JP5322209B2 - Co-based Heusler alloy - Google Patents

Co-based Heusler alloy Download PDF

Info

Publication number
JP5322209B2
JP5322209B2 JP2008199712A JP2008199712A JP5322209B2 JP 5322209 B2 JP5322209 B2 JP 5322209B2 JP 2008199712 A JP2008199712 A JP 2008199712A JP 2008199712 A JP2008199712 A JP 2008199712A JP 5322209 B2 JP5322209 B2 JP 5322209B2
Authority
JP
Japan
Prior art keywords
alloy
spin
spin polarization
mnsn
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008199712A
Other languages
Japanese (ja)
Other versions
JP2010037580A (en
Inventor
バラプラサッド
ラジャニカンス アマナブロル
有紀子 高橋
和博 宝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2008199712A priority Critical patent/JP5322209B2/en
Publication of JP2010037580A publication Critical patent/JP2010037580A/en
Application granted granted Critical
Publication of JP5322209B2 publication Critical patent/JP5322209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hall/Mr Elements (AREA)

Description

本発明は、Co基ホイスラー合金に関し、より詳しくは、そのスピン偏極率の向上に関する。   The present invention relates to a Co-based Heusler alloy, and more particularly to an improvement in the spin polarization rate.

強磁性金属/絶縁層/強磁性金属 あるいは 強磁性金属/非磁性金属層/強磁性金属の3層構造を持つ薄膜の面直方向磁気抵抗効果を利用した素子は、大容量磁気ランダムアクセスメモリ(MRAM)や高性能再生磁気ヘッド用として期待されている。高性能化のためには高い磁気抵抗変化率(TMR比あるいはGMR比)を実現させる必要がある。TMRは式1(非特許文献1)で、GMRは式2(非特許文献2)で表されるので、高いTMR及びGMR比を実現するにはスピン偏極率(P)の高い材料を上下の強磁性層に使う必要がある。
上記の文献における理論計算では状態密度の差でスピン偏極率を予測している。ところが、実際のTMRやGMRデバイスの強磁性電極として用いる高スピン偏極材料を探索するためには、第一原理による状態密度のスピン偏極率予測よりも、点接触アンドレーフ反射法(PCAR法)による伝導電子のスピン偏極率測定が適しているといえる。
しかし、コバルト基ホイスラー合金はハーフメタル材料(P=1)の候補として期待されているが、点接触アンドレーフ反射法(PCAR法)により測定されたスピン偏極率はいずれもハーフメタルの値(P=1)よりずっと低いP=0.6程度である。
<式1>

<式2>

ここでP1P2は上下の強磁性層のスピン偏極率
M. Julliere, Phys. Lett., 54A, (1976), 225-226 S.G. Tan et al, J. Appl.Phys., 101, 09J502 (2007). K. Ozdogan et al. Physical Review B, 74, 172412 (2006) FIG. 1 I. Galanakis et al., Appl. Phys. Lett., 89, 042502 (2006).
A device using the magnetoresistance effect of a thin film having a three-layer structure of ferromagnetic metal / insulating layer / ferromagnetic metal or ferromagnetic metal / nonmagnetic metal layer / ferromagnetic metal is a large-capacity magnetic random access memory ( MRAM) and high-performance reproducing magnetic heads are expected. In order to achieve high performance, it is necessary to realize a high magnetoresistance ratio (TMR ratio or GMR ratio). TMR is expressed by Equation 1 (Non-Patent Document 1), and GMR is expressed by Equation 2 (Non-Patent Document 2). To achieve a high TMR and GMR ratio, materials with high spin polarization (P) must be It is necessary to use for the ferromagnetic layer.
In the theoretical calculation in the above literature, the spin polarization is predicted by the difference in density of states. However, in order to search for high spin-polarized materials used as ferromagnetic electrodes in actual TMR and GMR devices, the point contact andreflex reflection method (PCAR method) rather than the prediction of the spin density of the density of states based on the first principle It can be said that the measurement of the spin polarization rate of conduction electrons by is suitable.
However, cobalt-based Heusler alloys are expected as candidates for half-metal materials (P = 1), but the spin polarization measured by the point-contact Andreef reflection method (PCAR method) is the value of half-metal (P = 1) which is much lower than P = 0.6.
<Formula 1>

<Formula 2>

Where P 1 P 2 is the spin polarization of the upper and lower ferromagnetic layers
M. Julliere, Phys. Lett., 54A, (1976), 225-226 SG Tan et al, J. Appl.Phys., 101, 09J502 (2007). K. Ozdogan et al. Physical Review B, 74, 172412 (2006) FIG. 1 I. Galanakis et al., Appl. Phys. Lett., 89, 042502 (2006).

本発明では、このような実情に鑑み、PCAR法を用いて、従来にはない高いスピン偏極率を有するCo基ホイスラー合金を提供することを目的とする。   In view of such circumstances, the present invention aims to provide a Co-based Heusler alloy having an unprecedented high spin polarization using the PCAR method.

本発明のCo基ホイスラー合金は、組成式 CoMnW1−XGa(ただし、0<X<1、W:Si,Ge又はSnのいずれかの元素)であることを特徴とする。 The Co-based Heusler alloy of the present invention is characterized by the composition formula Co 2 MnW 1-X Ga X (where 0 <X <1, W: any element of Si, Ge, or Sn).

スピン偏極率はフェルミレベル付近の↑スピンと↓スピンの状態の差で表されるので、↑スピンの状態を増加させることでスピン偏極率の増加が期待できる。本発明では、Co2MnSnホイスラー合金のSnをGaで置換することにより、スピン偏極率がCo2MnSnのP=0.6からCo2MnSn0.5Ga0.5合金のP=0.72へと増加することを見出した。この値は現在までに報告されているホイスラー合金のスピン偏極率と比べて、非常に高い値である。非特許文献3の理論計算によると、Co2MnGa合金のフェルミレベル付近の↑スピンの状態はCo2MnSn合金のそれよりも大きい。従って、Co2MnSn 合金のSnをGaで置換することによりフェルミレベル付近の↑スピンの状態が増加したことと高い規則度が実現できたためにスピン偏極率が増加したものと考えられる。
Co2MnSnとCo2MnGaのスピン偏極率が0.6、Co2MnSn0.5Ga0.5合金のスピン偏極率が0.72であることは実験的に証明されている。Co2MnSnのSnの価電子数はGaよりも1つ多いので、SnをGaで置換していくとフェルミレベルは低エネルギー側へとシフトする。Co2MnGaのフェルミレベルより少し上に状態密度の山が存在するので、0<X<1の範囲ではスピン偏極率が0.6以上になることがわかる。
また非特許文献3によると、Co2MnSiとCo2MnGeのフェルミレベル付近の状態はCo2MnSnに非常に似ており、かつ価電子数はCo2MnSnと同じである。このことからCo2MnSnのSnをSiやGeとしてもGaで置換することによりスピン偏極率が増加することがわかる。
本発明ではPCAR法を用いてCPP-GMR素子やTMR素子で伝導するであろうと予測される伝導電子のスピン偏極率を測定することにより、実用的により現実的なスピン偏極材料を探索した。これまでのPCAR法によるホイスラー合金の伝導電子のスピン偏極率の値は0.6程度であったのに、本発明で探索した合金では伝導電子の分極率が0.72と、従来のホイスラー合金に比較して、極めて高いスピン偏極を起こしていることが見いだされた。本発明ではこのような背景から、スピン偏極率が理論的に高いと予測されるCo基ホイスラー合金を作製し、それらの伝導電子のスピン偏極率をPCARによって直接測定し、伝導電子が高い偏極率を持つ材料を発明した。
Since the spin polarization is expressed by the difference between the ↑ spin and ↓ spin states near the Fermi level, an increase in the spin polarization can be expected by increasing the ↑ spin state. In the present invention, found that by replacing the Sn of Co 2 MnSn Heusler alloy Ga, spin polarization increases to Co 2 MnSn 0.5 Ga 0.5 alloy of P = 0.72 from P = 0.6 of Co 2 MnSn It was. This value is very high compared to the spin polarization rate of Heusler alloys reported to date. According to theoretical calculations in the non-patent document 3, ↑ spin states of the Fermi level near the Co 2 MnGa alloy is greater than that of Co 2 MnSn alloy. Therefore, the substitution of Sn in the Co 2 MnSn alloy with Ga increased the spin state near the Fermi level and realized a high degree of ordering, which is thought to increase the spin polarization.
It has been experimentally proved that the spin polarization of Co 2 MnSn and Co 2 MnGa is 0.6, and that of the Co 2 MnSn 0.5 Ga 0.5 alloy is 0.72. Since Co 2 MnSn has one more valence electron than Ga, the substitution of Sn with Ga shifts the Fermi level to the lower energy side. Since a peak of density of state exists slightly above the Fermi level of Co 2 MnGa, it can be seen that the spin polarization ratio is 0.6 or more in the range of 0 <X <1.
Further according to non-patent document 3, the state of the Fermi level near the Co 2 MnSi and Co 2 MnGe is very similar to Co 2 MnSn, and valence electron number is the same as Co 2 MnSn. This shows that the spin polarization increases by replacing Sn in Co 2 MnSn with Ga even when Si or Ge is substituted.
In the present invention, a practical and more realistic spin-polarized material was sought by measuring the spin-polarization rate of conduction electrons predicted to be conducted in a CPP-GMR element or TMR element using the PCAR method. . Previously, the value of spin polarization of conduction electrons in Heusler alloys by the PCAR method was about 0.6. However, in the alloys searched for in the present invention, the polarizability of conduction electrons is 0.72, which is higher than that of conventional Heusler alloys. It was found that it caused extremely high spin polarization. In the present invention, from such a background, a Co-based Heusler alloy whose spin polarization rate is predicted to be theoretically high is produced, and the spin polarization rate of those conduction electrons is directly measured by PCAR. Invented a material with polarization.

本発明のCo基ホイスラー合金をトンネル型磁気抵抗素子の上下電極として使用することにより、非特許文献1のTMR=2P1P2/1-P1P2および非特許文献2のGMRの抵抗変化率の式1、2より、高い磁気抵抗変化率(GMR比およびTMR比)が得られることは容易に類推できる。
非特許文献3ではCo2MnZ合金においてZを様々な元素とすることによる、状態密度曲線の変化について示している。しかし、これらの合金では、PCAR法による伝導電子のスピン偏極率測定ではP=0.6と低い値であり、状態密度のスピン偏極率が理論的に高くても、実際には高い偏極度の伝導電子が磁気抵抗素子でえられないことが分かる。
ただし、下記実施例では、以下の理論でスピン偏極率の向上を図った物である。
スピン偏極率は、P=(D-D)/(D+D) (D, Dはそれぞれフェルミエネルギーにおけるアップおよびダウンスピン電子の状態密度)によって定義される。ここからわかるようにDの値を大きくすることによってもスピン偏極率を増加させることができる。Co2MnSnのSnをGaで置換することによりフェルミレベル付近の↑スピンの状態を増加させるという発想で、スピン偏極率を0.73に増加させ、低いスピン偏極率という問題を克服した。
この理論は、単にCo2MnSn合金に限ることではなく、非特許文献3のFig.1に記載の状態密度曲線の計算結果を持ってして、実験No.2の合金について、出発材のCo2MnSn合金を、Co2MnGe合金、Co2MnAl合金又はCo2MnSi合金とし、このGe、Al、SiをGaに一部置換することにより、以下の実施例と同様にスピン偏極率を向上することとなることは容易に類推できる。非特許文献3のFig.1によるとCo2MnGe合金、Co2MnAl合金又はCo2MnSi合金のいずれもフェルミレベル付近の状態密度曲線はCo2MnSn合金と同様である。またGe、Al、Siの価電子数はGaよりも1つ多いためこれらをGaで置換していくとフェルミレベルはCo2MnGaの状態密度の山に向かってシフトすることがわかる。ゆえに、Co2MnGe合金、Co2MnAl合金又はCo2MnSi合金においてもGe、Al、SiをGaに一部置換することによりスピン偏極率が増加することがわかる。
非特許文献3のFig.1に記載の状態密度曲線の計算結果から、Co2MnSn1-xGaxのxの広い範囲で高いスピン偏極率が得られる。Co2MnSnとCo2MnGaのスピン偏極率が0.6、Co2MnSn0.5Ga0.5合金のスピン偏極率が0.73であることは表に示すとおりである。Co2MnSnのSnの価電子数はGaよりも1つ多いので、SnをGaで置換していくとフェルミレベルは低エネルギー側へとシフトする。
Co2MnGaのフェルミレベルより少し上に状態密度の山が存在するので、0<X<1の範囲ではスピン偏極率が0.6以上になることがわかる。
具体的には、下記実施例からすれば、X=0.1のとき及びX=0.9のときは、いずれもスピン偏極率は0.62と予測できる。
By using the Co-based Heusler alloy of the present invention as the upper and lower electrodes of a tunnel type magnetoresistive element, resistance change of TMR = 2P 1 P 2 / 1-P 1 P 2 of Non-Patent Document 1 and GMR of Non-Patent Document 2 From the rate equations 1 and 2, it can be easily analogized that a high magnetoresistance change rate (GMR ratio and TMR ratio) can be obtained.
Non-Patent Document 3 shows changes in the state density curve caused by changing Z to various elements in the Co 2 MnZ alloy. However, these alloys have a low value of P = 0.6 in the measurement of the spin polarization of the conduction electrons by the PCAR method, and even though the spin density of the density of states is theoretically high, it actually has a high degree of polarization. It can be seen that conduction electrons cannot be obtained by the magnetoresistive element.
However, in the following examples, the spin polarization is improved by the following theory.
Spin polarization is defined by P = (D -D ) / (D + D ), where D and D are the density of states of up and down spin electrons at Fermi energy, respectively. As can be seen from this, the spin polarization can also be increased by increasing the value of D . The idea of increasing the state of the ↑ spin near the Fermi level by replacing Sn in Co 2 MnSn with Ga increased the spin polarization rate to 0.73, overcoming the problem of low spin polarization rate.
This theory is not limited to the Co 2 MnSn alloy, but with the calculation result of the state density curve described in Fig. 1 of Non-Patent Document 3, the alloy of Experiment No. 2 is the starting material Co. 2 MnSn alloy is made of Co 2 MnGe alloy, Co 2 MnAl alloy or Co 2 MnSi alloy, and by partially replacing this Ge, Al, and Si with Ga, the spin polarization is improved as in the following examples. It can be easily analogized to do. According to Fig. 1 of Non-Patent Document 3, the Co 2 MnGe alloy, Co 2 MnAl alloy or Co 2 MnSi alloy has the same state density curve near the Fermi level as the Co 2 MnSn alloy. In addition, Ge, Al, and Si have one more valence electron than Ga, and it can be seen that when these are replaced with Ga, the Fermi level shifts toward the peak of the state density of Co 2 MnGa. Therefore, it can be seen that even in a Co 2 MnGe alloy, a Co 2 MnAl alloy, or a Co 2 MnSi alloy, the spin polarization is increased by partially replacing Ge, Al, and Si with Ga.
From the calculation result of the state density curve shown in Fig. 1 of Non-Patent Document 3, a high spin polarization can be obtained in a wide range of x of Co 2 MnSn 1-x Ga x . The table shows that the spin polarization of Co 2 MnSn and Co 2 MnGa is 0.6, and that of the Co 2 MnSn 0.5 Ga 0.5 alloy is 0.73. Since Co 2 MnSn has one more valence electron than Ga, the substitution of Sn with Ga shifts the Fermi level to the lower energy side.
Since a peak of density of state exists slightly above the Fermi level of Co 2 MnGa, it can be seen that the spin polarization ratio is 0.6 or more in the range of 0 <X <1.
Specifically, according to the following examples, when X = 0.1 and X = 0.9, the spin polarization rate can be predicted to be 0.62.

各元素(Co,Mn,Ga,Sn)を所望の組成比になるように天秤を用いて秤量する。それを石英管に入れて高周波誘導炉にセットする。その後真空をひく。真空度が6×10-4Pa以下になったら、高周波電源を入れ少しずつパワーをあげ、最終的に10Aにセットする。合金が溶けて2分程度待ち、高周波電源を切る。室温まで冷ましたら炉から取り出す。サンプルはその後400度168時間の熱処理を行う。Gaの置換量は、所望の組成になるように天秤を用いてSnとGaの秤量を行うことにより制御できる。
実験No.1ではGaを実験No.3ではSnをそれぞれゼロにして上記のようにして創製した。
Each element (Co, Mn, Ga, Sn) is weighed using a balance so as to have a desired composition ratio. Put it in a quartz tube and set it in a high frequency induction furnace. Then vacuum is applied. When the degree of vacuum drops below 6 × 10 -4 Pa, turn on the high-frequency power and gradually increase the power, and finally set it to 10A. Wait about 2 minutes after the alloy melts and turn off the high frequency power. Remove from the furnace after cooling to room temperature. The sample is then heat treated at 400 degrees 168 hours. The amount of Ga substitution can be controlled by weighing Sn and Ga using a balance so as to obtain a desired composition.
Experiment No. 1 was created as described above with Ga set to zero and Experiment No. 3 with Sn set to zero.

非特許文献4では、Co2MnZ(Z=Si,Ge,Sn)においてMnをCrやFeで置換することによるスピン偏極率の変化について示している。それによると20%程度の置換では高いスピン偏極率が保たれることが記されている。我々は過去にCo2MnSnのMnをFeで置換する実験を行った。得られたスピン偏極率は0.65であった。これはCo2MnSnのスピン偏極率0.6と比較すると高い値ではあり、状態密度のハーフメタル性を反映しているものと考えられる。 Non-Patent Document 4 shows the change in spin polarization by replacing Mn with Cr or Fe in Co 2 MnZ (Z = Si, Ge, Sn). According to it, it is stated that a high spin polarization ratio is maintained with substitution of about 20%. In the past, we conducted experiments to replace Mn in Co 2 MnSn with Fe. The obtained spin polarization was 0.65. This is a high value compared to the spin polarization ratio 0.6 of Co 2 MnSn, which is considered to reflect the half-metallicity of the state density.

伝導電子の高いスピン偏極率が実現できたことで、TMR(トンネル型磁気抵抗)素子、GMR(巨大磁気抵抗)素子、TMR素子を基本として構成される大容量MRAM(磁気ランダムアクセスメモリ)やHDDの再生ヘッドの高性能化が期待される。また、再構成可能なスピンMOSFETで必要とされる半導体へのスピン注入もMgOバリアとともに用いることで高効率なスピン注入が期待される。本発明の合金を電極として高いTMR値、GMR値を持つ素子を構成できれば、磁気記録システムの再生ヘッドとしての用途がある。 Realizing high spin polarization of conduction electrons, TMR (tunnel magnetoresistive) element, GMR (giant magnetoresistive) element, large capacity MRAM (magnetic random access memory) based on TMR element and High performance HDD read heads are expected. Highly efficient spin injection is also expected by using the spin injection into the semiconductor required by the reconfigurable spin MOSFET together with the MgO barrier. If an element having a high TMR value and GMR value can be constructed using the alloy of the present invention as an electrode, it can be used as a reproducing head of a magnetic recording system.

実験No.1に示す合金のX線回折パターンX-ray diffraction pattern of the alloy shown in Experiment No.1 実験No.2に示す合金のX線回折パターンX-ray diffraction pattern of the alloy shown in Experiment No.2. 実験No.3に示す合金のX線回折パターンX-ray diffraction pattern of the alloy shown in Experiment No.3 実験No.1に示す合金のコンダクタンス曲線Conductance curve of the alloy shown in Experiment No.1 実験No.2に示す合金のコンダクタンス曲線Conductance curve of the alloy shown in Experiment No.2. 実験No.3に示す合金のコンダクタンス曲線Conductance curve of the alloy shown in Experiment No.3

Claims (1)

組成式 CoMnW1−XGa(ただし、0<X<1、W:Si,Ge又はSnのいずれかの元素)であることを特徴とするCo基ホイスラー合金。 Co-based Heusler alloy characterized by the composition formula Co 2 MnW 1-X Ga X (where 0 <X <1, W: any element of Si, Ge, or Sn).
JP2008199712A 2008-08-01 2008-08-01 Co-based Heusler alloy Expired - Fee Related JP5322209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008199712A JP5322209B2 (en) 2008-08-01 2008-08-01 Co-based Heusler alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008199712A JP5322209B2 (en) 2008-08-01 2008-08-01 Co-based Heusler alloy

Publications (2)

Publication Number Publication Date
JP2010037580A JP2010037580A (en) 2010-02-18
JP5322209B2 true JP5322209B2 (en) 2013-10-23

Family

ID=42010436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008199712A Expired - Fee Related JP5322209B2 (en) 2008-08-01 2008-08-01 Co-based Heusler alloy

Country Status (1)

Country Link
JP (1) JP5322209B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5696990B2 (en) * 2011-01-07 2015-04-08 独立行政法人物質・材料研究機構 Co2Fe-based Heusler alloy and spintronic device using the same
CN116200831A (en) * 2023-04-19 2023-06-02 浙江大学 Cobalt-based full heusler alloy material, preparation method thereof and polycrystalline device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4128938B2 (en) * 2003-10-28 2008-07-30 株式会社日立製作所 Magnetic head and magnetic recording / reproducing apparatus
JP4483686B2 (en) * 2005-04-28 2010-06-16 Tdk株式会社 Magnetic detection element
JP2007189039A (en) * 2006-01-13 2007-07-26 Alps Electric Co Ltd Tunneling type magnetic detection element, and method of manufacturing same
JP4953064B2 (en) * 2006-12-25 2012-06-13 独立行政法人物質・材料研究機構 Heusler alloy and TMR element or GMR element using the same
JP2009102703A (en) * 2007-10-24 2009-05-14 National Institute For Materials Science Co-BASED HEUSLER ALLOY

Also Published As

Publication number Publication date
JP2010037580A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP6777093B2 (en) Spin current magnetization reversal element, magnetoresistive element, and magnetic memory
US9343658B2 (en) Magnetic memory bits with perpendicular magnetization switched by current-induced spin-orbit torques
Kurt et al. Mn3− xGa (0≤ x≤ 1): Multifunctional thin film materials for spintronics and magnetic recording
JP5527669B2 (en) Ferromagnetic tunnel junction and magnetoresistive effect element using the same
JP5586028B2 (en) Ferromagnetic tunnel junction, magnetoresistive effect element and spintronic device using the same
Felser et al. Tetragonal Heusler compounds for spintronics
US20130230741A1 (en) High Thermal Stability Free Layer with High Out-of-Plane Anisotropy for Magnetic Device Applications
US9705075B2 (en) Cobalt (Co) and platinum (Pt)-based multilayer thin film having inverted structure and method for manufacturing same
US9336937B2 (en) Co2Fe-based heusler alloy and spintronics devices using the same
US20130270523A1 (en) Free Layer with High Thermal Stability for Magnetic Device Applications by Insertion of a Boron Dusting Layer
JP6647590B2 (en) Perpendicular magnetic film, perpendicular magnetic film structure, magnetoresistive element and perpendicular magnetic recording medium
US20090015969A1 (en) Magnetic thin film, magnetoresistance effect device and magnetic device using the same
Oogane et al. Tunnel magnetoresistance effect and magnetic damping in half-metallic Heusler alloys
JP4061590B2 (en) Magnetic thin film, magnetoresistive effect element and magnetic device using the same
JP5322209B2 (en) Co-based Heusler alloy
Locatelli et al. Basic spintronic transport phenomena
Hong et al. Energy-efficient spin-transfer torque magnetization reversal in sub-10-nm magnetic tunneling junction point contacts
JP4953064B2 (en) Heusler alloy and TMR element or GMR element using the same
Zhang et al. Electric-field control of ferromagnetism in a Co-Fe-Ta-B amorphous alloy
Mitani Magnetic tunnel junctions using heusler alloys
JP2010053412A (en) Cobalt-based heusler alloy
Taylor et al. Sputter gas damage in nanolayered Pt/Co/Ir-based synthetic antiferromagnets for top-pinned magnetic tunnel junctions
Kaidatzis et al. “Metal oxides in magnetic memories”: Current status and future perspectives
Cuchet Magnetic and transport properties of single and double perpendicular magnetic tunnel junctions
JP2008218641A (en) Tunnel magnetoresistive element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

R150 Certificate of patent or registration of utility model

Ref document number: 5322209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees