JP5328614B2 - Pulse wave analyzer and pulse wave analysis program - Google Patents
Pulse wave analyzer and pulse wave analysis program Download PDFInfo
- Publication number
- JP5328614B2 JP5328614B2 JP2009257224A JP2009257224A JP5328614B2 JP 5328614 B2 JP5328614 B2 JP 5328614B2 JP 2009257224 A JP2009257224 A JP 2009257224A JP 2009257224 A JP2009257224 A JP 2009257224A JP 5328614 B2 JP5328614 B2 JP 5328614B2
- Authority
- JP
- Japan
- Prior art keywords
- wave
- pulse wave
- reference time
- amplitude
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Description
この発明は、生体の脈波に含まれている反射波を高精度に検出できる脈波解析装置および脈波解析プログラムに関する。 The present invention relates to a pulse wave analysis device and a pulse wave analysis program that can detect a reflected wave contained in a pulse wave of a living body with high accuracy.
従来、脈波は生体の循環器系の状態を把握する上で様々な重要な情報を有していることが知られている。例えば、AI(Augmentation Index)は、脈波に含まれている駆出波成分と反射波成分の比率を求めることで、全身の動脈硬化度の定量的な評価や、中心動脈圧の推定などに用いられている。 Conventionally, it is known that a pulse wave has various important information for grasping the state of a living body's circulatory system. For example, AI (Augmentation Index) is used for quantitative evaluation of the degree of arteriosclerosis in the whole body, estimation of central arterial pressure, etc. by calculating the ratio of the ejection wave component and the reflected wave component contained in the pulse wave. It is used.
このAIを求めるためには、脈波が含んでいる駆出波成分と反射波成分のそれぞれを特定する必要があり、そのための技術が特許文献1(特開2004−313468号公報)などで開示されている。この特許文献1では、脈波の微分による波形解析で駆出波成分と反射波成分を求めている。
In order to obtain the AI, it is necessary to specify each of the ejection wave component and the reflected wave component included in the pulse wave, and a technique for that purpose is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2004-31468) and the like. Has been. In
また、2箇所の測定部位の脈波を測定することで求められる脈波伝播速度についても、駆出波と反射波を分離し、この駆出波と反射波の時間差から1箇所の測定部位での脈波から脈波伝播速度を同定する技術が特許文献2(特開2003−010139号公報)に開示されている。 In addition, regarding the pulse wave velocity obtained by measuring the pulse wave at two measurement sites, the ejection wave and the reflected wave are separated, and the time difference between the ejection wave and the reflected wave is used to determine the velocity at one measurement site. Japanese Patent Laid-Open No. 2003-010139 discloses a technique for identifying the pulse wave velocity from the pulse wave.
一方、脈波は心臓の拍動により立ち上がり、以後、徐々に立ち下がり、心臓の次の拍動により再び立ち上がる。この脈波の波形は、心臓の動作と動脈の弾性特性により決定される。上述の通り、脈波は生体の循環器系の状態を把握する上で、重要な生体情報であるので、脈波の波形のモデル化への取り組みも種々取り組まれており、例えば、非特許文献1などでは、次式(1)でモデル化できることが開示されている。
P(t)=Ps・exp(−λ・t) … (1)
Ps:最高血圧
λ:時定数の逆数
On the other hand, the pulse wave rises with the heartbeat, then gradually falls, and rises again with the next heartbeat. The waveform of this pulse wave is determined by the motion of the heart and the elastic characteristics of the artery. As described above, since the pulse wave is important biological information for grasping the state of the circulatory system of the living body, various efforts for modeling the waveform of the pulse wave have been made. For example, non-patent
P (t) = Ps · exp (−λ · t) (1)
Ps: systolic blood pressure
λ: Reciprocal of time constant
ところで、前述の特許文献1および特許文献2では、駆出波と反射波を分離する技術が開示されており、特に特許文献1では、脈波の波形を分類し、分類した波形の各々に適切な波形解析を行うことで、駆出波と反射波を適切に分離できる技術が開示されている。
By the way, in the above-mentioned
しかしながら、駆出波と反射波のそれぞれについて、1拍の脈波の中での時間的な位置関係を正しく特定できたとしても、反射波が単独で持つ振幅は正しく特定できていない。何故ならば、非特許文献1でも記述されている通り、脈波は心臓の拍動で立ち上がるが、その後、或る時定数を持って立ち下がって行くので、反射波が存在する時間においても、駆出波の残存振幅が存在している。つまり、脈波中の反射波の時間的な位置が同定されたとしても、その時点の振幅は駆出波の残存成分と反射波との合成の結果であるので、反射波が単独で持つ振幅は正しく特定できない。
However, even if the temporal positional relationship in the pulse wave of one beat can be correctly specified for each of the ejection wave and the reflected wave, the amplitude of the reflected wave alone cannot be correctly specified. Because, as described in
したがって、上記AIなどで、駆出波と反射波の大きさの比較を行うような場合、駆出波と反射波の大きさをより正確に比較すべく、脈波中の反射波の時間的な位置における駆出波の残存成分を特定することが求められている。 Therefore, when comparing the magnitude of the ejected wave and the reflected wave using the AI or the like, the time of the reflected wave in the pulse wave is compared in order to more accurately compare the magnitude of the ejected wave and the reflected wave. It is required to specify the residual component of ejected waves at various positions.
そこで、この発明の課題は、脈波の反射波成分と駆出波成分とをより正確に検出できる脈波解析装置および脈波解析プログラムを提供することにある。 Accordingly, an object of the present invention is to provide a pulse wave analysis device and a pulse wave analysis program that can more accurately detect a reflected wave component and an ejected wave component of a pulse wave.
上記課題を解決するため、この発明の脈波解析装置は、生体の或る一部位における脈波を検出する脈波検出部と、
上記脈波検出部で検出した上記一部位における脈波に含まれる駆出波成分を特定するための基準時間と上記脈波に含まれる反射波成分を特定するための基準時間とを検出する基準時間検出部と、
上記基準時間検出部で検出した上記駆出波成分の基準時間に対応する上記脈波の振幅を検出すると共に上記基準時間検出部で検出した上記反射波成分の基準時間に対応する上記脈波の振幅を検出する脈波振幅検出部と、
上記基準時間検出部で検出した上記駆出波成分の基準時間と上記駆出波成分の基準時間に対応する上記脈波の振幅とに基づいて上記脈波に含まれる駆出波成分の波形をモデル化してモデル化駆出波を求めると共に、上記基準時間検出部で検出した上記反射波成分の基準時間と上記反射波成分の基準時間に対応する上記脈波の振幅とに基づいて上記脈波に含まれる反射波成分の波形をモデル化してモデル化反射波を求める波形モデル化部と、
上記波形モデル化部でモデル化したモデル化駆出波とモデル化反射波から上記脈波の所望の位相における駆出波成分の振幅と反射波成分の振幅とを求めるモデル波振幅導出部とを備えることを特徴としている。
In order to solve the above problems, a pulse wave analysis device according to the present invention includes a pulse wave detection unit that detects a pulse wave in a certain part of a living body,
A reference for detecting a reference time for specifying the ejection wave component included in the pulse wave at the partial position detected by the pulse wave detection unit and a reference time for specifying the reflected wave component included in the pulse wave A time detector;
The amplitude of the pulse wave corresponding to the reference time of the ejection wave component detected by the reference time detection unit is detected and the pulse wave corresponding to the reference time of the reflected wave component detected by the reference time detection unit is detected. A pulse wave amplitude detector for detecting amplitude;
Based on the reference time of the ejection wave component detected by the reference time detection unit and the amplitude of the pulse wave corresponding to the reference time of the ejection wave component, the waveform of the ejection wave component included in the pulse wave is obtained. The modeled wave is obtained by modeling, and the pulse wave is based on the reference time of the reflected wave component detected by the reference time detection unit and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component. A waveform modeling unit that models the waveform of the reflected wave component contained in to obtain a modeled reflected wave;
A model wave amplitude deriving unit that obtains the amplitude of the ejected wave component and the amplitude of the reflected wave component at a desired phase of the pulse wave from the modeled ejected wave and the modeled reflected wave modeled by the waveform modeling unit; It is characterized by providing.
この発明の脈波解析装置によれば、上記基準時間検出部で脈波の駆出波成分および反射成分を特定するための基準時間を検出すると共に、上記脈波振幅検出部で上記駆出波成分および反射波成分を特定するための基準時間に対応する脈波の振幅を検出する。そして、上記駆出波成分,反射波成分を特定するための基準時間とこの駆出波成分,反射波成分の基準時間に対応する脈波の振幅とに基づいて、上記波形モデル化部で上記脈波に含まれる駆出波と反射波をモデル化し、このモデル化したモデル化駆出波とモデル化反射波から上記モデル波振幅導出部は上記脈波の所望の位相における駆出波成分の振幅と反射波成分の振幅とを求める。したがって、脈波の反射波成分と駆出波成分とをより正確に検出でき、脈波の正確な反射波成分と駆出波成分による生体指標をより正確に求めることが可能になる。 According to the pulse wave analysis apparatus of the present invention, the reference time detecting unit detects the reference time for specifying the ejection wave component and the reflection component of the pulse wave, and the pulse wave amplitude detection unit detects the ejection wave. The amplitude of the pulse wave corresponding to the reference time for specifying the component and the reflected wave component is detected. Then, based on the reference time for specifying the ejection wave component and the reflected wave component and the amplitude of the pulse wave corresponding to the reference time of the ejection wave component and the reflected wave component, the waveform modeling unit The ejection wave and the reflected wave included in the pulse wave are modeled, and the model wave amplitude deriving unit calculates the ejection wave component in the desired phase of the pulse wave from the modeled ejection wave and the modeled reflection wave. The amplitude and the amplitude of the reflected wave component are obtained. Therefore, the reflected wave component and ejected wave component of the pulse wave can be detected more accurately, and the biological index based on the accurate reflected wave component and ejected wave component of the pulse wave can be obtained more accurately.
また、一実施形態の脈波解析プログラムでは、生体の或る一部位における脈波に含まれる駆出波成分を特定するための基準時間と上記脈波に含まれる反射波成分を特定するための基準時間とを求める基準時間導出機能と、
上記基準時間導出機能で求めた上記駆出波成分の基準時間に対応する上記脈波の振幅を求めると共に上記基準時間導出機能で求めた上記反射波成分の基準時間に対応する上記脈波の振幅を求める脈波振幅導出機能と、
上記基準時間導出機能で求めた上記駆出波成分の基準時間と上記駆出波成分の基準時間に対応する上記脈波の振幅とに基づいて上記脈波に含まれる駆出波成分の波形をモデル化してモデル化駆出波を求めると共に、上記基準時間導出機能で求めた上記反射波成分の基準時間と上記反射波成分の基準時間に対応する上記脈波の振幅とに基づいて上記脈波に含まれる反射波成分の波形をモデル化してモデル化反射波を求める波形モデル化機能と、
上記波形モデル化機能でモデル化したモデル化駆出波とモデル化反射波から上記脈波の所望の位相における駆出波成分の振幅と反射波成分の振幅とを求めるモデル波振幅導出機能とをコンピュータに実行させる。
In the pulse wave analysis program of one embodiment, the reference time for specifying the ejection wave component included in the pulse wave in a certain part of the living body and the reflected wave component included in the pulse wave are specified. A reference time deriving function for obtaining a reference time;
The amplitude of the pulse wave corresponding to the reference time of the reflected wave component obtained by the reference time deriving function and the amplitude of the pulse wave corresponding to the reference time of the ejection wave component obtained by the reference time deriving function A pulse wave amplitude derivation function for
Based on the reference time of the ejection wave component obtained by the reference time deriving function and the amplitude of the pulse wave corresponding to the reference time of the ejection wave component, the waveform of the ejection wave component included in the pulse wave is calculated. The modeled ejection wave is modeled to obtain the pulse wave based on the reference time of the reflected wave component obtained by the reference time deriving function and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component. Modeling the waveform of the reflected wave component contained in the waveform modeling function to obtain the modeled reflected wave,
A model wave amplitude derivation function that obtains the amplitude of the ejected wave component and the reflected wave component at the desired phase of the pulse wave from the modeled ejected wave and modeled reflected wave modeled by the waveform modeling function Let the computer run.
この実施形態の脈波解析プログラムによれば、コンピュータに上記基準時間導出機能を実行させて、脈波の駆出波成分の基準時間および反射成分の基準時間を求めると共に、上記脈波振幅導出機能で上記駆出波成分,反射成分の基準時間に対応する脈波の振幅を求める。そして、上記駆出波成分,反射波成分の基準時間とこの基準時間に対応する脈波の振幅とに基づいて、上記波形モデル化機能で上記脈波に含まれる駆出波と反射波をモデル化し、このモデル化したモデル化駆出波とモデル化反射波から上記脈波の所望の位相における駆出波成分の振幅と反射波成分の振幅とを求める。したがって、脈波の反射波成分と駆出波成分とをより正確に求めることができ、脈波の正確な反射波成分と駆出波成分による生体指標をより正確に求めることが可能になる。 According to the pulse wave analysis program of this embodiment, the computer executes the reference time derivation function to obtain the reference time of the ejection wave component of the pulse wave and the reference time of the reflection component, and the pulse wave amplitude derivation function. Thus, the amplitude of the pulse wave corresponding to the reference time of the ejection wave component and the reflection component is obtained. Based on the reference time of the ejected wave component and reflected wave component and the amplitude of the pulse wave corresponding to the reference time, the ejected wave and reflected wave included in the pulse wave are modeled by the waveform modeling function. The amplitude of the ejected wave component and the amplitude of the reflected wave component in the desired phase of the pulse wave are obtained from the modeled modeled ejected wave and modeled reflected wave. Therefore, the reflected wave component and ejected wave component of the pulse wave can be obtained more accurately, and the biological index based on the accurate reflected wave component and ejected wave component of the pulse wave can be obtained more accurately.
この発明の脈波解析装置によれば、脈波の駆出波成分,反射成分を特定する基準時間とこの駆出波成分,反射成分を特定する基準時間に対応する脈波の振幅とに基づいて、上記脈波に含まれる駆出波の波形と反射波の波形をモデル化し、このモデル化したモデル化駆出波とモデル化反射波から上記脈波の所望の位相における駆出波成分の振幅と反射波成分の振幅とを求める。よって、この発明の脈波解析装置によれば、脈波の反射波成分と駆出波成分とをより正確に検出でき、脈波の正確な反射波成分と駆出波成分による生体指標をより正確に求めることが可能になる。 According to the pulse wave analysis device of the present invention, based on the reference time for identifying the ejection wave component and the reflection component of the pulse wave and the amplitude of the pulse wave corresponding to the reference time for identifying the ejection wave component and the reflection component. Then, the waveform of the ejection wave and the waveform of the reflected wave included in the pulse wave are modeled, and the ejection wave component in the desired phase of the pulse wave is modeled from the modeled ejection wave and the modeled reflected wave. The amplitude and the amplitude of the reflected wave component are obtained. Therefore, according to the pulse wave analysis apparatus of the present invention, the reflected wave component and the ejected wave component of the pulse wave can be detected more accurately, and the biological index based on the accurate reflected wave component and the ejected wave component of the pulse wave can be further improved. It can be obtained accurately.
以下、この発明を図示の実施の形態により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
図1のブロック図に、この発明の実施形態である脈波解析装置10を示す。この脈波解析装置10は脈波検出部1を備え、この脈波検出部1は、人間の生体の或る一部位における脈波を検出する。この脈波検出部1としては、例えば、発光素子から出力される赤外光が血管内の血液量に応じて反射あるいは吸収される度合いを受光素子で測定するものがある(光電容積脈波法)が、その他に、血管内の血液が血管を押す圧力の変化を電気信号として取り出す圧脈波法で脈波を検出するものなどでもよい。また、上記脈波検出部1で脈波を測定する生体部位は、特に大きな制限事項があるわけではないが、できるならば、非侵襲・非拘束の部位であることが望ましく、例えば、指尖・手首・耳朶などが好ましい。
FIG. 1 is a block diagram showing a
また、この脈波解析装置10は、上記脈波検出部1で検出した上記脈波に含まれる駆出波成分,反射波成分のそれぞれを特定するための基準時間と上記基準時間に対応する上記脈波の振幅を検出する駆出波・反射波情報抽出部6と、この駆出波・反射波情報抽出部6からの上記基準時間および上記振幅を表す情報に基づいて、上記脈波のモデル化駆出波とモデル化反射波を求めて、このモデル化駆出波とモデル化反射波から上記脈波の所望の位相における駆出波成分の振幅と反射波成分の振幅とを求める駆出波・反射波成分寄与度検出部5を備える。
Further, the pulse
上記駆出波・反射波情報抽出部6は、上記脈波検出部1で検出した上記脈波に含まれる駆出波成分を特定するための基準時間と上記脈波に含まれる反射波成分を特定するための基準時間とを検出する基準時間検出部2を有する。
The ejection wave / reflected wave
この基準時間検出部2が上記基準時間を求める過程の一例を以下に説明する。まず、図2Aの(A)欄に、上記脈波検出部1で検出した脈波の波形の一例を示す。図2Aの(A)欄における縦軸は脈波の振幅 (mmHg)に対応する測定電圧値(V)である。この実施形態の脈波解析装置10では、一例として、一般的なカフ式血圧計で測定される血圧(mmHg)でもって、脈波検出部1で測定した電圧値(V)が脈波の振幅(mmHg)にどう対応するかの補正(キャリブレーション)を行っている。なお、この補正(キャリブレーション)は、最初の使用開始時に行えばよく、その後の測定では上記キャリブレーションの結果を用いればよい。
An example of a process in which the reference
上記基準時間検出部2は、例えば、上記脈波が、Murgoらによる血圧波形分類のTypeCの場合は、図2Aの(A)欄に示される脈波の波形における収縮期の極大点Q1の時間T1を駆出波成分の基準時間T1として検出する。図2Aの(B)欄には、上記脈波の加速度波を示し、図2Bの(A)欄には、上記脈波の3回微分波を示している。そして、上記基準時間検出部2は、例えば、上記脈波が、Murgoらによる血圧波形分類のTypeCの場合は、図2Bの(B)欄に示される脈波の4次微分波の第3ゼロクロスポイントQ2を反射波成分の基準時間T2として検出する。なお、この第3ゼロクロスポイントQ2は、図2A(A)に示す脈波が極小値になった以降に、図2B(B)に示す4回微分波形が3回目に下向きにゼロクロスするポイントを意味する。
For example, when the pulse wave is Type C of blood pressure waveform classification by Murgo et al., The reference
尚、上述の説明では、上記検出した脈波が上記血圧波形分類のTypeCである場合について説明したが、上記検出した脈波が上記血圧波形分類のTypeC以外の波形形状である場合には、より好適に脈波の駆出波成分の基準時間と反射波成分の基準時間を特定できる手法があればそれを採用してもよい。例えば、脈波は、大きな血圧変動がなければ、基本的にそれほど大きな波形変化を示すわけではないので、測定した複数の脈波を重ね合わせる(加算平均)ことで、脈波検出精度の改善を図ることが可能になる。 In the above description, the case where the detected pulse wave is Type C of the blood pressure waveform classification has been described. However, when the detected pulse wave has a waveform shape other than Type C of the blood pressure waveform classification, If there is a method that can suitably specify the reference time of the ejection wave component of the pulse wave and the reference time of the reflected wave component, it may be adopted. For example, if the pulse wave does not show a large blood pressure fluctuation, it basically does not show a very large waveform change, so by superimposing a plurality of measured pulse waves (addition averaging), the pulse wave detection accuracy can be improved. It becomes possible to plan.
また、脈波は、ノイズレベル、年齢・性別・疾病の有無・体調などに応じて、様々な波形形状を示すことから、より好適に脈波の駆出波成分の基準時間と反射波成分の基準時間を特定できる手法があればそれを採用してもよい。例えば、検出した脈波を、その時点の被測定者の状態と合わせて履歴として残すことで、脈波の駆出波成分の基準時間と反射波成分の基準時間を特定する精度の改善を図れる。 In addition, since the pulse wave shows various waveform shapes depending on the noise level, age, sex, presence / absence of disease, physical condition, etc., the reference time of the ejection wave component of the pulse wave and the reflected wave component are more preferably If there is a method that can specify the reference time, it may be adopted. For example, it is possible to improve the accuracy of specifying the reference time of the ejection wave component of the pulse wave and the reference time of the reflected wave component by leaving the detected pulse wave as a history together with the state of the measurement subject at that time. .
また、上記駆出波・反射波情報抽出部6は、脈波振幅検出部3を有する。この脈波振幅検出部3は、図3の波形図に例示するように、上記基準時間検出部2で検出した上記駆出波成分の基準時間T1に対応する上記脈波Sの振幅W1を駆出波成分の脈波振幅として検出すると共に上記基準時間検出部2で検出した上記反射波成分の基準時間T2に対応する上記脈波Sの振幅W2を反射波成分の脈波振幅として検出する。上述の内容は、近年、循環器系の診断指標として利用されているAI(Augumentation Index)で採用されている手法である。
The ejection wave / reflected wave
そして、上記駆出波・反射波情報抽出部6は、上記基準時間検出部2で検出した上記駆出波成分の基準時間T1および上記反射波成分の基準時間T2を表す情報を上記駆出波・反射波成分寄与度検出部5に入力すると共に、上記脈波振幅検出部3で検出した上記駆出波成分の基準時間T1に対応する脈波Sの振幅W1および上記反射波成分の基準時間T2に対応する上記脈波Sの振幅W2を表す情報を、上記駆出波・反射波成分寄与度検出部5に入力する。
Then, the ejection wave / reflected wave
ところで、図4の波形図に例示するように、反射波成分S2の基準時間T2付近で測定されている脈波振幅W2は、反射波成分W3だけでなく、駆出波成分が含まれていることが多い。このため、次に説明する駆出波・反射波成分寄与度検出部5では、脈波Sが駆出波と反射波との合成波からなるとして、脈波Sへの駆出波と反射波それぞれの寄与度を検出する。
By the way, as illustrated in the waveform diagram of FIG. 4, the pulse wave amplitude W2 measured in the vicinity of the reference time T2 of the reflected wave component S2 includes not only the reflected wave component W3 but also the ejection wave component. There are many cases. For this reason, in the ejection wave / reflected wave component contribution
すなわち、上記駆出波・反射波成分寄与度検出部5は、波形モデル化部7と単独振幅情報検出部8を有する。この波形モデル化部7は、上記駆出波成分の基準時間T1と、上記駆出波成分の基準時間T1に対応する脈波Sの振幅W1とに基づいて上記脈波Sに含まれる駆出波成分S1の波形をモデル化してモデル化駆出波を求める。また、上記波形モデル化部7は、上記基準時間検出部2で検出した上記反射波成分S2の基準時間T2と上記反射波成分S2の基準時間T2に対応する上記脈波Sの反射波成分S2の振幅W3とに基づいて上記脈波Sに含まれる反射波成分S2の波形をモデル化してモデル化反射波を求める。
That is, the ejection wave / reflected wave component
上記波形モデル化部7は、例えば、上記駆出波成分の基準時間T1と、上記駆出波成分の基準時間T1に対応する脈波Sの振幅W1とに基づいて、上記モデル化駆出波S1の基準時間T2以降の時間tにおける振幅WS1(t)を、次式(2)のようにモデル化する。
WS1(t)=W1・exp(−λ(t−T1)) … (2)
For example, the
WS1 (t) = W1 · exp (−λ (t−T1)) (2)
上式(2)において、λは、脈波の立下り時定数の逆数である。この式(2)においては、上記時定数の逆数λが未知数である。 In the above equation (2), λ is the reciprocal of the falling time constant of the pulse wave. In this equation (2), the reciprocal λ of the time constant is an unknown number.
一方、上記波形モデル化部7は、例えば、上記反射波成分の基準時間T2と、上記反射波成分の基準時間T2に対応する脈波Sの上記反射波成分の振幅W3とに基づいて、上記モデル化反射波S2の基準時間T2以降の時間tにおける振幅WS2(t)を、次式(3)のようにモデル化する。
WS2(t)=W3・exp(−λ(t−T2)) … (3)
On the other hand, the
WS2 (t) = W3 · exp (−λ (t−T2)) (3)
上式(3)において、基準時間T2における反射波成分の振幅W3と上記時定数の逆数λが未知パラメータである。なお、上式(2),(3)は、前述の非特許文献1に記載されている式(1)を駆出波と反射波のそれぞれに当てはめたものに相当している。
In the above equation (3), the amplitude W3 of the reflected wave component at the reference time T2 and the inverse λ of the time constant are unknown parameters. The above formulas (2) and (3) correspond to those obtained by applying the formula (1) described in
そして、上記式(2)と式(3)とから、基準時間T2以降の脈波Sの振幅W(t)は、次式(4)で表される。
W(t)=W1・exp(−λ(t−T1))
+W3・exp(−λ(t−T2)) … (4)
From the above equations (2) and (3), the amplitude W (t) of the pulse wave S after the reference time T2 is expressed by the following equation (4).
W (t) = W1 · exp (−λ (t−T1))
+ W3 · exp (−λ (t−T2)) (4)
次に、上記単独振幅情報検出部8は、上記波形モデル化部7によって得られた上式(4)を用いて、脈波Sの駆出波成分S1と反射波成分S2のそれぞれ単独の振幅情報を検出する。これについて、以下に説明する。
Next, the single amplitude
上式(4)の右辺は、駆出波成分と反射波成分それぞれ単独の振幅が脈波全体に対してどの程度寄与しているかを正確に表すことができることを示している(図5の波形図を参照)。上式(4)に上記反射波成分の基準時間T2を代入することで次式(5)が得られ、上式(4)に脈波Sの極小値W0となる時刻Tを代入することで次式(6)が得られる(図5の波形図を参照)。
W(T2)=W1・exp(−λ(T2−T1))+W3=W2 … (5)
W(T) =W1・exp(−λ(T−T1))+W3・exp(−λ(T−T2))
=W0 … (6)
The right side of the above equation (4) indicates that it can accurately represent how much the amplitude of each of the ejection wave component and the reflected wave component contributes to the whole pulse wave (the waveform in FIG. 5). (See figure). By substituting the reference time T2 of the reflected wave component into the above equation (4), the following equation (5) is obtained, and by substituting the time T when the minimum value W0 of the pulse wave S is substituted into the above equation (4). The following equation (6) is obtained (see the waveform diagram of FIG. 5).
W (T2) = W1 · exp (−λ (T2−T1)) + W3 = W2 (5)
W (T) = W1 · exp (−λ (T−T1)) + W3 · exp (−λ (T−T2))
= W0 (6)
上式(5),(6)において、未知パラメータは、上記時定数の逆数λと基準時間T2における反射波成分の振幅W3の2つであるので、上記2つの式(5),(6)による連立方程式を解くことができる。すなわち、上式(5)より次式(7)が得られる。
W3=W2−W1・exp(−λ(T2−T1)) … (7)
In the above equations (5) and (6), there are two unknown parameters, the reciprocal λ of the time constant and the amplitude W3 of the reflected wave component at the reference time T2, so the above two equations (5) and (6) Can solve simultaneous equations. That is, the following equation (7) is obtained from the above equation (5).
W3 = W2−W1 · exp (−λ (T2−T1)) (7)
この(7)式によるW3を、上式(6)に代入して次式(8)を得る。
W1・exp(−λ(T−T1))+W2・exp(−λ(T−T2)
−W1・exp(−λ(T2−T1))・exp(−λ(T−T2))=W0
W2・exp(−λ(T−T2))=W0
−λ(T−T2)=ln(W0/W2)
λ={ln(W0/W2)}/(T2−T) … (8)
Substituting W3 by this equation (7) into the above equation (6), the following equation (8) is obtained.
W1 · exp (−λ (T−T1)) + W2 · exp (−λ (T−T2)
−W1 · exp (−λ (T2−T1)) · exp (−λ (T−T2)) = W0
W2 · exp (−λ (T−T2)) = W0
−λ (T−T2) = ln (W0 / W2)
λ = {ln (W0 / W2)} / (T2-T) (8)
この式(8)により上記時定数の逆数λが既知パラメータから得られる。よって、この式(8)で得られたλを上式(7)に代入することで、基準時間T2における反射波成分の振幅W3が既知パラメータから得られる。 From this equation (8), the reciprocal λ of the time constant is obtained from the known parameters. Therefore, by substituting λ obtained by this equation (8) into the above equation (7), the amplitude W3 of the reflected wave component at the reference time T2 can be obtained from the known parameters.
こうして得られた上記時定数の逆数λと基準時間T2における反射波成分の振幅W3と上式(4)とから、脈波Sの基準時間T2以降の任意の時点での振幅W(t)が得られる。つまり、上式(4)により、脈波Sの駆出波成分S1と反射波成分S2のそれぞれ単独の振幅情報を検出することが可能になる。 From the reciprocal λ of the time constant obtained in this way, the amplitude W3 of the reflected wave component at the reference time T2, and the above equation (4), the amplitude W (t) at any time after the reference time T2 of the pulse wave S is obtained. can get. That is, according to the above equation (4), it is possible to detect individual amplitude information of the ejection wave component S1 and the reflected wave component S2 of the pulse wave S.
なお、上記実施形態においては、脈波形のモデル化として非特許文献1に記載の方法での上式(1)を採用したが、当然この式だけに限られるわけではなく、既存の他のモデル式でより好ましいものがあれば、採用してもよい。本発明では、さまざまなモデル式を利用して、駆出波成分と反射波成分それぞれの単独の寄与度を求めることができる。
In the above embodiment, the above equation (1) is adopted as a pulse waveform modeling by the method described in
近年、脈波における極大値(最高血圧)や極小値(最低血圧)、あるいはその差(脈圧)といった、従来の指標に加えて、AI(Augumentation Index)をはじめ、駆出波と反射波を利用した新たな生体指標が注目されつつある。そして、本発明によって得た駆出波・反射波それぞれの単独寄与度によって、これらの生体指標をより正確に求めることができる。よって、本発明の脈波解析装置によれば、生体の状態を把握する上で有用である。当然ながら、本発明の脈波解析装置は、AIだけでなく、駆出波と反射波を利用した他の生体指標にも利用可能である。 In recent years, in addition to conventional indicators such as the maximum value (maximum blood pressure) and the minimum value (minimum blood pressure) or the difference (pulse pressure) in pulse waves, AI (Augmentation Index), ejection waves and reflected waves A new biometric index used is attracting attention. These biological indices can be obtained more accurately based on the individual contributions of the ejection wave and the reflected wave obtained by the present invention. Therefore, according to the pulse wave analysis apparatus of the present invention, it is useful for grasping the state of the living body. Naturally, the pulse wave analysis device of the present invention can be used not only for AI but also for other biological indices using ejection waves and reflected waves.
尚、上述のように、上記基準時間検出部2が上記基準時間T1とT2を求める基準時間導出機能と、上記脈波振幅検出部3が上記基準時間T1,T2に対応する脈波Sの振幅W1,W2を求める脈波振幅導出機能と、上記波形モデル化部7が上記脈波Sの駆出波成分の波形をモデル化してモデル化駆出波を求めると共に上記脈波Sの反射波成分の波形をモデル化してモデル化反射波を求める波形モデル化機能と、上記単独振幅情報検出部8が上記モデル化された駆出波と反射波から上記駆出波と反射波それぞれの単独の振幅情報を検出するモデル波振幅導出機能とを脈波解析プログラムによってコンピュータに実行させてもよい。
As described above, the reference
1 脈波検出部
2 基準時間検出部
3 脈波振幅検出部
5 駆出波・反射波成分寄与度検出部
6 駆出波・反射波情報抽出部
7 波形モデル化部
8 単独振幅情報検出部
10 脈波解析装置
Q1 脈波の極大点
Q2 脈波の第3ゼロクロスポイント
S 脈波
S1 駆出波成分
S2 反射波成分
T1 駆出波成分の基準時間
T2 反射波成分の基準時間
W1 基準時間T1における駆出波成分の振幅
W2 基準時間T2における脈波の振幅
W3 基準時間T2における反射波成分の振幅
DESCRIPTION OF
Claims (2)
上記脈波検出部で検出した上記一部位における脈波に含まれる駆出波成分を特定するための基準時間と上記脈波に含まれる反射波成分を特定するための基準時間とを検出する基準時間検出部と、
上記基準時間検出部で検出した上記駆出波成分の基準時間に対応する上記脈波の振幅を検出すると共に上記基準時間検出部で検出した上記反射波成分の基準時間に対応する上記脈波の振幅を検出する脈波振幅検出部と、
上記基準時間検出部で検出した上記駆出波成分の基準時間と上記駆出波成分の基準時間に対応する上記脈波の振幅とに基づいて上記脈波に含まれる駆出波成分の波形をモデル化してモデル化駆出波を求めると共に、上記基準時間検出部で検出した上記反射波成分の基準時間と上記反射波成分の基準時間に対応する上記脈波の振幅とに基づいて上記脈波に含まれる反射波成分の波形をモデル化してモデル化反射波を求める波形モデル化部と、
上記波形モデル化部でモデル化したモデル化駆出波とモデル化反射波から上記脈波の所望の位相における駆出波成分の振幅と反射波成分の振幅とを求めるモデル波振幅導出部とを備えることを特徴とする脈波解析装置。 A pulse wave detector for detecting a pulse wave in a certain part of the living body;
A reference for detecting a reference time for specifying the ejection wave component included in the pulse wave at the partial position detected by the pulse wave detection unit and a reference time for specifying the reflected wave component included in the pulse wave A time detector;
The amplitude of the pulse wave corresponding to the reference time of the ejection wave component detected by the reference time detection unit is detected and the pulse wave corresponding to the reference time of the reflected wave component detected by the reference time detection unit is detected. A pulse wave amplitude detector for detecting amplitude;
Based on the reference time of the ejection wave component detected by the reference time detection unit and the amplitude of the pulse wave corresponding to the reference time of the ejection wave component, the waveform of the ejection wave component included in the pulse wave is obtained. The modeled wave is obtained by modeling, and the pulse wave is based on the reference time of the reflected wave component detected by the reference time detection unit and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component. A waveform modeling unit that models the waveform of the reflected wave component contained in to obtain a modeled reflected wave;
A model wave amplitude deriving unit that obtains the amplitude of the ejected wave component and the amplitude of the reflected wave component at a desired phase of the pulse wave from the modeled ejected wave and the modeled reflected wave modeled by the waveform modeling unit; A pulse wave analysis device comprising:
上記基準時間導出機能で求めた上記駆出波成分の基準時間に対応する上記脈波の振幅を求めると共に上記基準時間導出機能で求めた上記反射波成分の基準時間に対応する上記脈波の振幅を求める脈波振幅導出機能と、
上記基準時間導出機能で求めた上記駆出波成分の基準時間と上記駆出波成分の基準時間に対応する上記脈波の振幅とに基づいて上記脈波に含まれる駆出波成分の波形をモデル化してモデル化駆出波を求めると共に、上記基準時間導出機能で求めた上記反射波成分の基準時間と上記反射波成分の基準時間に対応する上記脈波の振幅とに基づいて上記脈波に含まれる反射波成分の波形をモデル化してモデル化反射波を求める波形モデル化機能と、
上記波形モデル化機能でモデル化したモデル化駆出波とモデル化反射波から上記脈波の所望の位相における駆出波成分の振幅と反射波成分の振幅とを求めるモデル波振幅導出機能とをコンピュータに実行させることを特徴とする脈波解析プログラム。 A reference time deriving function for obtaining a reference time for specifying the ejection wave component included in the pulse wave in a certain part of the living body and a reference time for specifying the reflected wave component included in the pulse wave;
The amplitude of the pulse wave corresponding to the reference time of the reflected wave component obtained by the reference time deriving function and the amplitude of the pulse wave corresponding to the reference time of the ejection wave component obtained by the reference time deriving function A pulse wave amplitude derivation function for
Based on the reference time of the ejection wave component obtained by the reference time deriving function and the amplitude of the pulse wave corresponding to the reference time of the ejection wave component, the waveform of the ejection wave component included in the pulse wave is calculated. The modeled ejection wave is modeled to obtain the pulse wave based on the reference time of the reflected wave component obtained by the reference time deriving function and the amplitude of the pulse wave corresponding to the reference time of the reflected wave component. Modeling the waveform of the reflected wave component contained in the waveform modeling function to obtain the modeled reflected wave,
A model wave amplitude derivation function that obtains the amplitude of the ejected wave component and the reflected wave component at the desired phase of the pulse wave from the modeled ejected wave and modeled reflected wave modeled by the waveform modeling function A pulse wave analysis program that is executed by a computer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009257224A JP5328614B2 (en) | 2009-11-10 | 2009-11-10 | Pulse wave analyzer and pulse wave analysis program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009257224A JP5328614B2 (en) | 2009-11-10 | 2009-11-10 | Pulse wave analyzer and pulse wave analysis program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011101698A JP2011101698A (en) | 2011-05-26 |
JP5328614B2 true JP5328614B2 (en) | 2013-10-30 |
Family
ID=44192339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009257224A Expired - Fee Related JP5328614B2 (en) | 2009-11-10 | 2009-11-10 | Pulse wave analyzer and pulse wave analysis program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5328614B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5907638B2 (en) * | 2011-12-06 | 2016-04-26 | 株式会社エー・アンド・デイ | Arterial vascular stiffness measuring device |
JP6268193B2 (en) | 2013-12-25 | 2018-01-24 | 旭化成株式会社 | Pulse wave measuring device, portable device, medical device system, and biological information communication system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3495348B2 (en) * | 2001-07-02 | 2004-02-09 | 日本コーリン株式会社 | Pulse wave velocity information measurement device |
JP3621379B2 (en) * | 2002-01-09 | 2005-02-16 | コーリンメディカルテクノロジー株式会社 | Atherosclerosis evaluation device |
JP3643567B2 (en) * | 2002-04-17 | 2005-04-27 | コーリンメディカルテクノロジー株式会社 | Amplitude increase index measuring device |
JP2003305011A (en) * | 2002-04-17 | 2003-10-28 | Nippon Colin Co Ltd | Amplitude augmentation index measuring apparatus |
PL1641389T3 (en) * | 2004-02-18 | 2009-06-30 | Illyes Miklos | Apparatus and method for measuring hemodynamic parameters |
JP4581496B2 (en) * | 2004-06-14 | 2010-11-17 | オムロンヘルスケア株式会社 | Pulse wave analyzer and pulse wave analysis program |
JP2006043146A (en) * | 2004-08-04 | 2006-02-16 | Sony Corp | Pulse wave analysis method and apparatus |
JP4855721B2 (en) * | 2005-06-29 | 2012-01-18 | フクダ電子株式会社 | Blood pressure measurement device |
-
2009
- 2009-11-10 JP JP2009257224A patent/JP5328614B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011101698A (en) | 2011-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104684459B (en) | Motion artifacts are recognized in the measurement of photo-plethysmographic art and improve the method and system of measurement result and the reliability of alarm | |
EP3157416B1 (en) | System for cuff-less blood pressure (bp) measurement of a subject | |
JP5016718B2 (en) | Atherosclerosis evaluation device | |
WO2015161688A1 (en) | Blood pressure measurement method and embedded device for implementing same | |
CN101765398B (en) | Assessment of preload dependence and fluid responsiveness | |
JP6525138B2 (en) | Blood pressure measuring device | |
JP5328613B2 (en) | Pulse wave velocity measuring device and pulse wave velocity measuring program | |
KR101593412B1 (en) | Acceleration plethysmography analysis apparatus and method using wave form frequency distribution | |
US20170071564A1 (en) | Heart rate detection method and device using heart sound acquired from ausculation positions | |
Jang et al. | A knowledge-based approach to arterial stiffness estimation using the digital volume pulse | |
KR20130095664A (en) | Blood-flow disorders measurement system using pulse waves | |
Jang et al. | Enhancing the pulse contour analysis-based arterial stiffness estimation using a novel photoplethysmographic parameter | |
GB2552455A (en) | Blood monitoring | |
JP2009509668A (en) | Signal processing for pulse oximetry | |
JP5940725B1 (en) | Vascular elasticity evaluation device | |
KR101744691B1 (en) | Method and Apparatus for Detecting Heartbeat using Ballistocardiogram | |
Shah et al. | Ultrasound signal quality parameterization for image-free evaluation of arterial stiffness | |
JP5328614B2 (en) | Pulse wave analyzer and pulse wave analysis program | |
Joseph et al. | ARTSENS-An image-free system for noninvasive evaluation of arterial compliance | |
JP5681434B2 (en) | Pulse wave velocity measuring device and pulse wave velocity measuring program | |
KR20080030189A (en) | Apparatus and method for monitoring a status of blood vessel | |
Almeida et al. | Hemodynamic features extraction from a new arterial pressure waveform probe | |
Kerr et al. | Towards pulse detection and rhythm analysis using a biomimetic fingertip | |
JP5328635B2 (en) | Pulse wave analyzer and pulse wave analysis program | |
CN107708533B (en) | Viscoelastic property acquisition device, viscoelastic property acquisition method, viscoelastic property acquisition program, and storage medium storing the program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120223 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130723 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5328614 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |