JP5333749B2 - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP5333749B2
JP5333749B2 JP2009076040A JP2009076040A JP5333749B2 JP 5333749 B2 JP5333749 B2 JP 5333749B2 JP 2009076040 A JP2009076040 A JP 2009076040A JP 2009076040 A JP2009076040 A JP 2009076040A JP 5333749 B2 JP5333749 B2 JP 5333749B2
Authority
JP
Japan
Prior art keywords
insulator
metal shell
heat radiating
spark plug
shelf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009076040A
Other languages
Japanese (ja)
Other versions
JP2010231933A (en
Inventor
英司 小寺
信行 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2009076040A priority Critical patent/JP5333749B2/en
Publication of JP2010231933A publication Critical patent/JP2010231933A/en
Application granted granted Critical
Publication of JP5333749B2 publication Critical patent/JP5333749B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)

Description

本発明は、内燃機関に使用されるスパークプラグに関する。   The present invention relates to a spark plug used for an internal combustion engine.

従来から、スパークプラグとして、中心電極と、この中心電極を保持する絶縁体と、先端部に接地電極を備えた主体金具とを備え、主体金具内に絶縁体が支持固定された構造のものが知られている。(例えば、特許文献1参照)。   Conventionally, a spark plug has a structure in which a center electrode, an insulator holding the center electrode, and a metal shell provided with a ground electrode at the tip are supported and fixed in the metal shell. Are known. (For example, refer to Patent Document 1).

内燃機関に使用されるスパークプラグは、中心電極が挿設された絶縁体を保持する主体金具の燃焼室側の先端部に接地電極を溶接して、接地電極の自由端部を中心電極の先端部と対向させて、火花放電間隙を形成している。そして、中心電極と接地電極との間で火花放電が行われ、両電極間に曝された燃料空気に点火することにより、火炎核が形成される。   A spark plug used in an internal combustion engine has a ground electrode welded to the front end of the metal shell that holds the insulator in which the center electrode is inserted, and the free end of the ground electrode is connected to the front end of the center electrode. A spark discharge gap is formed facing the part. Then, spark discharge is performed between the center electrode and the ground electrode, and the fuel air exposed between the two electrodes is ignited to form a flame kernel.

スパークプラグにおける主体金具と絶縁体との組み付けは、主体金具の後方側開口部から前方側に向かって絶縁体の先端部を挿入するとともに、その後方側開口部に絶縁体の後端側に形成された径大部を圧入することによって行われる。そして、加熱された絶縁体の熱を放熱するために、主体金具と絶縁体との間に放熱部材を圧入している。   Assembling of the metal shell and insulator in the spark plug is performed by inserting the tip of the insulator from the rear opening of the metal shell toward the front and forming the insulator at the rear opening of the rear opening. This is done by press-fitting the large diameter portion. And in order to radiate the heat | fever of the heated insulator, the heat radiating member is press-fitted between the metal shell and the insulator.

前記放熱部材は環状に形成され、その外側面の一部に前記主体金具の内周面に圧入される外側圧入接触部が形成され、その内周面の一部に前記絶縁体の外側面に圧入される内側圧入接触部が形成されている。   The heat dissipating member is formed in an annular shape, and an outer press-fitting contact portion that is press-fitted into the inner peripheral surface of the metal shell is formed on a part of the outer surface of the heat radiating member. An inner press-fit contact portion to be press-fitted is formed.

そして、主体金具に絶縁体を組み付ける場合は、予め主体金具内に放熱部材を圧入し、次いで絶縁体を主体金具に圧入する。この圧入にともなって、絶縁体の前方側の小径部(脚長部ともいう)が放熱部材に圧入される。この結果、加熱された絶縁体の熱が放熱部材を介して主体金具に放熱される。   When the insulator is assembled to the metal shell, the heat radiating member is press-fitted into the metal shell in advance, and then the insulator is press-fitted into the metal shell. Along with the press-fitting, a small-diameter portion (also referred to as a long leg portion) on the front side of the insulator is press-fitted into the heat dissipation member. As a result, the heat of the heated insulator is radiated to the metal shell through the heat radiating member.

特開2007−305374号公報JP 2007-305374 A

しかし、前記構成にあっては、放熱部材に絶縁体を圧入する際、絶縁体に偏芯や軸振れがあると、絶縁体の外周囲の全体にわたって放熱部材が均一に当接せず、脚長部の後方側基部に大きな曲げ応力がかかって、絶縁体が破損することがあった。   However, in the above configuration, when the insulator is pressed into the heat radiating member, if the insulator has eccentricity or shaft runout, the heat radiating member does not uniformly contact over the entire outer periphery of the insulator, and the leg length In some cases, a large bending stress was applied to the rear base of the part, and the insulator was damaged.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、絶縁体の組み付け時に、絶縁体が破損することのないスパークプラグを提供することにある。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a spark plug in which an insulator is not damaged when the insulator is assembled.

本発明の前述した目的は、下記構成により達成される。
(1) 軸線方向に延在する中心電極と、
自身の前方側にて前記中心電極を保持する円筒状の絶縁体と、
前記絶縁体の一部を収容する筒状の主体金具と、
一端が前記主体金具の前方側端部に接合され、他端が前記中心電極との間で火花放電間隙を形成する接地電極と、
前記絶縁体のうち後方側の部位の外径よりも小径の前方側小径部に圧入嵌合され、前記絶縁体と前記主体金具との間を連絡して放熱経路を形成する環状の放熱部材とを備えたスパークプラグであって、
前記主体金具は、その内周面に、半径方向内方に張り出すとともに前記半径方向に対して±30度の範囲に含まれる面である、前記半径方向と略平行な平坦面を有する棚部を有し、
前記放熱部材は、前記主体金具の前記内周面とは離間した状態で前記棚部の前記平坦面に支持されることで、前記主体金具と連絡していることを特徴とするスパークプラグ。
The above-described object of the present invention is achieved by the following configuration.
(1) a central electrode extending in the axial direction;
A cylindrical insulator holding the center electrode on its front side;
A cylindrical metal shell for housing a part of the insulator;
One end is joined to the front side end of the metal shell, and the other end forms a spark discharge gap with the center electrode,
An annular heat radiating member that is press-fitted into a front-side small-diameter portion that is smaller than the outer diameter of the rear portion of the insulator, and that forms a heat-dissipating path by connecting the insulator and the metal shell. A spark plug comprising:
The metal shell is a shelf that has a flat surface substantially parallel to the radial direction, and is a surface that protrudes inward in the radial direction and is included in a range of ± 30 degrees with respect to the radial direction. Have
The spark plug is characterized in that the heat radiating member is in contact with the metal shell by being supported by the flat surface of the shelf in a state of being separated from the inner peripheral surface of the metal shell.

(2) 前記主体金具は、機関に螺合するためのねじ部を外周面に有し、前記棚部は前記ねじ部の内側に設けられていることを特徴とする前記(1)に記載のスパークプラグ。   (2) The metal shell has a screw part for screwing into the engine on an outer peripheral surface, and the shelf part is provided on the inner side of the screw part. Spark plug.

(3) 前記主体金具は、前記絶縁体の前記後方側の部位と気密に結合されており、
前記主体金具と前記絶縁体との気密結合部における摩擦力F1と、前記絶縁体と前記放熱部材との圧入部における摩擦力F2との関係が、F1>F2であることを特徴とする前記(1)又は(2)に記載のスパークプラグ。
(3) The metal shell is airtightly coupled to the rear portion of the insulator,
The relationship between the frictional force F1 at the hermetic coupling portion between the metal shell and the insulator and the frictional force F2 at the press-fitting portion between the insulator and the heat radiating member is F1> F2. The spark plug according to 1) or (2).

(4) 前記放熱部材と前記棚部とは素材結合により固着されていることを特徴とする前記(1)〜(3)のいずれかに記載のスパークプラグ。   (4) The spark plug according to any one of (1) to (3), wherein the heat radiating member and the shelf are fixed by material bonding.

(5) 前記素材結合は、溶接、ろう接、又は半田付けであることを特徴とする前記(4)に記載のスパークプラグ。   (5) The spark plug according to (4), wherein the material bonding is welding, brazing, or soldering.

(6) 前記放熱部材と前記棚部との素材結合部における付着力F3と、前記絶縁体と前記放熱部材との圧入部における摩擦力F2との関係が、F2<F3であることを特徴とする前記(4)又は(5)に記載のスパークプラグ。   (6) The relationship between the adhesive force F3 at the material coupling portion between the heat dissipation member and the shelf and the frictional force F2 at the press-fitting portion between the insulator and the heat dissipation member is F2 <F3. The spark plug according to (4) or (5).

(7) 前記主体金具の前記内周面のうち前記棚部よりも後方側に圧入されるとともに、前記絶縁体と前記棚部との間で前記放熱部材とともに軸方向に挟持されることで、前記放熱部材を前記棚部の前記平坦面に向けて押圧する押圧部材を更に備え、
前記押圧部材は、前記放熱部材とは前記半径方向において離間していることを特徴とする前記(1)〜(3)のいずれかに記載のスパークプラグ。
(7) While being press-fitted to the rear side of the shelf portion of the inner peripheral surface of the metal shell, and being sandwiched in the axial direction together with the heat dissipation member between the insulator and the shelf portion, A pressing member that presses the heat dissipation member toward the flat surface of the shelf;
The spark plug according to any one of (1) to (3), wherein the pressing member is separated from the heat dissipation member in the radial direction.

(8) 前記絶縁体と前記放熱部材との圧入部における摩擦力F2と、前記押圧部材と前記主体金具との圧入部における摩擦力F4との関係が、F2<F4であることを特徴とする前記(7)に記載のスパークプラグ。   (8) The relationship between the frictional force F2 at the press-fitted portion between the insulator and the heat radiating member and the frictional force F4 at the press-fitted portion between the pressing member and the metal shell is F2 <F4. The spark plug according to (7).

(9) 前記主体金具は、前記押圧部材が圧入される部分の後方側に、前記押圧部材の外径よりも大きい内径のポケット部を有し、前記主体金具の前記内周面のうち前記ポケット部の内周面と前記押圧部材が圧入される圧入面との間がテーパ面に形成されていることを特徴とする前記(7)又は(8)に記載のスパークプラグ。   (9) The metal shell has a pocket portion having an inner diameter larger than the outer diameter of the pressing member on the rear side of the portion into which the pressing member is press-fitted, and the pocket of the inner peripheral surface of the metal shell is the pocket. The spark plug according to (7) or (8), wherein a tapered surface is formed between an inner peripheral surface of the portion and a press-fitting surface into which the pressing member is press-fitted.

(10) 前記押圧部材は、自身の後方側端部に荷重により変形する突起を有し、前記押圧部材は前記突起が変形した状態で前記放熱部材とともに前記絶縁体と前記棚部との間に挟持されることを特徴とする前記(7)〜(9)のいずれかに記載のスパークプラグ。   (10) The pressing member has a protrusion deformed by a load at a rear end portion of the pressing member, and the pressing member is interposed between the insulator and the shelf together with the heat dissipation member in a state where the protrusion is deformed. The spark plug according to any one of (7) to (9), wherein the spark plug is sandwiched.

(11) 軸方向における前記放熱部材と前記押圧部材との間に、前記放熱部材及び前記押圧部材よりも軟らかい金属製の緩衝部材が配設されたことを特徴とする前記(7)〜(10)のいずれかに記載のスパークプラグ。   (11) The above-described (7) to (10), wherein a metal buffer member softer than the heat radiating member and the pressing member is disposed between the heat radiating member and the pressing member in the axial direction. ) Spark plug according to any one of the above.

前記(1)の構成によれば、放熱部材が主体金具の内周面と離間した状態で棚部のうち、半径方向内方に張り出すとともに前記半径方向に対して±30度の範囲に含まれる面である、半径方向と略平行な平坦面にて支持されているので、絶縁体を放熱部材に圧入する時に、絶縁体に偏芯、軸振れがあっても、放熱部材及び棚部の軸方向の位置関係が保たれるので、絶縁体に加わる曲げ応力を低減し、絶縁体の破損を防止できる。 According to the configuration of (1), the heat radiating member protrudes inward in the radial direction of the shelf in a state of being separated from the inner peripheral surface of the metal shell, and is included in a range of ± 30 degrees with respect to the radial direction. it is a surface, since it is supported by radial and substantially parallel flat surfaces, when press fitting the insulator to the heat radiating member, eccentric to the insulator, even axial runout, the heat radiating member and the ledges of Since the positional relationship in the axial direction is maintained, bending stress applied to the insulator can be reduced and damage to the insulator can be prevented.

前記(2)の構成によれば、機関と螺合される部分であるねじ部の内側に棚部が設けられているので、放熱部材から主体金具に放熱された熱が、機関に迅速に放熱されるので、放熱効率が更に高まる。   According to the configuration of (2), since the shelf is provided inside the threaded portion that is screwed with the engine, the heat radiated from the heat radiating member to the metal shell is quickly radiated to the engine. Therefore, the heat dissipation efficiency is further increased.

前記(3)の構成によれば、主体金具と絶縁体とが熱膨張して、特に、絶縁体が主体金具に対して相対的に軸方向に伸びる場合、絶縁体には、主体金具と絶縁体との気密結合部及び絶縁体と放熱部材との圧入部の間で引っ張り応力が発生する。このとき、F1>F2であることから、発生した引っ張り応力が摩擦力F2を上回ったとしても、絶縁体が放熱部材に対して軸方向にスライドすることとなり、引っ張り応力は摩擦力F2以下の大きさとなるので、主体金具と絶縁体との気密結合部に影響を与えることはなく、気密性を確保することができる。また、絶縁体が放熱部材に対して軸方向にスライドしても、放熱部材と絶縁体との圧入構造は維持されるので、絶縁体から放熱部材への放熱性を確保することができる。ここで、主体金具と絶縁体との気密の構成としては、圧入、焼き嵌め、冷やし嵌め、径差による締まり嵌め等の嵌合構成や、加締め構成を採用することができる。   According to the configuration of (3), the metal shell and the insulator are thermally expanded, and in particular, when the insulator extends in the axial direction relative to the metal shell, the insulator is insulated from the metal shell. A tensile stress is generated between the hermetic coupling portion with the body and the press-fitting portion between the insulator and the heat dissipation member. At this time, since F1> F2, even if the generated tensile stress exceeds the frictional force F2, the insulator slides in the axial direction with respect to the heat radiating member, and the tensile stress is less than the frictional force F2. As a result, the airtightness of the metal shell and the insulator is not affected, and the airtightness can be ensured. Further, even if the insulator slides in the axial direction with respect to the heat radiating member, the press-fitting structure between the heat radiating member and the insulator is maintained, so that heat dissipation from the insulator to the heat radiating member can be ensured. Here, as an airtight structure between the metal shell and the insulator, a fitting structure such as press fitting, shrink fitting, cold fitting, interference fitting due to a diameter difference, or a caulking structure can be employed.

前記(4)の構成によれば、放熱部材が主体金具の棚部に素材結合されているので、放熱部材と主体金具との密接が保持され、その分の接触熱抵抗が低減されて、放熱部材から主体金具への放熱効果が向上する。   According to the configuration of (4), since the heat radiating member is material-bonded to the shelf of the metal shell, the heat radiating member and the metal shell are kept in close contact with each other, the contact thermal resistance is reduced, and the heat is radiated. The heat dissipation effect from the member to the metal shell is improved.

前記(5)の構成によれば、放熱部材は溶接、ろう接、又は半田付けにより棚部に結合されるので、放熱部材と主体金具との密接が保持され、主体金具への放熱効果が向上する。   According to the configuration of (5), since the heat radiating member is coupled to the shelf by welding, brazing, or soldering, the heat radiating member and the metal shell are kept in close contact with each other, and the heat radiating effect on the metal shell is improved. To do.

前記(6)の構成によれば、主体金具と絶縁体とが熱膨張して、特に、絶縁体が主体金具に対して相対的に軸方向に伸びる場合、放熱部材には、放熱部材と棚部との素材結合部及び絶縁体と放熱部材との圧入部の間で引っ張り応力が発生する。このとき、F2<F3であることから、発生した引っ張り応力が摩擦力F2を上回ったとしても、絶縁体が放熱部材に対して軸方向にスライドすることとなり、引っ張り応力は摩擦力F2以下の大きさとなるので、放熱部材と棚部との素材結合部が破壊されることがなくなる。また、絶縁体が放熱部材に対して軸方向にスライドしても、放熱部材と絶縁体との圧入構造は維持されるので、絶縁体から放熱部材への放熱性を確保することができる。   According to the configuration of (6), the metal shell and the insulator thermally expand, and particularly when the insulator extends in the axial direction relative to the metal shell, the heat radiating member includes the heat radiating member and the shelf. Tensile stress is generated between the material coupling part with the part and the press-fitting part between the insulator and the heat dissipation member. At this time, since F2 <F3, even if the generated tensile stress exceeds the frictional force F2, the insulator slides in the axial direction with respect to the heat radiating member, and the tensile stress is less than the frictional force F2. Therefore, the material coupling portion between the heat radiating member and the shelf is not broken. Further, even if the insulator slides in the axial direction with respect to the heat radiating member, the press-fitting structure between the heat radiating member and the insulator is maintained, so that heat dissipation from the insulator to the heat radiating member can be ensured.

前記(7)の構成によれば、放熱部材は押圧部材により棚部に押圧されるので、放熱部材と棚部との接触が良好になり、放熱効果が向上する。   According to the structure of said (7), since a heat radiating member is pressed by the shelf by the pressing member, the contact with a heat radiating member and a shelf becomes favorable and the heat dissipation effect improves.

前記(8)の構成によれば、主体金具と絶縁体とが熱膨張して、特に、絶縁体が主体金具に対して相対的に軸方向に伸びる場合でも、F2<F4であることから、絶縁体が放熱部材に対して軸方向にスライドすることとなり、押圧部材と主体金具との圧入部が破壊されることがなくなる。また、絶縁体が放熱部材に対して軸方向にスライドしても、放熱部材と絶縁体との圧入構造は維持されるので、絶縁体から放熱部材への放熱性を確保することができる。   According to the configuration of (8), the metal shell and the insulator are thermally expanded. In particular, even when the insulator extends in the axial direction relative to the metal shell, F2 <F4. The insulator slides in the axial direction with respect to the heat radiating member, and the press-fitted portion between the pressing member and the metal shell is not destroyed. Further, even if the insulator slides in the axial direction with respect to the heat radiating member, the press-fitting structure between the heat radiating member and the insulator is maintained, so that heat dissipation from the insulator to the heat radiating member can be ensured.

前記(9)の構成によれば、ポケット部があるので押圧部材を圧入部に挿入する際に、押圧部材が傾いた状態で挿入されることを防止でき、またポケット部から圧入部までがテーパ面であるので、挿入が容易である。   According to the configuration of (9), since there is a pocket portion, it is possible to prevent the pressing member from being inserted in an inclined state when the pressing member is inserted into the press-fit portion, and the pocket portion to the press-fit portion are tapered. Since it is a surface, it is easy to insert.

前記(10)の構成によれば、押圧部材は、突起が塑性変形又は弾性変形した状態で、絶縁体と棚部との間に挟持されるので、放熱部材と棚部との接触を安定化することができる。また、絶縁体や主体金具、放熱部材等のスパークプラグを構成する各部品の軸方向における寸法ばらつきを吸収することができる。   According to the configuration of (10) above, the pressing member is sandwiched between the insulator and the shelf in a state where the projection is plastically deformed or elastically deformed, so that the contact between the heat dissipation member and the shelf is stabilized. can do. Moreover, the dimension variation in the axial direction of each component which comprises spark plugs, such as an insulator, a metal fitting, and a heat radiating member, can be absorbed.

前記(11)の構成によれば、押圧部材による放熱部材の押圧時に緩衝部材が変形するので、放熱部材と棚部との密接状態がより安定して、放熱性が向上する。   According to the configuration of (11), since the buffer member is deformed when the heat radiating member is pressed by the pressing member, the close contact state between the heat radiating member and the shelf is more stable, and the heat dissipation is improved.

本発明によれば、絶縁体に圧入された放熱部材は主体金具に形成した棚部の平坦面を半径方向に移動可能に構成されている。従って、主体金具に絶縁体を挿入する際に、絶縁体が偏芯や軸振れしていても、放熱部材が半径方向に移動し放熱部材及び棚部の軸方向の位置関係が保たれるので、絶縁体に曲げ応力が作用せず、絶縁体の破損を防ぐことができる。また、絶縁体が受けた熱を放熱部材を介して主体金具の棚部に効率良く放熱できる。   According to the present invention, the heat radiating member press-fitted into the insulator is configured to be movable in the radial direction on the flat surface of the shelf formed on the metal shell. Therefore, when the insulator is inserted into the metal shell, even if the insulator is eccentric or oscillating, the heat dissipating member moves in the radial direction and the axial relationship between the heat dissipating member and the shelf is maintained. The bending stress does not act on the insulator, and the insulator can be prevented from being damaged. Further, the heat received by the insulator can be efficiently radiated to the shelf of the metal shell through the heat radiating member.

更に、主体金具への絶縁体の組み付け完了後に放熱部材を主体金具の棚部に素材結合することにより、放熱部材と棚部との接触を良好にし、放熱効果を向上させることができる。   Furthermore, after the assembly of the insulator to the metal shell, the heat dissipation member is bonded to the shelf of the metal shell, so that the contact between the heat dissipation member and the shelf can be improved and the heat dissipation effect can be improved.

更に、放熱部材を押圧部材により主体金具の棚部に押圧することにより、放熱部材と棚部との接触を良好にし、放熱効果を向上させることができる。   Furthermore, by pressing the heat radiating member against the shelf of the metal shell by the pressing member, the contact between the heat radiating member and the shelf can be improved and the heat radiation effect can be improved.

本発明の第1実施形態に係るスパークプラグの断面図である。It is sectional drawing of the spark plug which concerns on 1st Embodiment of this invention. スパークプラグの要部の拡大断面図である。It is an expanded sectional view of the important section of a spark plug. スパークプラグの構造を示す要部の一部切り欠き斜視図である。It is a partially cutaway perspective view of the main part showing the structure of the spark plug. スパークプラグの第2実施形態を示す要部の拡大断面図である。It is an expanded sectional view of the important section showing a 2nd embodiment of a spark plug. スパークプラグの構造を示す要部の一部切り欠き斜視図である。It is a partially cutaway perspective view of the main part showing the structure of the spark plug. スパークプラグの比較例1を示す要部の拡大断面図である。It is an expanded sectional view of the important section showing comparative example 1 of a spark plug. スパークプラグの比較例2を示す要部の拡大断面図である。It is an expanded sectional view of the important section showing comparative example 2 of a spark plug. スパークプラグの第3実施形態を示す要部の拡大断面図である。It is an expanded sectional view of the important section showing a 3rd embodiment of a spark plug. スパークプラグの第4実施形態を示す要部の拡大断面図である。It is an expanded sectional view of the important section showing a 4th embodiment of a spark plug. スパークプラグの比較例3を示す要部の拡大断面図である。It is an expanded sectional view of the important section showing comparative example 3 of a spark plug. 実験結果を示す特性図である。It is a characteristic view which shows an experimental result. スパークプラグの第5実施形態を示す要部の拡大断面図である。It is an expanded sectional view of the important section showing a 5th embodiment of a spark plug. スパークプラグの第6実施形態を示す要部の拡大断面図である。It is an expanded sectional view of the important section showing a 6th embodiment of a spark plug. スパークプラグの第7実施形態を示す要部の拡大断面図である。It is an expanded sectional view of the important section showing a 7th embodiment of a spark plug. スパークプラグの比較例4を示す要部の拡大断面図である。It is an expanded sectional view of the important section showing comparative example 4 of a spark plug. スパークプラグの比較例5を示す要部の拡大断面図である。It is an expanded sectional view of the important section showing comparative example 5 of a spark plug. スパークプラグの比較例6を示す要部の拡大断面図である。It is an expanded sectional view of the important section showing comparative example 6 of a spark plug. 実験結果を示す特性図である。It is a characteristic view which shows an experimental result.

以下、本発明に係るスパークプラグの好適な実施形態について、図面を参照しながら説明する。   Hereinafter, preferred embodiments of the spark plug according to the present invention will be described with reference to the drawings.

第1実施形態
図1は本発明の第1実施形態に係るスパークプラグの全体構成を示す断面図、図2はスパークプラグの要部構成を示す拡大断面図、図3はスパークプラグの要部構成を示す拡大斜視図である。
なお、本実施形態の説明にあたっては、スパークプラグの全体構成について説明し、次いで要部の構成について説明する。
First Embodiment FIG. 1 is a cross-sectional view showing the overall configuration of a spark plug according to a first embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view showing the main configuration of the spark plug, and FIG. 3 is the main configuration of the spark plug. FIG.
In the description of the present embodiment, the overall configuration of the spark plug will be described, and then the configuration of the main part will be described.

本実施形態のスパークプラグ10は、筒状の主体金具11と、この主体金具11内に嵌め込まれ、この主体金具11の先端部11aから自身の先端部12aが露出された筒状の絶縁体12と、この絶縁体12の先端部12aから自身の先端部13aが露出されるようにこの絶縁体12内に配置された中心電極13と、主体金具11の先端部11aに固着された接地電極14等を主に備えて構成されている。   The spark plug 10 according to the present embodiment includes a cylindrical metal shell 11 and a cylindrical insulator 12 that is fitted into the metal shell 11 and has its tip 12a exposed from the tip 11a of the metal shell 11. A center electrode 13 disposed in the insulator 12 such that the tip end portion 13a of the insulator 12 is exposed from the tip end portion 12a of the insulator 12, and a ground electrode 14 fixed to the tip end portion 11a of the metal shell 11. Etc. are mainly provided.

なお、以下の説明において、図1に示したエンジンヘッドAの取り付け面部Bの図中下側、即ち中心電極13の軸方向において燃焼室側を「前方側」、これと反対側を「後方側」として説明する。   In the following description, the lower side of the mounting surface B of the engine head A shown in FIG. 1, that is, the combustion chamber side in the axial direction of the center electrode 13 is “front side”, and the opposite side is “rear side”. ".

主体金具11は炭素鋼等で形成されており、必要に応じて表面に亜鉛めっきが施される。主体金具11の外周面には、例えば内燃機関のエンジンヘッドAに取り付けられるための取付け用のねじ部15が周方向にわたって形成されている。そして、アルミナ等のセラミックス焼成体からなる絶縁体12には、軸方向に形成された貫通孔16の後方側(図中上方)の端部に端子金具17がその先端部17aが露出された状態で挿入・固定されており、前方側(図中下方)の端部に中心電極13がその先端部13aが露出された状態で挿入・固定されている。中心電極13の内部には、銅製の芯13bが設けられている。   The metal shell 11 is made of carbon steel or the like, and the surface is galvanized as necessary. On the outer peripheral surface of the metal shell 11, for example, a mounting screw portion 15 for mounting to the engine head A of an internal combustion engine is formed in the circumferential direction. In the insulator 12 made of a ceramic sintered body such as alumina, the terminal fitting 17 is exposed at the end on the rear side (upper side in the drawing) of the through hole 16 formed in the axial direction. The center electrode 13 is inserted and fixed at the front end (downward in the figure) with the tip 13a exposed. Inside the center electrode 13, a copper core 13b is provided.

また、貫通孔16内において端子金具17と中心電極13との中間部には、抵抗体18が配置されており、そしてこの抵抗体18の軸方向両端部には、導電性ガラスシール層19,20が配置されている。即ち、この抵抗体18及び導電性ガラスシール層19,20を介して中心電極13と端子金具17とは電気的に接続されていることになる。これら導電性ガラスシール層19,20及び抵抗体18は、導電性結合層を形成するものである。   In addition, a resistor 18 is disposed in an intermediate portion between the terminal fitting 17 and the center electrode 13 in the through-hole 16, and conductive glass seal layers 19, 20 is arranged. That is, the center electrode 13 and the terminal fitting 17 are electrically connected through the resistor 18 and the conductive glass seal layers 19 and 20. The conductive glass seal layers 19 and 20 and the resistor 18 form a conductive coupling layer.

また、主体金具11の内壁には、前方側に向かって内径が漸減した棚部21が形成されている。また、絶縁体12の外壁には、主体金具11の棚部21に対向して前方側に向かって外径が漸減した段部22が形成されている。   A shelf 21 having an inner diameter gradually decreasing toward the front side is formed on the inner wall of the metal shell 11. Further, a step portion 22 having an outer diameter gradually decreasing toward the front side is formed on the outer wall of the insulator 12 so as to face the shelf portion 21 of the metal shell 11.

主体金具11の後方側開口部に絶縁体12が圧入されると、主体金具11と絶縁体12との間の隙間を気密に閉塞されるようになっている。   When the insulator 12 is press-fitted into the rear opening of the metal shell 11, the gap between the metal shell 11 and the insulator 12 is hermetically closed.

なお、主体金具11の後方側には、半径方向外側に突出したガスシール部23が形成されており、このガスシール部23の前方側にはガスケット24が配設されている。そして、ガスケット24と接触するエンジンヘッドAの接触面が取り付け面部Bになる。   A gas seal portion 23 protruding outward in the radial direction is formed on the rear side of the metal shell 11, and a gasket 24 is disposed on the front side of the gas seal portion 23. The contact surface of the engine head A that contacts the gasket 24 is the mounting surface portion B.

また、ガスシール部23は軸断面形状が円形であり、ガスシール部23の後方側の工具係合部25は軸断面形状が六角形であり、スパークプラグ10をエンジンヘッドAに固定する際に、工具係合部25に工具を係合させてスパークプラグ10をエンジンヘッドAに螺合するようになっている。   Further, the gas seal portion 23 has a circular shaft cross-sectional shape, the tool engagement portion 25 on the rear side of the gas seal portion 23 has a hexagonal cross-sectional shape, and is used to fix the spark plug 10 to the engine head A. The spark plug 10 is screwed into the engine head A by engaging a tool with the tool engaging portion 25.

以上に、スパークプラグ10の全体構成を説明したが、以下に図2及び図3を参照して要部の構成及び作用を説明する。なお、図2は図1に点線で囲った部分を拡大したものであり、同一の部材には同一の符号を付して重複説明を省略又は簡略化する。   Although the overall configuration of the spark plug 10 has been described above, the configuration and operation of the main part will be described below with reference to FIGS. 2 and 3. 2 is an enlarged view of a portion surrounded by a dotted line in FIG. 1, and the same members are denoted by the same reference numerals, and redundant description is omitted or simplified.

本実施形態では、主体金具11の前方側において、内周面に、半径方向に張り出し半径方向と略平行な平坦面を有する棚部31が形成されている。棚部31は、主体金具11の内周面に環状に形成されている。なお、半径方向と略平行な平坦面とは、半径方向に対して±30度の範囲に含まれる面を意味し、半径方向と平行な平坦面がより好ましい。   In the present embodiment, on the front side of the metal shell 11, a shelf portion 31 is formed on the inner peripheral surface and has a flat surface extending in the radial direction and substantially parallel to the radial direction. The shelf 31 is formed in an annular shape on the inner peripheral surface of the metal shell 11. The flat surface substantially parallel to the radial direction means a surface included in a range of ± 30 degrees with respect to the radial direction, and a flat surface parallel to the radial direction is more preferable.

一方、絶縁体12の前方側小径部(脚長部)12bには、環状の放熱部材32が圧入により固定されている。放熱部材32は、熱伝導に優れた金属を環状に且つ横断面略四角形に成形したものであり、前記主体金具11や絶縁体12とは別部材として製造される。   On the other hand, an annular heat radiating member 32 is fixed to the front side small diameter portion (leg long portion) 12b of the insulator 12 by press fitting. The heat dissipating member 32 is formed of a metal having excellent heat conduction in a ring shape and a substantially square cross section, and is manufactured as a member separate from the metal shell 11 and the insulator 12.

スパークプラグ10を組み立てる際、主体金具11の後方側開口から絶縁体12を挿入するのであるが、これに先立って主体金具11の棚部31の後方側に予め放熱部材32を装填しておく。この状態で、絶縁体12を挿入していくと、絶縁体12の前方側小径部12bが放熱部材32の開口に圧入される。この構成で注目すべきは、絶縁体12の圧入時において、絶縁体12に偏芯や軸振れがあっても、放熱部材32が半径方向に移動するので、絶縁体12に加わる曲げ応力を低減でき絶縁体12の破損を防止できることである。   When assembling the spark plug 10, the insulator 12 is inserted from the rear opening of the metal shell 11. Prior to this, the heat radiating member 32 is loaded in advance on the rear side of the shelf 31 of the metal shell 11. When the insulator 12 is inserted in this state, the front-side small diameter portion 12 b of the insulator 12 is press-fitted into the opening of the heat dissipation member 32. What should be noted in this configuration is that when the insulator 12 is press-fitted, the heat radiation member 32 moves in the radial direction even if the insulator 12 has eccentricity or shaft runout, so that bending stress applied to the insulator 12 is reduced. This can prevent the insulator 12 from being damaged.

即ち、絶縁体12と放熱部材32とが当接すると、放熱部材32は棚部31上を半径方向に移動し得るようになっている。従って、絶縁体12に偏芯や軸振れがあっても、放熱部材32が半径方向に移動して放熱部材32及び棚部31の軸方向の位置関係が保たれるので、絶縁体12が放熱部材32に適正に圧入され、絶縁体に曲げ応力が作用するのを抑制でき、絶縁体12の破損を防止できる。   That is, when the insulator 12 and the heat radiating member 32 abut, the heat radiating member 32 can move on the shelf 31 in the radial direction. Therefore, even if the insulator 12 has eccentricity or shaft runout, the heat dissipating member 32 moves in the radial direction, and the positional relationship in the axial direction between the heat dissipating member 32 and the shelf 31 is maintained. It is possible to suppress the bending of the insulator 12 by preventing the bending stress from being exerted on the insulator by being properly press-fitted into the member 32.

一方、スパークプラグ10の使用時には、エンジンヘッドAの燃焼室内の温度が上昇し、絶縁体12も高温になる。絶縁体12が受けた熱は、絶縁体12の外周面から放熱部材32に伝導される。放熱部材32は絶縁体12と主体金具11との間で放熱経路を構成するので、放熱部材32に伝導された熱は、放熱部材32の前方側の端面32aから棚部31に伝導され、棚部31と一体の主体金具11を介して放熱される。   On the other hand, when the spark plug 10 is used, the temperature in the combustion chamber of the engine head A rises and the insulator 12 also becomes high temperature. The heat received by the insulator 12 is conducted from the outer peripheral surface of the insulator 12 to the heat radiating member 32. Since the heat dissipating member 32 forms a heat dissipating path between the insulator 12 and the metal shell 11, the heat conducted to the heat dissipating member 32 is conducted from the front end surface 32 a of the heat dissipating member 32 to the shelf 31, and the shelf Heat is radiated through the metal shell 11 integrated with the portion 31.

また、絶縁体12が主体金具11に圧入によって組み付けられる圧入構造であるため、加締め構造のスパークプラグ(図17参照)に比べて、棚部31に加わる荷重は小さくなり、棚部31の軸方向厚さを薄くすることができる。このため、棚部31が薄くなった分だけ、絶縁体12の先端から放熱部材32までの軸方向距離を短くすることができ、放熱効果を向上させることができる。また、絶縁体12の先端から放熱部材32までの軸方向距離と、加締め構造のスパークプラグ(図17参照)における絶縁体の先端と板パッキンまでの軸方向距離とが同じであるとすれば、棚部31の軸方向厚さが薄くなった分だけ、絶縁体12の先端から棚部31までの軸方向距離を長くすることができる。これにより、カーボン汚損に起因する奥飛火を抑制することができ、失火不具合の頻度を下げることができる。このように、本実施形態のスパークプラグでは、放熱性を確保しつつ耐汚損性を向上させることができる。   In addition, since the insulator 12 has a press-fit structure in which the insulator 12 is assembled by press-fitting, the load applied to the shelf 31 is smaller than that of a spark plug having a crimped structure (see FIG. 17). The directional thickness can be reduced. For this reason, the axial distance from the front-end | tip of the insulator 12 to the thermal radiation member 32 can be shortened by the part which the shelf part 31 became thin, and the thermal radiation effect can be improved. Further, if the axial distance from the tip of the insulator 12 to the heat radiating member 32 is the same as the axial distance from the tip of the insulator to the plate packing in the spark plug (see FIG. 17) of the caulking structure. The axial distance from the tip of the insulator 12 to the shelf 31 can be increased by the amount that the axial thickness of the shelf 31 is reduced. Thereby, the backfire resulting from carbon pollution can be suppressed and the frequency of misfire malfunction can be lowered | hung. Thus, in the spark plug of the present embodiment, it is possible to improve the stain resistance while ensuring heat dissipation.

第2実施形態
次に、本発明の第2実施形態を説明する。
図4はスパークプラグ10の要部構成を示す拡大断面図、図5は要部構成を示す一部切り欠き斜視図である。なお、符号については、前記同様に同一部材には同一符号を付してある。
Second Embodiment Next, a second embodiment of the present invention will be described.
FIG. 4 is an enlarged cross-sectional view showing the main configuration of the spark plug 10, and FIG. 5 is a partially cutaway perspective view showing the main configuration. In addition, about the code | symbol, the same code | symbol is attached | subjected to the same member similarly to the above.

この第2実施形態は、棚部31が前記同様に構成されているが、放熱部材33の形状が異なっている。即ち、放熱部材33は環状に形成されているものの、横断面はL字状に形成され、その前方側の端面33aが棚部31との接触面になる。また、放熱部材33の内周面には小径部33bが形成され、この小径部33bに絶縁体12が圧入するようになっている。   In the second embodiment, the shelf 31 is configured in the same manner as described above, but the shape of the heat dissipation member 33 is different. That is, although the heat radiating member 33 is formed in an annular shape, the cross section is formed in an L shape, and the front end surface 33 a serves as a contact surface with the shelf portion 31. Further, a small diameter portion 33b is formed on the inner peripheral surface of the heat radiating member 33, and the insulator 12 is press-fitted into the small diameter portion 33b.

この第2実施形態においても、主体金具11への絶縁体12への組み付けは前記第1実施形態と同様に行われる。そして、絶縁体12と放熱部材33とが当接すると、放熱部材33は棚部31上を半径方向に移動し得るようになっている。従って、絶縁体12に偏芯や軸振れがあっても、放熱部材33が半径方向に移動するので、絶縁体12に加わる曲げ応力を低減でき絶縁体12の破損を防止できる。   Also in the second embodiment, the assembly of the metal shell 11 to the insulator 12 is performed in the same manner as in the first embodiment. And when the insulator 12 and the heat radiating member 33 contact | abut, the heat radiating member 33 can move on the shelf part 31 to a radial direction. Therefore, even if the insulator 12 has eccentricity or shaft runout, the heat radiating member 33 moves in the radial direction, so that the bending stress applied to the insulator 12 can be reduced and the insulator 12 can be prevented from being damaged.

また、絶縁体12が受けた熱は、絶縁体12の外周面から放熱部材33に伝導され、放熱部材33に伝導された熱は、放熱部材33の前方側の端面33aから棚部31に伝導され、棚部31と一体の主体金具11を介して放熱される。   Further, the heat received by the insulator 12 is conducted from the outer peripheral surface of the insulator 12 to the heat radiating member 33, and the heat conducted to the heat radiating member 33 is conducted from the front end face 33 a of the heat radiating member 33 to the shelf 31. Then, heat is radiated through the metal shell 11 integrated with the shelf 31.

次に、前記第1実施形態の放熱特性を比較するための比較例を説明する。
比較例1
図6はスパークプラグの構成を示す要部の拡大断面図である。
本比較例1では、放熱部材は別部材として設けられていない。即ち、主体金具11の内壁面に前方側に向けて内径が漸減する棚部27を設けるとともに、その先端を肉薄に延長して端部が絶縁体12に圧接する放熱部27aを形成したものである。放熱部27aは環状に形成される。
Next, a comparative example for comparing the heat dissipation characteristics of the first embodiment will be described.
Comparative Example 1
FIG. 6 is an enlarged cross-sectional view of a main part showing the configuration of the spark plug.
In this comparative example 1, the heat dissipation member is not provided as a separate member. That is, a shelf 27 having an inner diameter gradually decreasing toward the front side is provided on the inner wall surface of the metal shell 11, and a heat radiating portion 27a whose end is pressed against the insulator 12 is formed by thinning its tip. is there. The heat radiation part 27a is formed in an annular shape.

従って、主体金具11の後方側開口から絶縁体12を圧入すると、絶縁体12は放熱部27aに圧接しながら主体金具11を挿通するようになり、所定位置まで圧入された時点で、絶縁体12の外周囲全体に放熱部27aの先端が圧接するようになる。   Therefore, when the insulator 12 is press-fitted from the rear side opening of the metal shell 11, the insulator 12 is inserted through the metal shell 11 while being pressed against the heat radiating portion 27a, and when the insulator 12 is press-fitted to a predetermined position, the insulator 12 is inserted. The tip of the heat radiating portion 27a comes into pressure contact with the entire outer periphery of the.

この構成によれば、絶縁体12の熱は、放熱部27に伝導され、主体金具11に放熱される。   According to this configuration, the heat of the insulator 12 is conducted to the heat radiating portion 27 and radiated to the metal shell 11.

比較例2
図7はスパークプラグの構成を示す要部の拡大断面図である。
本比較例2における放熱部材28は、主体金具11や絶縁体12とは別部材として製造されるものである。放熱部材28は環状に形成されているが、外側面の一部に主体金具11の内壁面に圧入される外側圧入接触部28aが形成され、内周面の一部に絶縁体12を圧入するための内側圧入接触部28bが形成されている。
Comparative Example 2
FIG. 7 is an enlarged cross-sectional view of a main part showing the configuration of the spark plug.
The heat dissipating member 28 in the second comparative example is manufactured as a separate member from the metal shell 11 and the insulator 12. Although the heat radiating member 28 is formed in an annular shape, an outer press-fit contact portion 28a that is press-fitted into the inner wall surface of the metal shell 11 is formed in a part of the outer surface, and the insulator 12 is press-fitted into a part of the inner peripheral surface. For this purpose, an inner press-fit contact portion 28b is formed.

主体金具11に絶縁体12を圧入する場合は、絶縁体12に放熱部材28を嵌め込んだ状態で圧入する。そして、所定位置まで圧入すると、主体金具11と絶縁体12との間に放熱部材28が圧入状態で固定されることになる。   When the insulator 12 is press-fitted into the metal shell 11, the insulator 12 is press-fitted with the heat radiating member 28 fitted therein. And if it press-fits to a predetermined position, the thermal radiation member 28 will be fixed in the press-fit state between the metal shell 11 and the insulator 12.

絶縁体12が受けた熱は、内側圧入接触部28bに伝導され、外側圧入接触部28aから主体金具11に放熱される。   The heat received by the insulator 12 is conducted to the inner press-fit contact portion 28b and is radiated from the outer press-fit contact portion 28a to the metal shell 11.

次に、上記第1実施形態の構成である実施例1と前記比較例1,2との比較実験結果を説明する。
実験結果1
実験は主体金具に放熱部材及び絶縁体を組み付けた後、分解して絶縁体の破損情況を確認した。実験に供した個数は、第1実施例、比較例1,2について100個である。
実施例1の構造では、試験例100個のうち絶縁体の破損は0であった。
比較例1の構造では、試験例100個のうち絶縁体の破損は4個であった。
比較例2の構造では、試験例100個のうち絶縁体の破損は3個であった。
これらの結果から、実施例1の構造では、絶縁体の破損を防止できることが分かる。
Next, the results of a comparative experiment between Example 1 that is the configuration of the first embodiment and Comparative Examples 1 and 2 will be described.
Experimental result 1
In the experiment, the heat sink and insulator were assembled to the metal shell, and then disassembled to confirm the condition of damage to the insulator. The number used for the experiment is 100 for the first example and comparative examples 1 and 2.
In the structure of Example 1, the damage of the insulator was 0 among 100 test examples.
In the structure of Comparative Example 1, among the 100 test examples, 4 insulators were damaged.
In the structure of the comparative example 2, the damage of the insulator was 3 out of 100 test examples.
From these results, it can be seen that the structure of Example 1 can prevent the insulator from being damaged.

第3実施形態
次に、本発明の第3実施形態を説明する。
図8はスパークプラグの構成を示す要部の拡大断面図である。
本第3実施形態では、放熱部材33として前記第2実施形態(図4,図5参照)で示したものが適用されている。本第3実施形態においても、棚部31上の放熱部材33に絶縁体12を圧入する構成であるが、圧入後に放熱部材33と棚部31とを素材結合としてレーザ溶接によって結合した点が異なっている。図8中、網掛け部はレーザ溶接部を示す。なお、棚部31と放熱部材33との結合位置の付着力をF3、絶縁体12と放熱部材33との間の摩擦力をF2とすると、F2<F3の関係に設定されている。
Third Embodiment Next, a third embodiment of the present invention will be described.
FIG. 8 is an enlarged cross-sectional view of a main part showing the configuration of the spark plug.
In the third embodiment, the heat dissipation member 33 shown in the second embodiment (see FIGS. 4 and 5) is applied. Also in the third embodiment, the insulator 12 is press-fitted into the heat radiating member 33 on the shelf portion 31 except that the heat radiating member 33 and the shelf portion 31 are joined by laser welding as a material bond after the press-fitting. ing. In FIG. 8, the shaded portion indicates a laser welded portion. Note that the relationship of F2 <F3 is set, where F3 is the adhesive force at the coupling position between the shelf 31 and the heat radiating member 33 and F2 is the friction force between the insulator 12 and the heat radiating member 33.

この構成によれば、絶縁体12を放熱部材33に圧入する場合、前記同様に放熱部材33は棚部31上を移動できるので、絶縁体12の破損を防止できる。   According to this configuration, when the insulator 12 is press-fitted into the heat radiating member 33, the heat radiating member 33 can move on the shelf 31 as described above, so that the insulator 12 can be prevented from being damaged.

一方、放熱部材33は絶縁体12から主体金具11に至る放熱経路を構成するが、圧入後に主体金具11と放熱部材33とがレーザ溶接により一体化されるので、両者の密接状態が保持され、放熱効率が向上する。   On the other hand, the heat dissipating member 33 constitutes a heat dissipating path from the insulator 12 to the metal shell 11, but since the metal shell 11 and the heat dissipating member 33 are integrated by laser welding after press-fitting, the close state of both is maintained, Heat dissipation efficiency is improved.

第4実施形態
次に、本発明の第4実施形態を説明する。
図9はスパークプラグの構成を示す要部の拡大断面図である。
本第4実施形態では、放熱部材33として前記第2実施形態で示したものが適用されている。本第4実施形態においても、棚部31上の放熱部材33に絶縁体12を圧入する構成であるが、圧入後に放熱部材33と棚部31とを半田40により半田接合した点が前記第3実施形態と異なっている。
Fourth Embodiment Next, a fourth embodiment of the present invention will be described.
FIG. 9 is an enlarged cross-sectional view of a main part showing the configuration of the spark plug.
In the fourth embodiment, the heat dissipation member 33 shown in the second embodiment is applied. The fourth embodiment also has a configuration in which the insulator 12 is press-fitted into the heat dissipation member 33 on the shelf portion 31. However, the third embodiment is that the heat dissipation member 33 and the shelf portion 31 are solder-joined with the solder 40 after the press-fit. It is different from the embodiment.

この構成によれば、絶縁体12を放熱部材33に圧入する場合、前記同様に放熱部材33は棚部31上を半径方向に移動できるので、絶縁体12の破損を防止できる。   According to this configuration, when the insulator 12 is press-fitted into the heat radiating member 33, the heat radiating member 33 can move in the radial direction on the shelf 31 as described above, so that the insulator 12 can be prevented from being damaged.

一方、放熱部材33は絶縁体32から主体金具11に至る放熱経路を構成するが、主体金具11と放熱部材33とが半田接合により一体化されるので、両者の密接状態が保持され、放熱効率が向上する。   On the other hand, the heat radiating member 33 constitutes a heat radiating path from the insulator 32 to the metal shell 11. However, since the metal shell 11 and the heat radiating member 33 are integrated by soldering, the close contact state between them is maintained, and the heat radiating efficiency is increased. Will improve.

比較例3
図10はスパークプラグの構成を示す要部の拡大断面図である。
本比較例3では、絶縁体12の外壁には前方側に向けて直径が漸減した段部35が形成され、主体金具11の内壁には前方側に向けて内径が漸減した棚部36が形成されている。そして、前記段部35と棚部36の傾斜角度は略同角度に形成され、しかも所定の隙間Gを隔てて形成されているので、主体金具11と絶縁体12との間に上面及び下面が同一方向に傾斜した環状の隙間Gが形成されることになる。
Comparative Example 3
FIG. 10 is an enlarged cross-sectional view of the main part showing the configuration of the spark plug.
In this comparative example 3, a stepped portion 35 having a diameter gradually reduced toward the front side is formed on the outer wall of the insulator 12, and a shelf portion 36 having an inner diameter gradually decreased toward the front side is formed on the inner wall of the metal shell 11. Has been. The step portion 35 and the shelf portion 36 are formed at substantially the same inclination angle, and are formed with a predetermined gap G therebetween, so that an upper surface and a lower surface are formed between the metal shell 11 and the insulator 12. An annular gap G inclined in the same direction is formed.

隙間Gには、環状で横断面がコ字状の放熱部材37が配設されている。放熱部材37の後方側の面は段部35に沿うような傾斜面に形成され、前方側の面は棚部36に沿うような傾斜面に形成されている。そして、放熱部材37は、主体金具11、絶縁体12の何れにも圧入されておらず、段部35と棚部36とに挟持されている。   An annular heat dissipation member 37 having a U-shaped cross section is disposed in the gap G. The rear surface of the heat radiating member 37 is formed as an inclined surface along the step portion 35, and the front surface is formed as an inclined surface along the shelf portion 36. The heat radiating member 37 is not press-fitted into either the metal shell 11 or the insulator 12 and is sandwiched between the step portion 35 and the shelf portion 36.

次に、図11を参照して第3実施形態、第4実施形態の構成である実施例3、実施例4と比較例3の熱価測定試験の結果を説明する。
試験方法
熱価測定試験は、SAE規格に基づくものであり、この試験の概要は下記のとおりである。
Next, with reference to FIG. 11, the result of the thermal value measurement test of Example 3, Example 4, and Comparative Example 3 which are the structure of 3rd Embodiment and 4th Embodiment is demonstrated.
Test Method The heat value measurement test is based on the SAE standard, and the outline of this test is as follows.

即ち、SC17.6(SAE J2203)エンジンで、圧縮比5.6、点火時期30°BTDCに設定されたエンジンにサンプル(各実施例及び比較例のスパークプラグ)を組み付けた上で、ベンゾールを主とする燃料を用いて、エンジンを回転数2700rpmで動作させつつ、一定量の過給を行い、その過給量で燃焼室の温度が最高となる燃料噴射量を調節した。   In other words, the SC17.6 (SAE J2203) engine with a compression ratio of 5.6 and an ignition timing set to 30 ° BTDC was assembled with a sample (spark plug of each example and comparative example) and benzol was mainly used. Using this fuel, a certain amount of supercharging was performed while operating the engine at a rotational speed of 2700 rpm, and the fuel injection amount at which the temperature of the combustion chamber reached the maximum was adjusted by the supercharging amount.

そして、過給量の増加及び燃料噴射量の調節を繰り返し行い、プレイグニッション(早期着火)が発生する直前の過給圧を特定した。その後、特定された過給圧の微調整及び燃料噴射量の調整を行うことで、エンジンが3分間安定して動作するときのエンジン出力を測定するとともに、平均有高圧(PSI)を算出し、当該平均有高圧を各サンプルの熱価として特定した。   Then, the increase of the supercharging amount and the adjustment of the fuel injection amount were repeated, and the supercharging pressure immediately before the occurrence of preignition (early ignition) was specified. Thereafter, by performing fine adjustment of the specified supercharging pressure and adjustment of the fuel injection amount, the engine output when the engine operates stably for 3 minutes is measured, and the average high pressure (PSI) is calculated. The average existence high pressure was specified as the heat value of each sample.

実験結果
図11に白丸で示すように、実施例3,4は何れも比較例3と比較して平均有効圧(PSI)が増大しており、高熱価、即ち熱引き性が向上している結果となった。
Experimental Results As shown by white circles in FIG. 11, in Examples 3 and 4, the average effective pressure (PSI) is increased as compared with Comparative Example 3, and the high heat value, that is, the heat drawability is improved. As a result.

第5実施形態
次に、本発明の第5実施形態を説明する。
図12はスパークプラグの要部の構成を示す拡大断面図である。
本第5実施形態では、放熱部材として前記第1実施形態(図2,図3参照)で説明した放熱部材32が適用されている。そして、放熱部材32の後方側に緩衝部材41が配設され、その更に後方側に押圧部材42が配設されている。緩衝部材41は、放熱部材32及び押圧部材42よりも軟らかい金属製平板を環状に形成したものである。押圧部材42は、環状かつ横断面L字状に形成されており、軸方向の突起42aは薄く形成され、軸方向からの押圧(荷重)により塑性変形又は弾性変形するようになっている。
Fifth Embodiment Next, a fifth embodiment of the present invention will be described.
FIG. 12 is an enlarged cross-sectional view showing a configuration of a main part of the spark plug.
In the fifth embodiment, the heat dissipation member 32 described in the first embodiment (see FIGS. 2 and 3) is applied as the heat dissipation member. And the buffer member 41 is arrange | positioned at the back side of the thermal radiation member 32, and the press member 42 is arrange | positioned at the back side further. The buffer member 41 is formed by annularly forming a flat metal plate that is softer than the heat radiating member 32 and the pressing member 42. The pressing member 42 has an annular shape and an L-shaped cross section, and the axial projection 42a is formed thin, and is plastically or elastically deformed by pressing (load) from the axial direction.

また、放熱部材32、緩衝部材41、押圧部材42の何れも、主体金具11や絶縁体12とは別部材として製造されるものである。   Further, any of the heat radiating member 32, the buffer member 41, and the pressing member 42 is manufactured as a separate member from the metal shell 11 and the insulator 12.

主体金具11に絶縁体12を圧入する場合、放熱部材32、緩衝部材41、押圧部材42の順に主体金具11内に嵌め込み、次いで絶縁体12を圧入する。   When press-fitting the insulator 12 into the metal shell 11, the heat radiating member 32, the buffer member 41, and the pressing member 42 are fitted into the metal shell 11 in this order, and then the insulator 12 is press-fitted.

この結果、棚部31と段部35との間に、放熱部材32、緩衝部材41、押圧部材42が積層状態で配設されることになる。なお、絶縁体12と放熱部材32との間の摩擦力F2と、主体金具11と押圧部材42との間の摩擦力F4とは、F2<F4の関係に設定されている。
ここで、F2<F4の関係にするためには、絶縁体12と放熱部材32との締まりばめ部における軸線方向長さをL2とし、押圧部材42と主体金具11との締まりばめ部における軸線方向長さをL4としたとき、L4をL2よりも大きくして、絶縁体12と放熱部材32との接触面積よりも押圧部材42と主体金具11との接触面積を大きくすることで実現する方法が挙げられる。
As a result, the heat radiation member 32, the buffer member 41, and the pressing member 42 are disposed in a stacked state between the shelf portion 31 and the step portion 35. The frictional force F2 between the insulator 12 and the heat radiating member 32 and the frictional force F4 between the metal shell 11 and the pressing member 42 are set in a relationship of F2 <F4.
Here, in order to satisfy the relationship of F2 <F4, the axial length of the interference fit between the insulator 12 and the heat radiating member 32 is L2, and the interference fit between the pressing member 42 and the metal shell 11 is When the length in the axial direction is L4, L4 is made larger than L2, and the contact area between the pressing member 42 and the metal shell 11 is made larger than the contact area between the insulator 12 and the heat dissipation member 32. A method is mentioned.

なお、主体金具11における押圧部材42を挿入する側の開口部は、押圧部材42の外径よりも大きい内径のポケット部26(図1参照)を有し、該ポケット部26の内周面と主体金具11の圧入面との間がテーパ面に形成されている。これにより、押圧部材42の挿入が容易になっている。   Note that the opening on the side of the metal shell 11 where the pressing member 42 is inserted has a pocket portion 26 (see FIG. 1) having an inner diameter larger than the outer diameter of the pressing member 42, and the inner peripheral surface of the pocket portion 26. A tapered surface is formed between the press fitting surface of the metal shell 11. Thereby, insertion of the pressing member 42 becomes easy.

この第5実施形態においても、主体金具11への絶縁体12への組み付けは前記第1実施形態と同様に行われる。そして、絶縁体12と放熱部材32とが当接すると、放熱部材32は棚部31上を半径方向に移動し得るようになっている。従って、絶縁体12に偏芯や軸振れがあっても、放熱部材32が半径方向に移動するので、絶縁体12に加わる曲げ応力を低減でき絶縁体12の破損を防止できる。   Also in the fifth embodiment, the assembly of the insulator 12 to the metal shell 11 is performed in the same manner as in the first embodiment. When the insulator 12 and the heat radiating member 32 come into contact with each other, the heat radiating member 32 can move on the shelf 31 in the radial direction. Therefore, even if the insulator 12 has eccentricity or shaft runout, the heat radiating member 32 moves in the radial direction, so that the bending stress applied to the insulator 12 can be reduced and damage to the insulator 12 can be prevented.

また、絶縁体12が受けた熱は、絶縁体12の外周面から放熱部材32に伝導され、放熱部材32に伝導された熱は、放熱部材32の前方側の端面32aから棚部31に伝導され、棚部31と一体の主体金具11を介して放熱される。   Further, the heat received by the insulator 12 is conducted from the outer peripheral surface of the insulator 12 to the heat radiating member 32, and the heat conducted to the heat radiating member 32 is conducted from the front end surface 32 a of the heat radiating member 32 to the shelf 31. Then, heat is radiated through the metal shell 11 integrated with the shelf 31.

一方、図示のように組み付けが完了した段階では、突起42aが段部35により押圧され、塑性変形又は弾性変形するとともに、緩衝部材41を介して放熱部材32が棚部31に押圧される。この結果、放熱部材32と棚部31とが密接し、放熱部材32と棚部31との間の熱伝導が効率よく行われるようになり、放熱効果が向上する。   On the other hand, at the stage where the assembling is completed as shown in the figure, the protrusion 42 a is pressed by the step portion 35 and is plastically deformed or elastically deformed, and the heat radiating member 32 is pressed against the shelf portion 31 via the buffer member 41. As a result, the heat radiating member 32 and the shelf 31 are in close contact with each other, heat conduction between the heat radiating member 32 and the shelf 31 is efficiently performed, and the heat radiating effect is improved.

第6実施形態
次に、本発明の第6実施形態を説明する。
図13はスパークプラグの構成を示す要部の拡大断面である。
本第6実施形態が前記第5実施形態と異なる点は、第5実施形態に示した緩衝部材41を省略したことにある。
Sixth Embodiment Next, a sixth embodiment of the present invention will be described.
FIG. 13 is an enlarged cross-sectional view of the main part showing the configuration of the spark plug.
The sixth embodiment is different from the fifth embodiment in that the buffer member 41 shown in the fifth embodiment is omitted.

この構成にあっては、主体金具11に絶縁体12を圧入する際、主体金具11に放熱部材32、押圧部材42を嵌め込んでから絶縁体12を圧入する。この圧入時に、絶縁体12と放熱部材32とが当接すると、放熱部材32は棚部31上を半径方向に移動し得るようになっている。従って、絶縁体12に偏芯や軸振れがあっても、放熱部材32が半径方向に移動するので、絶縁体12に加わる曲げ応力を低減でき絶縁体12の破損を防止できる。   In this configuration, when the insulator 12 is press-fitted into the metal shell 11, the heat dissipation member 32 and the pressing member 42 are fitted into the metal shell 11 and then the insulator 12 is press-fitted. When the insulator 12 and the heat radiating member 32 come into contact with each other during the press-fitting, the heat radiating member 32 can move on the shelf 31 in the radial direction. Therefore, even if the insulator 12 has eccentricity or shaft runout, the heat radiating member 32 moves in the radial direction, so that the bending stress applied to the insulator 12 can be reduced and damage to the insulator 12 can be prevented.

また、絶縁体12が受けた熱は、絶縁体12の外周面から放熱部材32に伝導され、放熱部材32に伝導された熱は、放熱部材32の前方側の端面32aから棚部31に伝導され、棚部31と一体の主体金具11を介して放熱される。   Further, the heat received by the insulator 12 is conducted from the outer peripheral surface of the insulator 12 to the heat radiating member 32, and the heat conducted to the heat radiating member 32 is conducted from the front end surface 32 a of the heat radiating member 32 to the shelf 31. Then, heat is radiated through the metal shell 11 integrated with the shelf 31.

また、主体金具11と絶縁体12との組み付けが完了した段階では、放熱部材32が押圧部材42によって棚部31に押圧されるので、前記同様に放熱効果が向上する。   Further, at the stage where the assembly of the metal shell 11 and the insulator 12 is completed, the heat dissipation member 32 is pressed against the shelf 31 by the pressing member 42, so that the heat dissipation effect is improved as described above.

第7実施形態
図14はスパークプラグの構成を示す要部の拡大断面図である。
本第7実施形態にあっては、主体金具11の内壁面に先端側に向けて内径が漸減する棚部38が形成されている。なお、棚部38の半径方向に対する傾斜角は30°程度に設定される。本実施形態に適用される放熱部材43は、環状であるとともに前方側の傾斜面43aが棚部38の傾斜角度に対応し、後方側の面が半径方向に沿った平坦面になっている。
7th Embodiment FIG. 14: is an expanded sectional view of the principal part which shows the structure of a spark plug.
In the seventh embodiment, a shelf 38 whose inner diameter gradually decreases toward the tip side is formed on the inner wall surface of the metal shell 11. The inclination angle of the shelf 38 with respect to the radial direction is set to about 30 °. The heat radiating member 43 applied to this embodiment is annular, the front inclined surface 43a corresponds to the inclination angle of the shelf 38, and the rear surface is a flat surface along the radial direction.

また、放熱部材43の後方側に積層するようにして押圧部材42が配設されているが、この押圧部材42は第5,第6実施形態で適用したものを援用できる。   Moreover, although the pressing member 42 is arrange | positioned so that it may laminate | stack on the back side of the heat radiating member 43, this pressing member 42 can use what was applied in 5th, 6th embodiment.

この構成にあっては、主体金具11に絶縁体12を圧入する際、主体金具11に放熱部材43、押圧部材42を嵌め込んでから圧入する。この圧入時に、絶縁体12と放熱部材43とが当接すると、放熱部材43は棚部31上を半径方向に移動し得るようになっている。従って、絶縁体12に偏芯や軸振れがあっても、放熱部材43が半径方向に移動するので、絶縁体12に加わる曲げ応力を低減でき絶縁体12の破損を防止できる。   In this configuration, when the insulator 12 is press-fitted into the metal shell 11, the heat dissipation member 43 and the pressing member 42 are fitted into the metal shell 11 and then press-fitted. When the insulator 12 and the heat dissipating member 43 come into contact with each other during the press-fitting, the heat dissipating member 43 can move on the shelf 31 in the radial direction. Therefore, even if the insulator 12 has eccentricity or shaft runout, the heat radiating member 43 moves in the radial direction, so that the bending stress applied to the insulator 12 can be reduced and damage to the insulator 12 can be prevented.

また、絶縁体12が受けた熱は、絶縁体12の外周面から放熱部材43に伝導され、放熱部材43に伝導された熱は、放熱部材43の前方側の傾斜面43aから棚部31に伝導され、棚部31と一体の主体金具11を介して放熱される。   Further, the heat received by the insulator 12 is conducted from the outer peripheral surface of the insulator 12 to the heat radiating member 43, and the heat conducted to the heat radiating member 43 is transferred from the inclined surface 43 a on the front side of the heat radiating member 43 to the shelf 31. Conducted and dissipated through the metal shell 11 integral with the shelf 31.

また、主体金具11と絶縁体12との組み付けが完了した段階では、放熱部材32が押圧部材42によって棚部38に押圧されるので、前記同様に放熱効果が向上する。   Further, at the stage where the assembly of the metal shell 11 and the insulator 12 is completed, the heat dissipation member 32 is pressed against the shelf 38 by the pressing member 42, so that the heat dissipation effect is improved as described above.

比較例4
図15はスパークプラグの構成を示す要部の拡大断面図である。
本比較例4において、主体金具11に形成した棚部36、絶縁体12に形成した段部35は、前記比較例3(図10参照)と同様であってよく、段部35と棚部36との間に環状で横断面コ字状のパッキン44が配設されている。但し、パッキン44は、主体金具11及び絶縁体12の何れにも圧入支持されていない。
Comparative Example 4
FIG. 15 is an enlarged cross-sectional view of a main part showing the configuration of the spark plug.
In this comparative example 4, the shelf 36 formed on the metal shell 11 and the step 35 formed on the insulator 12 may be the same as those in the comparative example 3 (see FIG. 10). A packing 44 having an annular shape and a U-shaped cross section is disposed between the two. However, the packing 44 is not press-fitted and supported by either the metal shell 11 or the insulator 12.

比較例5
図16はスパークプラグの構成を示す要部の拡大断面図である。
本比較例5において、主体金具11に形成した棚部36、絶縁体12に形成した段部35は、前記比較例3(図10参照)と同様であってよい。また、放熱部材45は、環状に形成されているが、前方側に向く面の一部が棚部36に沿うようにテーパ面45aに形成され、更に肉薄で筒状の受熱部45bが前方側に形成されている。そして、放熱部材45の後方側には環状で横断面コ字状のパッキン46が配設されているが、パッキン46の前方側の面は半径方向に沿った平坦面に形成されていて、放熱部材45の半径方向の平坦面に圧接するようになっている。
Comparative Example 5
FIG. 16 is an enlarged cross-sectional view of the main part showing the configuration of the spark plug.
In the comparative example 5, the shelf 36 formed on the metal shell 11 and the step 35 formed on the insulator 12 may be the same as those in the comparative example 3 (see FIG. 10). Moreover, although the heat radiating member 45 is formed in an annular shape, a part of the surface facing the front side is formed on the tapered surface 45a so as to extend along the shelf 36, and the thinner and cylindrical heat receiving portion 45b is formed on the front side. Is formed. An annular packing 46 having a U-shaped cross section is disposed on the rear side of the heat dissipating member 45, but the front surface of the packing 46 is formed as a flat surface along the radial direction. The member 45 is pressed against a flat surface in the radial direction.

比較例6
図17はスパークプラグの構成を示す要部の拡大断面図である。
本比較例6では、絶縁体12に形成された段部35と、主体金具11に形成された棚部36との間に板パッキン47を介在させたものである。
この構成によれば、主体金具11と絶縁体12との間が気密になされるとともに、絶縁体12の熱が板パッキン47を介して主体金具11に放熱される。
Comparative Example 6
FIG. 17 is an enlarged cross-sectional view of the main part showing the configuration of the spark plug.
In this comparative example 6, a plate packing 47 is interposed between the step portion 35 formed on the insulator 12 and the shelf portion 36 formed on the metal shell 11.
According to this configuration, the metal shell 11 and the insulator 12 are hermetically sealed, and the heat of the insulator 12 is radiated to the metal shell 11 via the plate packing 47.

次に、図18を参照して第5実施形態、第6実施形態の構造である実施例5,6及び比較例4,5,6の熱価測定試験の結果を説明する。
試験方法
熱価測定試験は、SAE規格に基づくものであり、前述と同じである。
Next, with reference to FIG. 18, the result of the thermal value measurement test of Examples 5 and 6 and Comparative Examples 4, 5 and 6, which are the structures of the fifth and sixth embodiments, will be described.
Test Method The heat value measurement test is based on the SAE standard and is the same as described above.

実験結果
図18に白丸で示すように、実施例5,6は、何れも比較例4,5,6に比較して平均有効圧(PSI)が増加しており、高熱価、即ち熱引き性が向上している結果となった。
Experimental Results As shown by white circles in FIG. 18, in Examples 5 and 6, the average effective pressure (PSI) is increased as compared with Comparative Examples 4, 5, and 6, and the high heat value, that is, the heat drawability. The result was improved.

なお、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が自在である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所、等は本発明を達成できるものであれば任意であり、限定されない。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

10 スパークプラグ
11 主体金具
11a 主体金具の先端部
12 絶縁体
12a 絶縁体の先端部
13 中心電極
13a 中心電極の先端部
16 貫通孔
17 端子金具
18 抵抗体
19,20 導電性ガラスシール
21,22,27,31,36,38 棚部
25 工具係合部
26 ポケット部
28,32,33,37,43 放熱部材
35 段部
41 緩衝部材
42 押圧部材
44,46,47 パッキン
A エンジンヘッド
DESCRIPTION OF SYMBOLS 10 Spark plug 11 Main metal fitting 11a The front-end | tip part of a main metal fitting 12 Insulator 12a The front-end | tip part of an insulator 13 Central electrode 13a The front-end | tip part of a center electrode 16 Through-hole 17 Terminal metal fitting 18 Resistor 19,20 Conductive glass seal 21,22 27, 31, 36, 38 Shelf portion 25 Tool engaging portion 26 Pocket portion 28, 32, 33, 37, 43 Heat radiating member 35 Step portion 41 Buffer member 42 Pressing member 44, 46, 47 Packing A Engine head

Claims (11)

軸線方向に延在する中心電極と、
自身の前方側にて前記中心電極を保持する円筒状の絶縁体と、
前記絶縁体の一部を収容する筒状の主体金具と、
一端が前記主体金具の前方側端部に接合され、他端が前記中心電極との間で火花放電間隙を形成する接地電極と、
前記絶縁体のうち後方側の部位の外径よりも小径の前方側小径部に圧入嵌合され、前記絶縁体と前記主体金具との間を連絡して放熱経路を形成する環状の放熱部材とを備えたスパークプラグであって、
前記主体金具は、その内周面に、半径方向内方に張り出すとともに前記半径方向に対して±30度の範囲に含まれる面である、前記半径方向と略平行な平坦面を有する棚部を有し、
前記放熱部材は、前記主体金具の前記内周面とは離間した状態で前記棚部の前記平坦面に支持されることで、前記主体金具と連絡していることを特徴とするスパークプラグ。
A central electrode extending in the axial direction;
A cylindrical insulator holding the center electrode on its front side;
A cylindrical metal shell for housing a part of the insulator;
One end is joined to the front side end of the metal shell, and the other end forms a spark discharge gap with the center electrode,
An annular heat radiating member that is press-fitted into a front-side small-diameter portion that is smaller than the outer diameter of the rear portion of the insulator, and that forms a heat-dissipating path by connecting the insulator and the metal shell. A spark plug comprising:
The metal shell is a shelf that has a flat surface substantially parallel to the radial direction, and is a surface that protrudes inward in the radial direction and is included in a range of ± 30 degrees with respect to the radial direction. Have
The spark plug is characterized in that the heat radiating member is in contact with the metal shell by being supported by the flat surface of the shelf in a state of being separated from the inner peripheral surface of the metal shell.
前記主体金具は、機関に螺合するためのねじ部を外周面に有し、前記棚部は前記ねじ部の内側に設けられていることを特徴とする請求項1に記載のスパークプラグ。   2. The spark plug according to claim 1, wherein the metal shell has a screw portion for screwing into the engine on an outer peripheral surface, and the shelf portion is provided inside the screw portion. 前記主体金具は、前記絶縁体の前記後方側の部位と気密に結合されており、
前記主体金具と前記絶縁体との気密結合部における摩擦力F1と、前記絶縁体と前記放熱部材との圧入部における摩擦力F2との関係が、F1>F2であることを特徴とする請求項1又は2に記載のスパークプラグ。
The metal shell is airtightly coupled to the rear portion of the insulator;
The relationship between the frictional force F1 at the airtight coupling portion between the metal shell and the insulator and the frictional force F2 at the press-fitted portion between the insulator and the heat radiating member is F1> F2. The spark plug according to 1 or 2.
前記放熱部材と前記棚部とは素材結合により固着されていることを特徴とする請求項1〜3のいずれかに記載のスパークプラグ。   The spark plug according to any one of claims 1 to 3, wherein the heat radiating member and the shelf are fixed by material bonding. 前記素材結合は、溶接、ろう接、又は半田付けであることを特徴とする請求項4に記載のスパークプラグ。   The spark plug according to claim 4, wherein the material bonding is welding, brazing, or soldering. 前記放熱部材と前記棚部との素材結合部における付着力F3と、前記絶縁体と前記放熱部材との圧入部における摩擦力F2との関係が、F2<F3であることを特徴とする請求項4又は5に記載のスパークプラグ。   The relationship between the adhesive force F3 at the material coupling portion between the heat radiating member and the shelf and the frictional force F2 at the press-fitted portion between the insulator and the heat radiating member is F2 <F3. The spark plug according to 4 or 5. 前記主体金具の前記内周面のうち前記棚部よりも後方側に圧入されるとともに、前記絶縁体と前記棚部との間で前記放熱部材とともに軸方向に挟持されることで、前記放熱部材を前記棚部の前記平坦面に向けて押圧する押圧部材を更に備え、
前記押圧部材は、前記放熱部材とは前記半径方向において離間していることを特徴とする請求項1〜3のいずれかに記載のスパークプラグ。
The heat dissipation member is pressed into the rear side of the shelf portion of the inner peripheral surface of the metal shell and is sandwiched in the axial direction together with the heat dissipation member between the insulator and the shelf portion. Further comprising a pressing member that presses toward the flat surface of the shelf,
The spark plug according to claim 1, wherein the pressing member is separated from the heat dissipation member in the radial direction.
前記絶縁体と前記放熱部材との圧入部における摩擦力F2と、前記押圧部材と前記主体金具との圧入部における摩擦力F4との関係が、F2<F4であることを特徴とする請求項7に記載のスパークプラグ。   The relationship between the frictional force F2 at the press-fitting portion between the insulator and the heat radiating member and the frictional force F4 at the press-fitting portion between the pressing member and the metal shell is F2 <F4. Spark plug as described in. 前記主体金具は、前記押圧部材が圧入される部分の後方側に、前記押圧部材の外径よりも大きい内径のポケット部を有し、前記主体金具の前記内周面のうち前記ポケット部の内周面と前記押圧部材が圧入される圧入面との間がテーパ面に形成されていることを特徴とする請求項7又は8に記載のスパークプラグ。   The metallic shell has a pocket portion having an inner diameter larger than the outer diameter of the pressing member on the rear side of the portion into which the pressing member is press-fitted, and the inner portion of the inner circumferential surface of the metallic shell is inside the pocket portion. The spark plug according to claim 7 or 8, wherein a tapered surface is formed between a peripheral surface and a press-fitting surface into which the pressing member is press-fitted. 前記押圧部材は、自身の後方側端部に荷重により変形する突起を有し、前記押圧部材は前記突起が変形した状態で前記放熱部材とともに前記絶縁体と前記棚部との間に挟持されることを特徴とする請求項7〜9のいずれかに記載のスパークプラグ。   The pressing member has a protrusion deformed by a load at its rear end, and the pressing member is sandwiched between the insulator and the shelf together with the heat radiating member in a state where the protrusion is deformed. The spark plug according to any one of claims 7 to 9. 軸方向における前記放熱部材と前記押圧部材との間に、前記放熱部材及び前記押圧部材よりも軟らかい金属製の緩衝部材が配設されたことを特徴とする請求項7〜10のいずれかに記載のスパークプラグ。   The metal buffer member softer than the heat radiating member and the pressing member is disposed between the heat radiating member and the pressing member in the axial direction. Spark plug.
JP2009076040A 2009-03-26 2009-03-26 Spark plug Expired - Fee Related JP5333749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009076040A JP5333749B2 (en) 2009-03-26 2009-03-26 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009076040A JP5333749B2 (en) 2009-03-26 2009-03-26 Spark plug

Publications (2)

Publication Number Publication Date
JP2010231933A JP2010231933A (en) 2010-10-14
JP5333749B2 true JP5333749B2 (en) 2013-11-06

Family

ID=43047584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009076040A Expired - Fee Related JP5333749B2 (en) 2009-03-26 2009-03-26 Spark plug

Country Status (1)

Country Link
JP (1) JP5333749B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073646A1 (en) * 2017-10-11 2019-04-18 日本特殊陶業株式会社 Spark plug
JP7492938B2 (en) 2021-05-07 2024-05-30 日本特殊陶業株式会社 Spark plug

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031472A (en) * 1989-05-29 1991-01-08 Ngk Spark Plug Co Ltd Ignition plug
EP1931002B1 (en) * 2005-08-22 2014-11-12 Ngk Spark Plug Co., Ltd. Spark plug
JP4685549B2 (en) * 2005-08-22 2011-05-18 日本特殊陶業株式会社 Spark plug

Also Published As

Publication number Publication date
JP2010231933A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5041561B2 (en) Spark plug
US9970408B2 (en) Corona ignition device with improved electrical performance
US7914353B2 (en) Spark plug and method for manufacturing the same
JP4482589B2 (en) Plasma jet ignition plug
JP4944928B2 (en) Plasma jet ignition plug and method for manufacturing the same
JP7198907B2 (en) Spark plug
US11557882B2 (en) Corona ignition device with improved electrical performance
JP2009224345A5 (en)
JP2003077620A (en) Spark plug and its manufacturing method
JP6611769B2 (en) Spark plug
JP5333749B2 (en) Spark plug
JP6270802B2 (en) Spark plug
JP7063125B2 (en) Spark plugs for internal combustion engines and ignition devices for internal combustion engines
JP6619769B2 (en) Spark plug
JP6418987B2 (en) Plasma jet plug
US10178751B2 (en) Ignition plug
JP5207309B2 (en) Spark plug
JP2019200902A (en) Ignition plug manufacturing method and ignition plug
JP5333750B2 (en) Spark plug
JP2018174034A (en) Spark plug
JP6524136B2 (en) Spark plug
JP2023154510A (en) Spark plug for internal combustion engine
JP2023092771A (en) internal combustion engine and spark plug
JP2022162652A (en) Spark plug
JP2019120228A (en) Ignitor for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R150 Certificate of patent or registration of utility model

Ref document number: 5333749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees