JP5331869B2 - Engine system with reformer - Google Patents

Engine system with reformer Download PDF

Info

Publication number
JP5331869B2
JP5331869B2 JP2011280689A JP2011280689A JP5331869B2 JP 5331869 B2 JP5331869 B2 JP 5331869B2 JP 2011280689 A JP2011280689 A JP 2011280689A JP 2011280689 A JP2011280689 A JP 2011280689A JP 5331869 B2 JP5331869 B2 JP 5331869B2
Authority
JP
Japan
Prior art keywords
reformer
fuel
engine
reforming
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011280689A
Other languages
Japanese (ja)
Other versions
JP2012087805A (en
Inventor
敦史 島田
敬郎 石川
理志 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011280689A priority Critical patent/JP5331869B2/en
Publication of JP2012087805A publication Critical patent/JP2012087805A/en
Application granted granted Critical
Publication of JP5331869B2 publication Critical patent/JP5331869B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、改質器を搭載したエンジンシステムに関するものである。   The present invention relates to an engine system equipped with a reformer.

燃料を吸熱反応により改質して一部水素等を含む改質ガスを生成し、改質ガスを燃料としてエンジンに供給するシステムでは、エンジン廃熱を利用して吸熱反応により燃料を改質することで、廃熱回収により効率向上が見込める。また、ガソリン等の炭化水素燃料を改質して水素を含む改質ガスをエンジンに供給する場合は、ポンピングロス低減や燃焼効率向上、また燃焼速度向上が可能となることでエンジンの高効率化が見込める。改質器をエンジンの排気管に装着する場合、エンジンの運転状態によって、エンジンの排ガス温度が変動するため、条件によっては、改質効率が変動する。また、改質反応で水素を含むガスを生成する場合、反応圧力は、低いほど反応効率が高くなる。   In a system that reforms fuel by an endothermic reaction to generate a reformed gas partially containing hydrogen and supplies the reformed gas to the engine as a fuel, the fuel is reformed by an endothermic reaction using engine waste heat. Therefore, efficiency improvement can be expected by waste heat recovery. Also, when reforming hydrocarbon fuels such as gasoline and supplying reformed gas containing hydrogen to the engine, it is possible to reduce the pumping loss, improve the combustion efficiency, and increase the combustion speed, thereby increasing the engine efficiency. Can be expected. When the reformer is attached to the exhaust pipe of the engine, the exhaust gas temperature of the engine varies depending on the operating state of the engine, so that the reforming efficiency varies depending on conditions. Moreover, when producing | generating the gas containing hydrogen by reforming reaction, reaction efficiency becomes high, so that reaction pressure is low.

従来の改質器付エンジンシステムとしては、たとえば、特許文献1に記載されているように、エンジンから所定長さ分、離れた位置の排気管に改質器が装着されており、改質器より生成した改質ガスは、排ガスとともに吸気管に供給する構成となっている。   As a conventional engine system with a reformer, for example, as described in Patent Document 1, a reformer is attached to an exhaust pipe located at a predetermined length away from the engine. The generated reformed gas is supplied to the intake pipe together with the exhaust gas.

特開2007−138781号公報JP 2007-138781 A

特許文献1に記載のシステムは、たとえばアイドリングや低速時のような低出力の運転条件の際には、改質器に供給する排ガスの温度が低くなるため、改質効率を高くすることは困難である。また改質後燃料はエンジンの排ガスとともにエンジンの吸気管に供給されるため、改質後燃料とともに常温の排気ガスがエンジン内に供給される。そのため、エンジン燃焼時の燃焼温度が低下することで排気温度が下がり、改質効率が低下するという課題がある。   In the system described in Patent Document 1, it is difficult to increase the reforming efficiency because the temperature of the exhaust gas supplied to the reformer becomes low under low output operating conditions such as idling or low speed. It is. Further, since the reformed fuel is supplied to the intake pipe of the engine together with the exhaust gas of the engine, normal temperature exhaust gas is supplied into the engine together with the reformed fuel. Therefore, there is a problem that the exhaust gas temperature is lowered and the reforming efficiency is lowered by lowering the combustion temperature during engine combustion.

本発明の目的は、改質器付エンジンシステムにおいて、改質器の改質効率を高くすることで、廃熱回収量,エンジンの燃焼効率を向上させ、システム効率の優れたエンジンシステムを提供することを目的とする。   An object of the present invention is to provide an engine system with improved system efficiency by improving the amount of waste heat and the combustion efficiency of the engine by increasing the reforming efficiency of the reformer in the engine system with a reformer. For the purpose.

本発明は、改質器を備え、改質前燃料を前記改質器で改質した改質後燃料を燃料の一つとして、エンジンを駆動する改質器付エンジンシステムにおいて、
前記改質器には前記改質器に供給する前記改質前燃料の供給量を調整する改質前燃料供給量調整装置と、前記エンジンに供給する改質後燃料の供給量を調整する改質後燃料供給量調整装置とが接続され、前記改質器が前記改質後燃料供給量調整装置を介してエンジン燃焼室と隣接して設置されていることを特徴とする。また、前記改質器は前記エンジンの排気管に設置され、前記改質後燃料供給量調整装置が前記エンジンの排気バルブであることを特徴とする。
The present invention provides a reformer-equipped engine system that drives an engine using a reformed fuel obtained by reforming a fuel before reforming by the reformer as one of the fuels.
The reformer includes a pre-reform fuel supply amount adjusting device that adjusts the supply amount of the pre-reform fuel supplied to the reformer, and a reformer that adjusts the supply amount of the post-reform fuel supplied to the engine. A reformed fuel supply amount adjusting device is connected, and the reformer is installed adjacent to the engine combustion chamber via the reformed fuel supply amount adjusting device. The reformer is installed in an exhaust pipe of the engine, and the post-reformation fuel supply amount adjusting device is an exhaust valve of the engine.

エンジンの燃焼室付近に改質器を設置し、改質後燃料供給量調整装置により改質後燃料をエンジン内に供給することで、エンジン燃焼時の燃焼温度が向上する。改質器に供給される排ガス温度は高くなり、排気エネルギーの回収効率が高くなる。また、エンジンの吸気行程時の負圧により改質器から改質後燃料をエンジンに供給することで、改質器内の圧力を低くできる。さらに改質後燃料は高温の排ガスとともにエンジンに供給されるため、改質後燃料の供給量増加に伴う燃焼温度低下は抑制されることで排気温度低下が抑制される。これにより改質器の改質効率が向上する。   By installing a reformer near the combustion chamber of the engine and supplying the reformed fuel into the engine by the reformed fuel supply amount adjusting device, the combustion temperature during engine combustion is improved. The exhaust gas temperature supplied to the reformer increases, and the exhaust energy recovery efficiency increases. Further, by supplying the reformed fuel from the reformer to the engine by the negative pressure during the intake stroke of the engine, the pressure in the reformer can be lowered. Further, since the reformed fuel is supplied to the engine together with the high-temperature exhaust gas, a decrease in the combustion temperature due to an increase in the supply amount of the reformed fuel is suppressed, thereby suppressing a decrease in the exhaust temperature. This improves the reforming efficiency of the reformer.

本発明により、改質器の改質効率を高くでき、廃熱回収量,エンジンの燃焼効率が向上し、システム効率の優れたエンジンシステムを提供することが可能となる。   According to the present invention, the reforming efficiency of the reformer can be increased, the amount of waste heat recovered and the combustion efficiency of the engine can be improved, and an engine system with excellent system efficiency can be provided.

改質器を備えたエンジンの第1の構成図。The 1st block diagram of the engine provided with the reformer. 改質器の構造図。The structural diagram of a reformer. 平衡転化率と温度の関係。Relationship between equilibrium conversion and temperature. 排気温度マップ(排気管下流部)。Exhaust temperature map (exhaust pipe downstream). 排気温度マップ(排気管上流部)。Exhaust temperature map (exhaust pipe upstream). EGR率と断熱火炎温度の関係。Relationship between EGR rate and adiabatic flame temperature. EGR率と層流燃焼速度の関係。Relationship between EGR rate and laminar flow rate. 圧力を変化させた際の平衡転化率と温度の関係。Relationship between equilibrium conversion and temperature when pressure is changed. 空気過剰率と断熱火炎温度の関係。Relationship between excess air ratio and adiabatic flame temperature. 空気過剰率と三元触媒浄化率の関係。Relationship between excess air rate and three-way catalyst purification rate. 空気過剰率と層流燃焼速度の関係。Relationship between excess air ratio and laminar flow rate. 第1の構成図における時系列フロー図。The time series flowchart in a 1st block diagram. 改質器を備えたエンジンの第2の構成図。The 2nd block diagram of the engine provided with the reformer. 排気バルブリフト量の時系列図。FIG. 3 is a time series diagram of exhaust valve lift amount. 改質器を備えたエンジンの第3の構成図。The 3rd block diagram of the engine provided with the reformer. 第3の構成図における時系列フロー図。The time series flowchart in a 3rd block diagram.

以下、本発明の実施形態について図を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本システムの第一の構成図である。排気管9の排気バルブ7付近のエンジンヘッド内またはエンジンヘッドから排出された直後の排気管位置に改質器1が設置されており、改質器1には改質前燃料供給量調整装置11から改質前燃料3が供給される。ここで、改質器1は改質後燃料供給量調整装置としても機能する排気バルブ7を介してエンジン燃焼室と隣接して設置されている。本構成により、改質器1には、エンジン筒内10から排出された直後の燃焼ガスが供給され、高温のエンジン排気熱が供給される。   FIG. 1 is a first block diagram of this system. A reformer 1 is installed in the engine head in the vicinity of the exhaust valve 7 of the exhaust pipe 9 or immediately after the exhaust pipe is discharged from the engine head. From before, the fuel 3 before reforming is supplied. Here, the reformer 1 is installed adjacent to the engine combustion chamber via an exhaust valve 7 that also functions as a post-reform fuel supply amount adjusting device. With this configuration, the reformer 1 is supplied with the combustion gas immediately after being discharged from the engine cylinder 10 and is supplied with high-temperature engine exhaust heat.

排気バルブ7は改質後燃料をエンジン筒内10に供給する改質後燃料供給量調整装置としても機能する。通常、排ガスが所定量以上エンジン内に供給されると失火、エンジン効率の低下を招くため、所定量以上をエンジン筒内10に供給することは問題となる。この問題を解決するために、逆流防止装置12が改質器1の排ガス下流側に設置されている。
これは排気バルブ7よりエンジン筒内10に改質後燃料が供給される際、改質器1よりも下流側に位置する排気管の排ガスをエンジン筒内10に供給することを防止している。これにより改質後燃料のエンジン筒内10への供給時に排ガスが所定以上供給されない構成となっている。逆流防止装置12は開閉バルブを用いることができる。このとき、改質前燃料が改質器1に供給されているときは開閉バルブを閉め、改質後燃料が排気下流に排気されることを防止している。
The exhaust valve 7 also functions as a post-reform fuel supply amount adjusting device that supplies the post-reform fuel to the engine cylinder 10. Normally, if a predetermined amount or more of exhaust gas is supplied into the engine, misfires and engine efficiency are reduced. Therefore, supplying a predetermined amount or more into the engine cylinder 10 becomes a problem. In order to solve this problem, the backflow prevention device 12 is installed on the exhaust gas downstream side of the reformer 1.
This prevents the exhaust gas in the exhaust pipe located downstream of the reformer 1 from being supplied to the engine cylinder 10 when the reformed fuel is supplied from the exhaust valve 7 to the engine cylinder 10. . As a result, the exhaust gas is not supplied more than a predetermined amount when the reformed fuel is supplied into the engine cylinder 10. The backflow prevention device 12 can use an open / close valve. At this time, when the fuel before reforming is supplied to the reformer 1, the open / close valve is closed to prevent the fuel after reforming from being exhausted downstream.

また、エンジンの吸気管8には、改質前燃料3を供給する燃料供給装置13が設置されており、改質器1を介さずにエンジン筒内10に改質前燃料を供給できる構成となっている。また、エンジンの排気管9には排ガス中の酸素濃度を検出する酸素濃度検出装置17を設置する。酸素濃度検出装置17で検出した酸素濃度をもとにエンジンの空気過剰率を制御する。エンジンの吸気管8には空気量を調整する空気流量調整装置18が設置されている。なお、吸気バルブ6,空気流量調整装置18,排気バルブ7,改質前燃料供給量調整装置11,13,開閉バルブ,ポンプ4等の動作は、図示しない電子制御装置により制御される。   In addition, a fuel supply device 13 for supplying the pre-reform fuel 3 is installed in the intake pipe 8 of the engine so that the pre-reform fuel can be supplied to the engine cylinder 10 without using the reformer 1. It has become. Further, an oxygen concentration detector 17 for detecting the oxygen concentration in the exhaust gas is installed in the exhaust pipe 9 of the engine. The excess air ratio of the engine is controlled based on the oxygen concentration detected by the oxygen concentration detector 17. An air flow rate adjusting device 18 for adjusting the air amount is installed in the intake pipe 8 of the engine. The operations of the intake valve 6, the air flow rate adjusting device 18, the exhaust valve 7, the pre-reforming fuel supply amount adjusting devices 11, 13, the on-off valve, the pump 4, and the like are controlled by an electronic control device (not shown).

また、エンジン筒内10の圧力を検出する圧力検出装置15が設置されている。圧力検出装置15は、エンジン筒内10の圧力を推定できる、エンジンの軸トルクセンサやイオン電流による検出装置であってもよい。また、排気管9の改質器1よりも下流側に排気管の圧力を測定する圧力センサ14が設置されている。改質器1は排ガスと改質後燃料の両方が通るため、図2に示すようなハニカム構造にすることで排ガスとの接触面積を増やしている。また、排ガス接触面で改質反応が起こるように排ガス接触面には触媒が担持されている。このような構成とすることで、反応流路と排ガス流路が共通となり、エンジンの排ガス中の水蒸気を改質反応に利用可能となる。また、改質器1の触媒はゼオライト系触媒を使う。また、改質器1は、多孔体構造あるいは、フィン構造,マイクロスペースなどの構造で排ガス接触面積を増やしてもよい。また、改質器1の触媒は、ニッケル,ルテニウム,白金,パラジウム,ネニウム,クロム,コバルトのうち少なくとも一つ以上の元素が含まれる貴金属とし、担体はアルミナ,チタニア,シリカ,ジルコニアのいずれか単体または混合物を利用する。また、改質器1は、多孔体構造あるいは、フィン構造,マイクロスペースなどの構造で排ガス接触面積を増やしてもよい。   A pressure detection device 15 that detects the pressure in the engine cylinder 10 is installed. The pressure detector 15 may be an engine shaft torque sensor or an ion current detector that can estimate the pressure in the engine cylinder 10. Further, a pressure sensor 14 for measuring the pressure of the exhaust pipe is installed downstream of the reformer 1 in the exhaust pipe 9. Since both the exhaust gas and the reformed fuel pass through the reformer 1, the contact area with the exhaust gas is increased by adopting a honeycomb structure as shown in FIG. A catalyst is supported on the exhaust gas contact surface so that the reforming reaction occurs on the exhaust gas contact surface. With such a configuration, the reaction flow path and the exhaust gas flow path become common, and the water vapor in the exhaust gas of the engine can be used for the reforming reaction. The reformer 1 uses a zeolite-based catalyst. The reformer 1 may increase the exhaust gas contact area with a porous structure, a fin structure, a microspace, or the like. The catalyst of the reformer 1 is a noble metal containing at least one element of nickel, ruthenium, platinum, palladium, nenium, chromium and cobalt, and the carrier is any one of alumina, titania, silica and zirconia. Or use a mixture. The reformer 1 may increase the exhaust gas contact area with a porous structure, a fin structure, a microspace, or the like.

図1で示したシステム構成とすることで下記のような効果がある。
1.排気中の水蒸気を改質に利用することで、水蒸気中の水素を燃料として利用できる。
2.高温排気を改質器に供給可能である。
3.高温EGRと改質後燃料をエンジン筒内に供給できる。
4.エンジンの吸気行程時の負圧を改質反応に利用できる。
5.改質後燃料のラインを増設する必要がない。
6.改質後燃料が一部液化することはない。
効果1に関しては、例えば改質前燃料をガソリンとすると、ガソリンの中の一成分であるC818(ノルマルオクタン)の場合、下記のような水蒸気改質反応を起こすことができる。
818+8H2O⇒17H2+8CO−1303kJ …(1)
上記改質反応は吸熱反応であり、また水蒸気中の水素を燃料として利用することができるため、改質前燃料に対し、改質後燃料は1303kJ、発熱量が増加することが分かる。改質前燃料の発熱量は5075kJ、改質後燃料は6378kJであるので、改質後燃料は、改質前燃料に対し25.7%発熱量が向上する。つまり改質反応によりC818を基準とした熱効率が25.7%向上することを意味する。
The system configuration shown in FIG. 1 has the following effects.
1. By using the steam in the exhaust gas for reforming, the hydrogen in the steam can be used as fuel.
2. High temperature exhaust can be supplied to the reformer.
3. High temperature EGR and reformed fuel can be supplied into the engine cylinder.
4). The negative pressure during the intake stroke of the engine can be used for the reforming reaction.
5. There is no need to add a fuel line after reforming.
6). The fuel after reforming does not partially liquefy.
Regarding effect 1, for example, when the fuel before reforming is gasoline, in the case of C 8 H 18 (normal octane) which is one component in gasoline, the following steam reforming reaction can occur.
C 8 H 18 + 8H 2 O⇒17H 2 + 8CO-1303 kJ (1)
The reforming reaction is an endothermic reaction, and hydrogen in water vapor can be used as a fuel. Therefore, it can be seen that the fuel after reforming has 1303 kJ and the calorific value is increased with respect to the fuel before reforming. Since the calorific value of the fuel before reforming is 5075 kJ and the fuel after reforming is 6378 kJ, the calorific value of the fuel after reforming is improved by 25.7% with respect to the fuel before reforming. In other words, the reforming reaction means that the thermal efficiency based on C 8 H 18 is improved by 25.7%.

効果2に関しては、図3に改質反応(1)の平衡温度と転化率の関係を示す。これによると改質温度が高いほど、改質効率が高いことが分かる。排気管下流側のエキゾーストマニホールドの集合部とエンジン出口すぐの排気温度をエンジン回転数,エンジントルクでマップ化して比較したものをそれぞれ図4,図5に示す。これによりエンジンに近いほど排気温度が高く、エンジンの運転条件の違いによる排気温度の変化が小さいことがわかる。このようなことから図1に示す構成のようにエンジンの排気バルブ近傍の排気管部またはエンジンヘッド内に改質器1を設置することで、より高温の排気を改質器1に供給でき、改質器1の改質効率を向上することが可能となる。また、より高温の排気ガスを改質器1に供給できることから、ガソリン,メタノールやエタノールなどのアルコール系燃料や脂環式炭化水素や芳香族炭化水素などさまざまな燃料を改質することが可能となり、燃料の多様化にも対応可能となる。   Regarding the effect 2, FIG. 3 shows the relationship between the equilibrium temperature of the reforming reaction (1) and the conversion rate. This shows that the higher the reforming temperature, the higher the reforming efficiency. Figures 4 and 5 show a comparison of the exhaust manifold downstream side exhaust manifold and the exhaust temperature immediately after the engine outlet, mapped by the engine speed and engine torque, respectively. Thus, it can be seen that the closer to the engine, the higher the exhaust temperature, and the smaller the change in exhaust temperature due to the difference in engine operating conditions. Therefore, by installing the reformer 1 in the exhaust pipe portion near the engine exhaust valve or in the engine head as in the configuration shown in FIG. 1, higher temperature exhaust gas can be supplied to the reformer 1, The reforming efficiency of the reformer 1 can be improved. In addition, since higher temperature exhaust gas can be supplied to the reformer 1, it is possible to reform various fuels such as gasoline, methanol, ethanol and other alcohol fuels, alicyclic hydrocarbons and aromatic hydrocarbons. It will be possible to respond to diversification of fuel.

効果3に関して説明する。図1に示す構成とすることで、改質後燃料を排気バルブ7から供給することができる。この際、改質に排気中の水蒸気を利用するため、高温のEGRも改質後燃料と共にエンジン筒内10に供給される。図6にエンジン筒内10に供給される混合気の空気過剰率1におけるEGR率と断熱火炎温度の関係を示す。EGR温度を25度と800度で比較した。これによるとEGR率増加により、不活性ガスが増加することで、断熱火炎温度は低下するが、EGR温度が高いほど、断熱火炎温度の低下は抑制されることが分かる。つまりEGR増加に伴うエンジンの排気温度低下を抑制できることを意味する。排ガス中の水蒸気を改質に利用する場合、改質後燃料にEGRが混入するが、図1のような構成とすることで、EGRの温度を高くでき、排気温度の低下を抑制することができ、EGR供給時の改質効率を向上することが可能となる。次に、図7にエンジン筒内10の混合気中のEGR率を横軸に層流燃焼速度(SL)を縦軸に示したものを示す。このとき混合気温度を比較している。燃焼速度はエンジンの等容度に影響するため、熱効率向上には重要な要素である。図7によりEGR率が低く、混合気温度が高いほど層流燃焼速度が高いことが分かる。つまりEGR率が高くても混合気温度を高くすることで、燃焼速度は向上できることを示している。図1の構成により高温EGRをエンジンに供給することができるため、常温のEGRに比べ、混合気温度を高めることができるため、燃焼速度を向上することができ、等容度を向上することが可能となる。   The effect 3 will be described. With the configuration shown in FIG. 1, the reformed fuel can be supplied from the exhaust valve 7. At this time, since steam in the exhaust gas is used for reforming, high-temperature EGR is also supplied into the engine cylinder 10 together with the reformed fuel. FIG. 6 shows the relationship between the EGR rate and the adiabatic flame temperature at the excess air ratio 1 of the air-fuel mixture supplied to the engine cylinder 10. The EGR temperature was compared between 25 degrees and 800 degrees. According to this, it can be seen that the adiabatic flame temperature decreases as the inert gas increases due to the increase in the EGR rate. However, the higher the EGR temperature, the lower the decrease in the adiabatic flame temperature. In other words, it means that a decrease in the exhaust temperature of the engine accompanying an increase in EGR can be suppressed. When steam in exhaust gas is used for reforming, EGR is mixed into the fuel after reforming. However, the configuration shown in FIG. 1 can increase the temperature of EGR and suppress the decrease in exhaust temperature. It is possible to improve the reforming efficiency when supplying EGR. FIG. 7 shows the EGR rate in the air-fuel mixture in the engine cylinder 10 on the horizontal axis and the laminar combustion velocity (SL) on the vertical axis. At this time, the mixture temperature is compared. The combustion rate is an important factor for improving the thermal efficiency because it affects the isovolume of the engine. FIG. 7 shows that the lower the EGR rate and the higher the mixture temperature, the higher the laminar combustion rate. That is, it is shown that the combustion rate can be improved by increasing the mixture temperature even if the EGR rate is high. Since high temperature EGR can be supplied to the engine with the configuration shown in FIG. 1, the air-fuel mixture temperature can be increased compared to normal temperature EGR, so that the combustion rate can be improved and the isovolume can be improved. It becomes possible.

効果4に関しては、(1)の改質反応時の平衡温度と転化率の関係を改質反応圧力で比較したものを図8に示す。式(1)のように改質後に分子数が増加する反応は改質反応圧力が低いほど転化率が増加する。図1の構成にすることで、エンジンの吸気行程時の負圧を改質反応に利用することができるため、改質効率が増加し、排熱回収量が増加することで、エンジンの熱効率が増加する。   Regarding Effect 4, FIG. 8 shows a comparison of the relationship between the equilibrium temperature and the conversion rate during the reforming reaction (1) in terms of the reforming reaction pressure. In the reaction in which the number of molecules increases after the reforming as in the formula (1), the conversion rate increases as the reforming reaction pressure decreases. With the configuration shown in FIG. 1, since the negative pressure during the intake stroke of the engine can be used for the reforming reaction, the reforming efficiency is increased and the exhaust heat recovery amount is increased. To increase.

効果5,6に関しては、特許文献1のような構成の場合、改質器1より改質後燃料は吸気管8に供給されるため、新たに改質後燃料用の配管を設置する必要がある。また、改質後燃料用の配管を設置することで、配管途中において、改質後燃料中の改質できなかったガソリンが冷やされ、一部液化するということもある。それに対し、図1の構成とすることで、エンジンの排気管9からエンジン筒内10に改質後燃料を供給するため、改質後燃料用の配管を必要としない。また、改質後燃料が冷える前にエンジン筒内に改質後燃料が供給されるため、改質しないガソリンが一部液化する問題も発生しない。   Regarding effects 5 and 6, in the case of the configuration as in Patent Document 1, since the reformed fuel is supplied from the reformer 1 to the intake pipe 8, it is necessary to newly install a pipe for the reformed fuel. is there. In addition, by installing a pipe for the fuel after reforming, the gasoline that could not be reformed in the fuel after reforming may be cooled and partially liquefied in the middle of the pipe. On the other hand, with the configuration shown in FIG. 1, the reformed fuel is supplied from the engine exhaust pipe 9 to the engine cylinder 10, so that a pipe for the reformed fuel is not required. Further, since the reformed fuel is supplied into the engine cylinder before the reformed fuel cools, there is no problem that the gasoline that is not reformed is partially liquefied.

次に、第一の構成図における制御方法について説明する。第一の構成においては、空気過剰率1付近で運転する制御を行う。図9に空気過剰率と断熱火炎温度の関係を示す。このように空気過剰率が1に近づくほど断熱火炎温度は高くなることが分かる。つまり排気温度が高くなることを示しており、これにより改質器1における改質効率が向上し、熱効率が向上する。次に図10に空気過剰率と三元触媒の浄化率の関係を示す。これにより排ガス浄化の観点から空気過剰率1付近で運転することが最適であることが分かる。図11に層流燃焼速度と空気過剰率の関係を示す。これにより空気過剰率が1よりやや低いところで層流燃焼速度は最大となる。また、改質器1の改質反応場に酸素が存在すると改質時に改質前燃料が酸化し、これにより発熱するため、改質時の吸熱量が少なくなるため、熱効率が低下する。そのため、排ガス中に酸素が存在しないように空気過剰率1以下で運転する。これらのことから第一の構成においては、空気過剰率1にて運転することが最適である。これを実現するために、排気管9中の酸素濃度が所定範囲になるように吸気管8に設置されている空気流量調整装置18を制御する、もしくは改質前燃料の吸気管8への供給量を制御する、もしくは改質前燃料の改質器1への供給量を制御することの少なくともいずれか一つを行う。   Next, the control method in the first configuration diagram will be described. In the first configuration, control is performed to operate near an excess air ratio of 1. FIG. 9 shows the relationship between the excess air ratio and the adiabatic flame temperature. Thus, it can be seen that the adiabatic flame temperature increases as the excess air ratio approaches 1. That is, it shows that the exhaust gas temperature becomes high, which improves the reforming efficiency in the reformer 1 and improves the thermal efficiency. Next, FIG. 10 shows the relationship between the excess air ratio and the purification rate of the three-way catalyst. As a result, it is understood that it is optimal to operate near the excess air ratio of 1 from the viewpoint of exhaust gas purification. FIG. 11 shows the relationship between the laminar combustion speed and the excess air ratio. As a result, the laminar combustion speed becomes maximum when the excess air ratio is slightly lower than 1. In addition, if oxygen is present in the reforming reaction field of the reformer 1, the fuel before reforming is oxidized during reforming, thereby generating heat, so that the amount of heat absorbed during reforming is reduced and thermal efficiency is lowered. Therefore, the operation is performed at an excess air ratio of 1 or less so that oxygen does not exist in the exhaust gas. Therefore, in the first configuration, it is optimal to operate at an excess air ratio of 1. In order to realize this, the air flow rate adjusting device 18 installed in the intake pipe 8 is controlled so that the oxygen concentration in the exhaust pipe 9 falls within a predetermined range, or the fuel before reforming is supplied to the intake pipe 8. At least one of controlling the amount or controlling the amount of fuel before reforming supplied to the reformer 1 is performed.

次に排気バルブの開閉タイミングおよび改質前燃料の供給タイミングについて説明する。図12には、エンジンの各行程における、排気バルブ7のリフト量と改質前供給量調整装置11の制御信号、ΔPの履歴を示す。ΔPは下記のように定義する。   Next, the opening / closing timing of the exhaust valve and the supply timing of the fuel before reforming will be described. FIG. 12 shows the lift amount of the exhaust valve 7, the control signal of the supply amount adjusting device 11 before reforming, and the history of ΔP in each stroke of the engine. ΔP is defined as follows.

ΔP=エンジン筒内圧力−排気管圧力
エンジンの排気行程において排気バルブ7はリフトされ、エンジン筒内10の排ガスが排気管9に排出され、改質器1へ排ガスが供給され、改質器1が暖められる。その後、エンジンの吸気行程おいてΔPが負圧になるタイミングにおいて、排気バルブ7が再び開かれ、改質前燃料供給量調整装置11へ供給指令信号が入力される。このように制御することで、ΔPが負圧であるため、改質前燃料供給量調整装置11から改質器1に改質前燃料が供給され、改質器1で改質前燃料が改質された後に排気バルブ7を介してエンジン筒内10に改質後燃料が排ガスと共に供給される。このとき、改質器1からエンジン筒内10への改質後燃料の供給には、時間遅れが存在するため、吸気行程中に排気バルブ7が閉まる前に改質前燃料供給量調整装置11から改質器1への改質前燃料の供給を停止する。また吸気バルブ6は排気バルブ7が閉じた後に開弁する。これは排気バルブ7のみを開けて改質後燃料を供給することで、改質器1内は低圧にて改質反応することができ、改質効率が増加する効果があるためである。
ΔP = in-cylinder pressure−exhaust pipe pressure In the exhaust stroke of the engine, the exhaust valve 7 is lifted, exhaust gas in the engine cylinder 10 is discharged to the exhaust pipe 9, exhaust gas is supplied to the reformer 1, and the reformer 1 Is warmed. Thereafter, at the timing when ΔP becomes negative pressure in the intake stroke of the engine, the exhaust valve 7 is opened again, and a supply command signal is input to the pre-reforming fuel supply amount adjusting device 11. By controlling in this way, since ΔP is a negative pressure, the pre-reform fuel is supplied from the pre-reform fuel supply amount adjusting device 11 to the reformer 1, and the pre-reform fuel is reformed by the reformer 1. After being refined, the reformed fuel is supplied together with the exhaust gas into the engine cylinder 10 through the exhaust valve 7. At this time, since there is a time delay in the supply of the reformed fuel from the reformer 1 to the engine cylinder 10, the pre-reformation fuel supply amount adjusting device 11 before the exhaust valve 7 is closed during the intake stroke. The supply of fuel before reforming to the reformer 1 is stopped. The intake valve 6 is opened after the exhaust valve 7 is closed. This is because by opening only the exhaust valve 7 and supplying the reformed fuel, the reformer 1 can perform a reforming reaction at a low pressure, and the reforming efficiency is increased.

次に改質器1に改質前燃料を供給しない運転方法について説明する。改質器1はエンジン始動時や暖機時は改質温度が低いため、図3に示すように改質効率が低下する。そのため、改質器1へ改質前燃料を供給することを禁止して、改質前燃料は燃料供給装置13により改質器1を介さずにエンジン筒内10へ供給する。このとき同時に排気バルブ7は吸気行程時に開かないように制御することでEGRのエンジンへの混入を防止する。このように運転することで、改質器1の暖機時間が短くなり、改質効率が高いところでの運転が可能となる。   Next, an operation method in which the pre-reforming fuel is not supplied to the reformer 1 will be described. Since the reformer 1 has a low reforming temperature when the engine is started or warmed up, the reforming efficiency decreases as shown in FIG. Therefore, supply of the pre-reforming fuel to the reformer 1 is prohibited, and the pre-reforming fuel is supplied to the engine cylinder 10 by the fuel supply device 13 without passing through the reformer 1. At the same time, the exhaust valve 7 is controlled so as not to open during the intake stroke, thereby preventing EGR from entering the engine. By operating in this way, the warm-up time of the reformer 1 is shortened, and operation where the reforming efficiency is high becomes possible.

次に第二の構成を図13に示す。所定圧力差以上にて開くように調整された調整バルブ16が改質前燃料タンク3と改質器1とを接続する配管に設置されており、排ガスの逆流防止装置12により、エンジンの吸気行程時の改質器1内が負圧になることで、改質前燃料タンク3と改質器1の間で差圧が生じる。この差圧により、改質前燃料が改質器1へ供給される。このとき調整バルブ16が存在することで、排気バルブ7が閉じた後に改質器1へ改質前燃料が供給されることを防止している。またエンジン筒内10への空気量は空気流量調整装置18を利用する。空気流量調整装置18は機械的に調整するバルブであってもよい。第一の構成に比べ、第二の構成は、改質器前燃料供給量調整装置や電子制御装置が不要となり、機械的に改質前燃料を改質器1に供給することが可能となるため、部品点数が少なく、低コストシステムにて、改質後燃料を排気バルブ7から確実にエンジン筒内10に供給できる構成である。第二の構成においてエンジン筒内10に供給する改質前燃料の供給量と吸入空気量の割合を調整する際は、改質前燃料の供給量およびスロットル開度のほかに排気バルブ7の開閉時期または開閉リフト量を調整することで、エンジン筒内10に供給する空気量に対する改質後燃料供給量が調整可能となる。図14に排気バルブ7の開閉リフト量の調整方法を示す。このように排気バルブ7のリフト量、開閉時期を連続的または段階的に変化させることで、改質前燃料の供給量が調整できる。また、調整バルブ16の差圧に対する改質前燃料供給量を調整すること、エンジン筒内10に供給する改質後燃料供給量が調整してもよい。また第二の構成において、エンジンの始動時や改質器1を暖気する暖機運転時など改質器1の温度が所定の温度よりも低い時や、改質器1の故障時に、改質器1を介さずに改質前燃料を吸気管8に供給する配管を設置していてもよい。ここで、所定の温度とは、改質器1で燃料を改質する際の添加率が、例えば10%以下となる温度などを設定する。温度の検出方法としては、改質器1の温度を直接検出する手法や、排ガス温度を検出して改質器1の温度を推定する手法などを用いればよい。   Next, the second configuration is shown in FIG. An adjustment valve 16 adjusted to open at a predetermined pressure difference or more is installed in a pipe connecting the pre-reformation fuel tank 3 and the reformer 1, and the exhaust gas backflow prevention device 12 causes the intake stroke of the engine. Due to the negative pressure inside the reformer 1 at that time, a differential pressure is generated between the pre-reformation fuel tank 3 and the reformer 1. Due to this differential pressure, the pre-reforming fuel is supplied to the reformer 1. At this time, the presence of the regulating valve 16 prevents the fuel before reforming from being supplied to the reformer 1 after the exhaust valve 7 is closed. An air flow rate adjusting device 18 is used for the amount of air flowing into the engine cylinder 10. The air flow rate adjusting device 18 may be a mechanically adjusting valve. Compared to the first configuration, the second configuration eliminates the need for the pre-reformer fuel supply amount adjustment device and the electronic control device, and can mechanically supply the pre-reformation fuel to the reformer 1. Therefore, the number of parts is small, and the reformed fuel can be reliably supplied from the exhaust valve 7 to the engine cylinder 10 with a low-cost system. When adjusting the ratio of the supply amount of pre-reform fuel supplied to the engine cylinder 10 and the intake air amount in the second configuration, the exhaust valve 7 is opened and closed in addition to the supply amount of pre-reform fuel and the throttle opening. By adjusting the timing or the opening / closing lift amount, the fuel supply amount after reforming with respect to the air amount supplied to the engine cylinder 10 can be adjusted. FIG. 14 shows a method for adjusting the opening / closing lift amount of the exhaust valve 7. Thus, by changing the lift amount and opening / closing timing of the exhaust valve 7 continuously or stepwise, the supply amount of the fuel before reforming can be adjusted. Further, the fuel supply amount before reforming with respect to the differential pressure of the adjustment valve 16 may be adjusted, or the fuel supply amount after reforming supplied to the engine cylinder 10 may be adjusted. In the second configuration, the reformer 1 is reformed when the temperature of the reformer 1 is lower than a predetermined temperature, such as when the engine is started or when the reformer 1 is warmed up. A pipe for supplying the fuel before reforming to the intake pipe 8 without using the vessel 1 may be provided. Here, the predetermined temperature is set to a temperature at which the addition rate when reforming the fuel in the reformer 1 is, for example, 10% or less. As a temperature detection method, a method of directly detecting the temperature of the reformer 1 or a method of estimating the temperature of the reformer 1 by detecting the exhaust gas temperature may be used.

次に第三の構成を図15に示す。改質前供給量調整装置11により改質器1に改質前燃料が供給される構成となっており、改質器1はエンジン筒内10内に設置されている。改質前燃料供給量調整装置11は、たとえば、ガソリン直噴用インジェクタを用い、改質器1はガソリン直噴用インジェクタに設置する構成でもよい。第三の構成とすることで、第1の構成に比べ、エンジンを大幅に変更することがなく、部品点数を低減することができる。また、改質器1がエンジン筒内10内に設置されていることから、改質後燃料はエンジン筒内10に確実に供給することが可能となる。具体的な制御方法は、吸気行程時に改質前燃料を改質器1に供給することで、改質時の反応圧力を低くすることができるため、改質効率が向上する(図8参照)。さらに、図16に示すように吸気行程時において改質前燃料供給量調整装置11により改質器1に改質前燃料を供給後に吸気バルブ6を開くことで、改質器1の改質反応圧力を低くすることができ、改質効率が向上する。   Next, a third configuration is shown in FIG. The fuel before reforming is supplied to the reformer 1 by the supply amount adjusting device 11 before reforming, and the reformer 1 is installed in the engine cylinder 10. For example, the fuel supply amount adjusting device 11 before reforming may be a gasoline direct injection injector, and the reformer 1 may be installed in the gasoline direct injection injector. By adopting the third configuration, the number of parts can be reduced without significantly changing the engine as compared with the first configuration. In addition, since the reformer 1 is installed in the engine cylinder 10, the reformed fuel can be reliably supplied to the engine cylinder 10. A specific control method is that the pre-reforming fuel is supplied to the reformer 1 during the intake stroke, so that the reaction pressure at the time of reforming can be lowered, so that reforming efficiency is improved (see FIG. 8). . Further, as shown in FIG. 16, the reforming reaction of the reformer 1 is performed by opening the intake valve 6 after supplying the fuel before reforming to the reformer 1 by the pre-reforming fuel supply amount adjusting device 11 during the intake stroke. The pressure can be lowered, and the reforming efficiency is improved.

1 改質器
2 ピストン
3 改質前燃料
4 改質前燃料ポンプ
5 点火プラグ
6 吸気バルブ
7 排気バルブ
8 吸気管
9 排気管
10 エンジン筒内
11,13 改質前燃料供給量調整装置
12 逆流防止装置
14,15 圧力センサ
16 調整バルブ
17 酸素濃度検出装置
18 空気流量調整装置
DESCRIPTION OF SYMBOLS 1 Reformer 2 Piston 3 Fuel before reforming 4 Fuel pump before reforming Spark plug 6 Intake valve 7 Exhaust valve 8 Intake pipe 9 Exhaust pipe 10 In-cylinder 11, 13 Fuel supply amount adjusting device 12 before reforming Prevention of backflow Devices 14 and 15 Pressure sensor 16 Adjustment valve 17 Oxygen concentration detection device 18 Air flow rate adjustment device

Claims (3)

水蒸気改質反応により改質前燃料を改質する改質触媒を有する改質器と、前記改質器に供給する前記改質前燃料の供給量を調整する改質前燃料供給量調整装置とを備え、改質前燃料を前記改質器で改質した改質後燃料を燃料として、エンジンを駆動する改質器付エンジンシステムであって、
前記改質器の先端部が前記エンジン筒内に設置され、前記改質前燃料供給量調整装置は前記エンジンの吸気行程中に前記改質器に改質前燃料を供給し、前記改質器から改質後燃料がエンジン筒内に直接供給されることを特徴とする改質器付エンジンシステム。
A reformer having a reforming catalyst for reforming the pre-reforming fuel by a steam reforming reaction; and a pre-reforming fuel supply amount adjusting device for adjusting a supply amount of the pre-reforming fuel supplied to the reformer; the provided, the reformed fuel reformed reformed before the fuel in the reformer as a fuel, an engine system with a reformer for driving the engine,
A front end portion of the reformer is installed in the engine cylinder, and the pre-reform fuel supply amount adjustment device supplies pre-reform fuel to the reformer during an intake stroke of the engine, and the reformer An engine system with a reformer, wherein the reformed fuel is directly supplied into the engine cylinder.
請求項1に記載の改質器付エンジンシステムにおいて、前記改質前燃料供給量調整装置がインジェクタであり、前記インジェクタが前記改質器に設置されていることを特徴とする改質器付エンジンシステム。   The engine system with a reformer according to claim 1, wherein the fuel supply amount adjustment device before reforming is an injector, and the injector is installed in the reformer. system. 請求項に記載の改質器付エンジンシステムにおいて、前記エンジンの吸気行程中に前記インジェクタから前記改質器に改質前燃料を供給した後、吸気バルブを開くことを特徴とする改質器付エンジンシステム。 3. The engine system with a reformer according to claim 2 , wherein before the reforming fuel is supplied from the injector to the reformer during an intake stroke of the engine, an intake valve is opened. With engine system.
JP2011280689A 2011-12-22 2011-12-22 Engine system with reformer Expired - Fee Related JP5331869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011280689A JP5331869B2 (en) 2011-12-22 2011-12-22 Engine system with reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011280689A JP5331869B2 (en) 2011-12-22 2011-12-22 Engine system with reformer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008169780A Division JP4901816B2 (en) 2006-06-30 2008-06-30 Engine system with reformer

Publications (2)

Publication Number Publication Date
JP2012087805A JP2012087805A (en) 2012-05-10
JP5331869B2 true JP5331869B2 (en) 2013-10-30

Family

ID=46259643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011280689A Expired - Fee Related JP5331869B2 (en) 2011-12-22 2011-12-22 Engine system with reformer

Country Status (1)

Country Link
JP (1) JP5331869B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5983449B2 (en) * 2013-02-06 2016-08-31 株式会社デンソー Fuel reforming system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3921976B2 (en) * 2001-08-31 2007-05-30 日産自動車株式会社 Compression self-ignition internal combustion engine
US7793631B2 (en) * 2005-08-30 2010-09-14 Nissan Motor Co., Ltd. Fuel ignition system, fuel igniting method, fuel reforming system and fuel reforming method, for internal combustion engine
US7546826B2 (en) * 2006-03-31 2009-06-16 Transonic Combustion, Inc. Injector-ignition for an internal combustion engine
JP2008169780A (en) * 2007-01-12 2008-07-24 Calsonic Kansei Corp Muffler

Also Published As

Publication number Publication date
JP2012087805A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP4901816B2 (en) Engine system with reformer
JP4449956B2 (en) Internal combustion engine
JP4779721B2 (en) Engine system
EP2216537B1 (en) Internal combustion engine
EP1787950B1 (en) Fuel reformer and methods for using the same
WO2015076305A1 (en) Fuel reforming system
WO2009075148A1 (en) Exhaust purification device for internal combustion engine
JP2009138527A (en) Controller of internal combustion engine
JP5331869B2 (en) Engine system with reformer
JP5178498B2 (en) Engine system with reformer
JP5035358B2 (en) Engine system
JP2009162053A (en) Control device for internal combustion engine
JP2006249981A (en) Reformed gas-utilizing internal combustion engine
JP6392548B2 (en) Reformer
KR100983616B1 (en) Treatment gas supply system of engine
JP2002316801A (en) Controller for fuel battery system
KR101203161B1 (en) Control apparatus of engine using reformed gas and natural gas
JP6527639B2 (en) Power train system
US9162203B1 (en) Hydrogen generator
JP2009138567A (en) Control device of internal combustion engine
JP2009185739A (en) Fuel reforming device
JP2009144555A (en) Control device for internal combustion engine
JP2008127996A (en) Exhaust gas reformer system for internal combustion engine
JP2009108802A (en) Control device for vehicle equipped with hydrogen generation system
Choi et al. A study on the improvement of combustion and emission performance in an EGR-assisted gasoline engine bi-fueled with hydrogen

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R151 Written notification of patent or utility model registration

Ref document number: 5331869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees