JP5317256B2 - Extraction agent and extraction / separation method, and N, N, N ′, N ″ -tetrakis (2-methylpyridyl) ethylenediamine derivative and method for producing the same - Google Patents

Extraction agent and extraction / separation method, and N, N, N ′, N ″ -tetrakis (2-methylpyridyl) ethylenediamine derivative and method for producing the same Download PDF

Info

Publication number
JP5317256B2
JP5317256B2 JP2007210038A JP2007210038A JP5317256B2 JP 5317256 B2 JP5317256 B2 JP 5317256B2 JP 2007210038 A JP2007210038 A JP 2007210038A JP 2007210038 A JP2007210038 A JP 2007210038A JP 5317256 B2 JP5317256 B2 JP 5317256B2
Authority
JP
Japan
Prior art keywords
extraction
tetrakis
methylpyridyl
represent
ethylenediamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007210038A
Other languages
Japanese (ja)
Other versions
JP2009040751A (en
Inventor
健二 竹下
敦紀 森
達郎 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2007210038A priority Critical patent/JP5317256B2/en
Publication of JP2009040751A publication Critical patent/JP2009040751A/en
Application granted granted Critical
Publication of JP5317256B2 publication Critical patent/JP5317256B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Pyridine Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、例えば、使用済核燃料に含まれる高毒性・長半減期核種である3価マイナーアクチノイド元素(3価MA)を抽出可能な抽出剤及び抽出分離方法、並びにN,N,N',N'テトラキス(2−メチルピリジル)エチレンジアミン誘導体及びその製造方法に関する。   The present invention provides, for example, an extractant and extraction / separation method capable of extracting a trivalent minor actinoid element (trivalent MA) which is a highly toxic and long half-life nuclide contained in spent nuclear fuel, and N, N, N ′, The present invention relates to an N ′ tetrakis (2-methylpyridyl) ethylenediamine derivative and a method for producing the same.

使用済核燃料に含まれる3価マイナーアクチノイド元素(3価MA)は、長半減期核で放射能毒性が高いことから、3価MAを使用済核燃料から分離することによって、その処分における環境負荷を著しく軽減させることが期待されている。また、3価MAは、高速炉や加速器によってエネルギー源として利用しつつ短半減期への核種変換を行うことが可能である。このため、その核反応を阻害する希土類元素の分離が必須となる。   The trivalent minor actinoid element (trivalent MA) contained in spent nuclear fuel has a long half-life nucleus and high radiotoxicity. Therefore, separating trivalent MA from spent nuclear fuel reduces the environmental impact of its disposal. It is expected to be significantly reduced. In addition, trivalent MA can perform nuclide conversion to a short half-life while being used as an energy source by a fast reactor or an accelerator. For this reason, it is essential to separate rare earth elements that inhibit the nuclear reaction.

しかし、3価MAと希土類元素は、化学的挙動が非常に似ているため、相互分離プロセスの構築が非常に困難であった。分析化学においてこれらを分離する手法は、イオン交換樹脂によるカラムを利用したクロマト分離であるが、この方法は回分法でありかつ大型化が困難であるため、大規模な生産設備には適用が不可能であった。なお、この方法は、実験用の3価MAを生産するために適用された例があるが、それ以上のスケールの応用例はない。   However, since trivalent MA and rare earth elements have very similar chemical behavior, it is very difficult to construct a mutual separation process. In analytical chemistry, a method for separating these is chromatographic separation using a column with an ion exchange resin, but this method is a batch method and difficult to increase in size, and is therefore not applicable to large-scale production facilities. It was possible. Although this method has been applied to produce experimental trivalent MA, there is no further scale application.

イオン交換法に代わる分離技術として、廃液の大量処理に適した溶媒抽出法が考えられる。溶媒抽出法による従来技術には次のような例がある。   As a separation technique to replace the ion exchange method, a solvent extraction method suitable for a large amount of waste liquid treatment can be considered. Examples of conventional techniques based on solvent extraction include the following.

DTPA(ジエチレントリアミン五酢酸)を利用した溶媒抽出プロセス
DTPAを利用した溶媒抽出プロセスは、CMPO(オクチル(フェニル)- N、N -ジイソブチルカルバモイルメチルホスフィンオキシド)やDIDPA(ジイソデシルリン酸)等の抽出剤によって有機相に共抽出されている3価MAと希土類から、水相中に溶解させた錯化剤であるDTPAによって3価MAのみを選択的に逆抽出する方法である。この方法は、溶媒抽出法における3価MAの分離プロセスでは最も開発が進んでおり、使用済核燃料を使用したプロセス試験も行われている。このプロセスは、水溶性の錯化剤による選択的逆抽出による分離を利用しているため、得られた3価MAの水溶液中で3価MAは錯体となっている。このため下流側の分離プロセスの構築が困難となるほか、そのまま燃料製造に供給すると有機物の存在のために配慮が必要となる。さらに、錯化剤が消費されるため、常に供給する必要があり、二次廃棄物の発生量も多い。
Solvent extraction process using DTPA (diethylenetriaminepentaacetic acid) The solvent extraction process using DTPA is performed using an extractant such as CMPO (octyl (phenyl) -N, N-diisobutylcarbamoylmethylphosphine oxide) or DIDPA (diisodecyl phosphate). In this method, only trivalent MA is selectively back-extracted from DTPA, which is a complexing agent dissolved in an aqueous phase, from trivalent MA and rare earth co-extracted in the organic phase. This method is the most developed in the trivalent MA separation process in the solvent extraction method, and a process test using spent nuclear fuel is also being conducted. Since this process utilizes separation by selective back-extraction with a water-soluble complexing agent, trivalent MA is complexed in the resulting aqueous solution of trivalent MA. For this reason, it is difficult to construct a downstream separation process, and if it is supplied as it is to fuel production, consideration must be given to the presence of organic substances. Furthermore, since the complexing agent is consumed, it must be constantly supplied, and the amount of secondary waste generated is also large.

BTP(ビス(ジアルキルトリアジン)ピリジン)を用いた溶媒抽出プロセス
BTPを用いた溶媒抽出プロセスは、窒素ドナー配位子の一つであるBTPを利用し、高度な3価MA選択能によって、3価MAを選択的に有機相に抽出するプロセスである。したがって、水相には錯化剤等の添加は必要なく、また、BTPの特性により、高硝酸濃度(1M以上)の溶液から3価MAの選択抽出が可能である。このプロセスは、主としてフランスが開発を進めており、既に使用済核燃料を使用した小型プロセス試験を行った実績がある。しかし、このプロセスは、上述のような長所がある反面、BTPの化学的安定性、放射線分解耐久性に大きな問題があり、プロセスを運転する過程でBTPの分解が進む欠点がある。また、BTPによる3価MAの抽出平衡は、反応が遅いため、バッチ試験により確認された分離性能から期待されるようなプロセスの試験結果は得られていない。
Solvent extraction process using BTP (bis (dialkyltriazine) pyridine) The solvent extraction process using BTP utilizes BTP, which is one of the nitrogen donor ligands. This is a process of selectively extracting MA into an organic phase. Accordingly, it is not necessary to add a complexing agent or the like to the aqueous phase, and trivalent MA can be selectively extracted from a solution having a high nitric acid concentration (1 M or more) due to the characteristics of BTP. This process is being developed mainly by France, and has already performed a small process test using spent nuclear fuel. However, this process has the above-mentioned advantages, but has a big problem in the chemical stability and radiolysis durability of BTP, and there is a defect that the decomposition of BTP proceeds in the process operation. Further, since the reaction of the trivalent MA extraction equilibrium by BTP is slow, the test results of the process as expected from the separation performance confirmed by the batch test are not obtained.

抽出クロマト分離システム
低い分離係数の配位子であっても、配位子を樹脂に担持し、カラムに充填してクロマト法を適用することで3価MAの分離を実現する開発も進められている。しかし、前述のイオン交換樹脂によるカラム法と同様、大型化が困難であり実現の見込みは得られていない。また、使用済みの樹脂が放射性廃棄物となる欠点もあることから、実用化のための課題は多い。
Extraction Chromatography Separation System Even for ligands with a low separation factor, development to achieve separation of trivalent MA by supporting the ligand on a resin, filling the column and applying the chromatographic method is also underway Yes. However, as in the column method using the above-described ion exchange resin, it is difficult to increase the size, and no realization has been obtained. In addition, since there is a drawback that used resin becomes radioactive waste, there are many problems for practical use.

その他の配位子
Cyanex301(ビス(2,4,4−トリメチルペンチル)ジチオホスホン酸)のような硫黄を含む配位子は、非常に高い分離性能を示している(Am(III)の分離係数6000以上)。しかし、硫黄を含む化合物は、化学的安定性に問題がある上、配位子が廃棄物となった後の処理の問題があり、基礎的な実験の域を出ていない。
Sulfur-containing ligands such as other ligands Cyanex 301 (bis (2,4,4-trimethylpentyl) dithiophosphonic acid) show very high separation performance (Am (III) separation factor) 6000 or more). However, a compound containing sulfur has a problem in chemical stability and has a problem in processing after the ligand becomes a waste, and is not out of a basic experiment.

本件発明者らは、4つのピリジル基を持つ包接型6座配位子であるTPEN(N,N,N',N'−テトラキス(2−メチルピリジル)エチレンジアミン)を用いて希土類元素(Eu(III))から3価アクチノイド(Am(III))を抽出することに成功している(例えば、非特許文献1参照。)。この配位子は、廃棄物となっても固形成分を残さずに適切な処理を行うことが可能である。これまでの研究において、この配位子は、3価MAの希土類に対する分離係数についてpH4.5程度にて250以上の値を示している。   The present inventors have used rare earth elements (Eu) using TPEN (N, N, N ′, N′-tetrakis (2-methylpyridyl) ethylenediamine), which is an inclusion type hexadentate ligand having four pyridyl groups. (III)) has succeeded in extracting a trivalent actinoid (Am (III)) (for example, refer nonpatent literature 1). Even if this ligand becomes a waste, it is possible to perform an appropriate treatment without leaving a solid component. In previous studies, this ligand has shown a value of 250 or more at a pH of about 4.5 for the separation factor of trivalent MA from rare earths.

T.Matsumura and K.Takeshita: Extraction Behavior of Am(III) from Eu(III) with Hydrophobic Derivatives of N,N,N',N'-tetrakis(2-methylpyridiyl)ethylenediamine (TPEN), J. Nucl.Sci.Technol., 43, 824-827 (2006)T. Matsumura and K. Takeshita: Extraction Behavior of Am (III) from Eu (III) with Hydrophobic Derivatives of N, N, N ', N'-tetrakis (2-methylpyridiyl) ethylenediamine (TPEN), J. Nucl.Sci .Technol., 43, 824-827 (2006)

しかしながら、TPENは、酸性領域ではプロトン化するため、溶媒抽出において水相にも分配してしまい、使用できるpH域が弱酸性から中性に限定され、廃液等の酸濃度の高い水溶液には適用が困難であった。   However, since TPEN is protonated in the acidic region, it is also distributed to the aqueous phase in solvent extraction, and the usable pH range is limited from weakly acidic to neutral, and is applicable to aqueous solutions with high acid concentrations such as waste liquid. It was difficult.

本発明は、このような従来の実情に鑑みて提案されたものであり、優れた分離性能を発揮することができる抽出剤及び抽出分離方法、並びにN,N,N',N'−テトラキス(2−メチルピリジル)エチレンジアミン誘導体及びその製造方法を提供することを目的とする。   The present invention has been proposed in view of such a conventional situation, and an extractant and an extraction / separation method capable of exhibiting excellent separation performance, and N, N, N ′, N′-tetrakis ( An object is to provide a 2-methylpyridyl) ethylenediamine derivative and a method for producing the same.

本件発明者らは、様々な観点から鋭意研究を重ねてきた結果、4つのピリジル基を持つ包接型6座配位子(TEPN)のピリジル基末端に疎水性官能基を導入することにより、酸性度の高い領域でも高い分離性能を得られることを見出し、本発明を完成するに至った。   As a result of intensive studies from various viewpoints, the present inventors have introduced a hydrophobic functional group at the end of the pyridyl group of an inclusion type hexadentate ligand (TEPN) having four pyridyl groups, It has been found that high separation performance can be obtained even in a region with high acidity, and the present invention has been completed.

すなわち、本発明に係る抽出剤は、下記一般式(I)   That is, the extractant according to the present invention has the following general formula (I):

Figure 0005317256
Figure 0005317256

(式中、R〜R炭素数が2〜20のアルコキシ基を示す。)で表されるN,N,N',N'−テトラキス(2−メチルピリジル)エチレンジアミン誘導体を含有することを特徴としている。 (In the formula, R 1 to R 4 represent an alkoxy group having 2 to 20 carbon atoms .) N, N, N ′, N′-tetrakis (2-methylpyridyl) ethylenediamine derivative represented by It is characterized by.

また、本発明に係る抽出分離方法は、下記一般式(I)   The extraction / separation method according to the present invention comprises the following general formula (I):

Figure 0005317256
Figure 0005317256

(式中、R〜R炭素数が2〜20のアルコキシ基を示す。)で表されるN,N,N',N'−テトラキス(2−メチルピリジル)エチレンジアミン誘導体を含有する抽出剤と、有機溶媒と、希土類元素及び3価マイナーアクチノイド元素を含む水溶液とを混合し、酸性条件下で上記3価マイナーアクチノイドを有機相に移動させることを特徴としている。 (Wherein R 1 to R 4 represent an alkoxy group having 2 to 20 carbon atoms .) Extraction containing an N, N, N ′, N′-tetrakis (2-methylpyridyl) ethylenediamine derivative represented by An agent, an organic solvent, and an aqueous solution containing a rare earth element and a trivalent minor actinoid element are mixed, and the trivalent minor actinoid is transferred to the organic phase under acidic conditions.

また、本発明に係る抽出分離方法は、下記一般式(I)   The extraction / separation method according to the present invention comprises the following general formula (I):

Figure 0005317256
Figure 0005317256

(式中、R〜R炭素数が2〜20のアルコキシ基を示す。)で表されるN,N,N',N'−テトラキス(2−メチルピリジル)エチレンジアミン誘導体を含有する抽出剤と、有機溶媒と、遷移金属を含む水溶液とを混合し、遷移金属を有機相に移動させることを特徴としている。 (Wherein R 1 to R 4 represent an alkoxy group having 2 to 20 carbon atoms .) Extraction containing an N, N, N ′, N′-tetrakis (2-methylpyridyl) ethylenediamine derivative represented by An agent, an organic solvent, and an aqueous solution containing a transition metal are mixed to move the transition metal to the organic phase.

また、本発明に係るN,N,N',N'−テトラキス(2−メチルピリジル)エチレンジアミン誘導体は、下記一般式(I)   Further, the N, N, N ′, N′-tetrakis (2-methylpyridyl) ethylenediamine derivative according to the present invention has the following general formula (I):

Figure 0005317256
Figure 0005317256

(式中、R〜R炭素数が2〜20のアルコキシ基を示す。)で表されることを特徴としている。 (Wherein R 1 to R 4 represent an alkoxy group having 2 to 20 carbon atoms ).

また、本発明に係る上記一般式(I)(式中、R 〜R は炭素数が2〜20のアルコキシ基を示す。)で表されるN,N,N',N'−テトラキス(2−メチルピリジル)エチレンジアミン誘導体の製造方法は、下記一般式(II) Further, N, N, N ′, N′-tetrakis represented by the above general formula (I) according to the present invention (wherein R 1 to R 4 represent an alkoxy group having 2 to 20 carbon atoms). The method for producing the (2-methylpyridyl) ethylenediamine derivative has the following general formula (II)

Figure 0005317256
Figure 0005317256

(式中、Rは炭素数が2〜20のアルコキシ基を示し、Xはハロゲン置換基を示す。)で表されるピリジン化合物と、エチレンジアミンとをアルカリ条件下で反応させることを特徴としている。 (Wherein R 5 represents an alkoxy group having 2 to 20 carbon atoms, and X represents a halogen substituent) and ethylenediamine is reacted under alkaline conditions. .

本発明によれば、ピリジル基末端に炭素数が2〜20のアルコキシ基を導入することにより、抽出剤の疎水性が向上するとともに酸性度の高い領域においても高い分離性能を発揮することができる。 According to the present invention, by introducing an alkoxy group having 2 to 20 carbon atoms at the end of the pyridyl group, the hydrophobicity of the extractant is improved and high separation performance can be exhibited even in a highly acidic region. .

以下、本発明を詳細に説明する。TPEN(N,N,N',N'−テトラキス(2−メチルピリジル)エチレンジアミン)誘導体は、4つのピリジル基を持つ包接型6座配位子のピリジル基末端に疎水性官能基を導入したものである。   Hereinafter, the present invention will be described in detail. TPEN (N, N, N ′, N′-tetrakis (2-methylpyridyl) ethylenediamine) derivative has a hydrophobic functional group introduced at the end of the pyridyl group of an inclusion type hexadentate ligand having four pyridyl groups. Is.

すなわち、TPEN誘導体は、下記(I)式で表される。   That is, the TPEN derivative is represented by the following formula (I).

Figure 0005317256
Figure 0005317256

式中、R〜Rは疎水性官能基を示す。なお、R〜Rは、全て同一でも異なっていても構わない。また、疎水性官能基は、ピリジン環の結合可能な全ての位置に結合して構わないが、配向性よりピリジン環上の4、又は5の位置に結合するものが安定である。 Wherein, R 1 to R 4 represents a hydrophobic functional group. R 1 to R 4 may all be the same or different. Further, the hydrophobic functional group may be bonded to all positions where the pyridine ring can be bonded, but those bonded to the 4 or 5 position on the pyridine ring are more stable than the orientation.

疎水性官能基は、高炭素数のアルキル基であることが好ましく、直鎖、枝分かれのいずれの構造であっても構わない。また、アルキル基の炭素数は、2〜20であることが好ましい。アルキル基の炭素数が2より小さいと疎水性が十分ではなく、20より大きいと溶解性が悪くなる。   The hydrophobic functional group is preferably a high carbon number alkyl group, and may have either a linear or branched structure. Moreover, it is preferable that carbon number of an alkyl group is 2-20. When the carbon number of the alkyl group is less than 2, the hydrophobicity is not sufficient, and when it is more than 20, the solubility is deteriorated.

また、疎水性官能基は、高分子のアルコール、カルボン酸、シランなどであっても構わない。また、疎水性官能基とピリジル基とは、直接結合しても、例えばエーテル基、アミノ基などを介して間接的に結合しても構わない。   The hydrophobic functional group may be a polymer alcohol, carboxylic acid, silane, or the like. Further, the hydrophobic functional group and the pyridyl group may be directly bonded or indirectly bonded through, for example, an ether group or an amino group.

すなわち、疎水性官能基は、当該末端がアルキル基、アルコール基、カルボン酸基、シラン基、エーテル基、アミノ基から選択される1種であることが好ましい。   That is, the hydrophobic functional group is preferably one kind whose terminal is selected from an alkyl group, an alcohol group, a carboxylic acid group, a silane group, an ether group, and an amino group.

このようにTPEN分子の外側に位置するピリジル基に疎水性官能基を結合させることにより、水相への分配を防止するとともに、錯形成を阻害せず、良好な分離性能を発揮することができる。また、TPENの良好な安定性、分離性能などをそのまま維持することができる。   By binding a hydrophobic functional group to the pyridyl group located outside the TPEN molecule in this way, distribution to the aqueous phase can be prevented, and good separation performance can be exhibited without inhibiting complex formation. . In addition, good stability and separation performance of TPEN can be maintained as they are.

TPEN誘導体の製造方法は、下記一般式(II)   A method for producing a TPEN derivative is represented by the following general formula (II):

Figure 0005317256
Figure 0005317256

(式中、Rは疎水性官能基を示し、Xはハロゲン置換基を示す。)で表されるピリジン化合物と、エチレンジアミンとをアルカリ条件下で反応させることにより合成することができる。ここで、疎水性官能基は、上述した疎水性官能基(R〜R)と同様であるため、説明を省略する。また、ハロゲン置換基は、求核剤(エチレンジアミン)の攻撃を受けて置き換わることが可能なCl、Br等である(Wherein R 5 represents a hydrophobic functional group, and X represents a halogen substituent) can be synthesized by reacting ethylenediamine with an ethylenediamine. Here, since the hydrophobic functional group is the same as the hydrophobic functional group (R 1 to R 4 ) described above, description thereof is omitted. The halogen substituent is Cl, Br, or the like that can be replaced by the attack of a nucleophile (ethylenediamine).

また、この合成反応は、触媒量の相関移動触媒存在下で行うことが好ましい。これにより、TPEN誘導体の収率を向上させることができる。相関移動触媒としては、塩化ラウリルトリメチルアンモニウム、臭化ラウリルトリメチルアンモニウム、塩化ミリスチルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム、臭化セチルトリメチルアンモニウム、塩化ステアリルトリメチルアンモニウム、臭化ステアリルトリメチルアンモニウム、塩化オレイルトリメチルアンモニウム、臭化オレイルトリメチルアンモニウムなどのアルキルトリメチル型のアンモニウムを用いることができる。   This synthesis reaction is preferably performed in the presence of a catalytic amount of a phase transfer catalyst. Thereby, the yield of a TPEN derivative can be improved. Phase transfer catalysts include lauryl trimethyl ammonium chloride, lauryl trimethyl ammonium bromide, myristyl trimethyl ammonium chloride, cetyl trimethyl ammonium chloride, cetyl trimethyl ammonium bromide, stearyl trimethyl ammonium chloride, stearyl trimethyl ammonium bromide, oleyl trimethyl ammonium chloride, odor Alkyltrimethyl ammonium such as oleyltrimethylammonium bromide can be used.

反応後の生成物は、カラムクロマトグラフィーにより精製することにより、高純度のTPEN誘導体を得ることができる。カラムクロマトグラフィーに用いる充填剤としては、アルミナ等を用いることが好ましい。   The product after the reaction can be purified by column chromatography to obtain a highly pure TPEN derivative. As a filler used for column chromatography, it is preferable to use alumina or the like.

次に、TPEN誘導体の適用例について説明する。
TPEN誘導体を含有する抽出剤は、遷移金属に対して配位可能な6個の窒素ドナーを持つポタンド型の包接化合物である。この抽出剤は、HSAB則(Hard and Soft Acid and Base)に基づく、軟らかい金属、いわゆるソフト金属に優れた選択性を有している。例えば、後述するように、Cdの抽出百分率は、pH1においてもほぼ100%の結果を得ることができる。また、分離が困難であるとされるAmとEuにおいても、両イオン間のわずかなソフト性の違いを利用し、高い分離係数を得ることができる。
Next, application examples of the TPEN derivative will be described.
The extractant containing a TPEN derivative is a potand type inclusion compound having six nitrogen donors that can coordinate to a transition metal. This extractant has excellent selectivity to soft metals, so-called soft metals, based on the HSAB rule (Hard and Soft Acid and Base). For example, as described later, the extraction percentage of Cd can obtain a result of almost 100% even at pH 1. Further, even in Am and Eu, which are considered difficult to separate, a high separation factor can be obtained by utilizing a slight difference in softness between both ions.

上述した遷移金属の抽出方法では、TPEN誘導体を含有する抽出剤と、有機溶媒と、遷移金属を含む水溶液とを混合し、遷移金属を有機相に移動させることにより、抽出分離される。   In the transition metal extraction method described above, the extraction agent containing the TPEN derivative, the organic solvent, and the aqueous solution containing the transition metal are mixed, and the transition metal is transferred to the organic phase to be extracted and separated.

有機溶媒としては、クロロホルム、ニトロベンゼン、1−オクタノール等のTPEN誘導体が溶解可能な任意のものを用いることができる。   As the organic solvent, any solvent that can dissolve TPEN derivatives such as chloroform, nitrobenzene, and 1-octanol can be used.

ここで、一般式(I)で表されるTPEN誘導体は、疎水性官能基が導入されているため、TPENのように酸性領域でプロトン化するのを防ぐとともに、溶媒抽出において水相に分配するのを防ぐことができる。したがって、高レベル放射性廃液等の酸濃度の高い水溶液にも直接適用することができる。   Here, since the TPEN derivative represented by the general formula (I) has a hydrophobic functional group introduced therein, it is prevented from being protonated in an acidic region like TPEN and distributed to an aqueous phase in solvent extraction. Can be prevented. Therefore, it can be directly applied to an aqueous solution having a high acid concentration such as a high-level radioactive liquid waste.

以下、実施例を参照して詳細に説明する。
(実施例1)
実施例1では、TBPEN(N,N,N',N'-テトラキス[4−(2−ブチルオキシ)−2−ピリジルメチル]−1,2−エチレンジアミン)を合成した。
Hereinafter, a detailed description will be given with reference to examples.
Example 1
In Example 1, TBPEN (N, N, N ′, N′-tetrakis [4- (2-butyloxy) -2-pyridylmethyl] -1,2-ethylenediamine) was synthesized.

先ず、2−クロロメチル−4−ブトキシピリジンとエチレンジアミンとを、触媒量の塩化ヘキサデシルトリメチルアンモニウム存在下に水酸化ナトリウム水溶液中で反応させた。室温で4日間攪拌させた反応混合物をジクロロメタンを用いて抽出し、乾燥、濃縮後にアルミナによるカラムクロマトグラフィーにより精製した。また、カラムクロマトグラフィーによる精製後、リサイクル分取HPLC(High performance liquid chromatography)による再精製を行い、下記一般式(III)で表されるTBPENを53%の収率で得た。この収率は、従来法の5倍以上であった。   First, 2-chloromethyl-4-butoxypyridine and ethylenediamine were reacted in an aqueous sodium hydroxide solution in the presence of a catalytic amount of hexadecyltrimethylammonium chloride. The reaction mixture stirred at room temperature for 4 days was extracted with dichloromethane, dried and concentrated, and then purified by column chromatography with alumina. Further, after purification by column chromatography, repurification by recycle preparative HPLC (High performance liquid chromatography) was performed to obtain TBPEN represented by the following general formula (III) in a yield of 53%. This yield was more than five times that of the conventional method.

Figure 0005317256
Figure 0005317256

核磁気共鳴装置により、TBPENのH−NMRスペクトルを測定したところ、7〜8ppmにピリジン環由来の水素原子が観測された。また、4ppm付近にエーテル酸素に結合したメチレン水素に由来するピークが観測され、目的の生成物が合成されたことが分かった。 When a 1 H-NMR spectrum of TBPEN was measured with a nuclear magnetic resonance apparatus, hydrogen atoms derived from a pyridine ring were observed at 7 to 8 ppm. In addition, a peak derived from methylene hydrogen bonded to ether oxygen was observed in the vicinity of 4 ppm, and it was found that the target product was synthesized.

このようにクロロメチルピリジン誘導体とエチレンジアミンを触媒量の塩化ヘキサデシルトリメチルアンモニウム存在下で反応させることにより、炭素鎖長4個からなるエーテル構造をもつTPEN誘導体を効率よく合成することができる。また、生成物の後処理後にアルミナを用いるカラムクロマトグラフィーにより精製することにより、目的とする生成物を効率的に得ることができる。また、カラムクロマトグラフィーによる精製後、リサイクル分取HPLCによる再精製を行うことにより、高純度の目的生成物を得ることができる。
(抽出試験1−1)
次に、TBPENを用いてソフト金属であるCd(II)の抽出試験を行った。有機相にはTBPENをクロロホルムで2mMに希釈したものを用いた。硝酸、硝酸ナトリウムを用いて任意のpH及びイオン強度(0.1)に調整した1mMの硝酸カドミウム水溶液に、同量の有機相を加え、24時間以上振とうした。抽出温度は25℃とした。ICP発光分析装置により水溶液中のCd濃度を測定し、Cdの抽出百分率を算出した。また、比較例として、TPEN(株式会社同仁化学研究所社製)を用いて上記同様の抽出試験を行った。
Thus, by reacting the chloromethylpyridine derivative and ethylenediamine in the presence of a catalytic amount of hexadecyltrimethylammonium chloride, it is possible to efficiently synthesize a TPEN derivative having an ether structure consisting of four carbon chains. Moreover, the target product can be efficiently obtained by purifying by column chromatography using alumina after the product is post-treated. In addition, the target product with high purity can be obtained by performing purification by recycle preparative HPLC after purification by column chromatography.
(Extraction test 1-1)
Next, an extraction test of Cd (II), which is a soft metal, was performed using TBPEN. As the organic phase, TBPEN diluted to 2 mM with chloroform was used. The same amount of organic phase was added to 1 mM cadmium nitrate aqueous solution adjusted to any pH and ionic strength (0.1) using nitric acid and sodium nitrate, and shaken for 24 hours or more. The extraction temperature was 25 ° C. The Cd concentration in the aqueous solution was measured with an ICP emission analyzer, and the extraction percentage of Cd was calculated. As a comparative example, the same extraction test as described above was performed using TPEN (manufactured by Dojindo Laboratories).

図1は、Cd抽出試験の結果を示すグラフである。pH1〜4の領域において、TPENによるCdの抽出百分率は、数%程度と低かった。これに対して、ピリジル基をブトキシ基で疎水化したTBPENのCd抽出百分率は、pH1においてもほぼ100%であった。このようにTPENの疎水化によって、従来のTPENでは抽出が困難であった低pH領域(酸性領域)での抽出が可能であることが分かる。
(抽出試験1−2)
次に、TBPENを用いてAmとEuとの抽出分離試験を行った。有機相にはTBPENをニトロベンゼンで1mMに希釈したものを用いた。硝酸、硝酸ナトリウムを用いて任意のpH及びイオン強度(1.0)に調整したAm(100Bq/ml Am−241)とEu(400Bq/ml Eu−152)との混合溶液に同量の有機相を加えて90分振とうした。抽出温度は25℃とした。振とう後、水溶液1.0mlをサンプルとして分取し、γ線測定用チューブに密封した。半導体検出器にてγ線を測定し、この測定値による計数率をAm、Euの濃度として採用し分配比を求めた。
FIG. 1 is a graph showing the results of a Cd extraction test. In the pH 1-4 region, the percentage of Cd extracted with TPEN was as low as several percent. On the other hand, the Cd extraction percentage of TBPEN in which the pyridyl group was hydrophobized with a butoxy group was almost 100% even at pH 1. Thus, it can be seen that extraction in the low pH region (acidic region), which is difficult to extract with conventional TPEN, is possible by hydrophobizing TPEN.
(Extraction test 1-2)
Next, an extraction separation test of Am and Eu was performed using TBPEN. As the organic phase, TBPEN diluted with nitrobenzene to 1 mM was used. The same amount of organic phase in a mixed solution of Am (100 Bq / ml Am-241) and Eu (400 Bq / ml Eu-152) adjusted to any pH and ionic strength (1.0) using nitric acid and sodium nitrate And shake for 90 minutes. The extraction temperature was 25 ° C. After shaking, 1.0 ml of an aqueous solution was collected as a sample and sealed in a tube for γ-ray measurement. Gamma rays were measured with a semiconductor detector, and the counting rate based on the measured values was adopted as the concentration of Am and Eu to determine the distribution ratio.

図2は、AmとEuの共抽出試験の結果を示すグラフである。pHの低下とともにAmとEu分配比はいずれも減少した。これは酸性度の増加によるTBPENの窒素ドナーへのプロトン付加のためである。このときのAm/Eu分離係数の変化を調べてみると、酸性度の増加(pH低下)に伴って分離係数が増加し、pH3では分離係数97を示した。従来のTPENを用いた共抽出では、pH4.5〜5.5の範囲でAm/Eu分離係数が50〜200程度であることを考えれば、ピリジル基にアルキル基(ブチル基)を導入してTPENを疎水化することによって、酸性域でのAm/Eu分離が可能であると結論付けられる。   FIG. 2 is a graph showing the results of a co-extraction test of Am and Eu. As the pH decreased, both the Am and Eu distribution ratios decreased. This is due to the proton addition of TBPEN to the nitrogen donor due to increased acidity. When the change of the Am / Eu separation factor at this time was examined, the separation factor increased with an increase in acidity (pH decrease), and a separation factor of 97 was exhibited at pH3. In the conventional co-extraction using TPEN, an alkyl group (butyl group) is introduced into the pyridyl group, considering that the Am / Eu separation factor is about 50 to 200 in the pH range of 4.5 to 5.5. It can be concluded that Am / Eu separation in the acidic region is possible by hydrophobizing TPEN.

Cd抽出試験の結果を示すグラフである。It is a graph which shows the result of a Cd extraction test. AmとEuの共抽出試験の結果を示すグラフである。It is a graph which shows the result of the co-extraction test of Am and Eu.

Claims (10)

下記一般式(I)
Figure 0005317256
(式中、R〜Rは炭素数が2〜20のアルコキシ基を示す。)で表されるN,N,N',N'−テトラキス(2−メチルピリジル)エチレンジアミン誘導体を含有する抽出剤。
The following general formula (I)
Figure 0005317256
(Wherein R 1 to R 4 represent an alkoxy group having 2 to 20 carbon atoms.) Extraction containing an N, N, N ′, N′-tetrakis (2-methylpyridyl) ethylenediamine derivative represented by Agent.
上記(I)式中、R〜Rはブトキシ基を示すことを特徴とする請求項1記載の抽出剤。 The extractant according to claim 1 , wherein R 1 to R 4 in the formula (I) represent a butoxy group. 下記一般式(I)
Figure 0005317256
(式中、R〜Rは炭素数が2〜20のアルコキシ基を示す。)で表されるN,N,N',N'−テトラキス(2−メチルピリジル)エチレンジアミン誘導体を含有する抽出剤と、有機溶媒と、希土類元素及び3価マイナーアクチノイド元素を含む水溶液とを混合し、酸性条件下で上記3価マイナーアクチノイドを有機相に移動させることを特徴とする抽出分離方法。
The following general formula (I)
Figure 0005317256
(Wherein R 1 to R 4 represent an alkoxy group having 2 to 20 carbon atoms.) Extraction containing an N, N, N ′, N′-tetrakis (2-methylpyridyl) ethylenediamine derivative represented by An extraction separation method comprising mixing an agent, an organic solvent, and an aqueous solution containing a rare earth element and a trivalent minor actinoid element, and transferring the trivalent minor actinoid to the organic phase under acidic conditions.
上記(I)式中、R〜Rはブトキシ基を示すことを特徴とする請求項3記載の抽出分離方法。 The extraction separation method according to claim 3, wherein R 1 to R 4 in the formula (I) represent a butoxy group. pH3以下で上記3価マイナーアクチノイドを有機相に移動させることを特徴とする請求項3記載の抽出分離方法。   4. The extraction / separation method according to claim 3, wherein the trivalent minor actinoid is transferred to an organic phase at a pH of 3 or less. 下記一般式(I)
Figure 0005317256
(式中、R〜Rは炭素数が2〜20のアルコキシ基を示す。)で表されるN,N,N',N'−テトラキス(2−メチルピリジル)エチレンジアミン誘導体を含有する抽出剤と、有機溶媒と、遷移金属を含む水溶液とを混合し、遷移金属を有機相に移動させることを特徴とする抽出分離方法。
The following general formula (I)
Figure 0005317256
(Wherein R 1 to R 4 represent an alkoxy group having 2 to 20 carbon atoms.) Extraction containing an N, N, N ′, N′-tetrakis (2-methylpyridyl) ethylenediamine derivative represented by An extraction and separation method comprising mixing an agent, an organic solvent, and an aqueous solution containing a transition metal, and transferring the transition metal to the organic phase.
下記一般式(I)
Figure 0005317256
(式中、R〜Rは炭素数が2〜20のアルコキシ基を示す。)で表されるN,N,N',N'−テトラキス(2−メチルピリジル)エチレンジアミン誘導体。
The following general formula (I)
Figure 0005317256
(Wherein R 1 to R 4 represent an alkoxy group having 2 to 20 carbon atoms), an N, N, N ′, N′-tetrakis (2-methylpyridyl) ethylenediamine derivative represented by:
上記(I)式中、R〜Rはブトキシ基を示すことを特徴とする請求項7記載のN,N,N',N'−テトラキス(2−メチルピリジル)エチレンジアミン誘導体。 8. The N, N, N ′, N′-tetrakis (2-methylpyridyl) ethylenediamine derivative according to claim 7, wherein R 1 to R 4 in the formula (I) represent a butoxy group. 下記一般式(II)
Figure 0005317256
(式中、Rは炭素数が2〜20のアルコキシ基を示し、Xはハロゲン置換基を示す。)で表されるピリジン化合物と、エチレンジアミンとをアルカリ条件下で反応させることを特徴とする下記一般式(I)
Figure 0005317256
(式中、R 〜R は炭素数が2〜20のアルコキシ基を示す。)で表されるN,N,N',N'−テトラキス(2−メチルピリジル)エチレンジアミン誘導体の製造方法。
The following general formula (II)
Figure 0005317256
(Wherein R 5 represents an alkoxy group having 2 to 20 carbon atoms, and X represents a halogen substituent) and ethylenediamine is reacted under alkaline conditions. The following general formula (I)
Figure 0005317256
(Wherein R 1 to R 4 represent an alkoxy group having 2 to 20 carbon atoms.) A method for producing an N, N, N ′, N′-tetrakis (2-methylpyridyl) ethylenediamine derivative represented by :
上記(II)式中、Rはブトキシ基を示すことを特徴とする請求項9記載のN,N,N',N'−テトラキス(2−メチルピリジル)エチレンジアミン誘導体の製造方法。 The method for producing an N, N, N ', N'-tetrakis (2-methylpyridyl) ethylenediamine derivative according to claim 9, wherein R 5 in the formula (II) represents a butoxy group.
JP2007210038A 2007-08-10 2007-08-10 Extraction agent and extraction / separation method, and N, N, N ′, N ″ -tetrakis (2-methylpyridyl) ethylenediamine derivative and method for producing the same Active JP5317256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007210038A JP5317256B2 (en) 2007-08-10 2007-08-10 Extraction agent and extraction / separation method, and N, N, N ′, N ″ -tetrakis (2-methylpyridyl) ethylenediamine derivative and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007210038A JP5317256B2 (en) 2007-08-10 2007-08-10 Extraction agent and extraction / separation method, and N, N, N ′, N ″ -tetrakis (2-methylpyridyl) ethylenediamine derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009040751A JP2009040751A (en) 2009-02-26
JP5317256B2 true JP5317256B2 (en) 2013-10-16

Family

ID=40441886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007210038A Active JP5317256B2 (en) 2007-08-10 2007-08-10 Extraction agent and extraction / separation method, and N, N, N ′, N ″ -tetrakis (2-methylpyridyl) ethylenediamine derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP5317256B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2968014B1 (en) * 2010-11-25 2012-12-28 Commissariat Energie Atomique PROCESS FOR SEPARATING AMERICIUM FROM OTHER METAL ELEMENTS PRESENT IN AN ACOUSTIC OR ORGANIC AQUEOUS PHASE AND APPLICATIONS THEREOF
JP6079148B2 (en) * 2012-11-07 2017-02-15 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3095472B2 (en) * 1991-09-19 2000-10-03 株式会社トクヤマ Super oxide sensor
FR2890657B1 (en) * 2005-09-15 2007-11-09 Commissariat Energie Atomique PROCESS FOR OBTAINING COMPLEXES OF HIGHLY LUMINESCENT LANTHANIDES
GB0614337D0 (en) * 2006-07-19 2006-08-30 Acal Energy Ltd Fuel Cells

Also Published As

Publication number Publication date
JP2009040751A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
US12002595B2 (en) Separation of metal ions by liquid-liquid extraction
Werner et al. Supramolecular ligands for the extraction of lanthanide and actinide ions
Grüner et al. Cobalt bis (dicarbollide) ions with covalently bonded CMPO groups as selective extraction agents for lanthanide and actinide cations from highly acidic nuclear waste solutions
RU2577640C2 (en) Method of separating americium from other metal elements present in acidic aqueous or organic phase and versions of use thereof
CN110894578B (en) Extraction method of tetravalent plutonium ions
JP4524394B2 (en) Extraction method of americium and neodymium present in acidic solution
Chu et al. CMPO-calix [4] arenes with spacer containing intramolecular hydrogen bonding: Effect of local rigidification on solvent extraction toward f-block elements
Song et al. Recovery of palladium (II) from strong nitric acid solutions relevant to high-level liquid waste of PUREX process by solvent extraction with pyrazole-pyridine-based amide ligands
ES2594652T3 (en) Novel phosphonic acids and their sulfur derivatives and methods for their preparation
Yang et al. New tetradentate N, O-hybrid phenanthroline-derived organophosphorus extractants for the separation and complexation of trivalent actinides and lanthanides
Yan et al. Synthesis of tailored bis-succinamides and comparison of their extractability for U (VI), Th (IV) and Eu (III)
Song et al. 2-Carboxamido-6-(1H-pyrazol-3-yl)-pyridines as ligands for efficient separation of americium (III) from europium (III)
JP5323925B2 (en) Adsorbent, method for producing the same, and Sr-90 / Y-90 generator using the same
JP5317256B2 (en) Extraction agent and extraction / separation method, and N, N, N ′, N ″ -tetrakis (2-methylpyridyl) ethylenediamine derivative and method for producing the same
Li et al. The novel extractants, bis-triamides: Synthesis and selective extraction of thorium (IV) from nitric acid media
JP4452837B2 (en) Extraction separation method
Horwitz et al. Liquid extraction, the TRUEX process—experimental studies
Li et al. Structure-activity relationship approach toward the improved separation of actinides (III) over lanthanides (III) using amine-triamide ligands
Ali et al. Liquid–liquid extraction of Nd (III) and Eu (III) using nalidixic acid in dichloromethane
EP4092016A1 (en) Method for synthesizing zirconium complex
Kumar et al. High Complexation Selectivity of U (VI) over Rare Earths by N, N‐Dihexyl‐2‐ethylhexanamide (DH2EHA): Experimental and Theoretical Evidence
WO2011024184A1 (en) Dialkyldiaza-tetraalkyloctane diamide derivatives useful for the separation of trivalent actinides from lanthanides and process for the preparation thereof
Kongasseri et al. Amide-decorated reusable C18 silica-packed columns for the rapid, efficient and sequential separation of lanthanoids using reversed phase-high performance liquid chromatography
JP2007278749A (en) Method for separating only trivalent actinoid selectively from liquid solution containing trivalent actinoid and trivalent lanthanoid by using 1,10-phenanthroline or alkyl derivative of it
US10998107B1 (en) Extractants and extractant compositions for radioisotope and metal recovery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5317256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250