JP5332290B2 - Ventilation air conditioner - Google Patents

Ventilation air conditioner Download PDF

Info

Publication number
JP5332290B2
JP5332290B2 JP2008112366A JP2008112366A JP5332290B2 JP 5332290 B2 JP5332290 B2 JP 5332290B2 JP 2008112366 A JP2008112366 A JP 2008112366A JP 2008112366 A JP2008112366 A JP 2008112366A JP 5332290 B2 JP5332290 B2 JP 5332290B2
Authority
JP
Japan
Prior art keywords
phase induction
compressor
induction compressor
voltage
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008112366A
Other languages
Japanese (ja)
Other versions
JP2009264621A (en
Inventor
浩 築比地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008112366A priority Critical patent/JP5332290B2/en
Publication of JP2009264621A publication Critical patent/JP2009264621A/en
Application granted granted Critical
Publication of JP5332290B2 publication Critical patent/JP5332290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ventilation air-conditioning device capable of suppressing acceleration/deceleration vibration generated when starting/stopping a compressor. <P>SOLUTION: As a body of the ventilation air-conditioning device is provided with a refrigerating cycle composed of a single phase induction compressor 1, a condensation coil 2, a pressure reducing means 3 and an evaporation coil 4, and a driving circuit 11 of the single phase induction compressor 1 is provided with a decelerating means 3, rotary torque of the single phase induction compressor 1 can be reduced, and the speed can be reduced by the load, thus the acceleration/deceleration vibration generated in starting/stopping the single phase induction compressor 1 can be reduced, and vibrational stress to refrigerant piping 5 can be reduced. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ヒートポンプを利用して浴室などの換気空調を行う換気空調装置に関するものである。   The present invention relates to a ventilation air conditioner that performs ventilation air conditioning of a bathroom or the like using a heat pump.

従来のヒートポンプを利用した浴室などの換気空調装置としては、浴室以外から取り入れられた空気に対してヒートポンプの一方の熱交換器が放熱(または吸熱)を行い、その空気を浴室内に吹き出すとともに、ヒートポンプの他方の熱交換器が浴室から屋外に排出される空気に対して吸熱(または放熱)することで浴室を空調するものがある(例えば、特許文献1参照)。   As a ventilation air conditioner such as a bathroom using a conventional heat pump, one heat exchanger of the heat pump radiates (or absorbs heat) to air taken from outside the bathroom, and blows the air into the bathroom, There is one in which the other heat exchanger of the heat pump heats (or dissipates) heat from the air discharged from the bathroom to the outside, thereby air-conditioning the bathroom (for example, see Patent Document 1).

また、圧縮機の振動を低減する方式として、圧縮機への電圧供給の入切を行う第1リレーと、この圧縮機の補助巻線に直列にコンデンサを配し、このコンデンサと補助巻線の間に第2リレーを設け、圧縮機を起動する際には、第1リレー、第2リレーともに短絡することで、補助巻線とコンデンサからなる回転磁界により圧縮機を起動させ、圧縮機を停止する際には、先ず第2リレーを開放することで、補助巻線とコンデンサからなる回転磁界を無くし、圧縮機の回転慣性による回転磁界による回転へ切換えることで、回転トルクを弱め、回転数を低減させた後、第1リレーを開放し圧縮機を完全に停止する方式がある(例えば、特許文献2参照)。   Moreover, as a method of reducing the vibration of the compressor, a first relay for turning on / off the voltage supply to the compressor and a capacitor in series with the auxiliary winding of the compressor are arranged. When the compressor is started by providing a second relay between them, the first relay and the second relay are both short-circuited to start the compressor by the rotating magnetic field consisting of the auxiliary winding and the capacitor, and stop the compressor When opening the second relay, first, the rotating magnetic field consisting of the auxiliary winding and the capacitor is eliminated, and by switching to the rotating magnetic field due to the rotating inertia of the compressor, the rotational torque is weakened and the rotational speed is reduced. After the reduction, there is a method of opening the first relay and completely stopping the compressor (for example, see Patent Document 2).

特開2005−180712号公報JP 2005-180712 A 特許第3930397号公報Japanese Patent No. 3930397

このような従来の換気空調装置では、誘導モータを用いた圧縮機の振動要因のひとつに、起動時や停止時に発生する振動がある。   In such a conventional ventilation air-conditioning apparatus, one of the vibration factors of a compressor using an induction motor is vibration that occurs at the time of starting and stopping.

この振動要因は、起動時に圧縮機が定常回転数(電源周波数−スベリ)に向かい加速する際に発生する加速振動と停止時に静止に向かい減速する際に発生する減速振動であり、発生する時間は短いが、定常回転数にて回転しているときよりも振動が大きく、圧縮機に接続された冷媒配管に応力が掛かり、配管割れなどを生じさせる原因にもなっている。   This vibration factor is the acceleration vibration that occurs when the compressor accelerates toward the steady rotational speed (power supply frequency minus sliding) at startup and the deceleration vibration that occurs when the compressor decelerates stationary when stopped. Although it is short, the vibration is larger than when rotating at a steady rotational speed, and stress is applied to the refrigerant pipe connected to the compressor, causing a pipe crack or the like.

特許文献2に例示されるような従来の圧縮機振動を低減する方式では、補助巻線とコンデンサからなる回転磁界の有無により圧縮機の回転数を低減する構成であり、圧縮機の起動時には作用せず、回転慣性が残る停止時にしか作用することができないという課題があった。   The conventional method of reducing compressor vibration as exemplified in Patent Document 2 is a configuration in which the number of rotations of the compressor is reduced by the presence or absence of a rotating magnetic field composed of an auxiliary winding and a capacitor. However, there is a problem that it can only act at the time of a stop where the rotational inertia remains.

また、換気空調装置の多くは浴室(ユニットバスなど)の天井に平置きされ固定される据置き施工か、浴室の上部から吊り下げられた取付け用金具に固定する吊り下げ施工により設置される。   In addition, most of the ventilation air conditioners are installed by a stationary construction in which they are laid flat and fixed on the ceiling of a bathroom (such as a unit bath), or by a hanging construction in which they are fixed to mounting hardware suspended from the top of the bathroom.

このため換気空調装置から発生した振動は、取付け金具や浴室の天井から浴室内に音や振動として伝わるが、浴室のような狭い空間では反響が大きく、騒音や異常音として問題になるという課題があった。   For this reason, the vibration generated from the ventilation air conditioner is transmitted as sound and vibration from the mounting bracket and the ceiling of the bathroom into the bathroom, but there is a problem that it is highly reverberant in a narrow space such as the bathroom and becomes a problem as noise and abnormal noise. there were.

また、浴室は利用者が裸になり利用することから、暖房の吹出し温度を高める必要があり、そのため圧縮機に掛かる負荷も通常の居室(リビングなど)空調と比べると高いため、特に圧縮機停止時に発生する減速振動が大きくなるという課題があった。   In addition, since the bathroom is used naked by the user, it is necessary to increase the temperature of the heating, so the load on the compressor is higher than that of a normal living room (living room, etc.), so the compressor is stopped. There has been a problem that the deceleration vibration generated sometimes increases.

また、浴室は一般的に狭く限られた空間(1〜2坪ほど)のため、浴室温度は比較的早く暖めることができるが、温度を平均的に保つために必要な圧縮機のON/OFFは頻度が多くなり前述の課題の発生頻度が多くなるという課題がある。   Also, the bathroom is generally narrow and limited (about 1-2 tsubo), so the bathroom temperature can be warmed relatively quickly, but the compressor ON / OFF required to keep the temperature on average There is a problem that the frequency increases and the frequency of occurrence of the aforementioned problems increases.

本発明は、このような従来の課題を解決するものであり、圧縮機の起動、停止時に発生する加減速振動を低減すると共に、圧縮機に接続された冷媒配管への振動応力を低減することができる換気空調装置を提供することを目的としている。   The present invention solves such a conventional problem, and reduces acceleration / deceleration vibration generated at the time of starting and stopping of the compressor and reducing vibration stress to the refrigerant pipe connected to the compressor. It aims at providing the ventilation air conditioner which can do.

本発明の換気空調装置は、上記目的を達成するため本体に単相誘導圧縮機と凝縮コイルと減圧手段と蒸発コイルからなる冷凍サイクルと単相誘導圧縮機の駆動回路に減速手段を備え、減速手段は、抵抗器とこの抵抗器の両端を短絡するリレーとして、起動時と止時に前記リレーを開放して前記抵抗器と単相誘導圧縮機のインピーダンス比率によって単相誘導圧縮機へ供給する電圧を降圧さることを特徴とする。 In order to achieve the above object, a ventilation air conditioner of the present invention comprises a refrigeration cycle comprising a single-phase induction compressor, a condensing coil, a decompression means, an evaporation coil, and a drive circuit for the single-phase induction compressor. means for supplying a resistor as a relay for short-circuiting both ends of this resistor, the impedance ratio of the resistor and the single-phase induction compressor by opening the relay when stop the startup to the single-phase induction compressor The voltage is stepped down.

そして、本発明によれば単相誘導圧縮機の起動、停止時に発生する加減速振動を低減すると共に、単相誘導圧縮機に接続された冷媒配管への振動応力を低減することができる換気空調装置が得られる。   And according to this invention, while reducing the acceleration-deceleration vibration generate | occur | produced at the time of starting and stopping of a single phase induction compressor, the ventilation air conditioning which can reduce the vibration stress to the refrigerant | coolant piping connected to the single phase induction compressor A device is obtained.

本発明によれば本体に単相誘導圧縮機と凝縮コイルと減圧手段と蒸発コイルからなる冷凍サイクルと単相誘導圧縮機の駆動回路に減速手段を備え、減速手段は、抵抗器とこの抵抗器の両端を短絡するリレーとして、起動時と止時に前記リレーを開放して前記抵抗器と単相誘導圧縮機のインピーダンス比率によって単相誘導圧縮機へ供給する電圧を降圧さることにより、簡易で安価な構成にて、単相誘導圧縮機の回転トルクを低下させ、負荷により減速することができるため、単相誘導圧縮機の起動、停止時に発生する加減速振動を低減すると共に、単相誘導圧縮機に接続された冷媒配管への振動応力を低減することができる。 According to the present invention, the main body includes a refrigeration cycle comprising a single-phase induction compressor, a condensing coil, a decompression means, an evaporation coil, and a drive circuit for the single-phase induction compressor. The speed reduction means includes a resistor and the resistor. as a relay for short-circuiting both ends of, by monkey step down the voltage supplied to the single-phase induction compressor by the impedance ratio of the resistor and the single-phase induction compressor by opening the relay when stop the startup, a simple With a low-cost configuration, the rotational torque of the single-phase induction compressor can be reduced and decelerated by the load, reducing the acceleration / deceleration vibration that occurs when the single-phase induction compressor starts and stops, and single-phase induction Vibration stress to the refrigerant pipe connected to the compressor can be reduced.

また、抵抗器を介すことにより単相誘導圧縮機の起動時に発生する起動電流を低減することができるという効果のある換気空調装置を提供できる。   Moreover, the ventilation air-conditioning apparatus with the effect that the starting electric current which generate | occur | produces at the time of starting of a single phase induction compressor can be reduced through a resistor can be provided.

本発明の実施の形態1記載の換気空調装置を示す概略断面図Schematic sectional view showing a ventilation air-conditioning apparatus according to Embodiment 1 of the present invention 同単相誘導圧縮機の駆動回路の構成図Configuration diagram of the drive circuit of the single-phase induction compressor 同単相誘導圧縮機の駆動回路の動作説明図((a)起動時の動作説明図、(b)停止時の動作説明図)Operation explanatory diagram of the drive circuit of the single-phase induction compressor ((a) Operation explanatory diagram at startup, (b) Operation explanatory diagram at stop) 参考例1記載の単相誘導圧縮機の駆動回路の構成図Configuration diagram of drive circuit of single-phase induction compressor described in reference example 1 参考例1記載の単相誘導圧縮機の駆動回路動作説明図((a)起動時の動作説明図、(b)停止時の動作説明図)Driving circuit operation explanatory diagram of the single-phase induction compressor described in the reference example 1 ((a) operation explanatory diagram at the start, (b) operation explanatory diagram at the stop) 参考例2記載の単相誘導圧縮機の駆動回路の構成図Configuration diagram of drive circuit of single-phase induction compressor described in reference example 2 参考例2記載の単相誘導圧縮機の駆動回路の動作説明図((a)起動時の動作説明図、(b)停止時の動作説明図)Operation explanatory diagram of the drive circuit of the single phase induction compressor described in Reference Example 2 ((a) Operation explanatory diagram at start-up, (b) Operation explanatory diagram at stop) 参考例3記載の単相誘導圧縮機の駆動回路の構成図Configuration diagram of drive circuit of single-phase induction compressor described in reference example 3 同単相誘導圧縮機の駆動回路の動作説明図((a)起動時の動作説明図、(b)停止時の動作説明図)Operation explanatory diagram of the drive circuit of the single-phase induction compressor ((a) Operation explanatory diagram at startup, (b) Operation explanatory diagram at stop) 同単相誘導圧縮機の駆動回路の動作説明図((a)起動時の動作説明図、(b)停止時の動作説明図)Operation explanatory diagram of the drive circuit of the single-phase induction compressor ((a) Operation explanatory diagram at startup, (b) Operation explanatory diagram at stop) 参考例4記載の換気空調装置を示す概略断面図Schematic sectional view showing the ventilation air conditioner described in the reference example 4 同単相誘導圧縮機の駆動回路の構成図Configuration diagram of the drive circuit of the single-phase induction compressor 同単相誘導圧縮機の駆動回路の動作説明図((a)起動時の動作説明図、(b)停止時の動作説明図)Operation explanatory diagram of the drive circuit of the single-phase induction compressor ((a) Operation explanatory diagram at startup, (b) Operation explanatory diagram at stop) 参考例5記載の換気空調装置を示す概略断面図Schematic sectional view showing the ventilation air conditioner described in Reference Example 5 同単相誘導圧縮機の駆動回路の構成図Configuration diagram of the drive circuit of the single-phase induction compressor 参考例6記載の換気空調装置を示す概略断面図Schematic sectional view showing the ventilation air conditioner described in the reference example 6 同単相誘導圧縮機の駆動回路の構成図Configuration diagram of the drive circuit of the single-phase induction compressor 参考例7記載の換気空調装置を示す概略断面図Schematic sectional view showing the ventilation air conditioner described in the reference example 7 同単相誘導圧縮機の駆動回路の構成図Configuration diagram of the drive circuit of the single-phase induction compressor 同単相誘導圧縮機の駆動回路の動作説明図((a)起動時の動作説明図、(b)停止時の動作説明図)Operation explanatory diagram of the drive circuit of the single-phase induction compressor ((a) Operation explanatory diagram at startup, (b) Operation explanatory diagram at stop)

本発明の請求項1記載の発明は、本体に単相誘導圧縮機と凝縮コイルと減圧手段と蒸発コイルからなる冷凍サイクルと単相誘導圧縮機の駆動回路に減速手段を備え、減速手段は、抵抗器とこの抵抗器の両端を短絡するリレーとして、起動時と止時に前記リレーを開放して前記抵抗器と単相誘導圧縮機のインピーダンス比率によって単相誘導圧縮機へ供給する電圧を降圧さるものであり、単相誘導圧縮機へ供給する電圧は、単相誘導圧縮機と抵抗器のインピーダンス比率にて低減し、流れる電流は単相誘導圧縮機と抵抗器の合成インピーダンスにより低減することにより、単相誘導圧縮機の回転トルク低下させることができるという作用を有する。
The invention according to claim 1 of the present invention includes a refrigeration cycle comprising a single-phase induction compressor, a condensing coil, a decompression means, an evaporation coil in the main body, and a drive circuit for the single-phase induction compressor. as a relay for short-circuiting the resistor both ends of this resistor, reduces the voltage supplied to the single-phase induction compressor by the impedance ratio of the resistor and the single-phase induction compressor by opening the relay when stop and startup The voltage supplied to the single-phase induction compressor should be reduced by the impedance ratio of the single-phase induction compressor and the resistor, and the flowing current should be reduced by the combined impedance of the single-phase induction compressor and the resistor. Thus, the rotational torque of the single-phase induction compressor can be reduced.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
本発明の実施の形態1の換気空調装置について図1、図2および図3を参照しながら説明する。
(Embodiment 1)
The ventilation air conditioner of Embodiment 1 of this invention is demonstrated referring FIG.1, FIG.2 and FIG.3.

図1は本発明の換気空調装置の一例を示すものであり、図2は本発明の単相誘導圧縮機1の駆動回路11の構成を示す図で、図3は駆動回路の動作の一例を示す図である。   FIG. 1 shows an example of a ventilation air conditioner of the present invention, FIG. 2 is a diagram showing a configuration of a drive circuit 11 of a single-phase induction compressor 1 of the present invention, and FIG. 3 shows an example of the operation of the drive circuit. FIG.

図1に示すように、単相誘導圧縮機1と凝縮コイル2と減圧手段3と蒸発コイル4とをつなぎ冷媒を通す冷媒配管5からなる冷凍サイクルと室内(例えば浴室)の空気を吸込口6から吸込み、蒸発コイル4を介して換気口7へと空気を換気する換気ファン8と、室内の空気を吸込口6から吸込み、凝縮コイル2を介して吹出口9から再度室内へと吹出す循環ファン10と単相誘導圧縮機1の駆動回路11を備えた本体12は、室内の天井に据置き設置(図示せず)されており、単相誘導圧縮機1により高温高圧化された冷媒は冷凍配管5を通り凝縮コイル2にて循環ファン10により室内から吸込まれた空気に熱を放熱し、減圧手段3へと移動し減圧され低温低圧となり蒸発コイル4へと移動し、換気ファン8により室内から吸込まれた空気の熱を吸収し単相誘導圧縮機1へと戻る。   As shown in FIG. 1, a single-phase induction compressor 1, a condensing coil 2, a decompression means 3, and an evaporating coil 4 are connected to a refrigeration cycle comprising a refrigerant pipe 5 through which a refrigerant passes and air in a room (for example, a bathroom) is drawn into an inlet 6 And a ventilation fan 8 that ventilates the air to the ventilation port 7 through the evaporation coil 4, and a circulation that sucks indoor air from the suction port 6 and blows out again from the air outlet 9 into the room through the condensation coil 2. A main body 12 having a fan 10 and a drive circuit 11 for the single-phase induction compressor 1 is installed on a ceiling (not shown) on the indoor ceiling, and the high-temperature and high-pressure refrigerant is cooled by the single-phase induction compressor 1. Heat is dissipated to the air sucked from the room by the circulation fan 10 through the refrigeration pipe 5 and moved to the decompression means 3, depressurized to low temperature and low pressure, and moved to the evaporation coil 4. Air sucked from the room Back to the single-phase induction compressor 1 absorbs the heat.

このように、換気口7から換気される空気から熱を吸収し、吹出口9から室内を循環する空気へ熱を放熱することで室内を空調する。   In this way, the room is air-conditioned by absorbing heat from the air ventilated from the ventilation port 7 and radiating the heat from the air outlet 9 to the air circulating in the room.

図2に示すように、単相誘導圧縮機1の駆動回路11は、抵抗器13とこの抵抗器13の両端を短絡する減速リレー14にて構成した減速手段15と単相誘導圧縮機1への電源供給を入切する起動リレー16備えた構成としている。   As shown in FIG. 2, the drive circuit 11 of the single-phase induction compressor 1 is connected to the speed reduction means 15 and the single-phase induction compressor 1 constituted by a resistor 13 and a speed reduction relay 14 that short-circuits both ends of the resistor 13. The activation relay 16 for turning on / off the power supply is provided.

上記構成により、単相誘導圧縮機1を起動する際は、起動リレー16を短絡し、抵抗器13と単相誘導圧縮機1のインピーダンス比率にて、図3(a)に示すように、単相誘導圧縮機1へ供給する電圧を降圧させ、且つ、抵抗器13を介しているため電流も低減され単相誘導圧縮機1への通電を行い、予め設定した時間(t1)後に減速リレー14を短絡させることで、単相誘導圧縮機1へ交流電源電圧と等しい定格電圧を供給する。   With the above configuration, when starting the single-phase induction compressor 1, the start relay 16 is short-circuited, and the impedance ratio between the resistor 13 and the single-phase induction compressor 1 is set as shown in FIG. The voltage supplied to the phase induction compressor 1 is stepped down, and since the current is reduced because the voltage is supplied through the resistor 13, the single phase induction compressor 1 is energized, and after the preset time (t1), the deceleration relay 14 Is supplied to the single-phase induction compressor 1 at a rated voltage equal to the AC power supply voltage.

また、単相誘導圧縮機1を停止する際は、図3(b)に示すように、減速リレー14を開放した後、予め設定した時間(t2)後に起動リレー16を開放することで、単相誘導圧縮機1への電源供給を遮断する。   When stopping the single-phase induction compressor 1, as shown in FIG. 3 (b), after opening the deceleration relay 14, the start relay 16 is opened after a preset time (t2). The power supply to the phase induction compressor 1 is cut off.

そして、単相誘導圧縮機1へ供給する電圧は、単相誘導圧縮機1と抵抗器13のインピーダンス比率にて低減し、流れる電流は単相誘導圧縮機1と抵抗器13の合成インピーダンスにより低減することにより、単相誘導圧縮機1へ供給する電圧と電流を定量的に低減し、単相誘導圧縮機1が発生させる回転トルクを低下させ、電源供給周波数にて決定される単相誘導圧縮機1の回転数を、低下した回転トルクの作用で、負荷により減速することができるため、簡易で安価な構成にて、単相誘導圧縮機1の起動、停止時に発生する加減速振動を二段階に分散し低減すると共に、単相誘導圧縮機1に接続された冷媒配管5への振動応力を低減することができ、抵抗器13を介すことにより単相誘導圧縮機1の起動時に発生する起動電流を低減することができる。   The voltage supplied to the single-phase induction compressor 1 is reduced by the impedance ratio of the single-phase induction compressor 1 and the resistor 13, and the flowing current is reduced by the combined impedance of the single-phase induction compressor 1 and the resistor 13. Thus, the voltage and current supplied to the single-phase induction compressor 1 are quantitatively reduced, the rotational torque generated by the single-phase induction compressor 1 is reduced, and the single-phase induction compression determined by the power supply frequency Since the rotational speed of the machine 1 can be decelerated by the load under the action of the reduced rotational torque, the acceleration / deceleration vibration generated when the single-phase induction compressor 1 is started and stopped can be reduced with a simple and inexpensive configuration. While being dispersed and reduced in stages, vibration stress on the refrigerant pipe 5 connected to the single-phase induction compressor 1 can be reduced, and is generated when the single-phase induction compressor 1 is started via the resistor 13. Reduce the starting current Door can be.

参考例1
本発明の参考例1の換気空調装置について図4、5を参照しながら説明する。
( Reference Example 1 )
A ventilation air conditioner according to Reference Example 1 of the present invention will be described with reference to FIGS.

なお、参考例1の説明において既に実施の形態1で説明した同一部品については同一符号を付与し説明を省略する。 In the description of the reference example 1 , the same parts already described in the first embodiment are given the same reference numerals and the description thereof is omitted.

図4は本発明の単相誘導圧縮機1の駆動回路11の構成と動作の一例を示すものである。   FIG. 4 shows an example of the configuration and operation of the drive circuit 11 of the single-phase induction compressor 1 of the present invention.

図4に示すように、減速手段15は、一般にPTCとよばれている正特性サーミスタで構成した第1正特性サーミスタ17とこの第1正特性サーミスタ17の両端を短絡する減速リレー14とした構成とする。   As shown in FIG. 4, the speed reduction means 15 is configured as a first positive temperature coefficient thermistor 17 constituted by a positive temperature coefficient thermistor generally called PTC and a speed reduction relay 14 that short-circuits both ends of the first positive temperature coefficient thermistor 17. And

上記構成において、単相誘導圧縮機1を起動する際は、図5(a)に示すように、起動リレー16を短絡し、第1正特性サーミスタ17と単相誘導圧縮機1のインピーダンス比率にて、単相誘導圧縮機1へ供給する電圧を降圧させ、且つ、第1正特性サーミスタ17を介しているため電流も低減され単相誘導圧縮機1への通電を行い、予め設定した時間(t1)後に減速リレー14を短絡させることで、単相誘導圧縮機1へ交流電源電圧と等しい定格電圧を供給する。   In the above configuration, when starting the single-phase induction compressor 1, as shown in FIG. 5A, the start relay 16 is short-circuited, and the impedance ratio between the first positive characteristic thermistor 17 and the single-phase induction compressor 1 is set. Thus, the voltage supplied to the single-phase induction compressor 1 is stepped down, and since the current is reduced because it passes through the first positive characteristic thermistor 17, the single-phase induction compressor 1 is energized, and a preset time ( t1) After that, the rated relay equal to the AC power supply voltage is supplied to the single-phase induction compressor 1 by short-circuiting the deceleration relay 14.

次に、単相誘導圧縮機1を停止する際は、図5(b)に示すように、減速リレー14を開放した後、予め設定した時間(t2)後に起動リレー16を開放することで、単相誘導圧縮機1への電源供給を遮断する。   Next, when stopping the single-phase induction compressor 1, as shown in FIG. 5 (b), after opening the deceleration relay 14, the start relay 16 is opened after a preset time (t 2). The power supply to the single phase induction compressor 1 is cut off.

そして、単相誘導圧縮機1へ供給する電圧は、単相誘導圧縮機1と第1正特性サーミスタ17のインピーダンス比率にて低減し、流れる電流は単相誘導圧縮機1と第1正特性サーミスタ17の合成インピーダンスにより低減することにより、単相誘導圧縮機1が発生させる回転トルク低下させることができ、電源供給周波数にて決定される単相誘導圧縮機1の回転数を、低下した回転トルクの作用で負荷により減速することができるため、単相誘導圧縮機1の起動、停止時に発生する加減速振動を二段階に分散し低減すると共に、単相誘導圧縮機1に接続された冷媒配管5への振動応力を低減することができ、また、第1正特性サーミスタ17を介すことにより単相誘導圧縮機1の起動時に発生する起動電流を低減することができる。   The voltage supplied to the single-phase induction compressor 1 is reduced by the impedance ratio of the single-phase induction compressor 1 and the first positive characteristic thermistor 17, and the flowing current is the single-phase induction compressor 1 and the first positive characteristic thermistor. The rotational torque generated by the single-phase induction compressor 1 can be reduced by the reduction by the composite impedance of 17, and the rotational speed of the single-phase induction compressor 1 determined by the power supply frequency is reduced. Therefore, the acceleration / deceleration vibration generated when the single-phase induction compressor 1 is started and stopped is distributed and reduced in two stages, and the refrigerant pipe connected to the single-phase induction compressor 1 is reduced. 5 can be reduced, and the starting current generated when the single-phase induction compressor 1 is started can be reduced through the first positive temperature coefficient thermistor 17.

また、第1正特性サーミスタ17は発熱により所定の温度に達した場合に抵抗値が急激に上昇する特性を保有しており、発熱により所定の温度に達した場合には単相誘導圧縮機1への電圧、電流供給量を減少させることができるため、起動時には減速リレー14の接点が短絡しない場合、停止時には起動リレー16の接点が開放しない場合などは第1正特性サーミスタ17が発熱することにより抵抗値が急激に上昇し、供給電圧の大半を第1正特性サーミスタ17にて消費することができ、単相誘導圧縮機1への電圧、電流供給を遮断することができる。   Further, the first positive characteristic thermistor 17 has a characteristic that the resistance value rapidly increases when the temperature reaches a predetermined temperature due to heat generation. When the temperature reaches the predetermined temperature due to heat generation, the single-phase induction compressor 1 The first positive temperature coefficient thermistor 17 generates heat when the contact of the speed reducing relay 14 is not short-circuited at the time of start-up, or when the contact of the start-up relay 16 is not opened at the time of stop-up. As a result, the resistance value increases rapidly, and most of the supply voltage can be consumed by the first positive characteristic thermistor 17, and voltage and current supply to the single-phase induction compressor 1 can be cut off.

参考例2
本発明の参考例2の換気空調装置について図6、7を参照しながら説明する。
( Reference Example 2 )
A ventilation air conditioner according to Reference Example 2 of the present invention will be described with reference to FIGS.

なお、参考例2の説明において既に実施の形態1および参考例1で説明した同一部品については同一符号を付与し説明を省略する。 In the description of the reference example 2 , the same parts as those already described in the first embodiment and the reference example 1 are given the same reference numerals and the description thereof is omitted.

図6は本発明の単相誘導圧縮機1の駆動回路11の構成と動作の一例を示すものである。   FIG. 6 shows an example of the configuration and operation of the drive circuit 11 of the single-phase induction compressor 1 of the present invention.

図6に示すように、第1正特性サーミスタ17の両端に抵抗容量の異なる正特性サーミスタ(PTC)で構成した第2正特性サーミスタ18を備えた構成とする。   As shown in FIG. 6, the first positive temperature coefficient thermistor 17 is provided with a second positive temperature coefficient thermistor 18 composed of positive temperature coefficient thermistors (PTCs) having different resistance capacities at both ends.

上記構成において、単相誘導圧縮機1を起動する際は、図7(a)に示すように、起動リレー16を短絡することにより、単相誘導圧縮機1へ供給する電圧は、第1正特性サーミスタ17と第2正特性サーミスタ18の合成抵抗値と単相誘導圧縮機1のインピーダンス比率にて低減し、流れる電流は第1正特性サーミスタ17と第2正特性サーミスタ18の合成抵抗値と単相誘導圧縮機1の合成インピーダンスにより低減し単相誘導圧縮機1へ通電を行い、予め設定した時間(t1)後に減速リレー14を短絡させることで、単相誘導圧縮機1へ交流電源電圧と等しい定格電圧を供給する。   In the above configuration, when starting the single-phase induction compressor 1, as shown in FIG. 7A, the voltage supplied to the single-phase induction compressor 1 is reduced to the first positive value by short-circuiting the start relay 16. The combined resistance value of the characteristic thermistor 17 and the second positive characteristic thermistor 18 is reduced by the impedance ratio of the single-phase induction compressor 1, and the flowing current is the combined resistance value of the first positive characteristic thermistor 17 and the second positive characteristic thermistor 18. By reducing the combined impedance of the single-phase induction compressor 1 and energizing the single-phase induction compressor 1 and short-circuiting the deceleration relay 14 after a preset time (t1), the AC power supply voltage is supplied to the single-phase induction compressor 1 Supply a rated voltage equal to.

次に、単相誘導圧縮機1を停止する際は、図7(b)に示すように、減速リレー14を開放することにより、単相誘導圧縮機1へ供給する電圧は、第1正特性サーミスタ17と第2正特性サーミスタ18の合成抵抗値と単相誘導圧縮機1のインピーダンス比率にて低減し、流れる電流は第1正特性サーミスタ17と第2正特性サーミスタ18の合成抵抗値と単相誘導圧縮機1の合成インピーダンスにより低減し、さらに、第1正特性サーミスタ17と第2正特性サーミスタ18それぞれが発熱することにより、合成抵抗値が変化し単相誘導圧縮機1へ供給する電圧、電流を変化させることにより、単相誘導圧縮機1が発生する回転トルクを可変しながら低下させながら、単相誘導圧縮機1へ通電を行い、予め設定した時間(t2)後に起動リレー16を開放することで、単相誘導圧縮機1への電源供給を遮断する。   Next, when stopping the single-phase induction compressor 1, as shown in FIG. 7B, the voltage supplied to the single-phase induction compressor 1 by opening the deceleration relay 14 is the first positive characteristic. The combined resistance value of the thermistor 17 and the second positive characteristic thermistor 18 is reduced by the impedance ratio of the single-phase induction compressor 1, and the flowing current is the same as the combined resistance value of the first positive characteristic thermistor 17 and the second positive characteristic thermistor 18. The voltage is reduced by the combined impedance of the phase induction compressor 1, and further, the combined resistance value changes due to the heat generation of the first positive characteristic thermistor 17 and the second positive characteristic thermistor 18, and the voltage supplied to the single phase induction compressor 1 By changing the current, the single-phase induction compressor 1 is energized while the rotational torque generated by the single-phase induction compressor 1 is varied and reduced, and the start-up reset is performed after a preset time (t2). By opening the over 16, to cut off the power supply to the single-phase induction compressor 1.

そして、電源供給周波数にて決定される単相誘導圧縮機1の回転数を第1正特性サーミスタ17および第2正特性サーミスタ18により低下した回転トルクの作用で減速することができるため、単相誘導圧縮機1の起動、停止時に発生する加減速振動を分散し低減すると共に、単相誘導圧縮機1に接続された冷媒配管5への振動応力を低減することができる。   Since the rotational speed of the single-phase induction compressor 1 determined by the power supply frequency can be decelerated by the action of the rotational torque reduced by the first positive characteristic thermistor 17 and the second positive characteristic thermistor 18, The acceleration / deceleration vibration generated when the induction compressor 1 is started and stopped can be dispersed and reduced, and vibration stress on the refrigerant pipe 5 connected to the single-phase induction compressor 1 can be reduced.

また、第1正特性サーミスタ17および第2正特性サーミスタ18を介すことにより、単相誘導圧縮機1の起動時に発生する起動電流を低減することができ、さらに、起動時には減速リレー14の接点が短絡しない場合、停止時には起動リレー16の接点が開放しない場合などは第1正特性サーミスタ17および第2正特性サーミスタ18が発熱することにより抵抗値が急激に高まる特性から、供給電圧の大半を第1正特性サーミスタ(PTC)17および第2正特性サーミスタ18にて消費することができ、単相誘導圧縮機1への電圧、電流供給を遮断することができる。   Further, the starting current generated when the single-phase induction compressor 1 is started can be reduced by passing through the first positive characteristic thermistor 17 and the second positive characteristic thermistor 18. Is not short-circuited, or when the contact of the starting relay 16 is not opened at the time of stoppage, etc., the first positive characteristic thermistor 17 and the second positive characteristic thermistor 18 generate heat and the resistance value increases rapidly. It can be consumed by the first positive characteristic thermistor (PTC) 17 and the second positive characteristic thermistor 18, and the voltage and current supply to the single-phase induction compressor 1 can be cut off.

参考例3
本発明の参考例3の換気空調装置について図8、図9および図10を参照しながら説明する。
( Reference Example 3 )
A ventilation air conditioner according to Reference Example 3 of the present invention will be described with reference to FIGS. 8, 9, and 10. FIG.

なお、参考例3の説明において既に実施の形態1および、参考例1、2で説明した同一部品については同一符号を付与し説明を省略する。 In the description of the reference example 3 , the same components already described in the first embodiment and the reference examples 1 and 2 are assigned the same reference numerals and the description thereof is omitted.

図8は本発明の単相誘導圧縮機1の駆動回路11の構成の一例を示すものであり、図9は本発明の単相誘導圧縮機1の駆動回路11の動作として、電圧を一段階で可変する例を示すものである。また、図10は本発明の単相誘導圧縮機1の駆動回路11の動作として、電圧を多段階に可変する例の代表として電圧を二段階で可変する例を示すものである。   FIG. 8 shows an example of the configuration of the drive circuit 11 of the single-phase induction compressor 1 according to the present invention. FIG. 9 shows the operation of the drive circuit 11 of the single-phase induction compressor 1 according to the present invention as a voltage step. An example in which the variable is variable is shown. FIG. 10 shows an example of changing the voltage in two stages as a representative example of changing the voltage in multiple stages as the operation of the drive circuit 11 of the single-phase induction compressor 1 of the present invention.

図8に示すように、単相誘導圧縮機1の駆動回路11は、双方向サイリスタ19にて構成した通電切換手段20とし、通電切換手段20の通電タイミングを制御する制御手段21を備えた構成としている。   As shown in FIG. 8, the drive circuit 11 of the single-phase induction compressor 1 is configured as an energization switching unit 20 configured by a bidirectional thyristor 19 and a control unit 21 that controls the energization timing of the energization switching unit 20. It is said.

上記構成において、単相誘導圧縮機1を起動する際は、図9(a)に示すように、交流電圧のゼロクロスポイントから所定の時間(ta)後に設定した通電タイミングにて、制御手段21より通電切換手段20へ駆動信号が交流電源の半サイクル毎に送信され、受信した通電切換手段20は駆動信号に応じたタイミングにて単相誘導圧縮機1へ電圧を供給し、半欠け状態の電圧波形と成り、1サイクルあたりの有効電力が低下した電圧として一段階可変した電圧V4を単相誘導圧縮機1へ供給するため、単相誘導圧縮機1の回転はこの有効電力に応じた回転となる。   In the above configuration, when the single-phase induction compressor 1 is started, as shown in FIG. 9A, the control means 21 at the energization timing set after a predetermined time (ta) from the zero cross point of the AC voltage. A drive signal is transmitted to the energization switching means 20 every half cycle of the AC power supply, and the received energization switching means 20 supplies a voltage to the single-phase induction compressor 1 at a timing according to the drive signal, and a voltage in a half-missed state. In order to supply the single-phase induction compressor 1 with the voltage V4, which has a waveform and is variable by one step as a voltage with reduced active power per cycle, the rotation of the single-phase induction compressor 1 is the rotation corresponding to this effective power. Become.

また、起動開始から所定の時間(t3)が経過すると、制御手段21より通電切換手段20へ送られる駆動信号が常時通電(通電タイミングを調整せずに交流電源をそのまま通電すること)へと切換り、交流電源電圧と等しい定格電圧を単相誘導圧縮機1へ供給する。   When a predetermined time (t3) has elapsed from the start of activation, the drive signal sent from the control means 21 to the energization switching means 20 is switched to the constant energization (ie, the AC power supply is energized as it is without adjusting the energization timing). Thus, a rated voltage equal to the AC power supply voltage is supplied to the single-phase induction compressor 1.

次に、単相誘導圧縮機1を停止する際は、図9(b)に示すように、交流電圧のゼロクロスポイントから所定の時間(tb)後に設定した通電タイミングにて、制御手段21より通電切換手段20へ駆動信号が交流電源の半サイクル毎に送信され、一段階可変した電圧V6が印加されることとなり、単相誘導圧縮機1の回転はこの有効電力に応じた回転となり、停止動作開始から所定の時間(t4)が経過すると、制御手段21より通電切換手段20へ送られる駆動信号が通電遮断へと切換り、単相誘導圧縮機1へ供給する電圧を遮断する。   Next, when the single-phase induction compressor 1 is stopped, as shown in FIG. 9B, the control means 21 supplies power at a power supply timing set after a predetermined time (tb) from the zero cross point of the AC voltage. A drive signal is transmitted to the switching means 20 every half cycle of the AC power supply, and a voltage V6 that is variable by one step is applied. The rotation of the single-phase induction compressor 1 is a rotation corresponding to this effective power, and a stop operation is performed. When a predetermined time (t4) elapses from the start, the drive signal sent from the control means 21 to the energization switching means 20 is switched to the energization interruption, and the voltage supplied to the single-phase induction compressor 1 is interrupted.

また、図10に示すものは、この通電タイミングを多段階に可変し、単相誘導圧縮機1の回転数を変化させる作用を用いて、多段階に設定するものであり、その一例として2段階に設定する例を示したものが図7である。   In addition, what is shown in FIG. 10 is to set the multi-stage using the action of changing the number of rotations of the single-phase induction compressor 1 by changing the energization timing in multiple stages. FIG. 7 shows an example of setting to.

図10(a)に示すように、起動する際は、交流電圧のゼロクロスポイントから所定の時間(tc)後に設定した通電タイミングにて、制御手段21より通電切換手段20へ駆動信号が交流電源の半サイクル毎に送信され、一段階めの可変した電圧V7が単相誘導圧縮機1へ印加され、単相誘導圧縮機1の回転はこの有効電力に応じた回転となり、起動開始から所定の時間(t5)が経過すると、制御手段21より通電切換手段20へ送られる駆動信号の通電タイミングが切換り、交流電圧のゼロクロスポイントから所定の時間(td)後に設定した通電タイミングとなり、二段階めの可変した電圧V8が単相誘導圧縮機1に印加され、単相誘導圧縮機1の回転はこの有効電力に応じた回転となり、更に所定の時間(t6)が経過すると、制御手段21より通電切換手段20へ送られる駆動信号が常時通電へと切換り、交流電源電圧と等しい定格電圧を単相誘導圧縮機1へ供給する。   As shown in FIG. 10 (a), when starting up, the drive signal is sent from the control means 21 to the energization switching means 20 at the energization timing set after a predetermined time (tc) from the zero cross point of the AC voltage. The voltage V7, which is transmitted every half cycle and is variable in the first stage, is applied to the single-phase induction compressor 1, and the rotation of the single-phase induction compressor 1 is a rotation corresponding to this effective power, and a predetermined time from the start of startup. When (t5) has elapsed, the energization timing of the drive signal sent from the control means 21 to the energization switching means 20 is switched, and becomes the energization timing set after a predetermined time (td) from the zero cross point of the AC voltage. A variable voltage V8 is applied to the single-phase induction compressor 1, and the rotation of the single-phase induction compressor 1 becomes a rotation corresponding to this effective power. When a predetermined time (t6) elapses, the control is performed. Setsu換Ri to the drive signal is always energized sent from unit 21 to the conduction switching means 20 supplies an AC power supply voltage equal to the rated voltage to the single-phase induction compressor 1.

次に、単相誘導圧縮機1を停止する際は、図10(b)に示すように、交流電圧のゼロクロスポイントから所定の時間(te)後に設定した通電タイミングにて、制御手段21より通電切換手段20へ駆動信号が交流電源の半サイクル毎に送信され、一段階めの可変した電圧V10が単相誘導圧縮機1へ印加され、単相誘導圧縮機1の回転はこの有効電力に応じた回転となり、停止動作開始から所定の時間(t7)が経過すると、制御手段21より通電切換手段20へ送られる駆動信号の通電タイミングが切換り、交流電圧のゼロクロスポイントから所定の時間(tf)後に設定した通電タイミングとなり、二段階めの可変した電圧V9が単相誘導圧縮機1に印加され、単相誘導圧縮機1の回転はこの有効電力に応じた回転となり、更に所定の時間(t8)が経過すると、制御手段21より通電切換手段20へ送られる駆動信号が通電遮断へと切換り、単相誘導圧縮機1へ供給する電圧を遮断する。   Next, when the single-phase induction compressor 1 is stopped, as shown in FIG. 10B, the control means 21 supplies power at a power supply timing set after a predetermined time (te) from the zero cross point of the AC voltage. A drive signal is transmitted to the switching means 20 every half cycle of the AC power supply, and the variable V10 at the first stage is applied to the single-phase induction compressor 1, and the rotation of the single-phase induction compressor 1 depends on this active power. When a predetermined time (t7) has elapsed from the start of the stop operation, the energization timing of the drive signal sent from the control means 21 to the energization switching means 20 is switched, and the predetermined time (tf) from the zero cross point of the AC voltage is switched. The energization timing set later is applied, and the variable voltage V9 in the second stage is applied to the single-phase induction compressor 1, and the rotation of the single-phase induction compressor 1 is a rotation corresponding to this effective power, When the time (t8) has elapsed, the drive signal sent from the control unit 21 to the conduction switching means 20 cuts off the voltage supplied Setsu換Ri to energization cutoff, the single-phase induction compressor 1.

また、通電切換手段20は、双方向サイリスタ19を用いているため、制御手段21からの駆動信号は短時間のパルスで良く、一度双方向サイリスタ19通電を開始すると、駆動信号が途絶えても、交流電源の半サイクル期間は単相誘導圧縮機1への電源を供給し続ける。   Further, since the energization switching means 20 uses the bidirectional thyristor 19, the drive signal from the control means 21 may be a short pulse, and once the energization of the bidirectional thyristor 19 is started, even if the drive signal is interrupted, During the half cycle period of the AC power supply, the power supply to the single-phase induction compressor 1 is continued.

そして、単相誘導圧縮機1へ供給する電圧を制御し、単相誘導圧縮機1へ供給する電力を可変することで、単相誘導圧縮機1の回転数を可変することができ、単相誘導圧縮機1の起動、停止時に発生する加減速振動を低減すると共に、単相誘導圧縮機1に接続された冷媒配管5への振動応力を低減することができる。   And by controlling the voltage supplied to the single-phase induction compressor 1 and varying the power supplied to the single-phase induction compressor 1, the number of revolutions of the single-phase induction compressor 1 can be varied, The acceleration / deceleration vibration generated when the induction compressor 1 is started and stopped can be reduced, and the vibration stress applied to the refrigerant pipe 5 connected to the single-phase induction compressor 1 can be reduced.

また、通電タイミングにより電圧供給時間を短縮するので、単相誘導圧縮機1の起動時に発生する起動電流を低減することができる。   In addition, since the voltage supply time is shortened by the energization timing, the starting current generated when starting the single-phase induction compressor 1 can be reduced.

また、制御手段21は予め設定した二種類の出力設定(通電タイミング)により、単相誘導圧縮機1へ供給する電力を二段階に別けて供給することができ、単相誘導圧縮機1の起動、停止時に発生する加減速振動を二段階に分散し低減することができる。   Moreover, the control means 21 can supply the electric power supplied to the single phase induction compressor 1 in two stages by two kinds of preset output settings (energization timing), and the single phase induction compressor 1 is started. Acceleration / deceleration vibration generated at the time of stopping can be dispersed and reduced in two stages.

また、単相誘導圧縮機1の起動時に発生する起動電流を複数段階に分散し低減することができる。   Further, the starting current generated when starting the single-phase induction compressor 1 can be dispersed and reduced in a plurality of stages.

なお、本発明の実施の形態4では、単相誘導圧縮機1の駆動信号の変化を一段階と二段階にて説明したが、更に多くの複数段階に設けても良い。   In the fourth embodiment of the present invention, the change in the drive signal of the single-phase induction compressor 1 has been described in one stage and two stages, but it may be provided in more multiple stages.

参考例4
本発明の参考例4の換気空調装置について図11、図12および図13を参照しながら説明する。
( Reference Example 4 )
A ventilation air conditioner according to Reference Example 4 of the present invention will be described with reference to FIGS.

なお、参考例4の説明において既に実施の形態1および、参考例1から3で説明した同一部品については同一符号を付与し説明を省略する。 In the description of the reference example 4 , the same parts as those already described in the first embodiment and the reference examples 1 to 3 are given the same reference numerals and the description thereof is omitted.

図11は本発明の換気空調装置の一例を示すものであり、図12は本発明の単相誘導圧縮機1の駆動回路11の構成の一例を示すものであり、図13は本発明の単相誘導圧縮機1の駆動回路11の動作の一例を示すものである。   FIG. 11 shows an example of a ventilation air-conditioning apparatus of the present invention, FIG. 12 shows an example of the configuration of the drive circuit 11 of the single-phase induction compressor 1 of the present invention, and FIG. An example of operation | movement of the drive circuit 11 of the phase induction compressor 1 is shown.

図11および図12に示すように、室内の温度を検出する室内温度検出手段23と通電切換手段20への通電タイミングに最低出力通電タイミング値の設定をする構成を有し、この通電タイミングを前記室内温度に応じて所定の可変時間と比例関係に可変制御する制御手段22を保有した駆動回路11とを本体12に備えた構成としている。最低出力通電タイミング値とは単相誘導圧縮機1への供給電圧の起動開始時の電圧に対応させて予め設定する値を示す。   As shown in FIGS. 11 and 12, there is a configuration in which a minimum output energization timing value is set as the energization timing to the indoor temperature detection means 23 and the energization switching means 20 for detecting the indoor temperature. The main body 12 is provided with a drive circuit 11 having a control means 22 that variably controls in proportion to a predetermined variable time according to the room temperature. The minimum output energization timing value indicates a value set in advance corresponding to the voltage at the start of starting the supply voltage to the single-phase induction compressor 1.

上記構成において、単相誘導圧縮機1を起動する際は、図13(a)に示すように、制御手段22は単相誘導圧縮機1への供給電圧がV11となるよう、最低出力通電タイミング値(STN)を設定し、交流電圧のゼロクロスポイントから所定の時間(tg)後に、制御手段22より通電切換手段20へ駆動信号が送信され、その後交流電源の半サイクル毎に所定の時間(tg)を短縮(例えば<次回tg=(今回tg)−1ms>)し送信され、受信した通電切換手段20は駆動信号に応じたタイミングにて単相誘導圧縮機1へ電圧を供給し、半欠け状態の電圧波形と成り、1サイクルあたりの有効電力を低減した電圧として単相誘導圧縮機1へ供給するため、単相誘導圧縮機1の回転はこの有効電力に応じた回転となる。   In the above configuration, when starting the single-phase induction compressor 1, as shown in FIG. 13 (a), the control means 22 sets the minimum output energization timing so that the supply voltage to the single-phase induction compressor 1 becomes V11. A value (STN) is set, and after a predetermined time (tg) from the zero cross point of the AC voltage, a drive signal is transmitted from the control means 22 to the energization switching means 20, and then for a predetermined time (tg) every half cycle of the AC power supply. ) Is shortened (for example, <next time tg = (current time tg) -1 ms>), and the received energization switching means 20 supplies the voltage to the single-phase induction compressor 1 at a timing according to the drive signal, and is partially missing. Since the voltage waveform of the state is obtained and the effective power per cycle is supplied to the single-phase induction compressor 1 as a reduced voltage, the rotation of the single-phase induction compressor 1 is a rotation corresponding to the effective power.

また、所定の時間(tg)を交流電源の半サイクル毎に短縮するため、単相誘導圧縮機1への供給電圧は徐々に高まり、最終的には交流電源電圧と等しい定格電圧を単相誘導圧縮機1へ供給する。   Further, in order to shorten the predetermined time (tg) every half cycle of the AC power supply, the supply voltage to the single-phase induction compressor 1 gradually increases, and finally a rated voltage equal to the AC power supply voltage is set to the single-phase induction. Supply to the compressor 1.

次に、単相誘導圧縮機1を停止する際は、図13(b)に示すように、交流電圧のゼロクロスポイントから所定の時間(th)後に設定した通電タイミングにて、制御手段22より通電切換手段20へ駆動信号を送信し、その後、交流電源の半サイクル毎に所定の時間(th)を拡大(例えば<次回th=(今回th)+1ms>)し送信され、単相誘導圧縮機1の回転はこの有効電力に応じた回転となる。   Next, when the single-phase induction compressor 1 is stopped, as shown in FIG. 13B, the control means 22 supplies power at a power supply timing set after a predetermined time (th) from the zero cross point of the AC voltage. A drive signal is transmitted to the switching means 20, and thereafter, a predetermined time (th) is enlarged (for example, <next th = (current th) +1 ms>) for each half cycle of the AC power source, and transmitted, and the single-phase induction compressor 1 The rotation of is in accordance with this effective power.

また、単相誘導圧縮機1への供給電圧がV11となる最低出力通電タイミング値(STN)の所定の時間(th)となると、制御手段22より通電切換手段20へ送られる駆動信号が通電遮断へと切換り、単相誘導圧縮機1へ供給する電圧を遮断する。   Further, when the supply voltage to the single-phase induction compressor 1 reaches a predetermined time (th) of the lowest output energization timing value (STN) at which V11 becomes V11, the drive signal sent from the control means 22 to the energization switching means 20 is interrupted. And the voltage supplied to the single-phase induction compressor 1 is cut off.

また、制御手段22は室内温度検出手段23の入力により、室温が高いとき(例えば35℃以上)は、冷媒温度が上昇し、圧力が高まることから冷凍サイクルの負荷が全体的に高まり、単相誘導圧縮機1が回転するのに必要なトルクが上がるため、最低出力通電タイミング値を(Max)に設定し、単相誘導圧縮機1への供給電圧をV13として起動、停止を行い、また、室温が低いとき(例えば15℃以下)は、冷媒温度が低くなり、圧力が低くなることから冷凍サイクルの負荷が全体的に低くなり、単相誘導圧縮機1が回転するのに必要なトルクが下がるため、最低出力通電タイミング値を(Min)に設定し、単相誘導圧縮機1への供給電圧をV12として起動、停止を行うことができる。   In addition, when the room temperature is high (for example, 35 ° C. or more), the control means 22 increases the refrigerant temperature and the pressure when the room temperature is high (for example, 35 ° C. or more). Since the torque required for the induction compressor 1 to rotate increases, the minimum output energization timing value is set to (Max), the supply voltage to the single-phase induction compressor 1 is started and stopped as V13, and When the room temperature is low (for example, 15 ° C. or lower), the refrigerant temperature is low and the pressure is low, so the load of the refrigeration cycle is reduced overall, and the torque required for the single-phase induction compressor 1 to rotate is reduced. Therefore, the minimum output energization timing value can be set to (Min), and the supply voltage to the single-phase induction compressor 1 can be started and stopped as V12.

上記構成により、制御手段22は予め設定した最低出力通電タイミングから、最高出力となる通電タイミングまでを、所定の時間にて可変することにより、単相誘導圧縮機1へ供給する電力を可変時間に対して一定に可変して供給することができ、単相誘導圧縮機1の加速、減速を供給電力の変化に同期させることにより、単相誘導圧縮機1の起動、停止時に発生する加減速振動を抑制すると共に、起動時に発生する起動電流を低減することができる。   With the above configuration, the control means 22 varies the power supplied to the single-phase induction compressor 1 in a variable time by varying the preset minimum output energization timing to the maximum output energization timing at a predetermined time. On the other hand, the acceleration / deceleration vibration generated when the single-phase induction compressor 1 is started and stopped by synchronizing the acceleration and deceleration of the single-phase induction compressor 1 with changes in the supply power. In addition, the startup current generated at startup can be reduced.

また、単相誘導圧縮機1の起動時、停止時は制御手段22により最低出力通電タイミングから最高出力通電タイミングの範囲内で制御され、単相誘導圧縮機1への不必要な電力供給を抑制し、素早い起動、停止をすることができる。   Further, when the single-phase induction compressor 1 is started and stopped, it is controlled by the control means 22 within the range of the minimum output energization timing to the maximum output energization timing, and unnecessary power supply to the single-phase induction compressor 1 is suppressed. And can be started and stopped quickly.

また、制御手段22は単相誘導圧縮機1の負荷状態を室内温度検出手段23の値より算定し、単相誘導圧縮機1の負荷状態に合わせた起動、停止をすることにより、単相誘導圧縮機1への不必要な電力供給を抑制し、適正な素早い起動、停止をすることができる。   Further, the control means 22 calculates the load state of the single-phase induction compressor 1 from the value of the room temperature detection means 23, and starts and stops in accordance with the load state of the single-phase induction compressor 1, whereby the single-phase induction compressor 1 Unnecessary power supply to the compressor 1 can be suppressed, and appropriate quick start and stop can be performed.

参考例5
本発明の参考例5の換気空調装置について図13、図14および図15を参照しながら説明する。
( Reference Example 5 )
A ventilation air conditioner according to Reference Example 5 of the present invention will be described with reference to FIGS. 13, 14 and 15.

なお、参考例5の説明において既に実施の形態1および、参考例1から4で説明した同一部品については同一符号を付与し説明を省略する。 In the description of the reference example 5 , the same parts already described in the first embodiment and the reference examples 1 to 4 are given the same reference numerals and the description thereof is omitted.

図14は本発明の換気空調装置の一例を示すものであり、図15は本発明の単相誘導圧縮機1の駆動回路11の構成の一例を示すものである。   FIG. 14 shows an example of a ventilation air conditioner of the present invention, and FIG. 15 shows an example of the configuration of the drive circuit 11 of the single-phase induction compressor 1 of the present invention.

図14、15に示すように、単相誘導圧縮機1の冷媒回路の吐出温度を検出する吐出温度検出手段24と前記吐出温度に応じて切換手段の通電タイミングを制御する制御手段22を設けた構成とする。   As shown in FIGS. 14 and 15, a discharge temperature detecting means 24 for detecting the discharge temperature of the refrigerant circuit of the single-phase induction compressor 1 and a control means 22 for controlling the energization timing of the switching means according to the discharge temperature are provided. The configuration.

上記構成により、制御手段22は吐出温度検出手段24の入力により、吐出温度が高いとき(例えば100℃以上)は、単相誘導圧縮機1の吐出圧力が高まっており、単相誘導圧縮機1が回転する際の圧縮工程の必要トルクが高いため、最低出力通電タイミング値を(Max)に設定し、単相誘導圧縮機1への供給電圧を図13(a)および(b)に示すV13として起動、停止を行い、また、吐出温度が低いとき(例えば50℃以下)は、単相誘導圧縮機1の吐出圧力が低く、単相誘導圧縮機1が回転する際の圧縮工程の必要トルクが低いため、最低出力通電タイミング値を(Min)に設定し、単相誘導圧縮機1への供給電圧を図13(a)および(b)に示すV12として起動、停止を行うことができる。   With the above-described configuration, when the discharge temperature is high (for example, 100 ° C. or more), the control means 22 has an increased discharge pressure of the single-phase induction compressor 1 due to the input of the discharge temperature detection means 24. Since the required torque of the compression process when rotating is high, the minimum output energization timing value is set to (Max), and the supply voltage to the single-phase induction compressor 1 is V13 shown in FIGS. 13 (a) and 13 (b). When the discharge temperature is low (for example, 50 ° C. or less), the discharge pressure of the single-phase induction compressor 1 is low, and the torque required for the compression process when the single-phase induction compressor 1 rotates Therefore, the minimum output energization timing value can be set to (Min), and the supply voltage to the single-phase induction compressor 1 can be started and stopped as V12 shown in FIGS. 13 (a) and (b).

そして、制御手段22は単相誘導圧縮機1の負荷状態を吐出温度検出手段24の値より算定し、最低出力通電タイミングを単相誘導圧縮機1の必要トルクに合わせて可変することができ、使用環境により変化する単相誘導圧縮機1の負荷状態に合わせた起動、停止をすることにより、単相誘導圧縮機1への不必要な電力供給を抑制し、適正な素早い起動、停止をすることができる。   And the control means 22 can calculate the load state of the single-phase induction compressor 1 from the value of the discharge temperature detection means 24, and can change the minimum output energization timing according to the required torque of the single-phase induction compressor 1, By starting and stopping according to the load state of the single-phase induction compressor 1 that changes depending on the use environment, unnecessary power supply to the single-phase induction compressor 1 is suppressed, and appropriate quick start and stop are performed. be able to.

参考例6
本発明の参考例6の換気空調装置について図13、図16および図17を参照しながら説明する。
( Reference Example 6 )
A ventilation air conditioner according to Reference Example 6 of the present invention will be described with reference to FIGS. 13, 16 and 17.

なお、参考例6の説明において既に実施の形態1および、参考例1から5で説明した同一部品については同一符号を付与し説明を省略する。 In the description of Reference Example 6 , the same components already described in Embodiment 1 and Reference Examples 1 to 5 are assigned the same reference numerals and description thereof is omitted.

図16は本発明の換気空調装置の一例を示すものであり、図17は本発明の単相誘導圧縮機1の駆動回路11の構成の一例を示すものである。   FIG. 16 shows an example of a ventilation air conditioner of the present invention, and FIG. 17 shows an example of the configuration of the drive circuit 11 of the single-phase induction compressor 1 of the present invention.

図16および図17に示すように、単相誘導圧縮機1の吐出圧力を検出する吐出圧力検出手段25と前記吐出圧力に応じて切換手段の通電タイミングを制御する制御手段22を設けた構成とする。   As shown in FIGS. 16 and 17, the discharge pressure detection means 25 for detecting the discharge pressure of the single-phase induction compressor 1 and the control means 22 for controlling the energization timing of the switching means according to the discharge pressure are provided. To do.

上記構成により、制御手段22は吐出圧力検出手段25の入力により、吐出圧力が高いとき(例えば4MPa以上)は、単相誘導圧縮機1が回転する際の圧縮工程の必要トルクが高いため、最低出力通電タイミング値を(Max)に設定し、単相誘導圧縮機1への供給電圧を図13(a)および(b)に示すV13として起動、停止を行い、また、吐出圧力が低いとき(例えば2MPa以下)は、単相誘導圧縮機1が回転する際の圧縮工程の必要トルクが低いため、最低出力通電タイミング値を(Min)に設定し、単相誘導圧縮機1への供給電圧を図13(a)および(b)に示すV12として起動、停止を行うことができる。 With the above configuration, the input of the control unit 22 discharge pressure detection detemir stage 25, when the discharge pressure is high (e.g. 4MPa or more), since the required torque of the compression step in the single-phase induction compressor 1 rotates is high, When the minimum output energization timing value is set to (Max), the supply voltage to the single-phase induction compressor 1 is started and stopped as V13 shown in FIGS. 13A and 13B, and the discharge pressure is low (For example, 2 MPa or less), since the required torque of the compression process when the single-phase induction compressor 1 rotates is low, the minimum output energization timing value is set to (Min), and the supply voltage to the single-phase induction compressor 1 Can be started and stopped as V12 shown in FIGS. 13 (a) and 13 (b).

そして、吐出圧力検出手段25は、単相誘導圧縮機1の負荷状態を示す吐出圧力を検出することで可変する負荷状態を精度よく検出し、制御手段22は単相誘導圧縮機1の負荷状態を吐出圧力検出手段25の値より算定し、最低出力通電タイミングを単相誘導圧縮機1の必要トルクに合わせて可変することができ、使用環境により変化する単相誘導圧縮機の負荷状態に合わせた起動、停止をすることにより、単相誘導圧縮機への不必要な電力供給を抑制し、適正な素早い起動、停止をすることができる。   The discharge pressure detection means 25 accurately detects the variable load state by detecting the discharge pressure indicating the load state of the single-phase induction compressor 1, and the control means 22 detects the load state of the single-phase induction compressor 1. Can be calculated from the value of the discharge pressure detecting means 25, and the minimum output energization timing can be varied according to the required torque of the single-phase induction compressor 1, and can be adjusted according to the load state of the single-phase induction compressor that changes depending on the use environment. By starting and stopping, it is possible to suppress unnecessary power supply to the single-phase induction compressor and to start and stop appropriately and quickly.

参考例7
本発明の参考例7の換気空調装置について図18、図19および図20を参照しながら説明する。
( Reference Example 7 )
A ventilation air conditioner according to Reference Example 7 of the present invention will be described with reference to FIGS. 18, 19, and 20. FIG.

なお、参考例7の説明において既に実施の形態1および、参考例1から6で説明した同一部品については同一符号を付与し説明を省略する。 In the description of the reference example 7 , the same parts as those already described in the first embodiment and the reference examples 1 to 6 are given the same reference numerals and the description thereof is omitted.

図18は本発明の換気空調装置の一例を示すものであり、図19は本発明の単相誘導圧縮機1の駆動回路11の構成の一例を示すものであり、図20は本発明の単相誘導圧縮機1の駆動回路11の動作の一例を示すものである。   FIG. 18 shows an example of the ventilation air-conditioning apparatus of the present invention, FIG. 19 shows an example of the configuration of the drive circuit 11 of the single-phase induction compressor 1 of the present invention, and FIG. An example of operation | movement of the drive circuit 11 of the phase induction compressor 1 is shown.

図18、図19に示すように、減圧手段3は電動膨張弁26とし、膨張弁開度を開閉する機能を有した制御手段27を設けた構成とし、さらに制御手段27は、単相誘導圧縮機1を起動する際は、電動膨張弁26の開度を全開にした後に起動を開始させ、単相誘導圧縮機1を停止する際は、電動膨張弁26の開度を全開にした後、単相誘導圧縮機1の吐出圧力と吸込圧力が均圧(例えば圧力差が0.1MPa以内)する時間後に停止動作を開始させることができる構成とする。   As shown in FIGS. 18 and 19, the decompression means 3 is an electric expansion valve 26, a control means 27 having a function of opening and closing the expansion valve opening is provided, and the control means 27 further includes a single-phase induction compression. When starting up the machine 1, start up after fully opening the opening of the electric expansion valve 26, and when stopping the single-phase induction compressor 1, after opening up the opening of the electric expansion valve 26, The stop operation can be started after a time when the discharge pressure and the suction pressure of the single-phase induction compressor 1 are equalized (for example, the pressure difference is within 0.1 MPa).

また、単相誘導圧縮機1の駆動回路11は、交流電源電圧を全波整流するダイオードブリッジ28と単相誘導圧縮機1への接続を切換える第一切換リレー29、第二切換リレー30にて構成した周波数切換手段31とし、ダイオードブリッジ28の+出力と第一切換リレー29との間に第1抵抗器32を接続し、ダイオードブリッジ28の−出力と第二切換リレー30との間に第2抵抗器33を接続し、単相誘導圧縮機1への電圧供給を入切する起動リレー16を設けた構成とする。そして、本実施の形態の交流電源電圧は、商用の交流電源電圧を示すものである。   The drive circuit 11 of the single-phase induction compressor 1 includes a diode bridge 28 that performs full-wave rectification of the AC power supply voltage, and a first switching relay 29 and a second switching relay 30 that switch the connection to the single-phase induction compressor 1. In the frequency switching means 31 configured, the first resistor 32 is connected between the + output of the diode bridge 28 and the first switching relay 29, and the first resistor 32 is connected between the − output of the diode bridge 28 and the second switching relay 30. The two-resistor 33 is connected, and the starting relay 16 that turns on and off the voltage supply to the single-phase induction compressor 1 is provided. And the alternating current power supply voltage of this Embodiment shows a commercial alternating current power supply voltage.

上記構成により、図20(a)に示すように、単相誘導圧縮機1を起動する際は、第1切換リレー29と第2切換リレー30の接点を共にノーマルクローズ(Nc)側とし、起動リレー16を短絡させ、単相誘導圧縮機1へ電源の供給を開始する(通電パターンA)。その後、交流電圧の半サイクル毎に通電パターンをB、C、D、Aと切換えることで、単相誘導圧縮機1への供給電圧周波数が擬似的に交流電圧の1/2周波数へと変換され供給され、起動から所定の時間(t10)後に、第1切換リレー29と第2切換リレー30の接点を共にノーマルクローズ(Nc)側に固定することで交流電圧と等しい電圧と周波数を単相誘導圧縮機1へ供給することとなる。   With the above configuration, as shown in FIG. 20 (a), when starting the single-phase induction compressor 1, both the contact points of the first switching relay 29 and the second switching relay 30 are normally closed (Nc) side. The relay 16 is short-circuited and the supply of power to the single-phase induction compressor 1 is started (energization pattern A). After that, by switching the energization pattern to B, C, D, and A every half cycle of the AC voltage, the supply voltage frequency to the single-phase induction compressor 1 is artificially converted to 1/2 frequency of the AC voltage. After a predetermined time (t10) from the start of operation, the contacts of the first switching relay 29 and the second switching relay 30 are both fixed to the normally closed (Nc) side, so that the voltage and frequency equal to the AC voltage are single-phase induction. It will be supplied to the compressor 1.

また、単相誘導圧縮機1を停止する際は、図20(b)に示すように、通電パターンAから交流電圧の半サイクル毎に通電パターンをB、C、D、Aと切換え、単相誘導圧縮機1への供給電圧周波数を擬似的に交流電圧の1/2周波数へと変換し、停止動作開始から所定の時間(t11)後に、起動リレー16を開放させ、単相誘導圧縮機1へ電源の供給を停止する。   When the single-phase induction compressor 1 is stopped, as shown in FIG. 20B, the energization pattern is switched from B, C, D, and A every half cycle of the AC voltage from the energization pattern A, The supply voltage frequency to the induction compressor 1 is artificially converted to a half frequency of the AC voltage, and after a predetermined time (t11) from the start of the stop operation, the start relay 16 is opened, and the single-phase induction compressor 1 Stop supplying power to

また、通電パターンBのときには、第2抵抗器33を介して単相誘導圧縮機1へ電圧を供給するため、供給電圧は第2抵抗器33と単相誘導圧縮機1のインピーダンス比率により降圧され、通電パターンCのときには、第1抵抗器32を介して単相誘導圧縮機1へ電圧を供給するため、供給電圧は第1抵抗器32と単相誘導圧縮機1のインピーダンス比率により降圧された電圧となる。   Further, in the energization pattern B, since the voltage is supplied to the single-phase induction compressor 1 via the second resistor 33, the supply voltage is stepped down by the impedance ratio between the second resistor 33 and the single-phase induction compressor 1. In the energization pattern C, since the voltage is supplied to the single-phase induction compressor 1 through the first resistor 32, the supply voltage is stepped down by the impedance ratio between the first resistor 32 and the single-phase induction compressor 1. Voltage.

そして、単相誘導圧縮機1へ電源供給する周波数を擬似的に交流電源電圧の1/2周波数とすることにより、単相誘導圧縮機1の回転数を低下することができ、単相誘導圧縮機1の起動、停止時に発生する加減速振動を低減すると共に、単相誘導圧縮機1に接続された冷媒配管への振動応力を低減することができる。   The frequency of supplying power to the single-phase induction compressor 1 is set to a half of the AC power supply voltage in a pseudo manner, so that the number of revolutions of the single-phase induction compressor 1 can be reduced. The acceleration / deceleration vibration generated when the machine 1 is started and stopped can be reduced, and the vibration stress on the refrigerant pipe connected to the single-phase induction compressor 1 can be reduced.

また、単相誘導圧縮機1へ供給する電圧は、単相誘導圧縮機1と第1抵抗器32と第2抵抗器33のインピーダンス比率にて低減し、流れる電流は単相誘導圧縮機1と第1抵抗器32と第2抵抗器33の合成インピーダンスにより低減することにより、単相誘導圧縮機1の回転トルクを低下させることができ、低下した単相誘導圧縮機1の回転数に見合った電圧を供給することで余分な加減速振動を低減し、磁気飽和による損失を抑制できる。   The voltage supplied to the single-phase induction compressor 1 is reduced by the impedance ratio of the single-phase induction compressor 1, the first resistor 32, and the second resistor 33, and the flowing current is the same as that of the single-phase induction compressor 1. By reducing the combined impedance of the first resistor 32 and the second resistor 33, the rotational torque of the single-phase induction compressor 1 can be reduced, which is commensurate with the reduced rotational speed of the single-phase induction compressor 1. By supplying voltage, excessive acceleration / deceleration vibration can be reduced and loss due to magnetic saturation can be suppressed.

また、単相誘導圧縮機の起動時または停止時に、膨張弁の開度を一時的に開くことで単相誘導圧縮機1の吐出圧力が低減し、単相誘導圧縮機1の回転に必要なトルクも低減することから、負荷の変動範囲を抑制し、振動低減の効果を安定させることができる。   Further, when the single-phase induction compressor is started or stopped, the opening pressure of the expansion valve is temporarily opened to reduce the discharge pressure of the single-phase induction compressor 1 and is necessary for the rotation of the single-phase induction compressor 1. Since the torque is also reduced, the load fluctuation range can be suppressed and the effect of vibration reduction can be stabilized.

なお、参考例7では、第1抵抗器32と第2抵抗器33を備えた構成として説明したが、第1抵抗器32と第2抵抗器33を備えなくても擬似的に電源周波数の1/2周波数を単相誘導圧縮機1へ供給することができ、その際の単相誘導圧縮機1への供給電圧は、図17の点線で示したものとなる。 In the reference example 7 , the first resistor 32 and the second resistor 33 are described as being configured. However, even if the first resistor 32 and the second resistor 33 are not provided, the power supply frequency of 1 is simulated. / 2 frequency can be supplied to the single-phase induction compressor 1, and the supply voltage to the single-phase induction compressor 1 at that time is as shown by the dotted line in FIG.

本発明の換気空調装置は、圧縮機の起動、停止時に発生する加減速振動を抑制したことを特徴としたものであり、浴室の換気空調のみならず、リビング、寝室、キッチンあるいは洗面所等の換気空調装置にも適用することができる。   The ventilation air-conditioning apparatus of the present invention is characterized by suppressing acceleration / deceleration vibration that occurs at the time of starting and stopping the compressor, not only in the ventilation and air-conditioning of the bathroom, but also in the living room, bedroom, kitchen or washroom, etc. It can also be applied to a ventilation air conditioner.

1 単相誘導圧縮機
2 凝縮コイル
3 減圧手段
4 蒸発コイル
5 冷媒配管
6 吸込口
7 換気口
8 換気ファン
9 吹出口
10 循環ファン
11 駆動回路
12 本体
13 抵抗器
14 減速リレー
15 減速手段
16 起動リレー
17 第1正特性サーミスタ
18 第2正特性サーミスタ
19 双方向サイリスタ
20 通電切換手段
21 制御手段
22 制御手段
23 室内温度検出手段
24 吐出温度検出手段
25 吐出圧力検出手段
26 電動膨張弁
27 制御手段
28 ダイオードブリッジ
29 第1切換リレー
30 第2切換リレー
31 周波数切換手段
32 第1抵抗器
33 第2抵抗器
DESCRIPTION OF SYMBOLS 1 Single-phase induction compressor 2 Condensation coil 3 Pressure reducing means 4 Evaporation coil 5 Refrigerant piping 6 Suction port 7 Ventilation port 8 Ventilation fan 9 Air outlet 10 Circulation fan 11 Drive circuit 12 Main body 13 Resistor 14 Deceleration relay 15 Deceleration unit 16 Start relay DESCRIPTION OF SYMBOLS 17 1st positive characteristic thermistor 18 2nd positive characteristic thermistor 19 Bidirectional thyristor 20 Energization switching means 21 Control means 22 Control means 23 Indoor temperature detection means 24 Discharge temperature detection means 25 Discharge pressure detection means 26 Electric expansion valve 27 Control means 28 Diode Bridge 29 First switching relay 30 Second switching relay 31 Frequency switching means 32 First resistor 33 Second resistor

Claims (1)

本体に単相誘導圧縮機と凝縮コイルと減圧手段と蒸発コイルからなる冷凍サイクルと単相誘導圧縮機の駆動回路に減速手段を備え、減速手段は、抵抗器とこの抵抗器の両端を短絡するリレーとして、起動時と止時に前記リレーを開放して前記抵抗器と単相誘導圧縮機のインピーダンス比率によって単相誘導圧縮機へ供給する電圧を降圧さることを特徴とする換気空調装置。 The main body has a refrigeration cycle comprising a single-phase induction compressor, a condensing coil, a decompression means, an evaporation coil, and a drive circuit for the single-phase induction compressor, and the speed reduction means short-circuits the resistor and both ends of the resistor. as a relay, ventilating air-conditioning system according to claim buck Sarukoto the voltage supplied by the impedance ratio of the resistor and the single-phase induction compressor by opening the relay when stop the startup to the single-phase induction compressors.
JP2008112366A 2008-04-23 2008-04-23 Ventilation air conditioner Active JP5332290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008112366A JP5332290B2 (en) 2008-04-23 2008-04-23 Ventilation air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008112366A JP5332290B2 (en) 2008-04-23 2008-04-23 Ventilation air conditioner

Publications (2)

Publication Number Publication Date
JP2009264621A JP2009264621A (en) 2009-11-12
JP5332290B2 true JP5332290B2 (en) 2013-11-06

Family

ID=41390686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008112366A Active JP5332290B2 (en) 2008-04-23 2008-04-23 Ventilation air conditioner

Country Status (1)

Country Link
JP (1) JP5332290B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873370A (en) * 2018-08-31 2020-03-10 浙江三花智能控制股份有限公司 Air conditioner
CN110925887A (en) * 2018-08-31 2020-03-27 浙江三花智能控制股份有限公司 Air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102249793B1 (en) * 2014-06-18 2021-05-07 엘지전자 주식회사 Air conditioner and Control method of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240391A (en) * 2002-02-21 2003-08-27 Mitsubishi Electric Corp Air conditioner
JP3930397B2 (en) * 2002-08-12 2007-06-13 株式会社コロナ Wind air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873370A (en) * 2018-08-31 2020-03-10 浙江三花智能控制股份有限公司 Air conditioner
CN110925887A (en) * 2018-08-31 2020-03-27 浙江三花智能控制股份有限公司 Air conditioner

Also Published As

Publication number Publication date
JP2009264621A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
EP3186100B1 (en) Variable speed compressor startup control
JP6625762B2 (en) Driving device, air conditioner and method of driving electric motor
JP6636170B2 (en) Driving device, air conditioner, and driving method of electric motor
JP6710336B2 (en) Driving device, air conditioner, and driving method
JP6689464B2 (en) Drive device, compressor, air conditioner, and method for driving permanent magnet embedded motor
JP6710325B2 (en) Air conditioner and operation control method for air conditioner
JPWO2019021450A1 (en) Air conditioner, air conditioning system, and control method of air conditioner
JPH09310902A (en) Control method of air conditioner
JP2007028737A (en) Motor driving unit and air conditioner
JP5407342B2 (en) Air conditioner
JP5332290B2 (en) Ventilation air conditioner
JP5686754B2 (en) Air conditioner
JP4436651B2 (en) Refrigeration cycle equipment
JP2007212027A (en) Fan drive mechanism and air-conditioner
JP2003050066A (en) Controller for air conditioner
JP2005207362A (en) Driving device for electric compressor
JP2007225230A5 (en)
JP5618899B2 (en) Motor control device and air conditioner
JP2011033337A (en) Fan driving device and air conditioner
JP2015052438A (en) Refrigeration unit
JP2007225230A (en) Air conditioner
JP2000097479A (en) Air conditioner
JP2016061445A (en) Compressor control device, air conditioning device including the same, and control method of compressor
JP2006207983A (en) Air conditioner
JP2001065947A (en) Control method of air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110308

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5332290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151