理解でき、バナジウム結晶化複合酸化物の構成が確認されている。このように溶融後の冷却の条件にて、示差熱分析(DTA)を測定した結果、結晶ピークが検出されるものは全て、本発明でいう結晶化されたバナジウム結晶化複合酸化物に該当する。
<< Structural characteristics of vanadium crystallized complex oxide >>
Next, the state in which the vanadium crystallized composite oxide is crystallized will be described. FIG. 2 shows the results of differential thermal analysis (DTA) measurement of vanadium crystallized composite oxide. In the vanadium crystallized composite oxide, a crystal 1 peak and a crystal 2 peak are generated to form a crystal ( It can be seen that it is crystallized. 3 is an X-ray diffraction (XRD) result of the vanadium crystallized composite oxide. According to this, crystal peak 1 in FIG. 2 is a Ba—V—O peak, and crystal peak 2 is Fe— It can be understood that it is a peak of -V-O, and the configuration of the vanadium crystallized composite oxide has been confirmed. As a result of differential thermal analysis (DTA) measurement under the cooling conditions after melting as described above, all the crystal peaks detected are applicable to the crystallized vanadium crystallized composite oxide referred to in the present invention. .

また、本発明のバナジウム結晶化複合酸化物は、粉末化してペースト状にするなどして、太陽電池や光触媒として利用することができるが、粉末化する方法は、ジェットミル乾式粉砕法、ビーズミル湿式粉砕法、RF熱プラズマ法等、公知の方法で行うことができる。さらに連続流通式超臨界製造技術等にて作製することでも可能である。これにより量子効果が得られる反応性を示す10nm以下のサイズ作製が可能である。  In addition, the vanadium crystallized composite oxide of the present invention can be used as a solar cell or a photocatalyst by pulverizing it into a paste or the like. The method of pulverizing is a jet mill dry pulverization method, a bead mill wet method. It can be performed by a known method such as a pulverization method or an RF thermal plasma method. Further, it can be produced by a continuous flow supercritical manufacturing technique or the like. As a result, it is possible to fabricate a size of 10 nm or less, which shows the reactivity with which the quantum effect is obtained.

《バナジウム結晶化複合酸化物の応用例》
また、従来技術において酸化チタンによる光触媒、太陽電池及び酸化バナジウム主成分の導電率について述べたところであるが、本発明の光活性効果の検証を光照射による発電効果(太陽電池)とアセトアルデヒドのCO析出量による光触媒反応を酸化チタンとの比較を行ったところ、本発明のバナジウム結晶化複合酸化物が光反応性材の活性を高める作用を有する新素材であることが見出され、バナジウム結晶化複合酸化物を光吸収体に用いた湿式太陽電池や、バナジウム結晶化複合酸化物を含んだ光触媒に用いることもできることも後述のとおり確認された。
<Application example of vanadium crystallized composite oxide>
In addition, in the prior art, the photocatalyst by titanium oxide, the solar cell, and the electrical conductivity of the vanadium oxide main component have been described. The photoactive effect of the present invention was verified by the power generation effect (solar cell) by light irradiation and the CO 2 of acetaldehyde. When the photocatalytic reaction by the amount of precipitation was compared with titanium oxide, it was found that the vanadium crystallization composite oxide of the present invention is a new material having an action of enhancing the activity of the photoreactive material, and vanadium crystallization. It was also confirmed as described later that the composite oxide can be used for a wet solar cell using a light absorber or a photocatalyst containing a vanadium crystallized composite oxide.

バナジウム結晶化複合酸化物の製造例及びその評価結果の詳細は、以下のとおりである。  Details of production examples of the vanadium crystallized composite oxide and evaluation results thereof are as follows.

製造例1(ガラス混合物からガラス組成物を経て製造する方法1)
酸化バナジウムを主成分とする化学組成が20BaO・70V・10FeOにそれぞれモル比で調整された混合物及び化学組成が25BaO・55V・10FeO・3AL・7SiOにそれぞれモル比で調整された混合物をそれぞれ作製し、これら混合物を白金るつぼ等に移し加熱炉中1000℃で60分間加熱し、溶融した。これを直ちに加熱炉から取り出し空気中で急冷し導電性ガラス組成物(組成A及びB)を作製した。
Production Example 1 (Method 1 of producing from a glass mixture through a glass composition)
Each equimolar mixture chemical composition mainly composed of vanadium oxide is adjusted in each molar ratio 20BaO · 70V 2 O 5 · 10FeO and chemical composition in 25BaO · 55V 2 O 5 · 10FeO · 3AL 2 O 3 · 7SiO 2 Mixtures adjusted in ratio were prepared, and these mixtures were transferred to a platinum crucible or the like, heated in a heating furnace at 1000 ° C. for 60 minutes, and melted. This was immediately taken out of the heating furnace and rapidly cooled in the air to prepare conductive glass compositions (compositions A and B).

次にこれらガラス組成物を、ジェットミルなどより乾式粉砕した平均粒径1〜3μm粒子、更にイソプロピルアルコール(IPA)などで分散させビーズミルによる湿式方式で粉砕させ粉末状ガラスペースト化した。なお、溶剤を完全に除去できる事が可能なら、有機溶剤および水など特に限定するものではない。例えば粉末状ガラス組成物をペースト化(液状化)するための溶剤としては、例えばターピネオール、ジエチレングリコールモノブチルエーテルアセテート、2,2,4−トリメチル−1,3−ペンタジオールモノイソブチレート等を単独または混合して使用した組成物でも良い。  Next, these glass compositions were dispersed with an average particle diameter of 1 to 3 μm, which was dry-ground by a jet mill or the like, and further isopropyl alcohol (IPA) or the like, and pulverized by a wet method using a bead mill to form a powdery glass paste. The solvent is not particularly limited as long as the solvent can be completely removed. For example, as a solvent for pasting (liquefying) a powdery glass composition, for example, terpineol, diethylene glycol monobutyl ether acetate, 2,2,4-trimethyl-1,3-pentadiol monoisobutyrate or the like can be used alone or A composition used by mixing may also be used.

その後、縦50mm×横40mm×厚さ1mmのステンレス板の上面に粉末状の酸化バナジウムを主成分とする前記ガラスペースト組成物A及びBを厚さ0.2mmにそれぞれ塗布した。さらに、上記各試料を、室温で10分間静置してペースト塗膜を150℃で30分間加熱して、ペースト塗膜中の有機溶剤を揮発させた。次いで加熱炉に入れて昇温速度10℃/分で580℃に昇温し、同温度にて10分間焼成した。焼成後、加熱炉内で室温になるまで自然冷却させ、バナジウム結晶化複合酸化物(組成A及び組成B)を得た。  Thereafter, the glass paste compositions A and B mainly composed of powdered vanadium oxide were applied to a top surface of a stainless plate having a length of 50 mm, a width of 40 mm and a thickness of 1 mm to a thickness of 0.2 mm. Furthermore, each said sample was left still for 10 minutes at room temperature, and the paste coating film was heated at 150 degreeC for 30 minutes, and the organic solvent in a paste coating film was volatilized. Subsequently, it put into the heating furnace, heated up to 580 degreeC with the temperature increase rate of 10 degree-C / min, and baked at the same temperature for 10 minutes. After firing, it was naturally cooled to room temperature in a heating furnace to obtain vanadium crystallized composite oxides (composition A and composition B).

製造例2(ガラス混合物からガラス組成物を経て製造する方法2)
製造例1で製造された前記ガラスペースト組成物A及びBを、縦50mm×横40mm×厚さ1mmのステンレス板の上面に厚さ0.2mmに水分散させて塗布した。さらに上記試料を、室温で静置し水を蒸発させ、次いで加熱炉に入れて昇温速度10℃/分で580℃に昇温し、同温度にて10分間焼成した。焼成後、加熱炉内で室温になるまで自然冷却させバナジウム結晶化複合酸化物(組成A及び組成B)を得た。
Production Example 2 (Method 2 for producing from a glass mixture through a glass composition)
The glass paste compositions A and B produced in Production Example 1 were dispersed in water on a top surface of a stainless steel plate having a length of 50 mm, a width of 40 mm, and a thickness of 1 mm and applied in a thickness of 0.2 mm. Further, the sample was allowed to stand at room temperature to evaporate water, then placed in a heating furnace, heated to 580 ° C. at a heating rate of 10 ° C./min, and baked at the same temperature for 10 minutes. After firing, it was naturally cooled to room temperature in a heating furnace to obtain vanadium crystallized composite oxides (composition A and composition B).

製造例3(ガラス混合物から直接製造する方法)
酸化バナジウムを主成分とする化学組成が20BaO・70V・10FeOにそれぞれモル比で調整された混合物及び化学組成が25BaO・55V・10FeO・3AL・7SiOにそれぞれモル比で調整された混合物をそれぞれ作製し、これら混合物を白金るつぼ等に移し加熱炉中1000℃で60分間加熱し、溶融した。その後、これを同加熱炉内で室温になるまで自然冷却し、再度加熱処理等することなくバナジウム結晶化複合酸化物(組成A及び組成B)を得た。
Production Example 3 (Method of producing directly from a glass mixture)
A mixture in which the chemical composition mainly composed of vanadium oxide is adjusted to a molar ratio of 20BaO · 70V 2 O 5 · 10FeO, and the chemical composition is mol in 25BaO · 55V 2 O 5 · 10FeO · 3AL 2 O 3 · 7SiO 2 respectively. Each of the mixtures adjusted in the ratio was prepared, and these mixtures were transferred to a platinum crucible or the like and heated at 1000 ° C. for 60 minutes in a heating furnace to melt. Then, this was naturally cooled to room temperature in the same heating furnace, and vanadium crystallized composite oxide (composition A and composition B) was obtained without performing heat treatment again.

発電効果の検証(製造例1で製造したバナジウム結晶化複合酸化物)
次に、バナジウム結晶化複合酸化物の光反応性評価結果について詳細に説明する。評価は図4に示される方法で評価した。すなわち、まずステンレス板4上に結晶形成した被膜にヨウ素系の電解液10を数滴浸した。電解液は一般に支持電解質としては、リチウムイオンなどの陽イオンや塩素イオンなどの陰イオンなど種々の電解質を用いることができる。電解質中に存在させる酸化還元対としては、ヨウ素−ヨウ素化合物、臭素−臭素化合物などの酸化還元対を用いることができる。また、光吸収面にはフッソドープ酸化スズ(FTO)膜3をコーティングしたプラスティック板2を用いた。なお、インジウムドープ酸化スズ(ITO)を用いても良い。さらに、プラスティック板以外に透明性のあるガラスなどにフッソドープ酸化スズ(FTO)膜をコーティングした板を用いても良い。
Verification of power generation effect (vanadium crystallized complex oxide produced in Production Example 1)
Next, the photoreactivity evaluation result of the vanadium crystallized composite oxide will be described in detail. Evaluation was performed by the method shown in FIG. That is, first, several drops of iodine-based electrolyte 10 were immersed in a film formed on the stainless steel plate 4. In general, various electrolytes such as cations such as lithium ions and anions such as chlorine ions can be used as the supporting electrolyte in the electrolytic solution. As the redox pair to be present in the electrolyte, a redox pair such as iodine-iodine compound or bromine-bromine compound can be used. A plastic plate 2 coated with a fluorine-doped tin oxide (FTO) film 3 was used on the light absorption surface. Indium doped tin oxide (ITO) may be used. In addition to the plastic plate, a transparent glass or the like coated with a fluorine-doped tin oxide (FTO) film may be used.

作製した評価用試料(製造例1で製造したバナジウム結晶化複合酸化物の組成A、組成B)をブラックライト、蛍光灯、及び太陽光にて発生する電圧と電流を図4の模式図(光4、電圧計5、電流系6)の回路を用いて光反応性評価を行なった。なお、使用したハンディーブラックライトは380nmから短波長に分光特性を有するFL10WBLBを使用し照射量1W/cmで評価を行ない、使用した蛍光灯は380nmから長波長に分光特性を有するFL10W蛍光灯(白色)を使用し照射6,000ルクス光量で評価を行ない、使用した光源は自然太陽光に類似した擬似太陽光源はソーラMiniUSS−40(ウシオ製)を照射強度1sun(100mmW/cm)評価をそれぞれ行なった。The voltage and current generated in the black light, the fluorescent lamp, and the sunlight are shown in the schematic diagram (light) of the produced sample for evaluation (composition A and composition B of the vanadium crystallized composite oxide produced in Production Example 1). Photoreactivity evaluation was performed using a circuit of 4, a voltmeter 5 and a current system 6). The handy black light used was FL10WBLB having spectral characteristics from 380 nm to a short wavelength and evaluated at an irradiation amount of 1 W / cm 2. The fluorescent lamp used was an FL10W fluorescent lamp having spectral characteristics from 380 nm to a long wavelength ( White) is used, and the light source used is evaluated with a light intensity of 6,000 lux. The simulated light source similar to natural sunlight is Solar MiniUSS-40 (manufactured by Ushio). The irradiation intensity is 1 sun (100 mmW / cm 2 ). Each was done.

具体的には図4の模式図の回路を用いて光を照射し発生する電圧及び電流の測定を行った。組成A(20BaO・70V・10FeO)、組成B(25BaO・55V・10FeO・3AL・7SiO)において発電効果が得られた。Specifically, the voltage and current generated by irradiating light were measured using the circuit shown in the schematic diagram of FIG. Composition A (20BaO · 70V 2 O 5 · 10FeO), power generation effect in composition B (25BaO · 55V 2 O 5 · 10FeO · 3AL 2 O 3 · 7SiO 2) was obtained.

光触媒効果の検証(製造例1で製造したバナジウム結晶化複合酸化物)
図6は、バナジウム結晶化複合酸化物と酸化チタンによるアセトアルデヒド分解によるCO析出濃度(ppm)を照射時間により測定する装置構成を示したものであり、試料をセットした容器16を純空気で置換(純空気を10分間導入)したあとアセトアルデヒド5mlを注入し、蛍光灯11は380nmから長波長に分光特性を有するFL10W蛍光灯(白色)6000ルクスを照射した。照射においては可視光域のみの光とするために400nm以下をカットするフィルター12を用いた。そこから1mlを取り出し口13から取り、アセトアルデヒドが分解しCO析出量を測定した。データ30分ごとにクロマトグラフィー機器で測定を行った。
Verification of photocatalytic effect (vanadium crystallized complex oxide produced in Production Example 1)
FIG. 6 shows an apparatus configuration for measuring the CO 2 precipitation concentration (ppm) by acetaldehyde decomposition with vanadium crystallized composite oxide and titanium oxide according to the irradiation time, and the container 16 in which the sample is set is replaced with pure air. After introducing pure air for 10 minutes, 5 ml of acetaldehyde was injected, and the fluorescent lamp 11 was irradiated with 6000 lux of a FL10W fluorescent lamp (white) having spectral characteristics from 380 nm to a long wavelength. In the irradiation, a filter 12 that cuts 400 nm or less is used in order to obtain light only in the visible light range. From there, 1 ml was taken out and taken out from the opening 13, and acetaldehyde was decomposed and the amount of CO 2 deposited was measured. Data were measured with a chromatography instrument every 30 minutes.

その結果が図7に示されており、180分後の照射以上を経過するとバナジウム結晶化複合酸化物が酸化チタンを上回る結果となった。300分から900分までは継続光照射のみを行なった。図8にアセトアルデヒド光触媒分解の反応について示す。一般にアセトアルデヒドに光照射すると酸化分解過程で酢酸や蟻酸などの中間体が生成し、更に中間体が酸化分解する事でCOにまで分解生成される。そのCO発生の濃度を測定した結果が図7である。The result is shown in FIG. 7. When 180 minutes or more of irradiation passed, the vanadium crystallized composite oxide exceeded titanium oxide. Only continuous light irradiation was performed from 300 minutes to 900 minutes. FIG. 8 shows the reaction of acetaldehyde photocatalytic decomposition. In general, when acetaldehyde is irradiated with light, intermediates such as acetic acid and formic acid are generated in the oxidative decomposition process, and further, the intermediates are decomposed to CO 2 by oxidative decomposition. FIG. 7 shows the result of measuring the concentration of CO 2 generation.

発明の効果Effect of the invention

本発明のバナジウム結晶化複合酸化物は酸化チタンが吸収できない可視光域において、光反応活性を有するという効果を奏する。また、本発明のバナジウム結晶化複合酸化物は実施例で記述したように非常に簡便な設備や技術で安価にかつ大量に製造できる。さらに、本発明のバナジウム結晶化複合酸化物が粉末により構成されれば、各種溶剤を用いてペースト状にでき粘性に優れることになる。それにより板状の固形物で使用出来ない分野である太陽電池や光触媒の分野への応用も可能となる。  The vanadium crystallized composite oxide of the present invention has the effect of having photoreactive activity in the visible light region where titanium oxide cannot be absorbed. Further, the vanadium crystallized composite oxide of the present invention can be produced in a large amount at a low cost with very simple equipment and technology as described in the examples. Furthermore, if the vanadium crystallized composite oxide of the present invention is composed of powder, it can be made into a paste using various solvents and has excellent viscosity. Thereby, application to the field of a solar cell or a photocatalyst which is a field that cannot be used as a plate-like solid material is also possible.

バナジウム結晶化複合酸化物の組成による光音響分光によるバンドギャップ測定図Band gap measurement diagram by photoacoustic spectroscopy with composition of vanadium crystallized complex oxide バナジウム結晶化複合酸化物の示差熱分析(DTA)特性結果Differential thermal analysis (DTA) characteristics results of vanadium crystallized composite oxide バナジウム結晶化複合酸化物結晶X線回折(XRD)データVanadium crystallized complex oxide crystal X-ray diffraction (XRD) data バナジウム結晶化複合酸化物を用いた光反応特性調査模式図Schematic diagram of photoreaction characteristics using vanadium crystallized complex oxide バナジウム結晶化複合酸化物を用いた光反応特性調査測定データPhotoreaction characteristics investigation measurement data using vanadium crystallized complex oxide バナジウム結晶化複合酸化物を用いたCO析出濃度(ppm)光触媒試験模式図CO 2 precipitation concentration (ppm) photocatalytic test schematic diagram using vanadium crystallized composite oxide バナジウム結晶化複合酸化物を用いたCO析出濃度(ppm)光触媒試験結果CO 2 precipitation concentration (ppm) photocatalytic test results using vanadium crystallized composite oxide アセトアルデヒドの光照射による酸化分解のメカニズムMechanism of oxidative degradation of acetaldehyde by light irradiation

1.照射光源:ブラックライト、蛍光灯、及び太陽光
2.透明プラスティック板
3.透明フッソドープ酸化スズ(FTO)膜導電層
4.縦50mm×横40mm×厚さ1mmのステンレス板
5.電圧計
6.電流計
7.可変抵抗器
8.バナジウム結晶化複合酸化物形成層
9.遮蔽壁(電解液の漏れ防止用)
10.電解液
11.FL10W蛍光灯(白色)の可視光光源
12.400nm紫外光カットフィルター
13.アセトアルデヒド気体取り出し口
14.縦50mm×横50mm×厚さ1mmのテンパックスガラス基板
15.バナジウム結晶化複合酸化物形成層
16.密封された石英ガラスの透明容器(アセトアルデヒド気体含有)
1. Irradiation light source: black light, fluorescent light, and sunlight 2. Transparent plastic plate 3. Transparent fluorine-doped tin oxide (FTO) film conductive layer 4. Stainless steel plate 50mm long x 40mm wide x 1mm thick Voltmeter 6. 6. Ammeter Variable resistor 8. 8. Vanadium crystallized composite oxide forming layer Shielding wall (for preventing leakage of electrolyte)
10. Electrolyte solution11. FL10W fluorescent lamp (white) visible light source 12.400 nm ultraviolet light cut filter 13. Acetaldehyde gas outlet 14. 15. Tempax glass substrate 50 mm long × 50 mm wide × 1 mm thick 15. Vanadium crystallized composite oxide forming layer Sealed quartz glass transparent container (containing acetaldehyde gas)

Claims (7)

粉末状のバナジウム結晶化複合酸化物が少なくとも、酸化バナジウムを50〜98モル%、酸化バリウムを1〜40モル%、酸化鉄を1〜20モル%、を含有する事を特徴とするバナジウム結晶化複合酸化物Vanadium crystallization characterized in that the powdered vanadium crystallization composite oxide contains at least 50 to 98 mol% of vanadium oxide, 1 to 40 mol% of barium oxide, and 1 to 20 mol% of iron oxide. Complex oxide 請求項1に記載のバナジウム結晶化複合酸化物にシリカ及びアルミナを含むことを特徴とするバナジウム結晶化複合酸化物The vanadium crystallized composite oxide according to claim 1, comprising silica and alumina. 光音響分光法による測定において、1.0〜2.5eVであるバンドギャップエネルギーを有する請求項1又は請求項2のいずれか1つに記載の粉末状のバナジウム結晶化複合酸化物The powdery vanadium crystallized composite oxide according to any one of claims 1 and 2, which has a band gap energy of 1.0 to 2.5 eV in measurement by photoacoustic spectroscopy. 平均粒径が3ミクロンメートル以下である事を特徴とする請求項1〜3のいずれか1つに記載の粉末状のバナジウム結晶化複合酸化物The powdery vanadium crystallized composite oxide according to any one of claims 1 to 3, wherein the average particle size is 3 micrometers or less. 酸化バナジウムを主成分に含むガラス混合物を調整する工程と、前記ガラス混合物を溶融及び急冷し、ガラス組成物を得る工程と、前記ガラス組成物を結晶化温度以上で加熱処理を施す工程と、前記加熱処理後に自然冷却して粉末加工工程及び結晶化させる工程とを備えた請求項1〜4のいずれか1つに記載の粉末状のバナジウム結晶化複合酸化物の製造方法A step of preparing a glass mixture containing vanadium oxide as a main component, a step of melting and quenching the glass mixture to obtain a glass composition, a step of heating the glass composition at a crystallization temperature or higher, The method for producing a powdered vanadium crystallized composite oxide according to any one of claims 1 to 4, further comprising a powder processing step and a step of crystallizing by natural cooling after the heat treatment. 酸化バナジウムを主成分に含むガラス混合物を調整する工程と、前記ガラス混合物を溶融処理する工程と、溶融されたガラス混合物を自然冷却して粉末加工工程及び結晶化させる工程とを備える請求項1〜のいずれか1つに記載の粉末状のバナジウム結晶化複合酸化物の製造方法A step of adjusting a glass mixture containing vanadium oxide as a main component, a step of melting the glass mixture, and a step of spontaneously cooling the melted glass mixture for powder processing and crystallization are provided. 4. A method for producing a powdery vanadium crystallized composite oxide according to any one of 4 前記粉末加工工程が乾式処理と湿式処理からなることを特徴とする、請求項5又は6記載の粉末状のバナジウム結晶化複合酸化物の製造方法The method for producing a powdered vanadium crystallized composite oxide according to claim 5 or 6, wherein the powder processing step comprises a dry process and a wet process.
JP2011260957A 2011-11-11 2011-11-11 Vanadium crystallized composite oxide and production method Expired - Fee Related JP5333976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011260957A JP5333976B2 (en) 2011-11-11 2011-11-11 Vanadium crystallized composite oxide and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011260957A JP5333976B2 (en) 2011-11-11 2011-11-11 Vanadium crystallized composite oxide and production method

Publications (2)

Publication Number Publication Date
JP2013103875A JP2013103875A (en) 2013-05-30
JP5333976B2 true JP5333976B2 (en) 2013-11-06

Family

ID=48623703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011260957A Expired - Fee Related JP5333976B2 (en) 2011-11-11 2011-11-11 Vanadium crystallized composite oxide and production method

Country Status (1)

Country Link
JP (1) JP5333976B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3854985B2 (en) * 2001-07-18 2006-12-06 財団法人北九州産業学術推進機構 Vanadate glass and method for producing vanadate glass
JP5414409B2 (en) * 2009-01-16 2014-02-12 日立粉末冶金株式会社 Low melting glass composition, low-temperature sealing material and electronic component using the same

Also Published As

Publication number Publication date
JP2013103875A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
Zhang et al. Preparation and enhanced visible-light photocatalytic activity of graphitic carbon nitride/bismuth niobate heterojunctions
US7431903B2 (en) Tubular titanium oxide particles and process for preparing same
Zeng et al. Facile synthesis of large-area CeO2/ZnO nanotube arrays for enhanced photocatalytic hydrogen evolution
Bagtache et al. Synthesis and semiconducting properties of Na2MnPO4F. Application to degradation of Rhodamine B under UV-light
Zhang et al. Temperature-dependent differences in wettability and photocatalysis of TiO2 nanotube arrays thin films
Cho et al. Improved photoelectrochemical properties of TiO2 nanotubes doped with Er and effects on hydrogen production from water splitting
Zhang et al. Exceptional performance of photoelectrochemical water oxidation of single-crystal rutile TiO2 nanorods dependent on the hole trapping of modified chloride
Hajra et al. Photocatalytic activity of Bi2O3 nanocrystalline semiconductor developed via chemical-bath synthesis
Li et al. Boosted charge transfer and selective photocatalytic CO2 reduction to CH4 over sulfur-doped K0. 475WO3 nanorods under visible light: Performance and mechanism insight
Dagdeviren et al. The effect of photoinduced surface oxygen vacancies on the charge carrier dynamics in TiO2 films
Koo et al. Influence of Nb-doped TiO2 blocking layers as a cascading band structure for enhanced photovoltaic properties
Szkoda et al. Optimization of boron-doping process of titania nanotubes via electrochemical method toward enhanced photoactivity
JP2004234988A (en) Photoelectric conversion element and its manufacturing method, electronic device and its manufacturing method, and semiconductor layer and its manufacturing method
Bashiri et al. Enhancing photoelectrochemical hydrogen production over Cu and Ni doped titania thin film: Effect of calcination duration
Kohlrausch et al. Polymorphic phase study on nitrogen-doped TiO 2 nanoparticles: effect on oxygen site occupancy, dye sensitized solar cells efficiency and hydrogen production
Grigioni et al. Photoinduced electron transfer in WO3/BiVO4 heterojunction photoanodes: effects of the WO3 layer thickness
Sun et al. Preparation and photoelectric properties of Bi doped ZnO nanoarrays
Dey et al. Hydrothermal temperature-controlled size and distribution of CeO2 nanoparticles over TiO2 nanorods: heterojunction characteristics and photoelectrochemical performance
Zhao et al. Synthesis and photoelectrochemical properties of thin bismuth molybdates film with various crystal phases
Skorenko et al. Thermal stability of ZnO nanoparticle bound organic chromophores
Wang et al. Fabrication of PET/BiOI/SnO2 heterostructure nanocomposites for enhanced visible-light photocatalytic activity
Kulathunga et al. Photocatalytic removal of airborne indoor pollutants by IR illuminated silver coated TiO2 catalyst: Advantage of one-dimensional TiO2 nanostructures in IR active photocatalysis
US9308526B2 (en) Visible light sensitive photocatalyst, method of producing visible light sensitive photocatalyst, and electrochemical water decomposition cell and organic material decomposition system each including visible light sensitive photocatalyst
JP2001247314A (en) Method for forming thin film and photoelectric transfer element
Yuliarto et al. Synthesis of Nanoporous TiO 2 and Its Potential Applicability for Dye-Sensitized Solar Cell Using Antocyanine Black Rice

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees