JP5331558B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP5331558B2
JP5331558B2 JP2009105400A JP2009105400A JP5331558B2 JP 5331558 B2 JP5331558 B2 JP 5331558B2 JP 2009105400 A JP2009105400 A JP 2009105400A JP 2009105400 A JP2009105400 A JP 2009105400A JP 5331558 B2 JP5331558 B2 JP 5331558B2
Authority
JP
Japan
Prior art keywords
groove
tire
area
lateral
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009105400A
Other languages
Japanese (ja)
Other versions
JP2010254092A (en
Inventor
達也 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009105400A priority Critical patent/JP5331558B2/en
Publication of JP2010254092A publication Critical patent/JP2010254092A/en
Application granted granted Critical
Publication of JP5331558B2 publication Critical patent/JP5331558B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、空気入りタイヤ、特に、ウェット路面上での、直進走行時および旋回走行時の耐ハイドロプレーニング性能を向上させた空気入りタイヤに関するものである。   The present invention relates to a pneumatic tire, and more particularly to a pneumatic tire with improved anti-hydroplaning performance when traveling straight and turning on a wet road surface.

従来の空気入りタイヤでは、トレッド部にタイヤ周方向に延びる周溝とタイヤ幅方向に延びる横溝を設け、周溝によってタイヤの前後方向の排水を、また、横溝によってタイヤ側方への排水をそれぞれ行うこととし、特にウェット路面の走行時に、路面上の水をそれらの溝で排水して、トレッド踏面と路面との接触を密にして、面間摩擦力、ひいては、路面グリップ力を高めることにより、ハイドロプレーニングの発生を抑止し、優れた操縦安定性を実現して走行の安全性を高めていた。
このような溝は、一般的に、図2に模式的に示すように、トレッド踏面での溝面積が大きいほど排水性が向上し、また例えば、図3に模式的に示すように、溝を水の流れに沿うように設けることで、排水性を向上させることができる。
In a conventional pneumatic tire, a tread portion is provided with a circumferential groove extending in the tire circumferential direction and a lateral groove extending in the tire width direction. The circumferential groove drains the tire in the front-rear direction, and the lateral groove drains the tire laterally. Especially when driving on wet roads, drain the water on the roads through these grooves to increase the contact between the tread and the road surface, thereby increasing the inter-surface frictional force and thus the road grip force. In addition, the occurrence of hydroplaning was suppressed, and excellent driving stability was achieved to improve driving safety.
In general, as shown in FIG. 2, such a groove improves drainage as the groove area on the tread surface increases, and for example, as schematically shown in FIG. By providing it along the flow of water, drainage can be improved.

ところで、ハイドロプレーニング現象は、図4に模式的に示すように、タイヤと路面上の水との衝突で発生する水圧がトレッド踏面の路面接地圧より大きくなることで、トレッド踏面と路面との間に水が浸入し、その水がタイヤを路面から浮き上がらせることに起因して、トレッド踏面の接地面積が減少して惹起されることが知られている。   By the way, as schematically shown in FIG. 4, the hydroplaning phenomenon is caused by the fact that the water pressure generated by the collision between the tire and the water on the road surface becomes larger than the road surface contact pressure of the tread surface. It is known that the contact area of the tread surface is reduced due to water intruding into the water and causing the water to lift the tire from the road surface.

かかるハイドロプレーニング減少の発生に対し、従来は溝面積を増加させて排水性を向上させて、発生を抑制することとしていたが、その領域では陸部面積が減少することに起因して、その陸部剛性が低下して操縦安定性が低下するおそれがあった。
また、タイヤを車両に装着して走行すると、直進走行時と、旋回走行時とで、タイヤの接地形状が変化し、旋回走行時には、車両への装着外側で接地圧が高くなり、装着内側で接地圧が低くなるため、装着内側は浮きやすくなる傾向がある。
In contrast to the occurrence of such a decrease in hydroplaning, conventionally, the groove area was increased to improve drainage, thereby suppressing the occurrence. There is a possibility that the steering stability may be lowered due to a decrease in the rigidity of the part.
Also, when running with tires attached to the vehicle, the ground contact shape of the tire changes between straight running and turning, and during turning, the ground pressure increases on the outside of the vehicle and on the inside of the vehicle. Since the contact pressure is low, the inside of the mounting tends to float easily.

これがため、特許文献1には、タイヤ赤道面を境にして、トレッドの装着時外側領域のネガティブ比Bと装着時内側領域のネガティブ比Cとの比であるネガティブ比率A(=B/C)を0.5〜0.9とすることで、装着内側の溝面積を装着外側より大きくして、特にウェット路面の旋回性を向上させた技術が提案されている。   For this reason, in Patent Document 1, the negative ratio A (= B / C), which is the ratio of the negative ratio B of the outer region when the tread is mounted to the negative ratio C of the inner region when the tread is mounted, with the tire equatorial plane as a boundary. A technique has been proposed in which the groove area on the inner side of the mounting is made larger than that on the outer side of the mounting so that the turning performance of the wet road surface is improved.

しかるに、特許文献1に記載のタイヤでは、ウェット路面上での旋回性を向上させることはできるものの、車両にタイヤを装着して直進走行時(図5(b))と、旋回走行時(図5(c))のトレッド接地形状は、タイヤ単体(図5(a))で見たときのそれとは相違することになり、図5(b)に示すような、車両の直進走行時には、例えば、ネガティブキャンバーの付与の下で、装着内側で接地圧が高く、装着外側では接地圧が低くなるが、旋回走行のためにタイヤにスリップ角を付与すると、旋回に必要な横力を発生させるに当って、装着外側が高い接地圧で接地することになるため、直進走行時と旋回走行時の高接地圧領域の変位を両立できる更なる改良が望まれていた。   However, the tire disclosed in Patent Document 1 can improve the turning performance on the wet road surface, but the vehicle is fitted with the tire when traveling straight (FIG. 5 (b)) and when turning (FIG. 5). 5 (c)) is different from that of the tire alone (FIG. 5 (a)) when the vehicle is traveling straight as shown in FIG. 5 (b), for example, Under the application of negative camber, the contact pressure is high on the inner side and the contact pressure is lower on the outer side, but if a slip angle is applied to the tire for turning, the lateral force required for turning will be generated. Accordingly, since the outside of the mounting is grounded at a high ground pressure, further improvement that can achieve both the displacement of the high ground pressure region during straight traveling and cornering has been desired.

特開平7−164826号公報JP-A-7-164826

そこで、本発明の目的は、特に、ウェット路面上での旋回走行時の耐ハイドロプレーニング性能と、ウェット路面上での直進走行時の耐ハイドロプレーニング性能とを高い次元で両立させることができる空気入りタイヤを提供することにある。   Accordingly, the object of the present invention is to provide a high level of compatibility between the anti-hydroplaning performance when turning on a wet road surface and the anti-hydroplaning performance when driving straight on a wet road surface. To provide tires.

この発明にかかる空気入りタイヤは、トレッド踏面に、トレッド周方向に延びる複数本の周溝と、トレッド幅方向に延びる複数本の横溝とを配設して、タイヤ赤道面を中心として非対称パターンを形成してなるものであって、車両への装着姿勢で、タイヤ赤道面より車両の内側に位置することになる周溝の全溝面積を、車両の外側に位置することになる周溝の全溝面積より大きくし、タイヤ赤道面より装着外側の横溝の全溝面積を、装着内側の横溝の全溝面積より大きくし、装着外側の溝の全溝面積を、装着内側の溝の全溝面積に対して、70〜90%の範囲で設けてなり、車両への装着姿勢で、タイヤ赤道面より装着内側の各周溝の溝面積を、装着外側の、いずれの周溝の溝面積より大きくし、装着外側の各横溝の溝面積を、装着内側の、いずれの横溝の溝面積より大きくしてなるものであるIn the pneumatic tire according to the present invention, a plurality of circumferential grooves extending in the tread circumferential direction and a plurality of lateral grooves extending in the tread width direction are arranged on the tread surface, and an asymmetric pattern is formed around the tire equatorial plane. The total groove area of the circumferential groove that will be located inside the vehicle from the tire equator plane in the mounting posture on the vehicle is the entire circumferential groove that will be located outside the vehicle. The groove area is larger than the groove area, the entire groove area of the lateral groove outside the tire equator is larger than the entire groove area of the lateral groove inside the tire, and the total groove area of the outer groove is equal to the total groove area of the inner groove. respect, Ri Na provided in a range of 70% to 90%, in mounting attitude of the vehicle, the groove area of each circumferential groove in the inner side than the tire equatorial plane, of the mounting outside the groove area of any circumferential groove Increase the groove area of each lateral groove on the outside of the mounting, Those formed by larger than the groove area of the lateral grooves of the shift.

ここで、溝面積とは、溝の長さ、幅および本数から定めるものとする。
横溝はトレッド周方向に0〜80°の範囲で傾斜するものも含むものとする。
溝の長さ、幅とは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会) YEAR BOOK、欧州では、ETRTO(European Tyre and Rim Technical Organisation) STANDARDS MANUAL、米国ではTRA(THE TIRE and RIM ASSOCIATION INC.)YEAR BOOK等に規定されたリムに、タイヤを組み付けて、そのタイヤに、JATMA等の規格で定められる、最高空気圧を充填した状態の下で測った、トレッド踏面での距離をいうものとする。
Here, the groove area is determined from the length, width and number of grooves.
The lateral grooves include those inclined in the range of 0 to 80 ° in the tread circumferential direction.
The length and width of the groove are industrial standards effective in the region where tires are produced and used. In Japan, JATMA (Japan Automobile Tire Association) YEAR BOOK, in Europe, ETRTO (European Tire and Rim Technical Organization) ) STANDARDDS MANUAL, in the United States TRA (THE TIRE and RIM ASSOCATION INC.) YEAR BOOK, etc., the tire is assembled, and the tire is in a state filled with the highest air pressure as defined by the standards such as JATMA The distance measured on the tread is measured below.

また好ましくは、装着外側の横溝のタイヤ幅方向の延在長さが、装着内側の横溝のタイヤ幅方向の延在長さより大きくする。
ここで、「横溝のタイヤ幅方向の延在長さ」とは、溝の中心線で測った長さをいい、傾斜溝の場合は、幅方向の長さを言うものとする。
Preferably, the extending length of the lateral groove on the outer side of the mounting is made larger than the extending length of the lateral groove on the inner side of the mounting in the tire width direction.
Here, the “extending length of the lateral groove in the tire width direction” means a length measured by the center line of the groove, and in the case of an inclined groove, it means the length in the width direction.

ところで、装着内側の周溝の全溝面積を、装着外側の周溝の全溝面積に対して100〜200%の範囲とし、装着外側の横溝の全溝面積を、装着内側の横溝の全溝面積に対して100〜300%の範囲とすることが好ましい。   By the way, the total groove area of the circumferential groove on the inner side of the mounting is in the range of 100 to 200% with respect to the total groove area of the outer peripheral groove of the mounting, and the total groove area of the lateral groove on the outer side of the mounting is the total groove of the lateral groove on the inner side of the mounting. It is preferable to set it as the range of 100-300% with respect to an area.

本発明の空気入りタイヤは、車両への装着姿勢で、タイヤ赤道面より車両の内側に位置することになる周溝の全溝面積を、車両の外側に位置することになる周溝の全溝面積より大きくすることで、特にネガティブキャンバーの条件下では、装着の内側の陸部が路面に主に接地し、装着内側の陸部が路面から浮き上がる傾向にあるため、直進走行時に接地長さが長くなる領域である装着内側の周溝の溝面積を増やして、排水性を向上させることができる。その結果、直進走行時の、耐ハイドロプレーニング性能を向上させることができる。   In the pneumatic tire of the present invention, the entire groove area of the circumferential groove that is positioned on the inner side of the vehicle from the tire equator plane in the mounting posture on the vehicle is the entire groove of the circumferential groove that is positioned on the outer side of the vehicle. By making it larger than the area, especially under negative camber conditions, the land area on the inner side of the installation tends to contact the road surface, and the land area on the inner side tends to rise from the road surface. Drainability can be improved by increasing the groove area of the circumferential groove on the inner side of the mounting, which is a longer region. As a result, it is possible to improve the hydroplaning performance during straight running.

また、タイヤ赤道面より装着外側の横溝の全溝面積を、装着内側の横溝の全溝面積より大きくすることで、旋回時に接地圧が高まる装着外側の溝面積を大きくして、タイヤ側方への排水効率を高めることができる。その結果、旋回走行時の、耐ハイドロプレーニング性能を向上させることができる。   In addition, by increasing the total groove area of the lateral groove on the outer side of the tire from the tire equator surface than the total groove area of the lateral groove on the inner side of the tire, the groove area on the outer side of the mounting where the ground pressure increases during turning can be increased. The drainage efficiency can be increased. As a result, it is possible to improve the anti-hydroplaning performance during turning.

そしてまた、装着外側の溝の全溝面積を、装着内側の溝の全溝面積に対して、70〜90%の範囲で設けることで、トレッド部の陸部剛性の確保と排水性の両立することができる。   In addition, by providing the total groove area of the outer groove of the mounting in the range of 70 to 90% with respect to the total groove area of the inner groove, both the rigidity of the tread portion and the drainage can be achieved. be able to.

すなわち、それが70%未満では、装着外側の溝面積が小さくなり排水効率が低下することで、直進および旋回走行時に装着外側でハイドロプレーニングを生じ、90%を超えると、装着内側の溝面積が小さくなり排水効率が悪化することになり、装着内側でハイドロプレーニングが生じるおそれがある。   That is, if it is less than 70%, the groove area on the outer side of the mounting is reduced and drainage efficiency is reduced, so that hydroplaning occurs on the outer side of the mounting during straight traveling and turning, and if it exceeds 90%, the groove area on the inner side of the mounting is increased. It becomes small and drainage efficiency deteriorates, and there is a possibility that hydroplaning occurs inside the mounting.

本発明の空気入りタイヤの一の実施形態を示すトレッドパターンの部分展開図である。It is a partial development view of a tread pattern showing one embodiment of a pneumatic tire of the present invention. トレッド踏面での排水を模式的に示す図である。It is a figure showing typically drainage on a tread surface. トレッド踏面での排水を模式的に示す図である。It is a figure showing typically drainage on a tread surface. ハイドロプレーニング現象を模式的に示す図である。It is a figure which shows a hydroplaning phenomenon typically. (a)は、タイヤ単体のトレッド接地形状を、(b)は、タイヤを車に装着して直進走行時のトレッド接地形状を、(c)は、タイヤを車に装着して旋回走行時のトレッド接地形状をそれぞれ示す図である。(A) is a tread grounding shape of a single tire, (b) is a tread grounding shape when traveling straight with a tire attached to a car, and (c) is a tire tread grounding when the tire is mounted on a car. It is a figure which shows each tread grounding shape. (a)〜(e)は従来の空気入りタイヤの実施形態を示すトレッドパターンの部分展開図である。(A)-(e) is the partial expanded view of the tread pattern which shows embodiment of the conventional pneumatic tire.

以下に、図面を参照しながら本発明の空気入りタイヤを詳細に説明する。
図1は、本発明の空気入りタイヤの一の実施形態を示すトレッドパターンの部分展開図である。
タイヤ内部の補強構造は、一般的なラジアルタイヤまたはバイアスタイヤのそれと同様であるので、図示を省略する。
Hereinafter, the pneumatic tire of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a partial development view of a tread pattern showing one embodiment of the pneumatic tire of the present invention.
Since the reinforcing structure inside the tire is the same as that of a general radial tire or bias tire, illustration is omitted.

図1に示すトレッドパターンは非対称パターンであり、図1に示すタイヤは左側が車両の装着内側なる姿勢で使用に供される。
図中1はトレッド踏面の全体を示し、このトレッド踏面1には、トレッド周方向に延在する複数本の周溝、図ではタイヤ赤道線を隔てて設けた二本のセンター周溝2in,2outと、このセンター周溝2in,2outのそれぞれの側部に隣接するショルダー周溝3in,3outとを配設する。
相互に隣り合う二本の周溝間、図では二本のセンター周溝2in,2outの間に中央陸部4を、センター周溝2in,2outとショルダー周溝3in,3outとの間に中間陸部5in,5outをそれぞれ区画し、そして、ショルダー周溝3in,3outとトレッド側縁との間にそれぞれのショルダー陸部6in,6outを区画する。
The tread pattern shown in FIG. 1 is an asymmetric pattern, and the tire shown in FIG. 1 is used in a posture in which the left side is a vehicle-mounted inner side.
In the figure, reference numeral 1 denotes the entire tread surface. The tread surface 1 has a plurality of circumferential grooves extending in the tread circumferential direction, two center circumferential grooves 2in and 2out provided in the figure with a tire equator line therebetween. The shoulder circumferential grooves 3in and 3out adjacent to the respective side portions of the center circumferential grooves 2in and 2out are disposed.
Between the two circumferential grooves adjacent to each other, in the figure, between the two center circumferential grooves 2in and 2out, the central land portion 4 is interposed, and between the center circumferential grooves 2in and 2out and the shoulder circumferential grooves 3in and 3out, the intermediate land The sections 5in and 5out are partitioned, and the shoulder land sections 6in and 6out are partitioned between the shoulder circumferential grooves 3in and 3out and the tread side edge.

ショルダー陸部6in,6outでは、ショルダー周溝3in,3outのそれぞれから、トレッド幅方向にショルダー陸部6in,6outを横切って延在し、トレッド側縁に開口する横溝7in,7outによって複数のショルダーブロック8in,8outを区画する。
横溝7in,7outをタイヤ幅方向最外側に設けることで、周溝3in,3outから路面外への排水距離が短くなり、排水効率を高めることができる。
In the shoulder land portions 6in and 6out, a plurality of shoulder blocks are formed by the lateral grooves 7in and 7out that extend across the shoulder land portions 6in and 6out in the tread width direction from the shoulder circumferential grooves 3in and 3out, respectively, and open to the tread side edge. 8in and 8out are partitioned.
By providing the lateral grooves 7in and 7out on the outermost side in the tire width direction, the drainage distance from the circumferential grooves 3in and 3out to the outside of the road surface is shortened, and drainage efficiency can be increased.

そしてこの空気入りタイヤではさらに、タイヤ赤道面より車両の内側に位置することになる周溝の全溝面積を、車両の外側に位置することになる周溝の全溝面積より大きくし、タイヤ赤道面より装着外側の横溝7outの全溝面積を、装着内側の横溝7inの全溝面積より大きくし、装着外側の溝の全溝面積を、装着内側の溝の全溝面積に対して、70〜90%の範囲で設ける。
好ましくは、装着外側は横溝、装着内側は周溝を基調とした溝配置とする。
In this pneumatic tire, the total groove area of the circumferential groove that is located inside the vehicle from the tire equator plane is made larger than the total groove area of the circumferential groove that is located outside the vehicle, and the tire equator The total groove area of the lateral groove 7out outside the mounting surface is made larger than the total groove area of the lateral groove 7in inside the mounting, and the total groove area of the mounting outside groove is set to 70 to Provide in the range of 90%.
Preferably, the outer side of the mounting is a lateral groove and the inner side of the mounting is a groove arrangement based on a circumferential groove.

ここで、例えば、センター周溝2inは、溝幅を2〜15mm、溝深さを3〜15mmの範囲とし、センター周溝2outは、溝幅を2〜15mm、溝深さを3〜15mmの範囲とし、ショルダー周溝3inは、溝幅を2〜15mm、溝深さを3〜15mmの範囲とし、ショルダー周溝3outは、溝幅を2〜15mm、溝深さを3〜15mmの範囲とし、横溝7inは、溝幅を2〜20mm、溝深さを3〜15mm、タイヤ幅方向の最大長さを20〜40mmの範囲とし、横溝7outは、溝幅を2〜20mm、溝深さを3〜15mm、タイヤ幅方向の最大長さを20〜40mmの範囲とすることができる。   Here, for example, the center circumferential groove 2in has a groove width of 2 to 15 mm and a groove depth of 3 to 15 mm, and the center circumferential groove 2out has a groove width of 2 to 15 mm and a groove depth of 3 to 15 mm. The shoulder circumferential groove 3in has a groove width of 2 to 15 mm and a groove depth of 3 to 15 mm, and the shoulder circumferential groove 3out has a groove width of 2 to 15 mm and a groove depth of 3 to 15 mm. The lateral groove 7in has a groove width of 2 to 20 mm, a groove depth of 3 to 15 mm, and a maximum length in the tire width direction of 20 to 40 mm. The lateral groove 7out has a groove width of 2 to 20 mm and a groove depth. The maximum length in the tire width direction can be set to 3 to 15 mm and 20 to 40 mm.

この空気入りタイヤにおいて好ましくは、車両への装着姿勢で、タイヤ赤道面より装着内側の各周溝の溝面積を、装着外側の、いずれの周溝の溝面積より大きくし、装着外側の各横溝の溝面積を、装着内側の、いずれの横溝の溝面積より大きくする。   In this pneumatic tire, preferably, in the mounting posture to the vehicle, the groove area of each circumferential groove on the inner side of the tire from the tire equator surface is larger than the groove area of any of the peripheral grooves on the outer side of the tire, and each lateral groove on the outer side of the tire is mounted. The groove area is made larger than the groove area of any of the lateral grooves inside the mounting.

また好ましくは、装着内側の周溝の最大溝幅を、装着外側の周溝の最大溝幅より広くする。
この構成により、直進走行および旋回走行時の排水性を高めて、耐ハイドロブレーニング性を向上させることができる。
Preferably, the maximum groove width of the inner circumferential groove is made wider than the maximum groove width of the outer circumferential groove.
With this configuration, it is possible to improve drainage performance during straight traveling and turning, and to improve the hydrobrain resistance.

そしてまた好ましくは、装着内側から装着外側に向けて周溝の溝幅を狭くすることができ、この構成とすることで、直進走行から旋回走行へ移行する際の操縦安定性を向上させることができるとともに、旋回走行時に主に接地する装着外側の領域で陸部剛性を高めて操縦安定性を向上する一方、直進走行時に主に設置する装着内側の領域で溝幅を大きくして排水性を高めることができる。   And preferably, the groove width of the circumferential groove can be narrowed from the mounting inner side to the mounting outer side, and this configuration improves the steering stability when shifting from straight traveling to turning traveling. In addition to improving the stability of the land by improving the rigidity of the land area in the outer area that is mainly grounded during cornering, the groove width is increased in the inner area that is mainly installed during straight running. Can be increased.

ところで、装着外側の横溝7outのタイヤ幅方向の延在長さが、装着内側の横溝7inのタイヤ幅方向の延在長さより大きくし、この構成とすることで、旋回走行時の車両への装着外側の排水性を高めて、路面接地圧を確保する。   By the way, the extension length in the tire width direction of the lateral groove 7out on the outer side of installation is larger than the extension length in the tire width direction of the lateral groove 7in on the inner side of installation. Improve drainage on the outside to ensure road surface contact pressure.

そしてまた好ましくは、装着内側の周溝の全溝面積を、装着外側の周溝の全溝面積に対して100〜200%の範囲であり、装着外側の横溝の全溝面積を、装着内側の横溝の全溝面積に対して100〜300%の範囲とする。   Also preferably, the total groove area of the peripheral groove on the inner side of the mounting is in a range of 100 to 200% with respect to the total groove area of the peripheral groove on the outer side of the mounting, and the total groove area of the lateral groove on the outer side of the mounting is The range is 100 to 300% with respect to the total groove area of the lateral grooves.

周溝および横溝の溝面積をその割合とすることで、排水性と陸部剛性を両立させ、耐ハイドロプレーニング性と操縦安定性を確保することができる。   By setting the groove areas of the circumferential groove and the lateral groove as the ratio, it is possible to achieve both drainage and land rigidity, and to ensure hydroplaning resistance and steering stability.

次に、サイズが195/65R15のタイヤの実施例タイヤ、比較例タイヤ1〜4を試作して、表1に示すように、それぞれの諸元を変化させてハイドロプレーニング性能を、評価した。   Next, tire tires of size 195 / 65R15 and comparative tires 1 to 4 were made as prototypes, and as shown in Table 1, the hydroplaning performance was evaluated by changing each specification.

Figure 0005331558
Figure 0005331558

(直進走行ハイドロプレーニング性能)
上記実施例タイヤ、比較例タイヤ1〜5のそれぞれにつき、リムサイズ6J×15、タイヤ空気圧210kPaにおいて、ネガティブキャンバー0.5°を付与して装着し、水深10mmのプール内を直進で加速させ、タイヤが空転する速度を比較して指数評価し、その結果を表2に示す。表2中の評価は、数値が大きいほど、良好であることを示す。
(Straight running hydroplaning performance)
For each of the example tires and comparative tires 1 to 5, a rim size of 6J × 15 and a tire pressure of 210 kPa was applied with a negative camber of 0.5 °, and the tire was accelerated in a straight line through a pool with a water depth of 10 mm. The index evaluation was performed by comparing the speed at which the wheel runs idle, and the results are shown in Table 2. The evaluation in Table 2 indicates that the larger the numerical value, the better.

(旋回走行ハイドロプレーニング性能)
上記実施例タイヤ、比較例タイヤ1〜5のそれぞれにつき、リムサイズ6J×15、タイヤ空気圧210kPaにおいて、ネガティブキャンバー0.5°を付与して装着し、半径100mのコーナーにある水深6mmのプール内に車両を速度65,70,75,80,85km/hで進入させ、プール内で車両にかかる横加速度を計測し、旋回速度65,70,75,80,85km/hの各試験で得られた横加速度の合計を指数評価し、その結果を表2に示す。表2中の評価は、数値が大きいほど、良好であることを示す。
(Turning hydroplaning performance)
For each of the example tires and comparative tires 1 to 5, a rim size of 6 J × 15 and a tire pressure of 210 kPa was attached with a negative camber of 0.5 ° and installed in a pool with a water depth of 6 mm at a corner with a radius of 100 m. The vehicle was entered at a speed of 65, 70, 75, 80, 85 km / h, the lateral acceleration applied to the vehicle in the pool was measured, and obtained in tests of turning speeds of 65, 70, 75, 80, 85 km / h. The total lateral acceleration is evaluated as an index, and the results are shown in Table 2. The evaluation in Table 2 indicates that the larger the numerical value, the better.

Figure 0005331558
Figure 0005331558

表2の結果から、実施例タイヤは、比較例タイヤ1〜5に対し、直進走行時および旋回走行時ともに耐ハイドロプレーニング性能が向上した。
なお、比較例タイヤ1,2から装着外側の横溝の溝面積を大きくすることで、旋回走行時の耐ハイドロプレーニング性能を向上させることができた。また、比較例3は装着内側の周溝の溝面積を大きくすることで、装着外側の溝面積が少なすぎるために排水が追いつかず、装着外側からハイドロプレーニングが生じているためと考えられることにより、直進走行時の耐ハイドロプレーニング性能が比較例1と同等となった。
From the results of Table 2, the example tires showed improved hydroplaning performance for both the straight running and the turning running compared to the comparative tires 1-5.
In addition, by increasing the groove area of the lateral groove on the outer side of mounting from the comparative tires 1 and 2, it was possible to improve the anti-hydroplaning performance during turning. Further, in Comparative Example 3, it is considered that by increasing the groove area of the peripheral groove on the inner side of the mounting, the groove area on the outer side of the mounting is too small so that drainage cannot catch up and hydroplaning occurs from the outer side of the mounting. The hydroplaning performance during straight running was equivalent to that of Comparative Example 1.

1 トレッド踏面
2in,2out センター周溝
3in,3out ショルダー周溝
4 中央陸部
5in,5out 中間陸部
6in,6out ショルダー陸部
7in,7out 横溝
8in,8out ショルダーブロック
1 tread tread 2in, 2out center circumferential groove 3in, 3out shoulder circumferential groove 4 central land part 5in, 5out intermediate land part 6in, 6out shoulder land part 7in, 7out lateral groove 8in, 8out shoulder block

Claims (3)

トレッド踏面に、トレッド周方向に延びる複数本の周溝と、トレッド幅方向に延びる複数本の横溝とを配設して、タイヤ赤道面を中心として非対称パターンを形成してなる空気入りタイヤにおいて、
車両への装着姿勢で、タイヤ赤道面より車両の内側に位置することになる周溝の全溝面積を、車両の外側に位置することになる周溝の全溝面積より大きくし、
タイヤ赤道面より装着外側の横溝の全溝面積を、装着内側の横溝の全溝面積より大きくし、
装着外側の溝の全溝面積を、装着内側の溝の全溝面積に対して、70〜90%の範囲で設けてなり、
車両への装着姿勢で、タイヤ赤道面より装着内側の各周溝の溝面積を、装着外側の、いずれの周溝の溝面積より大きくし、装着外側の各横溝の溝面積を、装着内側の、いずれの横溝の溝面積より大きくしてなることを特徴とする空気入りタイヤ。
In the pneumatic tire formed by arranging a plurality of circumferential grooves extending in the tread circumferential direction and a plurality of lateral grooves extending in the tread width direction on the tread surface, and forming an asymmetric pattern around the tire equator plane,
In the mounting posture on the vehicle, the total groove area of the circumferential groove that will be located inside the vehicle from the tire equator plane is larger than the total groove area of the circumferential groove that will be located outside the vehicle,
The total groove area of the lateral groove outside the tire equator is larger than the total groove area of the lateral groove inside the tire,
The total groove area of the mounting outside of the groove, the total groove area of the groove of the inner side, Ri Na provided in a range of 70% to 90%,
In the mounting position on the vehicle, the groove area of each circumferential groove on the inner side of the tire from the equator plane is larger than the groove area of any circumferential groove on the outer side of the tire, and the groove area of each lateral groove on the outer side of the tire is pneumatic tire according to claim Rukoto such made larger than the groove area of any lateral grooves.
装着外側の横溝のタイヤ幅方向の延在長さが、装着内側の横溝のタイヤ幅方向の延在長さより大きい請求項に記載の空気入りタイヤ。 2. The pneumatic tire according to claim 1 , wherein an extending length in a tire width direction of the lateral groove on the outer side of the mounting is larger than an extending length in the tire width direction of the lateral groove on the inner side of the mounting. 装着内側の周溝の全溝面積を、装着外側の周溝の全溝面積に対して100〜200%の範囲であり、装着外側の横溝の全溝面積を、装着内側の横溝の全溝面積に対して100〜300%の範囲である請求項1または2に記載の空気入りタイヤ。 The total groove area of the inner circumferential groove is 100 to 200% of the total groove area of the outer circumferential groove, and the total groove area of the outer lateral groove is the total groove area of the inner lateral groove. The pneumatic tire according to claim 1 or 2 , wherein the content is in a range of 100 to 300%.
JP2009105400A 2009-04-23 2009-04-23 Pneumatic tire Expired - Fee Related JP5331558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009105400A JP5331558B2 (en) 2009-04-23 2009-04-23 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009105400A JP5331558B2 (en) 2009-04-23 2009-04-23 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2010254092A JP2010254092A (en) 2010-11-11
JP5331558B2 true JP5331558B2 (en) 2013-10-30

Family

ID=43315536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009105400A Expired - Fee Related JP5331558B2 (en) 2009-04-23 2009-04-23 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP5331558B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6585988B2 (en) 2015-10-06 2019-10-02 Toyo Tire株式会社 Pneumatic tire
JP7012515B2 (en) * 2017-11-17 2022-01-28 Toyo Tire株式会社 Pneumatic tires
JP7163136B2 (en) * 2018-10-22 2022-10-31 Toyo Tire株式会社 pneumatic tire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067343A (en) * 2007-09-18 2009-04-02 Bridgestone Corp Pneumatic tire

Also Published As

Publication number Publication date
JP2010254092A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
RU2568521C1 (en) Radial pneumatic tire for passenger vehicle and method of its operation
JP5667614B2 (en) Pneumatic tire
JP5727965B2 (en) Pneumatic tire
JP5062344B1 (en) Pneumatic tire
JP5265554B2 (en) Pneumatic tire
JP6699270B2 (en) Pneumatic tire
JP4744800B2 (en) Pneumatic tire
JP2010247759A (en) Pneumatic tire
KR20100066357A (en) Pneumatic tire
KR20170074999A (en) Pneumatic tire
JP6450261B2 (en) Pneumatic tire
JP5364707B2 (en) studless tire
JP5386032B2 (en) Pneumatic tire
JP7187255B2 (en) pneumatic tire
WO2016194292A1 (en) Pneumatic tire
JP5812209B2 (en) Pneumatic tire mounting method and combination pneumatic tire
JP5211888B2 (en) Pneumatic tire
US9302551B2 (en) Pneumatic tire with tread having V-shaped groove
JP2019202608A (en) tire
JP4122179B2 (en) Pneumatic tire
US9056530B2 (en) Pneumatic tire
JP4688551B2 (en) Pneumatic tire
JP6607708B2 (en) Pneumatic tire
JP5331558B2 (en) Pneumatic tire
JP2010247549A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5331558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees