JP5311887B2 - Scanning display device - Google Patents

Scanning display device Download PDF

Info

Publication number
JP5311887B2
JP5311887B2 JP2008150718A JP2008150718A JP5311887B2 JP 5311887 B2 JP5311887 B2 JP 5311887B2 JP 2008150718 A JP2008150718 A JP 2008150718A JP 2008150718 A JP2008150718 A JP 2008150718A JP 5311887 B2 JP5311887 B2 JP 5311887B2
Authority
JP
Japan
Prior art keywords
optical system
scanning
light beam
pupil
rdy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008150718A
Other languages
Japanese (ja)
Other versions
JP2009294605A5 (en
JP2009294605A (en
Inventor
亮 山本
隆史 浦川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008150718A priority Critical patent/JP5311887B2/en
Publication of JP2009294605A publication Critical patent/JP2009294605A/en
Publication of JP2009294605A5 publication Critical patent/JP2009294605A5/ja
Application granted granted Critical
Publication of JP5311887B2 publication Critical patent/JP5311887B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)

Description

本発明は、光源からの光束を走査して観察者の眼に導く走査型表示装置に関する。   The present invention relates to a scanning display device that scans a light beam from a light source and guides it to an eye of an observer.

走査型表示装置には、観察者の頭部に装着され、光源からの光束を走査ユニットにより2次元方向に走査して観察者の眼の網膜上に直接画像を形成するものがある。このような頭部装着タイプの走査型表示装置では、観察者が眼球を回転させて瞳孔が動いたときに、装置からの射出光束が瞳孔から外れて画像が欠けたり観察できなくなったりすることを防止する必要がある。このため、瞳孔径以上のサイズの射出瞳径を持つように接眼光学系が設計される。また、射出瞳径が原理上小さくなりやすい走査型表示装置では、レンズアレイや拡散板等の光学素子を用い、該光学素子を透過する光束の広がり角を拡大する方法も採用される(特許文献1参照)。   Some scanning display devices are mounted on an observer's head and form an image directly on the retina of the observer's eye by scanning a light beam from a light source in a two-dimensional direction with a scanning unit. In such a head-mounted scanning display device, when the observer rotates the eyeball and the pupil moves, the emitted light beam from the device is detached from the pupil and the image is missing or cannot be observed. There is a need to prevent. For this reason, the eyepiece optical system is designed to have an exit pupil diameter larger than the pupil diameter. In addition, in a scanning display device in which the exit pupil diameter tends to be small in principle, a method of using an optical element such as a lens array or a diffusion plate and enlarging the spread angle of a light beam transmitted through the optical element is also employed (Patent Document). 1).

ただし、射出瞳径を大きくすると、実際に観察者の瞳孔に入射する光が減少し、この結果、観察される画像が暗くなってしまう。また、近視、遠視、乱視等の観察者は、裸眼での画像観察が難しくなり、眼鏡やコンタクトレンズを装着することが必要となる。   However, when the exit pupil diameter is increased, the light that is actually incident on the pupil of the observer is reduced, and as a result, the observed image becomes dark. In addition, observers such as myopia, hyperopia, and astigmatism have difficulty in observing images with the naked eye, and are required to wear glasses and contact lenses.

また、特許文献1にて開示された表示装置のように、中間像面に拡散板を配置すると、その拡散板のパターンが表示画像に重なって観察されてしまうおそれがある。   Further, when a diffusion plate is arranged on the intermediate image plane as in the display device disclosed in Patent Document 1, there is a possibility that the pattern of the diffusion plate overlaps the display image and is observed.

一方、射出瞳径を小さく設定し、マックスウェル視により画像を観察させる表示装置がある。マックスウェル視を可能とする光学系を用いると、人間の視力に関わらず、高解像度の画像が観察することができる。これは、瞳孔に入射する光束の径が細いため、近視、遠視、乱視等の影響を受けにくくなるためである。さらに、マックスウェル視を可能とする光学系を用いると、光源からの射出光の大部分を瞳孔に入射させることができ、明るい画像の観察を可能とする。   On the other hand, there is a display device in which an exit pupil diameter is set small and an image is observed by Maxwell's view. When an optical system that enables Maxwell's vision is used, a high-resolution image can be observed regardless of human vision. This is because the diameter of the light beam incident on the pupil is thin, so that it is difficult to be affected by myopia, hyperopia, astigmatism and the like. Furthermore, when an optical system that enables Maxwell's viewing is used, most of the light emitted from the light source can be incident on the pupil, and a bright image can be observed.

ただし、マックスウェル視では、眼球が回転したり、両眼視において観察者の眼幅と表示装置の両側の射出瞳間の距離が異なったりした場合に、瞳孔に光束が入射しなくなり、画像を観察できなくなる。   However, in Maxwell's view, if the eyeball rotates or the distance between the exit pupils on both sides of the display device differs between the observer's eye width in binocular vision, the light beam will not enter the pupil and the image will be It becomes impossible to observe.

このため、特許文献2では、接眼レンズと走査光学系に相当する対物レンズの間の距離を可変とすることで射出瞳を移動可能とし、観察者の瞳孔の位置に対して射出瞳の位置を合わせられるようにした走査型表示装置が開示されている。
米国特許5,701,132号明細書 特開平11−352903号公報
For this reason, in Patent Document 2, the exit pupil can be moved by changing the distance between the eyepiece lens and the objective lens corresponding to the scanning optical system, and the position of the exit pupil is set with respect to the position of the pupil of the observer. A scanning display device adapted to be combined is disclosed.
US Pat. No. 5,701,132 JP 11-352903 A

しかしながら、特許文献2にて開示された表示装置では、対物レンズと接眼光学系との間の光学距離が一定に保たれたままで射出瞳を移動させるため、該射出瞳の移動とともに走査ユニットも移動させないと、画角が変化してしまう。画角が変化しないように走査ユニットを含む光学系全体を移動させるように装置を構成すると、装置の大型化を招いてしまう。   However, in the display device disclosed in Patent Document 2, since the exit pupil is moved while the optical distance between the objective lens and the eyepiece optical system is kept constant, the scanning unit is moved along with the movement of the exit pupil. Otherwise, the angle of view will change. If the apparatus is configured to move the entire optical system including the scanning unit so that the angle of view does not change, the apparatus becomes large.

さらに、特許文献2にて開示された表示装置では、観察者の瞳孔が移動したときの瞳孔と射出瞳とのずれによる問題については、何ら考慮されていない。   Furthermore, in the display device disclosed in Patent Document 2, no consideration is given to a problem caused by a deviation between the pupil and the exit pupil when the observer's pupil moves.

本発明は、画角や画像の歪みの変動を少なくしつつ、観察者の瞳孔の位置に対する射出瞳位置の調整や、瞳孔の移動に追従した射出瞳の移動が可能な走査型表示装置を提供する。   The present invention provides a scanning display device capable of adjusting the exit pupil position with respect to the position of the pupil of the observer and moving the exit pupil following the movement of the pupil while reducing fluctuations in the angle of view and image distortion. To do.

本発明の一側面としての走査型表示装置は、光源と、該光源からの光束を走査する走査ユニットと、該走査ユニットからの光束を集光する走査光学系と、該走査光学系からの光束を観察者の眼が配置される射出瞳に導く接眼光学系とを有し、前記走査光学系から前記接眼光学系に進む光束はテレセントリック性を有し、前記接眼光学系は、前記走査光学系からの光束を前記射出瞳に向けて反射する第1の反射面を有しており、前記接眼光学系を、前記走査光学系及び前記走査ユニットに対して、該走査光学系から前記接眼光学系への光束の進行方向に沿った方向に移動可能とする第1の機構を有することを特徴とする。 A scanning display device according to one aspect of the present invention includes a light source, a scanning unit that scans a light beam from the light source, a scanning optical system that collects the light beam from the scanning unit, and a light beam from the scanning optical system. An eyepiece optical system that guides the eye of the observer to the exit pupil where the eye is placed, and the light beam traveling from the scanning optical system to the eyepiece optical system has telecentricity, and the eyepiece optical system includes the scanning optical system A first reflecting surface that reflects the light beam from the scanning optical system with respect to the scanning optical system and the scanning unit. It has the 1st mechanism which enables it to move in the direction along the advancing direction of the light flux to.

本発明では、接眼光学系を走査光学系からのテレセントリック性を有する光束の進行方向に沿って走査光学系に対して移動させる。これにより、画角や画像の歪みの変動をほとんど生じさせることなく、射出瞳の位置を観察者の瞳孔の位置やその移動に合わせて移動させることができる。   In the present invention, the eyepiece optical system is moved relative to the scanning optical system along the traveling direction of the light beam having telecentricity from the scanning optical system. Thereby, the position of the exit pupil can be moved in accordance with the position of the observer's pupil and the movement thereof with little change in the angle of view and the distortion of the image.

以下、本発明の好ましい実施例について図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1には、本発明の実施例1である頭部装着タイプの走査型表示装置の構成を示している。図1は、走査型表示装置を上方(観察者の頭頂部側)から見た図である。図1の紙面に平行な方向が水平方向であり、図1の紙面に垂直な方向が垂直方向である。なお、本実施例の走査型表示装置は、実際には両眼観察用の装置であるが、本実施例で使用する図では、片眼用の構成のみを示している。また、本実施例は、片眼(単眼)で観察するための片眼観察用(単眼観察用)の装置にも適用可能である。   FIG. 1 shows the configuration of a head-mounted scanning display apparatus that is Embodiment 1 of the present invention. FIG. 1 is a view of the scanning display device as viewed from above (the top of the viewer's head). A direction parallel to the paper surface of FIG. 1 is a horizontal direction, and a direction perpendicular to the paper surface of FIG. 1 is a vertical direction. Note that the scanning display device of this embodiment is actually a binocular observation device, but in the drawing used in this embodiment, only the configuration for one eye is shown. The present embodiment can also be applied to an apparatus for one-eye observation (for monocular observation) for observation with one eye (monocular).

光源ユニット101から射出された発散光束は、集光光学系102によって平行光束103に変換されて走査ユニット104に入射する。走査ユニット104は、入射した光束を2次元方向に走査する。走査ユニット104からの光束は、走査光学系105に入射する。走査光学系105は、入射した光束を集光する。   The divergent light beam emitted from the light source unit 101 is converted into a parallel light beam 103 by the condensing optical system 102 and is incident on the scanning unit 104. The scanning unit 104 scans the incident light beam in a two-dimensional direction. The light beam from the scanning unit 104 enters the scanning optical system 105. The scanning optical system 105 condenses the incident light beam.

走査光学系105から射出した光束は、接眼光学系106に入射する。接眼光学系106は、走査光学系105からの光束を、後述する射出瞳107に向けて90°反射させる反射面(第1の反射面)106cを含む。   The light beam emitted from the scanning optical system 105 enters the eyepiece optical system 106. The eyepiece optical system 106 includes a reflection surface (first reflection surface) 106c that reflects the light beam from the scanning optical system 105 by 90 ° toward an exit pupil 107 described later.

そして、接眼光学系106から射出した光束は、射出瞳107を形成する。射出瞳107の位置(又はその近傍)に観察者の眼108、より詳細には瞳孔109が配置されることで、該眼の網膜上に集光点としてのスポットが形成され、該スポットは高速で網膜上を移動する。これにより、網膜上に画像が直接描画され、観察者は画像を認識することができる。   The light beam emitted from the eyepiece optical system 106 forms an exit pupil 107. By arranging the observer's eye 108, more specifically the pupil 109, at the position of the exit pupil 107 (or in the vicinity thereof), a spot as a condensing point is formed on the retina of the eye. Move on the retina with. Thereby, the image is directly drawn on the retina, and the observer can recognize the image.

図2には、走査ユニット104を構成するMEMS走査デバイス201を示している。MEMS走査デバイス201は、半導体プロセス技術により作成される。   FIG. 2 shows a MEMS scanning device 201 constituting the scanning unit 104. The MEMS scanning device 201 is created by a semiconductor process technology.

MEMS走査デバイス201は、偏向面(反射面)を持つ微小ミラー202が、トーションバー203,204を介して支持された構造を有する。微小ミラー202は、トーションバー203がねじれることで軸205を中心とした共振往復運動を行い、トーションバー204がねじれることで軸206を中心とした往復運動を行う。これらの往復運動により、微小ミラー202の法線方向が2次元的に変化する。このため、微小ミラー202に入射した光束の反射方向が2次元的に変化し(偏向され)、この結果、MEMS走査デバイス201により光束が2次元方向に走査される。 The MEMS scanning device 201 has a structure in which a micromirror 202 having a deflection surface (reflection surface) is supported via torsion bars 203 and 204. The micromirror 202 performs a reciprocating reciprocating motion about the shaft 205 when the torsion bar 203 is twisted, and reciprocating about the shaft 206 when the torsion bar 204 is twisted. By these reciprocating motions, the normal direction of the micromirror 202 changes two-dimensionally. For this reason, the reflection direction of the light beam incident on the micromirror 202 changes (deflects) two-dimensionally. As a result, the MEMS light scanning device 201 scans the light beam in the two-dimensional direction.

このようなMEMS走査デバイス201を用いることで、走査ユニット104を小型化することが可能になる。走査ユニット104としては、2次元方向に光束を走査可能なMEMS走査デバイス201だけでなく、1次元方向に光束を走査する回転多面鏡を2つ組み合わせたり、1次元方向に光束を走査するMEMS走査デバイスを2つ組み合わせたりして構成してもよい。   By using such a MEMS scanning device 201, the scanning unit 104 can be reduced in size. As the scanning unit 104, not only the MEMS scanning device 201 capable of scanning a light beam in a two-dimensional direction, but also a combination of two rotary polygon mirrors that scan a light beam in a one-dimensional direction, or a MEMS scan that scans a light beam in a one-dimensional direction. Two devices may be combined or configured.

図3及び図4を用いて、本実施例の走査型表示装置における射出瞳の移動原理について説明する。図3には、図1に示した光学系を簡略化して示しており、図1に示した構成要素と同じものには同じ符号を付している。また、図3では、光源ユニット101からの光束のうち主光線のみを示している。3本の主光線のうち中央の主光線、すなわち走査ユニット104から入射して走査光学系105の中心を通り、射出瞳(画像)の中心に至る光線を、中心画角主光線ともいう。   The principle of movement of the exit pupil in the scanning display device of this embodiment will be described with reference to FIGS. In FIG. 3, the optical system shown in FIG. 1 is simplified, and the same components as those shown in FIG. In FIG. 3, only the chief ray of the light flux from the light source unit 101 is shown. Of the three principal rays, the central principal ray, that is, a ray incident from the scanning unit 104 and passing through the center of the scanning optical system 105 and reaching the center of the exit pupil (image) is also referred to as a central field angle principal ray.

本実施例では、走査ユニット104の全ての走査タイミング(走査角度)で走査光学系105から射出されて接眼光学系106に進む光束群(以下、単に光束ともいう)はテレセントリック性を有する。IPは、走査光学系105から接眼光学系106に進む光束により形成される中間像の位置を示す。   In this embodiment, a light beam group (hereinafter also simply referred to as a light beam) emitted from the scanning optical system 105 and traveling to the eyepiece optical system 106 at all scanning timings (scanning angles) of the scanning unit 104 has telecentricity. IP indicates the position of the intermediate image formed by the light beam traveling from the scanning optical system 105 to the eyepiece optical system 106.

110は水平移動機構(第1の機構)である。水平移動機構110は、図に太矢印で示すように、接眼光学系106を、走査光学系105及び走査ユニット104(さらには光源ユニット101)に対して、走査光学系105から接眼光学系106への光束の進行方向に沿った方向に移動可能に支持している。   Reference numeral 110 denotes a horizontal movement mechanism (first mechanism). The horizontal movement mechanism 110 moves the eyepiece optical system 106 from the scanning optical system 105 to the eyepiece optical system 106 with respect to the scanning optical system 105 and the scanning unit 104 (and the light source unit 101), as indicated by thick arrows in the figure. It is supported so as to be movable in the direction along the traveling direction of the luminous flux.

本実施例では、水平移動機構110は、瞳孔検出器(図示せず)を通じて観察者の眼108の瞳孔109の位置を検出したコントローラ(制御手段)によって制御される。このことは、後述する実施例2,3でも同じである。ただし、本実施例では、該制御系についての説明は省略する。また、水平移動機構110を観察者が手動で操作して、射出瞳107の位置を観察者の眼(瞳孔)の位置に合わせるようにしてもよい。このことも、後述する実施例2,3でも同じである。   In the present embodiment, the horizontal movement mechanism 110 is controlled by a controller (control means) that detects the position of the pupil 109 of the observer's eye 108 through a pupil detector (not shown). This also applies to Examples 2 and 3 described later. However, in this embodiment, description of the control system is omitted. Alternatively, the horizontal movement mechanism 110 may be manually operated by an observer so that the position of the exit pupil 107 matches the position of the observer's eyes (pupil). This is the same in the second and third embodiments described later.

図4(a)〜(c)には、接眼光学系106が通常位置にある状態と、通常位置よりも走査光学系105に近づいた状態と、通常位置よりも走査光学系105から遠ざかった状態の走査型表示装置をそれぞれ示す。   4A to 4C show a state where the eyepiece optical system 106 is in the normal position, a state where the eyepiece optical system 106 is closer to the scanning optical system 105 than the normal position, and a state where the eyepiece optical system 106 is farther from the scanning optical system 105 than the normal position. Each of the scanning display devices is shown.

図4(a)の状態では、観察者の眼108(瞳孔109)は正面を向いており、接眼光学系106が通常位置にあることで、射出瞳107と瞳孔109の位置が一致している。接眼光学系106からの全ての光束が瞳孔109を通して眼に入射している。また、観察者が画像の中心を観察している状態での視軸と、走査光学系105から接眼光学系106に向かうテレセントリック性を有する光束が進む方向とが直交する。   In the state of FIG. 4A, the observer's eye 108 (pupil 109) is facing the front, and the positions of the exit pupil 107 and the pupil 109 coincide with each other because the eyepiece optical system 106 is in the normal position. . All the light beams from the eyepiece optical system 106 enter the eye through the pupil 109. Further, the visual axis when the observer is observing the center of the image is orthogonal to the direction in which the light beam having telecentricity from the scanning optical system 105 toward the eyepiece optical system 106 travels.

この状態から観察者が画像の右端を注視しようとして、眼が回転し、瞳孔109が右側(図では下側)に移動した状態を示すのが図4(b)である。このとき、接眼光学系106が通常位置にあるままでは、射出瞳107と瞳孔109の位置がずれてしまい、瞳孔109に光束が入射せずに画像を観察できなくなる。そこで、接眼光学系106を、通常位置よりも走査光学系105に近づく側(右側)に平行移動させる。これにより、射出瞳107も右側に移動し、該射出瞳107と瞳孔109の位置が一致して、画像を観察できるようになる。   FIG. 4B shows a state in which the eye rotates while the observer tries to gaze at the right end of the image from this state, and the pupil 109 moves to the right side (lower side in the figure). At this time, if the eyepiece optical system 106 is in the normal position, the positions of the exit pupil 107 and the pupil 109 are shifted, and the light beam does not enter the pupil 109 and the image cannot be observed. Therefore, the eyepiece optical system 106 is translated to the side (right side) closer to the scanning optical system 105 than the normal position. As a result, the exit pupil 107 also moves to the right side, and the positions of the exit pupil 107 and the pupil 109 coincide with each other so that an image can be observed.

また、図4(c)は、観察者が画像の左端を注視しようとして、眼が回転し、瞳孔109が左側(図では上側)に移動した状態を示す。このときも、接眼光学系106が通常位置にあるままでは、射出瞳107と瞳孔109の位置がずれてしまい、瞳孔109に光束が入射せずに画像を観察できなくなる。そこで、接眼光学系106を、通常位置よりも走査光学系105から遠ざかる側(左側)に平行移動させる。これにより、射出瞳107も左側に移動し、該射出瞳107と瞳孔109の位置が一致して、画像を観察できるようになる。   FIG. 4C shows a state in which the eye is rotated and the pupil 109 is moved to the left side (upper side in the drawing) so that the observer tries to gaze at the left end of the image. Also at this time, if the eyepiece optical system 106 remains at the normal position, the positions of the exit pupil 107 and the pupil 109 are shifted, and the light beam does not enter the pupil 109 and the image cannot be observed. Therefore, the eyepiece optical system 106 is translated to the side (left side) farther from the scanning optical system 105 than the normal position. As a result, the exit pupil 107 also moves to the left, the positions of the exit pupil 107 and the pupil 109 coincide, and the image can be observed.

なお、接眼光学系106の移動にかかわらず、接眼光学系106からの光束の射出方向は不変である。これにより、射出瞳107が移動しても、観察者が認識する画像は定位置に保持される。   Note that, regardless of the movement of the eyepiece optical system 106, the emission direction of the light beam from the eyepiece optical system 106 remains unchanged. Thereby, even if the exit pupil 107 moves, the image recognized by the observer is held at a fixed position.

本実施例の光学系は、基本的にはマクスウェル視を行う光学系であり、射出瞳107の移動がわずかである場合にはピント変動を考える必要はない。しかし、射出瞳107の移動量が大きい場合には、マクスウェル視が困難になるほどピントがずれる可能性がある。特に広画角である場合は、接眼光学系106の焦点距離が短くなるため、接眼光学系106がわずかに移動しただけでも、ピントが大幅に変動してしまう。   The optical system of the present embodiment is basically an optical system that performs Maxwell's view, and there is no need to consider focus variation when the movement of the exit pupil 107 is slight. However, when the movement amount of the exit pupil 107 is large, there is a possibility that the focus is shifted as Maxwell's view becomes difficult. In particular, when the angle of view is wide, the focal length of the eyepiece optical system 106 is shortened, so that the focus varies greatly even if the eyepiece optical system 106 is slightly moved.

このため、本実施例では、接眼光学系106の移動に応じて、可動光学系としての集光光学系102をその光軸方向に移動させることで、光源ユニット101からの光束の像点位置を移動させる。本実施例では、図4(b)に示す状態では集光光学系102を図4(a)に示す位置よりも走査ユニット104に近づく側に移動させる。また、図4(c)に示す状態では集光光学系102を図4(a)に示す位置よりも走査ユニット104から遠ざかる側に移動させる。これにより、観察者が観察する画像のピント状態を一定に保ち、マクスウェル視を維持することができる。   Therefore, in this embodiment, the image point position of the light beam from the light source unit 101 is determined by moving the condensing optical system 102 as a movable optical system in the optical axis direction in accordance with the movement of the eyepiece optical system 106. Move. In this embodiment, in the state shown in FIG. 4B, the condensing optical system 102 is moved closer to the scanning unit 104 than the position shown in FIG. In the state shown in FIG. 4C, the condensing optical system 102 is moved to the side farther from the scanning unit 104 than the position shown in FIG. Thereby, the focus state of the image observed by the observer can be kept constant, and Maxwell's view can be maintained.

前述したように、走査光学系105から接眼光学系106に進む光束がテレセントリック性を有するため、接眼光学系106が移動しても、観察者が観察する画角の大きさや画像の歪みはほとんど変わらない。このため、射出瞳107が移動しても、画角や歪みを光学的又は電気的に補正する必要はない。   As described above, since the light beam traveling from the scanning optical system 105 to the eyepiece optical system 106 has telecentricity, even if the eyepiece optical system 106 moves, the size of the angle of view and the distortion of the image observed by the observer are almost the same. Absent. For this reason, even if the exit pupil 107 moves, there is no need to optically or electrically correct the angle of view and distortion.

ここで、本実施例にいうテレセントリック性とは、光束の拡がり角をθとするとき、
θ≦3deg
であることが望ましい。さらに、射出瞳107の移動量を大きくしても画角や画像の歪みの変化を小さくするには、
θ≦1deg
であることが望ましい。
Here, the telecentricity referred to in the present embodiment means that when the beam divergence angle is θ,
θ ≦ 3deg
It is desirable that Furthermore, in order to reduce the change in the angle of view and the distortion of the image even if the movement amount of the exit pupil 107 is increased,
θ ≦ 1deg
It is desirable that

なお、観察者が画像を観察する場合においては、水平方向(左右方向)での注視位置の変更には眼球を回転させることが多い一方、垂直方向での注視位置の変更には頭全体を上下に動かすことが多い。このため、本実施例では、瞳孔の位置が大きく動きやすい水平方向にのみ射出瞳107を移動させ、垂直方向については移動させない。   When an observer observes an image, the eyeball is often rotated to change the gaze position in the horizontal direction (left-right direction), while the entire head is moved up and down to change the gaze position in the vertical direction. It is often moved to. For this reason, in this embodiment, the exit pupil 107 is moved only in the horizontal direction in which the position of the pupil is large and easy to move, and is not moved in the vertical direction.

このように、本実施例では、走査光学系105から接眼光学系106に向かって進む光束にテレセントリック性を持たせている。つまりは、走査光学系105及び接眼光学系106をそれぞれ像側テレセントリックな光学系として構成している。そして、接眼光学系106を、走査光学系105及び走査ユニット104に対して、該テレセントリック性を有する光束の進行方向に沿った方向に移動させる。つまりは、接眼光学系106と走査光学系105との間の距離(間隔)を変更する。   As described above, in this embodiment, the light beam traveling from the scanning optical system 105 toward the eyepiece optical system 106 has telecentricity. That is, the scanning optical system 105 and the eyepiece optical system 106 are each configured as an image side telecentric optical system. Then, the eyepiece optical system 106 is moved with respect to the scanning optical system 105 and the scanning unit 104 in a direction along the traveling direction of the light beam having the telecentricity. That is, the distance (interval) between the eyepiece optical system 106 and the scanning optical system 105 is changed.

これにより、射出瞳107の位置を接眼光学系106の移動方向と同じ方向に移動させることができる。したがって、画角や画像の歪みの変動をほとんど生じさせることなく、射出瞳107の位置を観察者の瞳孔109の位置(両眼の幅)やその移動に合わせて移動させることができる。   Thereby, the position of the exit pupil 107 can be moved in the same direction as the moving direction of the eyepiece optical system 106. Therefore, the position of the exit pupil 107 can be moved in accordance with the position of the observer's pupil 109 (the width of both eyes) and the movement thereof with little variation in the angle of view and image distortion.

図5には、本発明の実施例2である頭部装着タイプの走査型表示装置の構成を示している。図5は、走査型表示装置を上方(観察者の頭頂部側)から見た図である。図5の紙面に平行な方向が水平方向であり、図5の紙面に垂直な方向が垂直方向である。   FIG. 5 shows the configuration of a head-mounted scanning display apparatus that is Embodiment 2 of the present invention. FIG. 5 is a view of the scanning display device as viewed from above (the top of the viewer's head). A direction parallel to the paper surface of FIG. 5 is a horizontal direction, and a direction perpendicular to the paper surface of FIG. 5 is a vertical direction.

光源ユニット101から発散光束として射出し、集光光学系502により平行化された光束103は、走査ユニット104に入射する。該光束は、走査ユニット104により2次元方向に走査され、走査光学系505に入射する。   A light beam 103 emitted from the light source unit 101 as a divergent light beam and collimated by the condensing optical system 502 is incident on the scanning unit 104. The light beam is scanned in a two-dimensional direction by the scanning unit 104 and enters the scanning optical system 505.

2つのプリズム素子により構成された走査光学系505に入射した光束は、該走査光学系505内で1回中間結像した後、走査光学系505から射出する。走査ユニット104における全ての走査タイミングで走査光学系505から射出する光束群は、テレセントリック性を有する。   The light beam incident on the scanning optical system 505 constituted by two prism elements forms an intermediate image once in the scanning optical system 505 and then exits from the scanning optical system 505. A light beam group emitted from the scanning optical system 505 at all scanning timings in the scanning unit 104 has telecentricity.

走査光学系505から射出した光束は、接眼光学系506に入射する。接眼光学系506に入射した光束は、その内部で1回中間結像した後に接眼光学系506を射出して、射出瞳107を形成する。接眼光学系506は、後述するように2つのプリズム素子により構成されており、そのうち射出瞳側のプリズム素子には、光束を射出瞳107に導く反射面(第1の反射面)506bが設けられている。   The light beam emitted from the scanning optical system 505 enters the eyepiece optical system 506. The light beam incident on the eyepiece optical system 506 forms an intermediate image once inside, and then exits the eyepiece optical system 506 to form an exit pupil 107. The eyepiece optical system 506 is composed of two prism elements as will be described later. Among the prism elements on the exit pupil side, a reflection surface (first reflection surface) 506 b that guides the light beam to the exit pupil 107 is provided. ing.

走査光学系505及び接眼光学系506をプリズム素子を用いて構成することで、主たる光学パワーを反射面に付与することが可能になり、色収差を低減させることができる。また、走査光学系505及び接眼光学系506を構成する光学素子の数を減らすことができる。   By configuring the scanning optical system 505 and the eyepiece optical system 506 using prism elements, it is possible to apply main optical power to the reflecting surface, and to reduce chromatic aberration. Further, the number of optical elements constituting the scanning optical system 505 and the eyepiece optical system 506 can be reduced.

本実施例での接眼光学系506について、図6を用いて説明する。接眼光学系506は、第1プリズム素子506−1と第2プリズム素子506−2とにより構成されている。像面601を通って接眼光学系506に入射した光束は、まず第2プリズム素子506−2内で2回反射し、次に第1プリズム素子506−1内で2回反射して射出する。   The eyepiece optical system 506 in this embodiment will be described with reference to FIG. The eyepiece optical system 506 includes a first prism element 506-1 and a second prism element 506-2. The light beam incident on the eyepiece optical system 506 through the image surface 601 is first reflected twice in the second prism element 506-2, and then reflected twice and emitted in the first prism element 506-1.

観察者の眼108側から光線追跡を行うと、第2プリズム506−2から射出して走査光学系505に向かう光束がテレセントリック性を有する。観察者が画像の中心を観察している状態(後述する図7(a)に示す状態)での視軸と、該テレセントリック性を有する射出光束が進む方向とが直交する。また、上記のようにプリズム素子によって光路を折り畳むことにより、光学系全体の視軸方向の長さを小さくすることができる。   When ray tracing is performed from the observer's eye 108 side, the light beam emitted from the second prism 506-2 and directed to the scanning optical system 505 has telecentricity. The visual axis when the observer is observing the center of the image (the state shown in FIG. 7A described later) is orthogonal to the direction in which the emitted light beam having the telecentricity travels. Further, by folding the optical path by the prism element as described above, the length of the entire optical system in the visual axis direction can be reduced.

図示はしないが、本実施例でも、接眼光学系506を、走査光学系505及び走査ユニット104に対して、上記テレセントリック性を有する光束の進行方向に沿った方向に移動可能とする水平移動機構を有する。   Although not shown, in this embodiment as well, a horizontal movement mechanism that allows the eyepiece optical system 506 to move in the direction along the traveling direction of the light beam having the telecentricity with respect to the scanning optical system 505 and the scanning unit 104 is provided. Have.

図7(a)〜(c)には、接眼光学系506が通常位置にある状態と、通常位置よりも走査光学系505から遠ざかった状態と、通常位置よりも走査光学系505に近づいた状態をそれぞれ示す。   7A to 7C show a state where the eyepiece optical system 506 is in the normal position, a state where the eyepiece optical system 506 is farther from the scanning optical system 505 than the normal position, and a state where the eyepiece optical system 506 is closer to the scanning optical system 505 than the normal position. Respectively.

図7(a)の状態は、実施例1における図4(a)に示す状態に相当する。また、図7(b)の状態は、実施例1における図4(c)に示す状態に相当する。さらに、図7(c)の状態は、実施例1における図4(b)に示す状態に相当する。本実施例でも、瞳孔109の移動に応じて、接眼光学系506を移動させて射出瞳107を移動させることにより、射出瞳107と瞳孔109の位置を一致させ、画像が観察できなくなることを防止している。   The state shown in FIG. 7A corresponds to the state shown in FIG. Moreover, the state of FIG.7 (b) is corresponded in the state shown in FIG.4 (c) in Example 1. FIG. Further, the state of FIG. 7C corresponds to the state shown in FIG. Also in the present embodiment, by moving the eyepiece optical system 506 and moving the exit pupil 107 in accordance with the movement of the pupil 109, the positions of the exit pupil 107 and the pupil 109 are matched to prevent the image from being unobservable. doing.

また、本実施例でも、接眼光学系506の移動に応じて、可動光学系としての集光光学系502をその光軸方向に移動させることで、射出瞳107が大きく移動しても観察者が観察する画像のピント状態を一定に保ち、マクスウェル視を維持することができる。   Also in this embodiment, by moving the condensing optical system 502 as a movable optical system in the optical axis direction in accordance with the movement of the eyepiece optical system 506, the observer can move even if the exit pupil 107 moves greatly. The focus state of the image to be observed can be kept constant, and Maxwell's view can be maintained.

図8には、本発明の実施例3である頭部装着タイプの走査型表示装置の構成を示している。図8は、走査型表示装置を上方(観察者の頭頂部側)から見た図である。図8の紙面に平行な方向が水平方向であり、図8の紙面に垂直な方向が垂直方向である。   FIG. 8 shows the configuration of a head-mounted scanning display apparatus that is Embodiment 3 of the present invention. FIG. 8 is a view of the scanning display device as viewed from above (the top of the viewer's head). A direction parallel to the paper surface of FIG. 8 is a horizontal direction, and a direction perpendicular to the paper surface of FIG. 8 is a vertical direction.

本実施例は、実施例1と基本的に同様の光学系を用いているが、走査光学系805及び接眼光学系806にプリズム素子を用いて、光学系全体を小型化している。   This embodiment uses an optical system that is basically the same as that of the first embodiment, but uses a prism element in the scanning optical system 805 and the eyepiece optical system 806 to reduce the size of the entire optical system.

なお、図8において、図1と共通する構成要素には、図1と同じ符号を付している。   In FIG. 8, the same reference numerals as those in FIG.

光源ユニット101を射出した光束103は、集光光学系102及び走査ユニット104を介して走査光学系805へと入射する。ここまでは、実施例1と同じである。   The light beam 103 emitted from the light source unit 101 is incident on the scanning optical system 805 via the condensing optical system 102 and the scanning unit 104. Up to this point, the process is the same as in the first embodiment.

走査光学系805は、プリズム素子805−1と、レンズ素子805−2,805−3とにより構成されている。走査ユニット104からの光束は、プリズム素子805−1の入射面から入射して2回反射した後、射出面から射出する。その後、光束は、レンズ素子805−2,805−3を通過して走査光学系105から射出する。   The scanning optical system 805 includes a prism element 805-1 and lens elements 805-2 and 805-3. The light beam from the scanning unit 104 is incident from the incident surface of the prism element 805-1, reflected twice, and then emitted from the exit surface. Thereafter, the light beam passes through the lens elements 805-2 and 805-3 and exits from the scanning optical system 105.

レンズ素子805−2,805−3を通過することで、走査ユニット104の全ての走査タイミング(走査角度)で走査光学系805から射出されて接眼光学系806に進む光束群はテレセントリック性を有する。   By passing through the lens elements 805-2 and 805-3, the light beam group emitted from the scanning optical system 805 and proceeding to the eyepiece optical system 806 at all scanning timings (scanning angles) of the scanning unit 104 has telecentricity.

走査光学系105からの光束は、接眼光学系806を構成するプリズム素子の入射面から入射し、反射面(第1の反射面)806bで反射した後、射出面から射出して、射出瞳107を形成する。接眼光学系806を、反射面806bを有するプリズム素子を用いて構成することで、接眼光学系806の主たるパワーを反射面806bに持たせ、色収差を低減することができる。また、プリズム素子が三角柱形状に形成されることにより、走査光学系805から接眼光学系806への光束の進行方向と、接眼光学系806からの光束の射出方向とを容易に直交させることができる。   The light beam from the scanning optical system 105 is incident from the incident surface of the prism element constituting the eyepiece optical system 806, is reflected by the reflecting surface (first reflecting surface) 806b, is emitted from the exit surface, and is exited from the exit pupil 107. Form. By configuring the eyepiece optical system 806 using a prism element having the reflecting surface 806b, the main power of the eyepiece optical system 806 can be given to the reflecting surface 806b, and chromatic aberration can be reduced. Further, since the prism element is formed in a triangular prism shape, the traveling direction of the light beam from the scanning optical system 805 to the eyepiece optical system 806 and the emission direction of the light beam from the eyepiece optical system 806 can be easily orthogonalized. .

図9(a)〜(c)には、接眼光学系806が通常位置にある状態と、通常位置よりも走査光学系805に近づいた状態と、通常位置よりも走査光学系805から遠ざかった状態をそれぞれ示す。   9A to 9C show a state in which the eyepiece optical system 806 is in the normal position, a state in which the eyepiece optical system 806 is closer to the scanning optical system 805 than the normal position, and a state in which the eyepiece optical system 806 is farther from the scanning optical system 805 than in the normal position. Respectively.

図9(a)の状態は、実施例1における図4(a)に示す状態に相当する。また、図9(b)の状態は、実施例1における図4(b)に示す状態に相当する。さらに、図9(c)の状態は、実施例1における図4(c)に示す状態に相当する。本実施例でも、瞳孔109の移動に応じて、接眼光学系806を移動させて射出瞳107を移動させることにより、射出瞳107と瞳孔109の位置を一致させ、画像が観察できなくなることを防止している。   The state shown in FIG. 9A corresponds to the state shown in FIG. Moreover, the state of FIG.9 (b) is corresponded in the state shown in FIG.4 (b) in Example 1. FIG. Further, the state of FIG. 9C corresponds to the state shown in FIG. Also in this embodiment, by moving the eyepiece optical system 806 and moving the exit pupil 107 in accordance with the movement of the pupil 109, the positions of the exit pupil 107 and the pupil 109 are matched to prevent the image from being unobservable. doing.

また、本実施例でも、接眼光学系806の移動に応じて、可動光学系としての集光光学系802をその光軸方向に移動させることで、射出瞳107が大きく移動しても観察者が観察する画像のピント状態を一定に保ち、マクスウェル視を維持することができる。   Also in this embodiment, by moving the condensing optical system 802 as a movable optical system in the optical axis direction in accordance with the movement of the eyepiece optical system 806, the observer can move even if the exit pupil 107 moves greatly. The focus state of the image to be observed can be kept constant, and Maxwell's view can be maintained.

なお、本実施例では、水平方向にのみ射出瞳107を移動させる場合について説明したが、図10に示す光学系を用いて、垂直方向にも射出瞳107を移動させるようにしてもよい。図11には、図10に示した走査型表示装置の具体的な光学構成例を示している。   In the present embodiment, the case where the exit pupil 107 is moved only in the horizontal direction has been described. However, the exit pupil 107 may also be moved in the vertical direction using the optical system shown in FIG. FIG. 11 shows a specific optical configuration example of the scanning display device shown in FIG.

図10及び図11に示す光学系は、走査光学系を、走査ユニット104からの光束が入射する第1の走査光学系805と、第1の走査光学系805からの光束が入射する第2の走査光学系1001とにより構成されている。第2の走査光学系1001は、両側テレセントリックなリレー光学系により構成されている。また、第2の走査光学系1001は、第1の走査光学系805からの光束を接眼光学系806に向けて反射する反射面(第2の反射面)1002を含む。   The optical system shown in FIGS. 10 and 11 includes a scanning optical system in which a first scanning optical system 805 in which a light beam from the scanning unit 104 is incident and a second light beam in which the light beam from the first scanning optical system 805 is incident. And a scanning optical system 1001. The second scanning optical system 1001 is composed of a double-sided telecentric relay optical system. Further, the second scanning optical system 1001 includes a reflective surface (second reflective surface) 1002 that reflects the light beam from the first scanning optical system 805 toward the eyepiece optical system 806.

1003は垂直移動機構(第2の機構)である。垂直移動機構1003は、第2の走査光学系1001を、第1の走査光学系805及び走査ユニット104に対して、第1の走査光学系805から第2の走査光学系1001への光束の進行方向に沿った方向に移動可能に支持している。このとき、接眼光学系806も、第2の走査光学系1001とともに同じ方向に移動する。このように、第2の走査光学系1001及び接眼光学系806を移動させる(第1及び第2の走査光学系805,1001の間の距離を変更する)ことにより、射出瞳107が垂直方向に移動する。   Reference numeral 1003 denotes a vertical movement mechanism (second mechanism). The vertical movement mechanism 1003 causes the second scanning optical system 1001 to travel from the first scanning optical system 805 to the second scanning optical system 1001 with respect to the first scanning optical system 805 and the scanning unit 104. It is movably supported in a direction along the direction. At this time, the eyepiece optical system 806 also moves in the same direction together with the second scanning optical system 1001. Thus, by moving the second scanning optical system 1001 and the eyepiece optical system 806 (changing the distance between the first and second scanning optical systems 805 and 1001), the exit pupil 107 is moved in the vertical direction. Moving.

1005は実施例1でも説明した水平移動機構(第1の機構)である。水平移動機構1005は、接眼光学系806を、走査光学系805,1001及び走査ユニット104に対して、第2の走査光学系1001から接眼光学系806への光束の進行方向に沿った方向に移動可能に支持している。接眼光学系806を移動させる(接眼光学系806と走査光学系805,1001の間の距離を変更する)ことにより、射出瞳107が水平方向に移動する。 Reference numeral 1005 denotes the horizontal movement mechanism (first mechanism) described in the first embodiment. The horizontal movement mechanism 1005 moves the eyepiece optical system 806 in a direction along the traveling direction of the light flux from the second scanning optical system 1001 to the eyepiece optical system 806 with respect to the scanning optical systems 805 and 1001 and the scanning unit 104. I support it as possible. By moving the eyepiece optical system 806 (changing the distance between the eyepiece optical system 806 and the scanning optical systems 805 and 1001), the exit pupil 107 moves in the horizontal direction.

このように、本実施例では、射出瞳107を2次元方向に移動させることができる。   Thus, in this embodiment, the exit pupil 107 can be moved in a two-dimensional direction.

図12には、本発明の実施例4である走査型表示装置1201の構成を示している。本実施例の走査型表示装置1201は、実施例2で説明した光学系を用いて、ビデオカメラ1202により撮像された映像(画像)を観察者の眼に提示する。 FIG. 12 shows the configuration of a scanning display apparatus 1201 that is Embodiment 4 of the present invention. The scanning display device 1201 of the present embodiment uses the optical system described in the second embodiment to present an image (image) captured by the video camera 1202 to the observer's eyes.

ビデオカメラ1202からの撮像信号は、画像処理回路1203によって映像信号Sに変換される。歪み補正回路1211は、不図示のテーブルデータから光学系が有する歪み(収差)を補正するためのパラメータを取得し、観察者に提示される画像が歪みを持たないように、映像信号Sに対して逆補正をかけた映像信号を生成する。生成された映像信号は、メモリ1213にフレームごとに一時的に保持される。   An imaging signal from the video camera 1202 is converted into a video signal S by the image processing circuit 1203. The distortion correction circuit 1211 acquires parameters for correcting distortion (aberration) of the optical system from table data (not shown), and applies the image signal S so that the image presented to the observer does not have distortion. To generate a reverse-corrected video signal. The generated video signal is temporarily stored in the memory 1213 for each frame.

描画回路1214は、メモリ1213に記憶されたフレームに基づいて、光源ユニット101から発せられて走査ユニット104により走査される光束によって観察者の網膜上に該フレームに対応する画像が描画されるように、光源ユニット101を変調する。これにより、観察者の網膜上に、ビデオカメラ1202で撮像された映像に対応する2次元映像が描画される。   Based on the frame stored in the memory 1213, the drawing circuit 1214 draws an image corresponding to the frame on the observer's retina by a light beam emitted from the light source unit 101 and scanned by the scanning unit 104. The light source unit 101 is modulated. As a result, a two-dimensional image corresponding to the image captured by the video camera 1202 is drawn on the retina of the observer.

瞳孔検出器1204は、CCDカメラ1205と瞳孔検出回路1206とにより構成されている。CCDカメラ1205は、2つの赤外線LED1207により照らされた観察者の瞳孔109を撮像する。瞳孔検出回路1206は、CCDカメラ1205により得られた画像から瞳孔109の位置を割り出す。   The pupil detector 1204 includes a CCD camera 1205 and a pupil detection circuit 1206. The CCD camera 1205 images the observer's pupil 109 illuminated by the two infrared LEDs 1207. The pupil detection circuit 1206 determines the position of the pupil 109 from the image obtained by the CCD camera 1205.

コントローラ1209は、割り出された瞳孔109の位置と現在の射出瞳107の位置との水平方向での差を算出する。そして、該水平方向での位置差をゼロとするように、アクチュエータ1210aを駆動して不図示の水平移動機構を動作させ、接眼光学系506を水平方向(左右方向)に移動させる。また、コントローラ1209は、アクチュエータ1210bを駆動して、集光光学系502を光軸方向に移動させる。こうして、瞳孔109の移動に応じて射出瞳107を移動させるとともに、視度補正(ピント補正)を行う。   The controller 1209 calculates the difference in the horizontal direction between the determined position of the pupil 109 and the current position of the exit pupil 107. Then, the actuator 1210a is driven to operate the horizontal movement mechanism (not shown) so that the positional difference in the horizontal direction becomes zero, and the eyepiece optical system 506 is moved in the horizontal direction (left-right direction). The controller 1209 drives the actuator 1210b to move the condensing optical system 502 in the optical axis direction. Thus, the exit pupil 107 is moved in accordance with the movement of the pupil 109, and diopter correction (focus correction) is performed.

このように、本実施例によれば、瞳孔109が移動しても、射出瞳107の位置がこれに追従して移動するため、観察者は常に欠けのない映像を観察することができる。   As described above, according to the present embodiment, even when the pupil 109 moves, the position of the exit pupil 107 moves following the pupil 109, so that the observer can always observe an image without any defects.

以下、上述した実施例1〜3に対応する数値例(設計例)を表1〜3に記載する。各実施例では、光源ユニット側から射出瞳側に向かって光路を説明したが、数値例では、射出瞳側から光源ユニット側に光路を逆追跡した形で記載している。   Hereinafter, numerical examples (design examples) corresponding to Examples 1 to 3 described above are shown in Tables 1 to 3. In each embodiment, the optical path is described from the light source unit side toward the exit pupil side. However, in the numerical examples, the optical path is described in the form of backward tracking from the exit pupil side to the light source unit side.

各表においては、光源ユニットの位置を絶対座標系の基準位置(第0面)として表記する。絶対座標系における3次元の座標軸であるZ軸,Y軸,X軸は以下のように定義される。   In each table, the position of the light source unit is expressed as a reference position (0th surface) in the absolute coordinate system. The Z axis, Y axis, and X axis, which are three-dimensional coordinate axes in the absolute coordinate system, are defined as follows.

Z軸:第0面の中心から第1面の中心(絶対座標の原点)を通る直線で、この方向を正とする。   Z axis: A straight line passing from the center of the 0th surface to the center of the first surface (the origin of absolute coordinates), and this direction is positive.

Y軸:第1面の中心を通り、Z軸に対して反時計回り方向に90度をなす直線。   Y axis: A straight line that passes through the center of the first surface and forms 90 degrees counterclockwise with respect to the Z axis.

X軸:第1面の中心を通り、Z軸及びY軸に直交する直線。   X axis: A straight line passing through the center of the first surface and orthogonal to the Z axis and the Y axis.

また、光学系を構成する第i面の面形状の表記ではローカル座標系を設定し、該面形状は、ローカル座標系に基づいた関数により表現する。第i面のYZ面内でのチルト角は、絶対座標系のZ軸に対して、反時計回り方向を正方向とした角度θgi(単位はdegree)で表す。本実施例では、チルト角は、YZ面内のみに設定している。第i面のローカル座標系(x,y,z)のy,z軸は、絶対座標系のYZ面内にあり、YZ面内で角度θgiだけ傾いている。ローカル座標系のz,y,x軸は以下のように定義される。   In the notation of the surface shape of the i-th surface constituting the optical system, a local coordinate system is set, and the surface shape is expressed by a function based on the local coordinate system. The tilt angle of the i-th surface in the YZ plane is represented by an angle θgi (unit: degree) with the counterclockwise direction as the positive direction with respect to the Z axis of the absolute coordinate system. In this embodiment, the tilt angle is set only in the YZ plane. The y and z axes of the local coordinate system (x, y, z) of the i-th surface are in the YZ plane of the absolute coordinate system and are inclined by the angle θgi in the YZ plane. The z, y, and x axes of the local coordinate system are defined as follows.

z軸:ローカル座標の原点を通り、絶対座標系のZ軸に対してYZ面内において反時計回り方向に角度θgiをなす直線。   z-axis: A straight line that passes through the origin of the local coordinates and forms an angle θgi in the counterclockwise direction in the YZ plane with respect to the Z-axis of the absolute coordinate system.

y軸:ローカル座標の原点を通り、z軸に対してYZ面内において反時計回り方向に90degreeをなす直線。   y-axis: A straight line that passes through the origin of the local coordinates and forms 90 degrees counterclockwise in the YZ plane with respect to the z-axis.

x軸:ローカル座標の原点を通り、YZ面に対して直交する直線。   x-axis: A straight line passing through the origin of the local coordinates and orthogonal to the YZ plane.

各表において、Ndi,νdiはそれぞれ、第i面と第i+1面の間の媒質のd線に対する屈折率とアッベ数を表している。また、「e±X」は、「×10±X」を意味する。 In each table, Ndi and νdi represent the refractive index and Abbe number for the d-line of the medium between the i-th surface and the (i + 1) -th surface, respectively. “E ± X” means “× 10 ± X” .

また、回転対称軸を有さない非回転対称面(表中にはXYP,ASP又はALと表記)は、以下の数式で表現される。   Further, a non-rotationally symmetric surface (noted as XYP, ASP, or AL in the table) that does not have a rotational symmetry axis is expressed by the following mathematical formula.

この関数は、第i面のローカル座標(x,y,z)により面形状を定義する関数である。また、この関数で、ローカル座標系でxの奇数次に関する項を0とすることで、yz平面に対して対称な面を得ることができる。   This function is a function that defines a surface shape by local coordinates (x, y, z) of the i-th surface. Also, with this function, a plane symmetric with respect to the yz plane can be obtained by setting the term relating to the odd order of x to 0 in the local coordinate system.

各数値例では、各面の面頂点を、y,z軸方向でシフト偏心させるとともに、x軸回りでチルト偏心させているだけである。このため、従来の母線断面とローカル母線断面は同一断面であるが、各面の従来の子線断面とローカル子線断面とは異なる。   In each numerical example, the surface vertices of each surface are only shifted eccentrically in the y and z axis directions and tilted eccentrically around the x axis. For this reason, the conventional bus bar cross section and the local bus bar cross section are the same cross section, but the conventional bus bar cross section and the local bus bar cross section of each surface are different.

また、各表には、各光学面のローカル座標の原点における曲率半径(ローカル母線断面上での曲率半径、ローカル子線断面上での曲率半径)rx,ryを示す。また、第i面と第i+1面での中心画角主光線が入射するヒットポイント間の距離(空気換算なしの値)をローカル面間隔dとして示している。さらに、各面の偏心量shift,tiltを示している。   Each table shows the radii of curvature at the origin of the local coordinates of each optical surface (the radius of curvature on the cross section of the local bus and the radius of curvature on the cross section of the local bus) rx, ry. Further, the distance between the hit points where the central field angle principal ray is incident on the i-th surface and the (i + 1) -th surface (value without air conversion) is shown as a local surface interval d. Further, the eccentric amounts shift and tilt of each surface are shown.

前述したように、面の形状が自由曲面である面をXYPとし、球面である面をSPHとして示す、また、非球面である面をAL又はASPとして示している。非球面係数は、表の下段に示している。Mが付された面は、その面が反射面であることを示している。   As described above, a surface whose surface shape is a free-form surface is indicated as XYP, a spherical surface is indicated as SPH, and an aspheric surface is indicated as AL or ASP. The aspheric coefficient is shown in the lower part of the table. The surface with M indicates that the surface is a reflecting surface.

<数値例1>
図13に、実施例1に対応する光学系の数値例を示す。対角画角は50deg(図の紙面内に対応する水平画角は43deg、図の紙面に垂直な垂直画角は25.3deg、アスペクト比は16:9)であり、射出瞳径φは1mmである。MEMSの走査角は水平方向に±7.125deg、垂直方向に±4.008degである。接眼光学系106のアイポイントは7.5mmである。接眼光学系106と走査光学系105の間の光束のなす角は、最大で0.32degである。
<Numerical example 1>
FIG. 13 shows a numerical example of the optical system corresponding to the first embodiment. The diagonal field angle is 50 deg (the horizontal field angle corresponding to the plane of the figure is 43 deg, the vertical field angle perpendicular to the page of the figure is 25.3 deg, the aspect ratio is 16: 9), and the exit pupil diameter φ is 1 mm. It is. The scanning angle of MEMS is ± 7.125 deg in the horizontal direction and ± 4.008 deg in the vertical direction. The eye point of the eyepiece optical system 106 is 7.5 mm. The angle formed by the light beam between the eyepiece optical system 106 and the scanning optical system 105 is 0.32 deg at the maximum.


射出瞳107 面番号1
面106a 面番号2
面106b 面番号3
面106c 面番号4
面105a 面番号6
面105b 面番号7
面105c 面番号8
面105d 面番号9
面105e 面番号10
面105f 面番号11
面105g 面番号12
面105h 面番号13
面105i 面番号14
面105j 面番号15
面105k 面番号16
面105l 面番号17
面105m 面番号18
面105n 面番号19
面105o 面番号20
走査ユニット104 面番号21
面102a 面番号22
面102b 面番号23
面102c 面番号24
光源ユニット101 面番号25

type sur Yg Zg qg ry rx d shift tilt nd νd
1 0.0000 0.0000 0.0000 0.0000 0.0000 7.500 0.000 0.000 1.000
2 0.0000 7.5000 0.0000 19.4650 19.4650 7.500 0.000 0.000 1.533 38.16
ASP 3 0.0000 15.0000 0.0000 -6.1615 -6.1615 7.000 0.000 0.000 1.000
M 4 0.0000 22.0000 45.0000 0.0000 0.0000 0.000 0.000 45.000 -1.000
5 -1.2715 22.0000 90.0000 0.0000 0.0000 0.000 -1.271 90.000 -1.000
6 -15.0000 22.0000 90.0000 9.2524 9.2524 0.000 -15.000 90.000 -1.859 15.71
7 -16.2031 22.0000 90.0000 11.7627 11.7627 0.000 -16.203 90.000 -1.000
8 -16.4031 22.0000 90.0000 -67.5419 -67.5419 0.000 -16.403 90.000 -1.533 38.16
ASP 9 -21.4031 22.0000 90.0000 7.7505 7.7505 0.000 -21.403 90.000 -1.000
10 -52.4353 22.0000 90.0000 -15.3052 -15.3052 0.000 -52.435 90.000 -1.519 44.20
11 -60.1113 22.0000 90.0000 9.2303 9.2303 0.000 -60.111 90.000 -1.772 17.56
12 -61.9087 22.0000 90.0000 19.9044 19.9044 0.000 -61.909 90.000 -1.000
ASP 13 -69.9057 22.0000 90.0000 -63.9210 -63.9210 0.000 -69.906 90.000 -1.533 38.16
ASP 14 -73.1958 22.0000 90.0000 0.0000 0.0000 0.000 -73.196 90.000 -1.000
M 15 -85.0000 22.0000 45.0000 0.0000 0.0000 -11.946 -85.000 45.000 1.000
ASP 16 -85.0000 10.0540 0.0000 276.0643 276.0643 -3.000 -85.000 0.000 1.533 38.16
ASP 17 -85.0000 7.05403 0.0000 -44.8635 -44.8635 -2.404 -85.000 0.000 1.000
18 -85.0000 4.6501 0.0000 9.7490 9.7490 -1.407 -85.000 0.000 1.772 17.56
19 -85.0000 3.2429 0.0000 6.2044 6.2044 -5.500 -85.000 0.000 1.519 44.20
20 -85.0000 -2.2571 0.0000 30.6426 30.6426 -10.000 -85.000 0.000 1.000
M 21 -85.0000 -12.2571 0.0000 0.0000 0.0000 -20.000 -85.000 0.000 1.000
22 -97.5000 9.3935 30.0000 -6.2044 -6.2044 0.694 -97.500 30.000 -1.519 44.20
23 -97.9006 10.0874 30.0000 2.6516 2.6516 0.673 -97.901 30.000 -1.816 16.82
24 -98.2891 10.7602 30.0000 4.3166 4.3166 5.189 -98.289 30.000 -1.000
25 -101.2848 15.9491 30.0000 0.0000 0.0000 0.000 -101.285 30.000 -1.000

surface no. = 2
SPH rdy =1.946e+001
surface no. = 3
ASP rdy =-6.161e+000 a=-4.746e-004 b=7.780e-007 c=1.481e-007 d=-1.942e-009 e=6.591e-012

surface no. = 4
SPH rdy =1.000e+018

surface no. = 5
SPH rdy =1.000e+018

surface no. = 6
SPH rdy =9.252e+000

surface no. = 7
SPH rdy =1.176e+001

surface no. = 8
SPH rdy =-6.754e+001

surface no. = 9
ASP rdy =7.750e+000 a=1.850e-005 b=1.790e-007 c=-8.599e-010 d=-1.225e-011 e=1.124e-013

surface no. = 10
SPH rdy =-1.531e+001

surface no. = 11
SPH rdy =9.230e+000

surface no. = 12
SPH rdy =1.990e+001

surface no. = 13
ASP rdy =-6.392e+001 a=-2.570e-006 b=-1.131e-007 c=-1.189e-008 d=-6.605e-011 e=1.473e-039

surface no. = 14
ASP rdy =3.364e-009 a=3.882e-004 b=-8.762e-006 c=9.873e-009 d=8.512e-010 e=1.473e-039

surface no. = 15
SPH rdy =1.000e+018

surface no. = 16
ASP rdy =2.761e+002 a=4.842e-004 b=-5.359e-006 c=2.822e-008 d=-8.555e-012 e=-2.186e-013

surface no. = 17
ASP rdy =-4.486e+001 a=-9.070e-005 b=6.326e-008 c=5.492e-009 d=2.552e-011 e=1.473e-039

surface no. = 18
SPH rdy =9.749e+000

surface no. = 19
SPH rdy =6.204e+000

surface no. = 20
SPH rdy =3.064e+001

surface no. = 21
SPH rdy =1.000e+018

surface no. = 22
SPH rdy =-6.204e+000

surface no. = 23
SPH rdy =2.652e+000

surface no. = 24
SPH rdy =4.317e+000

本数値例では、水平方向に±4mmの射出瞳の移動が可能である(接眼光学系106と走査光学系105が近づく方向を正とする)。この際に、集光光学系102は−1〜0.6mm移動する(集光光学系102が光源ユニット101に近づく方向を正とする)。

Exit pupil 107 surface number 1
Surface 106a Surface number 2
Surface 106b Surface number 3
Surface 106c Surface number 4
Surface 105a Surface number 6
Surface 105b Surface number 7
Surface 105c Surface number 8
Surface 105d Surface number 9
Surface 105e Surface number 10
Surface 105f Surface number 11
Surface 105g Surface number 12
Surface 105h Surface number 13
Surface 105i Surface number 14
Surface 105j Surface number 15
Surface 105k Surface number 16
Surface 105l Surface number 17
Surface 105m Surface number 18
Surface 105n Surface number 19
Surface 105o Surface number 20
Scanning unit 104 surface number 21
Surface 102a Surface number 22
Surface 102b Surface number 23
Surface 102c Surface number 24
Light source unit 101 surface number 25

type sur Yg Zg qg ry rx d shift tilt nd νd
1 0.0000 0.0000 0.0000 0.0000 0.0000 7.500 0.000 0.000 1.000
2 0.0000 7.5000 0.0000 19.4650 19.4650 7.500 0.000 0.000 1.533 38.16
ASP 3 0.0000 15.0000 0.0000 -6.1615 -6.1615 7.000 0.000 0.000 1.000
M 4 0.0000 22.0000 45.0000 0.0000 0.0000 0.000 0.000 45.000 -1.000
5 -1.2715 22.0000 90.0000 0.0000 0.0000 0.000 -1.271 90.000 -1.000
6 -15.0000 22.0000 90.0000 9.2524 9.2524 0.000 -15.000 90.000 -1.859 15.71
7 -16.2031 22.0000 90.0000 11.7627 11.7627 0.000 -16.203 90.000 -1.000
8 -16.4031 22.0000 90.0000 -67.5419 -67.5419 0.000 -16.403 90.000 -1.533 38.16
ASP 9 -21.4031 22.0000 90.0000 7.7505 7.7505 0.000 -21.403 90.000 -1.000
10 -52.4353 22.0000 90.0000 -15.3052 -15.3052 0.000 -52.435 90.000 -1.519 44.20
11 -60.1113 22.0000 90.0000 9.2303 9.2303 0.000 -60.111 90.000 -1.772 17.56
12 -61.9087 22.0000 90.0000 19.9044 19.9044 0.000 -61.909 90.000 -1.000
ASP 13 -69.9057 22.0000 90.0000 -63.9210 -63.9210 0.000 -69.906 90.000 -1.533 38.16
ASP 14 -73.1958 22.0000 90.0000 0.0000 0.0000 0.000 -73.196 90.000 -1.000
M 15 -85.0000 22.0000 45.0000 0.0000 0.0000 -11.946 -85.000 45.000 1.000
ASP 16 -85.0000 10.0540 0.0000 276.0643 276.0643 -3.000 -85.000 0.000 1.533 38.16
ASP 17 -85.0000 7.05403 0.0000 -44.8635 -44.8635 -2.404 -85.000 0.000 1.000
18 -85.0000 4.6501 0.0000 9.7490 9.7490 -1.407 -85.000 0.000 1.772 17.56
19 -85.0000 3.2429 0.0000 6.2044 6.2044 -5.500 -85.000 0.000 1.519 44.20
20 -85.0000 -2.2571 0.0000 30.6426 30.6426 -10.000 -85.000 0.000 1.000
M 21 -85.0000 -12.2571 0.0000 0.0000 0.0000 -20.000 -85.000 0.000 1.000
22 -97.5000 9.3935 30.0000 -6.2044 -6.2044 0.694 -97.500 30.000 -1.519 44.20
23 -97.9006 10.0874 30.0000 2.6516 2.6516 0.673 -97.901 30.000 -1.816 16.82
24 -98.2891 10.7602 30.0000 4.3166 4.3166 5.189 -98.289 30.000 -1.000
25 -101.2848 15.9491 30.0000 0.0000 0.0000 0.000 -101.285 30.000 -1.000

surface no. = 2
SPH rdy = 1.946e + 001
surface no. = 3
ASP rdy = -6.161e + 000 a = -4.746e-004 b = 7.780e-007 c = 1.481e-007 d = -1.942e-009 e = 6.591e-012

surface no. = 4
SPH rdy = 1.000e + 018

surface no. = 5
SPH rdy = 1.000e + 018

surface no. = 6
SPH rdy = 9.252e + 000

surface no. = 7
SPH rdy = 1.176e + 001

surface no. = 8
SPH rdy = -6.754e + 001

surface no. = 9
ASP rdy = 7.750e + 000 a = 1.850e-005 b = 1.790e-007 c = -8.599e-010 d = -1.225e-011 e = 1.124e-013

surface no. = 10
SPH rdy = -1.531e + 001

surface no. = 11
SPH rdy = 9.230e + 000

surface no. = 12
SPH rdy = 1.990e + 001

surface no. = 13
ASP rdy = -6.392e + 001 a = -2.570e-006 b = -1.131e-007 c = -1.189e-008 d = -6.605e-011 e = 1.473e-039

surface no. = 14
ASP rdy = 3.364e-009 a = 3.882e-004 b = -8.762e-006 c = 9.873e-009 d = 8.512e-010 e = 1.473e-039

surface no. = 15
SPH rdy = 1.000e + 018

surface no. = 16
ASP rdy = 2.761e + 002 a = 4.842e-004 b = -5.359e-006 c = 2.822e-008 d = -8.555e-012 e = -2.186e-013

surface no. = 17
ASP rdy = -4.486e + 001 a = -9.070e-005 b = 6.326e-008 c = 5.492e-009 d = 2.552e-011 e = 1.473e-039

surface no. = 18
SPH rdy = 9.749e + 000

surface no. = 19
SPH rdy = 6.204e + 000

surface no. = 20
SPH rdy = 3.064e + 001

surface no. = 21
SPH rdy = 1.000e + 018

surface no. = 22
SPH rdy = -6.204e + 000

surface no. = 23
SPH rdy = 2.652e + 000

surface no. = 24
SPH rdy = 4.317e + 000

In this numerical example, the exit pupil of ± 4 mm can be moved in the horizontal direction (the direction in which the eyepiece optical system 106 and the scanning optical system 105 approach each other is positive). At this time, the condensing optical system 102 moves by −1 to 0.6 mm (the direction in which the condensing optical system 102 approaches the light source unit 101 is positive).

本数値例における射出瞳の移動時の歪み変化を図14に示す。また、波長486.13nm、587.56nm、656.27nmにおける、射出瞳の移動量0mm及び4mmでの横収差図を図15及び図16にそれぞれ示す。図15及び図16において、右下の図は画面内での収差の計測ポイントA〜Bを示しており、計測ポイントA〜Cでの収差が左側のA〜Cに対応する。このことは、他の収差図でも同じである。
<数値例2>
図17に、実施例2に対応する光学系の数値例を示す。対角画角は70deg(図の紙面内に対応する水平画角は60deg、図の紙面に垂直な垂直画角は36deg、アスペクト比は16:9)であり、射出瞳径φは1mmである。MEMSの走査角は水平方向に±10deg、垂直方向に±5.68degである。接眼光学系506のアイポイントは12.5mmである。接眼光学系506と走査光学系505の間の光束のなす角は、最大で0.11degである。
FIG. 14 shows the distortion change when the exit pupil moves in this numerical example. In addition, FIGS. 15 and 16 show lateral aberration diagrams when the movement amounts of the exit pupil are 0 mm and 4 mm at wavelengths of 486.13 nm, 587.56 nm, and 656.27 nm, respectively. 15 and 16, the lower right diagrams show the aberration measurement points A to B in the screen, and the aberrations at the measurement points A to C correspond to A to C on the left side. This is the same in other aberration diagrams.
<Numerical example 2>
FIG. 17 shows a numerical example of the optical system corresponding to the second embodiment. The diagonal field angle is 70 deg (the horizontal field angle corresponding to the paper surface in the figure is 60 deg, the vertical field angle perpendicular to the paper surface in the figure is 36 deg, and the aspect ratio is 16: 9), and the exit pupil diameter φ is 1 mm. . The scanning angle of the MEMS is ± 10 deg in the horizontal direction and ± 5.68 deg in the vertical direction. The eye point of the eyepiece optical system 506 is 12.5 mm. The angle formed by the light beam between the eyepiece optical system 506 and the scanning optical system 505 is 0.11 deg at the maximum.


射出瞳107 面番号1
面506a 面番号2、4
面506b 面番号3
面506c 面番号5
面506d 面番号6、8
面506e 面番号7
面506f 面番号9
面505a 面番号10
面505b 面番号11
面505c 面番号12
面505d 面番号13
面505e 面番号14
面505f 面番号15
面505g 面番号16
面505h 面番号17
走査ユニット104 面番号18
面502a 面番号19
面502b 面番号20
面502c 面番号21
面502d 面番号22
面502e 面番号23
光源ユニット101 面番号24

type sur Yg Zg qg ry rx d shift tilt nd νd
1 0.0000 0.0000 0.0000 0.0000 0.0000 12.305 0.000 0.000 1.000
XYP 2 -15.9297 12.3054 1.8632 0.0000 0.0000 8.407 -15.930 1.863 1.533 41.59
XYP-M 3 1.6616 20.7124 -20.2673 0.0000 0.0000 -8.407 1.662 -20.267 -1.533 41.59
XYP-M 4 -15.9297 12.3054 1.8632 0.0000 0.0000 6.047 -15.930 1.863 1.533 41.59
XYP 5 17.9704 18.3522 61.4616 0.0000 0.0000 5.393 17.970 61.462 1.000
XYP 6 15.5711 23.7448 57.7304 0.0000 0.0000 -1.362 15.571 57.730 1.533 41.59
XYP-M 7 21.2255 22.3831 34.1649 0.0000 0.0000 1.362 21.226 34.165 -1.533 41.59
XYP-M 8 15.5711 23.7448 57.7304 0.0000 0.0000 -5.150 15.571 57.730 1.533 41.59
XYP 9 28.6231 18.5946 77.8580 0.0000 0.0000 -0.117 28.623 77.858 1.000
XYP 10 32.4974 16.2775 -88.1368 0.0000 0.0000 2.858 32.497 -88.137 1.533 41.59
XYP-M 11 56.7332 19.1352 -67.0073 0.0000 0.0000 9.285 56.733 -67.007 -1.533 41.59
XYP-M 12 48.0851 28.4203 -22.0013 0.0000 0.0000 -19.995 48.085 -22.001 1.533 41.59
XYP 13 48.7812 8.42514 3.4165 0.0000 0.0000 -2.247 48.781 3.417 1.000
XYP 14 45.8973 6.1784 5.6040 0.0000 0.0000 -15.698 45.897 5.604 1.533 41.59
XYP-M 15 47.7115 -9.5192 -22.9437 0.0000 0.0000 8.380 47.712 -22.944 -1.533 41.59
XYP-M 16 38.4927 -1.1397 -68.0673 0.0000 0.0000 -1.115 38.493 -68.067 1.533 41.59
XYP 17 53.1314 -2.25458 -87.8393 0.0000 0.0000 0.675 53.131 -87.839 1.000
M 18 60.9038 -1.5793 -69.9966 0.0000 0.0000 -11.282 60.904 -69.997 -1.000
19 47.4600 -12.8614 -49.9966 -16.5696 -16.5696 -2.250 47.460 -49.997 -1.643 41.27
20 44.7789 -15.1113 -49.9966 -6.8815 -6.8815 -0.514 44.779 -49.997 -1.816 18.51
21 44.1661 -15.6255 -49.9966 -13.0356 -13.0356 -0.129 44.166 -49.997 -1.000
AL 22 44.0129 -15.7541 -49.9966 10.9164 10.9164 -1.928 44.013 -49.997 -1.533 41.59
23 41.7149 -17.6826 -49.9966 0.0000 0.0000 -11.282 41.715 -49.997 -1.000
24 28.2711 -28.9647 -49.9966 0.0000 0.0000 0.000 28.271 -49.997 -1.000

surface no. = 2
XYP rdy =1.000e+018 c3=-2.955e-002 c4 =5.433e-003 c6 =2.465e-003 c8=-7.366e-005
c10=1.974e-005 c11=-1.934e-048 c13=-3.877e-048 c15=-1.911e-048 c17=-5.379e-006
c19=-8.364e-007 c21=-2.006e-008 c22=-1.293e-006 c24=-1.472e-007 c26=-1.817e-008
c28=-7.938e-011 c30=6.379e-008 c32=-1.712e-008 c34=-7.209e-010 c36=2.456e-011
c37=3.809e-009 c39=2.548e-009 c41=6.881e-011 c43=1.818e-011 c45=-1.532e-012

surface no. = 3
XYP rdy =1.000e+018 c3=1.342e-002 c4 =-2.431e-002 c6 =-1.844e-002 c8=-1.250e-004
c10=-6.548e-005 c11=-2.041e-005 c13=-1.349e-005 c15=-9.615e-006 c17=-1.956e-006
c19=-1.561e-006 c21=-2.064e-007 c22=-7.699e-008 c24=5.006e-008 c26=2.493e-008
c28=1.856e-008 c30=8.206e-009 c32=-1.226e-009 c34=-3.707e-009 c36=-1.234e-009
c37=3.475e-010 c39=-6.916e-010 c41=-5.221e-010 c43=3.793e-010 c45=6.420e-011

surface no. = 4
XYP rdy =1.000e+018 c3=-2.955e-002 c4 =5.433e-003 c6 =2.465e-003 c8=-7.366e-005
c10=1.974e-005 c11=-1.934e-048 c13=-3.877e-048 c15=-1.911e-048 c17=-5.379e-006
c19=-8.364e-007 c21=-2.006e-008 c22=-1.293e-006 c24=-1.472e-007 c26=-1.817e-008
c28=-7.938e-011 c30=6.379e-008 c32=-1.712e-008 c34=-7.209e-010 c36=2.456e-011
c37=3.809e-009 c39=2.548e-009 c41=6.881e-011 c43=1.818e-011 c45=-1.532e-012

surface no. = 5
XYP rdy =1.000e+018 c3=1.540e-002 c4 =-4.726e-002 c6 =-4.487e-002 c8=-4.674e-003
c10=3.556e-003 c11=-1.934e-048 c13=-3.877e-048 c15=-1.911e-048 c17=-1.446e-004
c19=4.360e-004 c21=-3.925e-004 c22=5.263e-006 c24=-2.290e-004 c26=-1.025e-005
c28=-2.422e-006 c30=2.038e-005 c32=-7.452e-005 c34=-3.640e-005 c36=6.056e-006
c37=-4.362e-007 c39=6.538e-006 c41=-8.409e-006 c43=-6.000e-006 c45=-1.059e-006

surface no. = 6
XYP rdy =1.000e+018 c3=-1.146e-001 c4 =1.315e-002 c6 =1.046e-002 c8=-3.069e-004
c10=-6.027e-005 c11=-1.934e-048 c13=-3.877e-048 c15=-1.911e-048 c17=-3.615e-005
c19=-1.079e-005 c21=-2.430e-007 c22=3.521e-005 c24=3.232e-005 c26=-1.850e-006
c28=6.802e-007 c30=-1.099e-005 c32=-4.805e-006 c34=-2.193e-007 c36=-2.061e-007
c37=-7.379e-007 c39=7.478e-007 c41=2.590e-007 c43=5.801e-008 c45=1.348e-008

surface no. = 7
XYP rdy =1.000e+018 c3=-1.060e-001 c4 =-2.587e-002 c6 =-2.459e-002 c8=-3.040e-004
c10=3.527e-004 c11=-1.934e-048 c13=-3.877e-048 c15=-1.911e-048 c17=-2.286e-004
c19=-3.824e-004 c21=-3.032e-004 c22=-5.560e-007 c24=-2.421e-004 c26=-1.489e-004
c28=-1.523e-004 c30=7.509e-008 c32=-9.009e-005 c34=1.244e-005 c36=-3.786e-005
c37=-1.005e-018 c39=-3.420e-017 c41=1.369e-016 c43=-2.821e-016 c45=6.439e-009

surface no. = 8
XYP rdy =1.000e+018 c3=-1.146e-001 c4 =1.315e-002 c6 =1.046e-002 c8=-3.069e-004
c10=-6.027e-005 c11=-1.934e-048 c13=-3.877e-048 c15=-1.911e-048 c17=-3.615e-005
c19=-1.079e-005 c21=-2.430e-007 c22=3.521e-005 c24=3.232e-005 c26=-1.850e-006
c28=6.802e-007 c30=-1.099e-005 c32=-4.805e-006 c34=-2.193e-007 c36=-2.061e-007
c37=-7.379e-007 c39=7.478e-007 c41=2.590e-007 c43=5.801e-008 c45=1.348e-008

surface no. = 9
XYP rdy =1.000e+018 c3=2.204e-001 c4 =-8.067e-002 c6 =-1.131e-001 c8=1.023e-002
c10=5.082e-003 c11=-2.272e-003 c13=-5.504e-004 c15=1.192e-003 c17=-1.729e-004
c19=2.935e-005 c21=7.030e-005 c22=-5.657e-005 c24=-1.650e-004 c26=-1.152e-004
c28=-3.284e-005 c30=2.896e-005 c32=6.112e-006 c34=8.893e-006 c36=-2.844e-006
c37=5.387e-007 c39=3.377e-006 c41=5.792e-006 c43=1.105e-006 c45=-5.344e-007

surface no. = 10
XYP rdy =1.000e+018 c3=-1.087e-002 c4 =-6.297e-003 c6 =6.390e-003 c8=1.943e-004
c10=1.540e-003 c11=-2.972e-032 c13=-3.284e-031 c15=-5.261e-031 c17=-1.051e-005
c19=-3.263e-005 c21=-2.614e-006 c22=5.556e-008 c24=-4.478e-007 c26=4.204e-006
c28=7.248e-008

surface no. = 11
XYP rdy =1.000e+018 c3=-8.472e-003 c4 =1.021e-002 c6 =5.818e-003 c8=1.488e-004
c10=-3.569e-005 c11=6.561e-007 c13=1.099e-005 c15=-1.150e-005 c17=-1.207e-007
c19=7.377e-007 c21=7.848e-007 c22=1.715e-008 c24=9.443e-008 c26=6.081e-008
c28=-1.304e-007

surface no. = 12
XYP rdy =1.000e+018 c3=-8.643e-003 c4 =-8.377e-003 c6 =-1.142e-002 c8=-1.332e-004
c10=-1.055e-004 c11=2.846e-006 c13=1.385e-005 c15=6.718e-006 c17=-6.065e-007
c19=9.893e-007 c21=-9.264e-007 c22=4.467e-008 c24=2.445e-007 c26=-4.441e-008
c28=-2.139e-008

surface no. = 13
XYP rdy =1.000e+018 c3=-4.579e-002 c4 =3.087e-002 c6 =1.110e-002 c8=-3.769e-003
c10=-1.880e-003 c11=-1.158e-004 c13=-5.102e-004 c15=-7.442e-004 c17=1.212e-005
c19=-3.830e-005 c21=4.472e-005 c22=9.026e-007 c24=1.794e-005 c26=2.575e-005
c28=5.746e-005

surface no. = 14
XYP rdy =1.000e+018 c3=-8.390e-002 c4 =2.098e-002 c6 =-2.624e-002 c8=-2.060e-004
c10=1.899e-003 c11=-8.425e-005 c13=-6.174e-004 c15=2.778e-004 c17=-3.355e-005
c19=1.440e-005 c21=-2.856e-005 c22=-5.040e-007 c24=6.437e-006 c26=5.918e-007
c28=-9.181e-007

surface no. = 15
XYP rdy =1.000e+018 c3=8.096e-003 c4 =6.499e-003 c6 =6.816e-003 c8=9.795e-005
c10=8.002e-005 c11=-1.233e-005 c13=-2.253e-005 c15=-3.055e-006 c17=2.906e-007
c19=-4.857e-007 c21=-8.391e-008 c22=-3.713e-009 c24=2.789e-008 c26=-3.965e-008
c28=-4.562e-009 c30=1.421e-011 c32=-2.132e-009 c34=-3.165e-009 c36=-1.543e-010
c37=1.298e-011 c39=5.987e-011 c41=-1.113e-010 c43=6.244e-012 c45=-9.555e-012

surface no. = 16
XYP rdy =1.000e+018 c3=9.120e-003 c4 =-1.306e-002 c6 =-1.222e-002 c8=4.717e-005
c10=-5.789e-006 c11=-5.538e-006 c13=-1.050e-005 c15=9.282e-007 c17=5.606e-007
c19=3.005e-007 c21=1.583e-007 c22=1.148e-010 c24=3.803e-008 c26=-9.697e-010
c28=-1.662e-009 c30=3.953e-010 c32=4.057e-010 c34=1.261e-009 c36=-4.761e-010
c37=-7.288e-012 c39=-3.564e-011 c41=-8.681e-011 c43=1.301e-010 c45=-3.191e-011

surface no. = 17
XYP rdy =1.000e+018 c3=-2.882e-002 c4 =-3.878e-002 c6 =-8.136e-002 c8=9.235e-003
c10=6.799e-003 c11=-5.929e-005 c13=-1.276e-003 c15=4.291e-004 c17=8.076e-005
c19=2.594e-004 c21=2.527e-004 c22=-7.532e-007 c24=-1.497e-005 c26=-2.622e-005
c28=-6.300e-008
surface no. = 18
SPH rdy =1.000e+018

surface no. = 19
SPH rdy =-1.657e+001

surface no. = 20
SPH rdy =-6.881e+000

surface no. = 22
SPH rdy =-1.304e+001

surface no. = 23
ASP rdy =1.092e+001 k =-3.665e+000 a=-1.848e-005 b=2.016e-006 c=1.113e-007 d=-5.278e-009 e=2.063e-012

surface no. = 24
SPH rdy =1.000e+018

本数値例では、水平方向に±4mm及び垂直方向に±1mmの射出瞳の移動が可能である(接眼光学系506と走査光学系505が近づく方向を正とする)。この際に、集光光学系102は、−4〜+8mm移動する(集光光学系502が光源ユニット101に近づく方向を正とする)。

Exit pupil 107 surface number 1
Surface 506a Surface number 2, 4
Surface 506b Surface number 3
Surface 506c Surface number 5
Surface 506d Surface number 6, 8
Surface 506e Surface number 7
Surface 506f Surface number 9
Surface 505a Surface number 10
Surface 505b Surface number 11
Surface 505c Surface number 12
Surface 505d Surface number 13
Surface 505e Surface number 14
Surface 505f Surface number 15
Surface 505g Surface number 16
Surface 505h Surface number 17
Scanning unit 104 surface number 18
Surface 502a Surface number 19
Surface 502b Surface number 20
Surface 502c Surface number 21
Surface 502d Surface number 22
Surface 502e Surface number 23
Light source unit 101 surface number 24

type sur Yg Zg qg ry rx d shift tilt nd νd
1 0.0000 0.0000 0.0000 0.0000 0.0000 12.305 0.000 0.000 1.000
XYP 2 -15.9297 12.3054 1.8632 0.0000 0.0000 8.407 -15.930 1.863 1.533 41.59
XYP-M 3 1.6616 20.7124 -20.2673 0.0000 0.0000 -8.407 1.662 -20.267 -1.533 41.59
XYP-M 4 -15.9297 12.3054 1.8632 0.0000 0.0000 6.047 -15.930 1.863 1.533 41.59
XYP 5 17.9704 18.3522 61.4616 0.0000 0.0000 5.393 17.970 61.462 1.000
XYP 6 15.5711 23.7448 57.7304 0.0000 0.0000 -1.362 15.571 57.730 1.533 41.59
XYP-M 7 21.2255 22.3831 34.1649 0.0000 0.0000 1.362 21.226 34.165 -1.533 41.59
XYP-M 8 15.5711 23.7448 57.7304 0.0000 0.0000 -5.150 15.571 57.730 1.533 41.59
XYP 9 28.6231 18.5946 77.8580 0.0000 0.0000 -0.117 28.623 77.858 1.000
XYP 10 32.4974 16.2775 -88.1368 0.0000 0.0000 2.858 32.497 -88.137 1.533 41.59
XYP-M 11 56.7332 19.1352 -67.0073 0.0000 0.0000 9.285 56.733 -67.007 -1.533 41.59
XYP-M 12 48.0851 28.4203 -22.0013 0.0000 0.0000 -19.995 48.085 -22.001 1.533 41.59
XYP 13 48.7812 8.42514 3.4165 0.0000 0.0000 -2.247 48.781 3.417 1.000
XYP 14 45.8973 6.1784 5.6040 0.0000 0.0000 -15.698 45.897 5.604 1.533 41.59
XYP-M 15 47.7115 -9.5192 -22.9437 0.0000 0.0000 8.380 47.712 -22.944 -1.533 41.59
XYP-M 16 38.4927 -1.1397 -68.0673 0.0000 0.0000 -1.115 38.493 -68.067 1.533 41.59
XYP 17 53.1314 -2.25458 -87.8393 0.0000 0.0000 0.675 53.131 -87.839 1.000
M 18 60.9038 -1.5793 -69.9966 0.0000 0.0000 -11.282 60.904 -69.997 -1.000
19 47.4600 -12.8614 -49.9966 -16.5696 -16.5696 -2.250 47.460 -49.997 -1.643 41.27
20 44.7789 -15.1113 -49.9966 -6.8815 -6.8815 -0.514 44.779 -49.997 -1.816 18.51
21 44.1661 -15.6255 -49.9966 -13.0356 -13.0356 -0.129 44.166 -49.997 -1.000
AL 22 44.0129 -15.7541 -49.9966 10.9164 10.9164 -1.928 44.013 -49.997 -1.533 41.59
23 41.7149 -17.6826 -49.9966 0.0000 0.0000 -11.282 41.715 -49.997 -1.000
24 28.2711 -28.9647 -49.9966 0.0000 0.0000 0.000 28.271 -49.997 -1.000

surface no. = 2
XYP rdy = 1.000e + 018 c3 = -2.955e-002 c4 = 5.433e-003 c6 = 2.465e-003 c8 = -7.366e-005
c10 = 1.974e-005 c11 = -1.934e-048 c13 = -3.877e-048 c15 = -1.911e-048 c17 = -5.379e-006
c19 = -8.364e-007 c21 = -2.006e-008 c22 = -1.293e-006 c24 = -1.472e-007 c26 = -1.817e-008
c28 = -7.938e-011 c30 = 6.379e-008 c32 = -1.712e-008 c34 = -7.209e-010 c36 = 2.456e-011
c37 = 3.809e-009 c39 = 2.548e-009 c41 = 6.881e-011 c43 = 1.818e-011 c45 = -1.532e-012

surface no. = 3
XYP rdy = 1.000e + 018 c3 = 1.342e-002 c4 = -2.431e-002 c6 = -1.844e-002 c8 = -1.250e-004
c10 = -6.548e-005 c11 = -2.041e-005 c13 = -1.349e-005 c15 = -9.615e-006 c17 = -1.956e-006
c19 = -1.561e-006 c21 = -2.064e-007 c22 = -7.699e-008 c24 = 5.006e-008 c26 = 2.493e-008
c28 = 1.856e-008 c30 = 8.206e-009 c32 = -1.226e-009 c34 = -3.707e-009 c36 = -1.234e-009
c37 = 3.475e-010 c39 = -6.916e-010 c41 = -5.221e-010 c43 = 3.793e-010 c45 = 6.420e-011

surface no. = 4
XYP rdy = 1.000e + 018 c3 = -2.955e-002 c4 = 5.433e-003 c6 = 2.465e-003 c8 = -7.366e-005
c10 = 1.974e-005 c11 = -1.934e-048 c13 = -3.877e-048 c15 = -1.911e-048 c17 = -5.379e-006
c19 = -8.364e-007 c21 = -2.006e-008 c22 = -1.293e-006 c24 = -1.472e-007 c26 = -1.817e-008
c28 = -7.938e-011 c30 = 6.379e-008 c32 = -1.712e-008 c34 = -7.209e-010 c36 = 2.456e-011
c37 = 3.809e-009 c39 = 2.548e-009 c41 = 6.881e-011 c43 = 1.818e-011 c45 = -1.532e-012

surface no. = 5
XYP rdy = 1.000e + 018 c3 = 1.540e-002 c4 = -4.726e-002 c6 = -4.487e-002 c8 = -4.674e-003
c10 = 3.556e-003 c11 = -1.934e-048 c13 = -3.877e-048 c15 = -1.911e-048 c17 = -1.446e-004
c19 = 4.360e-004 c21 = -3.925e-004 c22 = 5.263e-006 c24 = -2.290e-004 c26 = -1.025e-005
c28 = -2.422e-006 c30 = 2.038e-005 c32 = -7.452e-005 c34 = -3.640e-005 c36 = 6.056e-006
c37 = -4.362e-007 c39 = 6.538e-006 c41 = -8.409e-006 c43 = -6.000e-006 c45 = -1.059e-006

surface no. = 6
XYP rdy = 1.000e + 018 c3 = -1.146e-001 c4 = 1.315e-002 c6 = 1.046e-002 c8 = -3.069e-004
c10 = -6.027e-005 c11 = -1.934e-048 c13 = -3.877e-048 c15 = -1.911e-048 c17 = -3.615e-005
c19 = -1.079e-005 c21 = -2.430e-007 c22 = 3.521e-005 c24 = 3.232e-005 c26 = -1.850e-006
c28 = 6.802e-007 c30 = -1.099e-005 c32 = -4.805e-006 c34 = -2.193e-007 c36 = -2.061e-007
c37 = -7.379e-007 c39 = 7.478e-007 c41 = 2.590e-007 c43 = 5.801e-008 c45 = 1.348e-008

surface no. = 7
XYP rdy = 1.000e + 018 c3 = -1.060e-001 c4 = -2.587e-002 c6 = -2.459e-002 c8 = -3.040e-004
c10 = 3.527e-004 c11 = -1.934e-048 c13 = -3.877e-048 c15 = -1.911e-048 c17 = -2.286e-004
c19 = -3.824e-004 c21 = -3.032e-004 c22 = -5.560e-007 c24 = -2.421e-004 c26 = -1.489e-004
c28 = -1.523e-004 c30 = 7.509e-008 c32 = -9.009e-005 c34 = 1.244e-005 c36 = -3.786e-005
c37 = -1.005e-018 c39 = -3.420e-017 c41 = 1.369e-016 c43 = -2.821e-016 c45 = 6.439e-009

surface no. = 8
XYP rdy = 1.000e + 018 c3 = -1.146e-001 c4 = 1.315e-002 c6 = 1.046e-002 c8 = -3.069e-004
c10 = -6.027e-005 c11 = -1.934e-048 c13 = -3.877e-048 c15 = -1.911e-048 c17 = -3.615e-005
c19 = -1.079e-005 c21 = -2.430e-007 c22 = 3.521e-005 c24 = 3.232e-005 c26 = -1.850e-006
c28 = 6.802e-007 c30 = -1.099e-005 c32 = -4.805e-006 c34 = -2.193e-007 c36 = -2.061e-007
c37 = -7.379e-007 c39 = 7.478e-007 c41 = 2.590e-007 c43 = 5.801e-008 c45 = 1.348e-008

surface no. = 9
XYP rdy = 1.000e + 018 c3 = 2.204e-001 c4 = -8.067e-002 c6 = -1.131e-001 c8 = 1.023e-002
c10 = 5.082e-003 c11 = -2.272e-003 c13 = -5.504e-004 c15 = 1.192e-003 c17 = -1.729e-004
c19 = 2.935e-005 c21 = 7.030e-005 c22 = -5.657e-005 c24 = -1.650e-004 c26 = -1.152e-004
c28 = -3.284e-005 c30 = 2.896e-005 c32 = 6.112e-006 c34 = 8.893e-006 c36 = -2.844e-006
c37 = 5.387e-007 c39 = 3.377e-006 c41 = 5.792e-006 c43 = 1.105e-006 c45 = -5.344e-007

surface no. = 10
XYP rdy = 1.000e + 018 c3 = -1.087e-002 c4 = -6.297e-003 c6 = 6.390e-003 c8 = 1.943e-004
c10 = 1.540e-003 c11 = -2.972e-032 c13 = -3.284e-031 c15 = -5.261e-031 c17 = -1.051e-005
c19 = -3.263e-005 c21 = -2.614e-006 c22 = 5.556e-008 c24 = -4.478e-007 c26 = 4.204e-006
c28 = 7.248e-008

surface no. = 11
XYP rdy = 1.000e + 018 c3 = -8.472e-003 c4 = 1.021e-002 c6 = 5.818e-003 c8 = 1.488e-004
c10 = -3.569e-005 c11 = 6.561e-007 c13 = 1.099e-005 c15 = -1.150e-005 c17 = -1.207e-007
c19 = 7.377e-007 c21 = 7.848e-007 c22 = 1.715e-008 c24 = 9.443e-008 c26 = 6.081e-008
c28 = -1.304e-007

surface no. = 12
XYP rdy = 1.000e + 018 c3 = -8.643e-003 c4 = -8.377e-003 c6 = -1.142e-002 c8 = -1.332e-004
c10 = -1.055e-004 c11 = 2.846e-006 c13 = 1.385e-005 c15 = 6.718e-006 c17 = -6.065e-007
c19 = 9.893e-007 c21 = -9.264e-007 c22 = 4.467e-008 c24 = 2.445e-007 c26 = -4.441e-008
c28 = -2.139e-008

surface no. = 13
XYP rdy = 1.000e + 018 c3 = -4.579e-002 c4 = 3.087e-002 c6 = 1.110e-002 c8 = -3.769e-003
c10 = -1.880e-003 c11 = -1.158e-004 c13 = -5.102e-004 c15 = -7.442e-004 c17 = 1.212e-005
c19 = -3.830e-005 c21 = 4.472e-005 c22 = 9.026e-007 c24 = 1.794e-005 c26 = 2.575e-005
c28 = 5.746e-005

surface no. = 14
XYP rdy = 1.000e + 018 c3 = -8.390e-002 c4 = 2.098e-002 c6 = -2.624e-002 c8 = -2.060e-004
c10 = 1.899e-003 c11 = -8.425e-005 c13 = -6.174e-004 c15 = 2.778e-004 c17 = -3.355e-005
c19 = 1.440e-005 c21 = -2.856e-005 c22 = -5.040e-007 c24 = 6.437e-006 c26 = 5.918e-007
c28 = -9.181e-007

surface no. = 15
XYP rdy = 1.000e + 018 c3 = 8.096e-003 c4 = 6.499e-003 c6 = 6.816e-003 c8 = 9.795e-005
c10 = 8.002e-005 c11 = -1.233e-005 c13 = -2.253e-005 c15 = -3.055e-006 c17 = 2.906e-007
c19 = -4.857e-007 c21 = -8.391e-008 c22 = -3.713e-009 c24 = 2.789e-008 c26 = -3.965e-008
c28 = -4.562e-009 c30 = 1.421e-011 c32 = -2.132e-009 c34 = -3.165e-009 c36 = -1.543e-010
c37 = 1.298e-011 c39 = 5.987e-011 c41 = -1.113e-010 c43 = 6.244e-012 c45 = -9.555e-012

surface no. = 16
XYP rdy = 1.000e + 018 c3 = 9.120e-003 c4 = -1.306e-002 c6 = -1.222e-002 c8 = 4.717e-005
c10 = -5.789e-006 c11 = -5.538e-006 c13 = -1.050e-005 c15 = 9.282e-007 c17 = 5.606e-007
c19 = 3.005e-007 c21 = 1.583e-007 c22 = 1.148e-010 c24 = 3.803e-008 c26 = -9.697e-010
c28 = -1.662e-009 c30 = 3.953e-010 c32 = 4.057e-010 c34 = 1.261e-009 c36 = -4.761e-010
c37 = -7.288e-012 c39 = -3.564e-011 c41 = -8.681e-011 c43 = 1.301e-010 c45 = -3.191e-011

surface no. = 17
XYP rdy = 1.000e + 018 c3 = -2.882e-002 c4 = -3.878e-002 c6 = -8.136e-002 c8 = 9.235e-003
c10 = 6.799e-003 c11 = -5.929e-005 c13 = -1.276e-003 c15 = 4.291e-004 c17 = 8.076e-005
c19 = 2.594e-004 c21 = 2.527e-004 c22 = -7.532e-007 c24 = -1.497e-005 c26 = -2.622e-005
c28 = -6.300e-008
surface no. = 18
SPH rdy = 1.000e + 018

surface no. = 19
SPH rdy = -1.657e + 001

surface no. = 20
SPH rdy = -6.881e + 000

surface no. = 22
SPH rdy = -1.304e + 001

surface no. = 23
ASP rdy = 1.092e + 001 k = -3.665e + 000 a = -1.848e-005 b = 2.016e-006 c = 1.113e-007 d = -5.278e-009 e = 2.063e-012

surface no. = 24
SPH rdy = 1.000e + 018

In this numerical example, the exit pupil can be moved ± 4 mm in the horizontal direction and ± 1 mm in the vertical direction (the direction in which the eyepiece optical system 506 and the scanning optical system 505 approach each other is positive). At this time, the condensing optical system 102 moves by −4 to +8 mm (the direction in which the condensing optical system 502 approaches the light source unit 101 is positive).

本数値例における射出瞳の移動時の歪み変化を図18に示す。また、波長486.13nm、587.56nm、656.27nmにおける射出瞳の移動量0mm及び水平4mmでの横収差図を図19及び図20にそれぞれ示す。   FIG. 18 shows the distortion change when the exit pupil moves in this numerical example. In addition, FIGS. 19 and 20 show lateral aberration diagrams when the movement amount of the exit pupil is 0 mm and the horizontal distance is 4 mm at wavelengths of 486.13 nm, 587.56 nm, and 656.27 nm, respectively.

<数値例3>
図21に、実施例3の変形例(図11)に対応する光学系の数値例を示す。ただし、反射面806bで折れ曲がった光路を延ばして示している。
<Numerical example 3>
FIG. 21 shows a numerical example of an optical system corresponding to the modified example (FIG. 11) of the third embodiment. However, the optical path bent at the reflecting surface 806b is shown extended.

対角画角は50deg(図の紙面内に対応する水平画角は40deg、図の紙面に垂直な垂直画角は30deg、アスペクト比は4:3)であり、射出瞳径φは1mmである。MEMSの走査角は水平方向に±4.33deg、垂直方向に±3.25degである。接眼光学系806のアイポイントは12.5mmである。接眼光学系806と第2の走査光学系1001の間の光束のなす角は、最大で0.30degである。   The diagonal field angle is 50 deg (the horizontal field angle corresponding to the plane of the figure is 40 deg, the vertical field angle perpendicular to the page of the figure is 30 deg, and the aspect ratio is 4: 3), and the exit pupil diameter φ is 1 mm. . The scanning angle of the MEMS is ± 4.33 deg in the horizontal direction and ± 3.25 deg in the vertical direction. The eye point of the eyepiece optical system 806 is 12.5 mm. The angle formed by the light beam between the eyepiece optical system 806 and the second scanning optical system 1001 is 0.30 deg at the maximum.


射出瞳107 面番号1
面806a 面番号2
面806b 面番号3
面806c 面番号4
面801a 面番号5
面801b 面番号6
面801c 面番号7
面801d 面番号8
面801e 面番号9
面801f 面番号10
面801g 面番号11
面801h 面番号12
面801i 面番号13
面801j 面番号14
面801k 面番号15
面801l 面番号16
面1002 面番号17
面805b 面番号18
面805c 面番号19
面805d 面番号20
面805e 面番号21
面805f 面番号22
面805g 面番号23
面805h 面番号24
面805i 面番号25
走査ユニット104 面番号26
面802a 面番号27
面802b 面番号28
面802c 面番号29
面802d 面番号30
光源ユニット101 面番号31

type sur Yg Zg qg ry rx d shift tilt nd νd
1 0.0000 0.0000 0.0000 0.0000 0.0000 10.000 0.000 0.000 1.000
XYP 2 0.0000 10.0000 0.0000 0.0000 0.0000 8.606 0.000 0.000 1.533 38.16
XYP-M 3 0.0000 18.6060 45.0000 0.0000 0.0000 0.000 0.000 45.000 -1.533 38.16
XYP 4 -11.4471 18.6060 90.0000 0.0000 0.0000 0.000 -11.447 90.000 -1.000
5 -43.4464 18.6060 90.0000 -32.2683 -32.2683 0.000 -43.446 90.000 -1.725 34.30
6 -45.4464 18.6060 90.0000 65.6075 65.6075 0.000 -45.446 90.000 -1.000
7 -45.6792 18.6060 90.0000 -12.2330 -12.2330 0.000 -45.679 90.000 -1.643 37.87
8 -49.1792 18.6060 90.0000 38.0111 38.0111 0.000 -49.179 90.000 -1.000
9 -49.5865 18.6060 90.0000 30.6692 30.6692 0.000 -49.587 90.000 -1.772 17.56
10 -50.8451 18.6060 90.0000 -18.7002 -18.7002 0.000 -50.845 90.000 -1.000
11 -78.6665 18.6060 90.0000 18.7002 18.7002 0.000 -78.667 90.000 -1.772 17.56
12 -79.9251 18.6060 90.0000 -30.6692 -30.6692 0.000 -79.925 90.000 -1.000
13 -80.3324 18.6060 90.0000 -38.0111 -38.0111 0.000 -80.332 90.000 -1.643 37.87
14 -83.8324 18.6060 90.0000 12.2330 12.2330 0.000 -83.832 90.000 -1.000
15 -84.0652 18.6060 90.0000 -65.6075 -65.6075 0.000 -84.065 90.000 -1.725 34.30
16 -86.0652 18.6060 90.0000 32.2683 32.2683 0.000 -86.065 90.000 -1.000
(M) 17 -104.0652 18.6060 90.0000 0.0000 0.0000 0.000 -104.065 90.000 -1.000
18 -121.1732 18.6060 90.0000 41.2689 41.2689 0.000 -121.173 90.000 -1.816 16.82
19 -124.4627 18.6060 90.0000 39.2224 39.2224 0.000 -124.463 90.000 -1.000
20 -126.2644 18.6060 90.0000 -28.6536 -28.6536 0.000 -126.264 90.000 -1.533 38.16
ASP 21 -133.5422 18.6060 90.0000 23.1963 23.1963 0.000 -133.542 90.000 -1.000
XYP 22 -159.7427 18.5222 89.5183 0.0000 0.0000 -0.238 -159.743 89.518 -1.533 38.16
XYP-M 23 -176.8787 18.2846 69.5403 0.0000 0.0000 7.208 -176.879 69.540 1.533 38.16
XYP-M 24 -166.9698 25.4927 24.3050 0.0000 0.0000 -15.900 -166.970 24.305 -1.533 38.16
XYP 25 -169.4261 9.59271 1.0043 0.0000 0.0000 -27.420 -169.426 1.004 -1.000
M 26 -167.5526 -17.8273 -15.0000 0.0000 0.0000 15.155 -167.553 -15.000 1.000
ASP 27 -176.3026 -2.6719 -30.0000 10.7093 10.7093 2.598 -176.303 -30.000 1.533 38.16
28 -177.8026 -0.0738 -30.0000 -4.1405 -4.1405 0.130 -177.803 -30.000 1.000
29 -177.8776 0.0561 -30.0000 -4.0044 -4.0044 1.732 -177.878 -30.000 1.707 20.05
30 -178.8776 1.7881 -30.0000 -9.5263 -9.5263 15.588 -178.878 -30.000 1.000
31 -187.8776 17.3766 -30.0000 0.0000 0.0000 0.000 -187.878 -30.000 1.000

surface no. = 2
XYP rdy =1.000e+018 c3=2.499e-002 c4 =3.465e-002 c6 =-1.814e-002 c8=-7.509e-005
c10=-2.182e-003 c11=-1.018e-004 c13=9.694e-005 c15=1.502e-004 c17=4.519e-007
c19=3.969e-006 c21=5.198e-006 c22=8.783e-007 c24=-2.788e-008 c26=-2.953e-007
c28=-1.116e-

surface no. = 3
XYP rdy =1.000e+018 c3=-4.588e-003 c4 =1.212e-004 c6 =-9.190e-003 c8=-1.574e-005
c10=-1.033e-005 c11=2.204e-006 c13=3.143e-006 c15=-3.021e-006

surface no. = 4
XYP rdy =1.000e+018 c3=-4.419e-002 c4 =3.363e-002 c6 =-7.874e-003 c8=-1.156e-004
c10=2.298e-003 c11=-3.251e-005 c13=-3.398e-005 c15=-7.488e-005

surface no. = 5
SPH rdy =-3.227e+001

surface no. = 6
SPH rdy =6.561e+001

surface no. = 7
SPH rdy =-1.223e+001

surface no. = 8
SPH rdy =3.801e+001

surface no. = 9
SPH rdy =3.067e+001

surface no. = 10
SPH rdy =-1.870e+001

surface no. = 11
SPH rdy =1.870e+001

surface no. = 12
SPH rdy =-3.067e+001

surface no. = 13
SPH rdy =-3.801e+001

surface no. = 14
SPH rdy =1.223e+001

surface no. = 15
SPH rdy =-6.561e+001

surface no. = 16
SPH rdy =3.227e+001

surface no. = 17
SPH rdy =1.000e+018

surface no. = 18
SPH rdy =4.127e+001

surface no. = 19
SPH rdy =3.922e+001

surface no. = 20
SPH rdy =-2.865e+001

surface no. = 21
ASP rdy =2.320e+001 a=6.995e-006 b=5.782e-008 c=-3.445e-010 d=-7.347e-012 e=4.904e-014

surface no. = 22
XYP rdy =1.000e+018 c3=3.795e-002 c4 =3.987e-002 c6 =2.438e-002 c8=-1.535e-003
c10=2.872e-003 c11=5.789e-004 c13=-7.510e-004 c15=5.524e-004 c17=2.584e-005
c19=2.014e-004 c21=-1.959e-004 c22=-5.473e-006 c24=1.198e-005 c26=-4.874e-005
c28=1.335e-005

surface no. = 23
XYP rdy =1.000e+018 c3=1.356e-002 c4 =8.306e-003 c6 =8.385e-003 c8=-3.018e-004
c10=2.369e-004 c11=-2.276e-006 c13=1.371e-005 c15=-1.653e-006 c17=2.566e-007
c19=4.119e-007 c21=8.285e-008 c22=-5.797e-009 c24=7.125e-008 c26=-8.830e-008
c28=-2.402e-008

surface no. = 24
XYP rdy =1.000e+018 c3=1.368e-002 c4 =-7.773e-003 c6 =-6.167e-004 c8=-4.112e-004
c10=2.907e-004 c11=-1.259e-005 c13=1.937e-005 c15=2.155e-006 c17=-2.345e-007
c19=3.037e-008 c21=1.341e-007 c22=5.741e-008 c24=5.084e-008 c26=-1.014e-007
c28=-2.124e-008

surface no. = 25
XYP rdy =1.000e+018 c3=-2.158e-003 c4 =8.710e-003 c6 =2.419e-002 c8=-1.264e-003
c10=2.619e-003 c11=-4.047e-004 c13=-1.671e-004 c15=-2.372e-004 c17=-6.351e-006
c19=1.241e-007 c21=6.665e-006 c22=-1.502e-006 c24=3.803e-006 c26=1.461e-006
c28=3.436e-007

surface no. = 26
SPH rdy =1.000e+018

surface no. = 27
ASP rdy =1.071e+001 a=-2.789e-004 b=-9.362e-005 c=2.432e-005 d=-2.970e-006 e=1.495e-030

surface no. = 28
SPH rdy =-4.140e+000

surface no. = 29
SPH rdy =-4.004e+000

surface no. = 35
SPH rdy =-9.526e+000

本数値例では、水平方向に±2mm及び垂直方向に±1mmの射出瞳の移動が可能である(接眼光学系806と第2の走査光学系1001が近づく方向を正とする)。この際に、集光光学系802は、−0.2〜+2mm移動する(集光光学系802が光源ユニット101に近付く方向を正とする)。

Exit pupil 107 surface number 1
Surface 806a Surface number 2
Surface 806b Surface number 3
Surface 806c Surface number 4
Surface 801a Surface number 5
Surface 801b Surface number 6
Surface 801c Surface number 7
Surface 801d Surface number 8
Surface 801e Surface number 9
Surface 801f Surface number 10
Surface 801g Surface number 11
Surface 801h Surface number 12
Surface 801i Surface number 13
Surface 801j Surface number 14
Surface 801k Surface number 15
Surface 801l Surface number 16
Surface 1002 Surface number 17
Surface 805b Surface number 18
Surface 805c Surface number 19
Surface 805d Surface number 20
Surface 805e Surface number 21
Surface 805f Surface number 22
Surface 805g Surface number 23
Surface 805h Surface number 24
Surface 805i Surface number 25
Scan unit 104 surface number 26
Surface 802a Surface number 27
Surface 802b Surface number 28
Surface 802c Surface number 29
Surface 802d Surface number 30
Light source unit 101 surface number 31

type sur Yg Zg qg ry rx d shift tilt nd νd
1 0.0000 0.0000 0.0000 0.0000 0.0000 10.000 0.000 0.000 1.000
XYP 2 0.0000 10.0000 0.0000 0.0000 0.0000 8.606 0.000 0.000 1.533 38.16
XYP-M 3 0.0000 18.6060 45.0000 0.0000 0.0000 0.000 0.000 45.000 -1.533 38.16
XYP 4 -11.4471 18.6060 90.0000 0.0000 0.0000 0.000 -11.447 90.000 -1.000
5 -43.4464 18.6060 90.0000 -32.2683 -32.2683 0.000 -43.446 90.000 -1.725 34.30
6 -45.4464 18.6060 90.0000 65.6075 65.6075 0.000 -45.446 90.000 -1.000
7 -45.6792 18.6060 90.0000 -12.2330 -12.2330 0.000 -45.679 90.000 -1.643 37.87
8 -49.1792 18.6060 90.0000 38.0111 38.0111 0.000 -49.179 90.000 -1.000
9 -49.5865 18.6060 90.0000 30.6692 30.6692 0.000 -49.587 90.000 -1.772 17.56
10 -50.8451 18.6060 90.0000 -18.7002 -18.7002 0.000 -50.845 90.000 -1.000
11 -78.6665 18.6060 90.0000 18.7002 18.7002 0.000 -78.667 90.000 -1.772 17.56
12 -79.9251 18.6060 90.0000 -30.6692 -30.6692 0.000 -79.925 90.000 -1.000
13 -80.3324 18.6060 90.0000 -38.0111 -38.0111 0.000 -80.332 90.000 -1.643 37.87
14 -83.8324 18.6060 90.0000 12.2330 12.2330 0.000 -83.832 90.000 -1.000
15 -84.0652 18.6060 90.0000 -65.6075 -65.6075 0.000 -84.065 90.000 -1.725 34.30
16 -86.0652 18.6060 90.0000 32.2683 32.2683 0.000 -86.065 90.000 -1.000
(M) 17 -104.0652 18.6060 90.0000 0.0000 0.0000 0.000 -104.065 90.000 -1.000
18 -121.1732 18.6060 90.0000 41.2689 41.2689 0.000 -121.173 90.000 -1.816 16.82
19 -124.4627 18.6060 90.0000 39.2224 39.2224 0.000 -124.463 90.000 -1.000
20 -126.2644 18.6060 90.0000 -28.6536 -28.6536 0.000 -126.264 90.000 -1.533 38.16
ASP 21 -133.5422 18.6060 90.0000 23.1963 23.1963 0.000 -133.542 90.000 -1.000
XYP 22 -159.7427 18.5222 89.5183 0.0000 0.0000 -0.238 -159.743 89.518 -1.533 38.16
XYP-M 23 -176.8787 18.2846 69.5403 0.0000 0.0000 7.208 -176.879 69.540 1.533 38.16
XYP-M 24 -166.9698 25.4927 24.3050 0.0000 0.0000 -15.900 -166.970 24.305 -1.533 38.16
XYP 25 -169.4261 9.59271 1.0043 0.0000 0.0000 -27.420 -169.426 1.004 -1.000
M 26 -167.5526 -17.8273 -15.0000 0.0000 0.0000 15.155 -167.553 -15.000 1.000
ASP 27 -176.3026 -2.6719 -30.0000 10.7093 10.7093 2.598 -176.303 -30.000 1.533 38.16
28 -177.8026 -0.0738 -30.0000 -4.1405 -4.1405 0.130 -177.803 -30.000 1.000
29 -177.8776 0.0561 -30.0000 -4.0044 -4.0044 1.732 -177.878 -30.000 1.707 20.05
30 -178.8776 1.7881 -30.0000 -9.5263 -9.5263 15.588 -178.878 -30.000 1.000
31 -187.8776 17.3766 -30.0000 0.0000 0.0000 0.000 -187.878 -30.000 1.000

surface no. = 2
XYP rdy = 1.000e + 018 c3 = 2.499e-002 c4 = 3.465e-002 c6 = -1.814e-002 c8 = -7.509e-005
c10 = -2.182e-003 c11 = -1.018e-004 c13 = 9.694e-005 c15 = 1.502e-004 c17 = 4.519e-007
c19 = 3.969e-006 c21 = 5.198e-006 c22 = 8.783e-007 c24 = -2.788e-008 c26 = -2.953e-007
c28 = -1.116e-

surface no. = 3
XYP rdy = 1.000e + 018 c3 = -4.588e-003 c4 = 1.212e-004 c6 = -9.190e-003 c8 = -1.574e-005
c10 = -1.033e-005 c11 = 2.204e-006 c13 = 3.143e-006 c15 = -3.021e-006

surface no. = 4
XYP rdy = 1.000e + 018 c3 = -4.419e-002 c4 = 3.363e-002 c6 = -7.874e-003 c8 = -1.156e-004
c10 = 2.298e-003 c11 = -3.251e-005 c13 = -3.398e-005 c15 = -7.488e-005

surface no. = 5
SPH rdy = -3.227e + 001

surface no. = 6
SPH rdy = 6.561e + 001

surface no. = 7
SPH rdy = -1.223e + 001

surface no. = 8
SPH rdy = 3.801e + 001

surface no. = 9
SPH rdy = 3.067e + 001

surface no. = 10
SPH rdy = -1.870e + 001

surface no. = 11
SPH rdy = 1.870e + 001

surface no. = 12
SPH rdy = -3.067e + 001

surface no. = 13
SPH rdy = -3.801e + 001

surface no. = 14
SPH rdy = 1.223e + 001

surface no. = 15
SPH rdy = -6.561e + 001

surface no. = 16
SPH rdy = 3.227e + 001

surface no. = 17
SPH rdy = 1.000e + 018

surface no. = 18
SPH rdy = 4.127e + 001

surface no. = 19
SPH rdy = 3.922e + 001

surface no. = 20
SPH rdy = -2.865e + 001

surface no. = 21
ASP rdy = 2.320e + 001 a = 6.995e-006 b = 5.782e-008 c = -3.445e-010 d = -7.347e-012 e = 4.904e-014

surface no. = 22
XYP rdy = 1.000e + 018 c3 = 3.795e-002 c4 = 3.987e-002 c6 = 2.438e-002 c8 = -1.535e-003
c10 = 2.872e-003 c11 = 5.789e-004 c13 = -7.510e-004 c15 = 5.524e-004 c17 = 2.584e-005
c19 = 2.014e-004 c21 = -1.959e-004 c22 = -5.473e-006 c24 = 1.198e-005 c26 = -4.874e-005
c28 = 1.335e-005

surface no. = 23
XYP rdy = 1.000e + 018 c3 = 1.356e-002 c4 = 8.306e-003 c6 = 8.385e-003 c8 = -3.018e-004
c10 = 2.369e-004 c11 = -2.276e-006 c13 = 1.371e-005 c15 = -1.653e-006 c17 = 2.566e-007
c19 = 4.119e-007 c21 = 8.285e-008 c22 = -5.797e-009 c24 = 7.125e-008 c26 = -8.830e-008
c28 = -2.402e-008

surface no. = 24
XYP rdy = 1.000e + 018 c3 = 1.368e-002 c4 = -7.773e-003 c6 = -6.167e-004 c8 = -4.112e-004
c10 = 2.907e-004 c11 = -1.259e-005 c13 = 1.937e-005 c15 = 2.155e-006 c17 = -2.345e-007
c19 = 3.037e-008 c21 = 1.341e-007 c22 = 5.741e-008 c24 = 5.084e-008 c26 = -1.014e-007
c28 = -2.124e-008

surface no. = 25
XYP rdy = 1.000e + 018 c3 = -2.158e-003 c4 = 8.710e-003 c6 = 2.419e-002 c8 = -1.264e-003
c10 = 2.619e-003 c11 = -4.047e-004 c13 = -1.671e-004 c15 = -2.372e-004 c17 = -6.351e-006
c19 = 1.241e-007 c21 = 6.665e-006 c22 = -1.502e-006 c24 = 3.803e-006 c26 = 1.461e-006
c28 = 3.436e-007

surface no. = 26
SPH rdy = 1.000e + 018

surface no. = 27
ASP rdy = 1.071e + 001 a = -2.789e-004 b = -9.362e-005 c = 2.432e-005 d = -2.970e-006 e = 1.495e-030

surface no. = 28
SPH rdy = -4.140e + 000

surface no. = 29
SPH rdy = -4.004e + 000

surface no. = 35
SPH rdy = -9.526e + 000

In this numerical example, the exit pupil can be moved ± 2 mm in the horizontal direction and ± 1 mm in the vertical direction (the direction in which the eyepiece optical system 806 and the second scanning optical system 1001 approach each other is positive). At this time, the condensing optical system 802 moves by −0.2 to +2 mm (the direction in which the condensing optical system 802 approaches the light source unit 101 is positive).

本数値例における射出瞳の移動時の歪み変化を図22に示す。また、波長486.13nm、587.56nm、656.27nmにおける射出瞳の移動量0mm及び水平2mm、垂直1mmでの横収差図を図23及び図24にそれぞれ示す。   FIG. 22 shows the distortion change when the exit pupil moves in this numerical example. In addition, FIGS. 23 and 24 show lateral aberration diagrams at a movement distance of 0 mm, horizontal 2 mm, and vertical 1 mm of the exit pupil at wavelengths 486.13 nm, 587.56 nm, and 656.27 nm, respectively.

以上説明した各実施例は代表的な例にすぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。   Each embodiment described above is only a representative example, and various modifications and changes can be made to each embodiment in carrying out the present invention.

本発明の実施例1である走査型表示装置の光学断面図。1 is an optical cross-sectional view of a scanning display apparatus that is Embodiment 1 of the present invention. 実施例1に用いられる走査ユニットの構成を示す斜視図。FIG. 3 is a perspective view illustrating a configuration of a scanning unit used in Embodiment 1. 実施例1における射出瞳の移動原理を説明する図。FIG. 6 is a diagram for explaining the principle of movement of the exit pupil in the first embodiment. 実施例1における射出瞳の移動の様子を示す図。FIG. 5 is a diagram illustrating a state of movement of an exit pupil in the first embodiment. 本発明の実施例2である走査型表示装置の光学断面図。FIG. 6 is an optical cross-sectional view of a scanning display device that is Embodiment 2 of the present invention. 実施例2における接眼光学系の説明図。Explanatory drawing of the eyepiece optical system in Example 2. FIG. 実施例2における射出瞳の移動の様子を示す図。FIG. 10 is a diagram illustrating a state of movement of an exit pupil in the second embodiment. 本発明の実施例3である走査型表示装置の光学断面図。FIG. 6 is an optical cross-sectional view of a scanning display device that is Embodiment 3 of the present invention. 実施例3における射出瞳の水平移動を説明する図。FIG. 10 is a diagram for explaining horizontal movement of an exit pupil in the third embodiment. 実施例3の変形例である走査型表示装置の構成を示す図。FIG. 10 is a diagram illustrating a configuration of a scanning display device that is a modification of the third embodiment. 実施例3の変形例の光学断面図。FIG. 6 is an optical cross-sectional view of a modified example of Example 3. 本発明の実施例3である走査型表示装置の構成を示す図。FIG. 6 is a diagram illustrating a configuration of a scanning display device that is Embodiment 3 of the present invention. 数値例1の光学断面図。2 is an optical cross-sectional view of Numerical Example 1. FIG. 数値例1の歪みの変化を表す図。The figure showing the change of distortion of numerical example 1. 数値例1の横収差図(瞳移動量0mm)。The lateral aberration diagram of Numerical Example 1 (pupil movement amount 0 mm). 数値例1の横収差図(瞳移動量水平4mm)。The lateral aberration diagram of Numerical Example 1 (pupil movement amount horizontal 4 mm). 数値例2の光学断面図。9 is an optical cross-sectional view of Numerical example 2. FIG. 数値例2の歪みの変化を表す図。The figure showing the change of distortion of Numerical example 2. 数値例2の横収差図(瞳移動量0mm)。The lateral aberration diagram of Numerical Example 2 (pupil movement amount 0 mm). 数値例2の横収差図(瞳移動量水平4mm)。The lateral aberration diagram of Numerical Example 2 (pupil movement amount horizontal 4 mm). 数値例3の光学断面図。FIG. 5 is an optical cross-sectional view of Numerical example 3. 数値例3の歪みの変化を表す図。The figure showing the change of the distortion of Numerical example 3. 数値例3の横収差図(瞳移動量0mm)。The lateral aberration diagram of Numerical Example 3 (pupil movement amount 0 mm). 数値例3の横収差図(瞳移動量水平2mm、垂直1mm)。The lateral aberration diagram of Numerical Example 3 (pupil movement amount horizontal 2 mm, vertical 1 mm).

符号の説明Explanation of symbols

101 光源ユニット
102,502,802 集光光学系
104 走査ユニット
105,505,805,1001 走査光学系
106,506,806 接眼光学系
106c,506b,806b 反射面
107 射出瞳
108 観察者の眼
109 瞳孔
110,1005 水平移動機構
201 走査デバイス
202 微小ミラー
601 像面
1002 反射面
1003 垂直移動機構
101 light source unit 102, 502, 802 condensing optical system 104 scanning unit 105, 505, 805, 1001 scanning optical system 106, 506, 806 eyepiece optical system 106c, 506b, 806b reflecting surface 107 exit pupil 108 observer's eye 109 pupil 110, 1005 Horizontal moving mechanism 201 Scanning device 202 Micro mirror 601 Image surface 1002 Reflecting surface 1003 Vertical moving mechanism

Claims (5)

光源と、
該光源からの光束を走査する走査ユニットと、
該走査ユニットからの光束を集光する走査光学系と、
走査光学系からの光束を観察者の眼が配置される射出瞳に導く接眼光学系とを有し、
前記走査光学系から前記接眼光学系に進む光束はテレセントリック性を有し、
前記接眼光学系は、前記走査光学系からの光束を前記射出瞳に向けて反射する第1の反射面を有しており、
前記接眼光学系を、前記走査光学系及び前記走査ユニットに対して、該走査光学系から前記接眼光学系への光束の進行方向に沿った方向に移動可能とする第1の機構を有することを特徴とする走査型表示装置。
A light source;
A scanning unit for scanning a light beam from the light source;
A scanning optical system for condensing the light beam from the scanning unit;
An eyepiece optical system for guiding a light beam from the scanning optical system to an exit pupil where an observer's eye is disposed;
The light beam traveling from the scanning optical system to the eyepiece optical system has telecentricity,
The eyepiece optical system has a first reflecting surface that reflects the light beam from the scanning optical system toward the exit pupil,
A first mechanism that allows the eyepiece optical system to move in a direction along a traveling direction of a light beam from the scanning optical system to the eyepiece optical system with respect to the scanning optical system and the scanning unit; A scanning display device.
前記接眼光学系の前記移動に応じて、前記光源からの光束の像点位置を移動させる可動光学系を有することを特徴とする請求項1に記載の走査型表示装置。   The scanning display apparatus according to claim 1, further comprising a movable optical system that moves an image point position of a light beam from the light source in accordance with the movement of the eyepiece optical system. 前記接眼光学系の前記移動にかかわらず、前記接眼光学系からの光束の射出方向が不変であることを特徴とする請求項1又は2に記載の走査型表示装置。   3. The scanning display device according to claim 1, wherein an emission direction of a light beam from the eyepiece optical system is unchanged regardless of the movement of the eyepiece optical system. 前記眼の瞳孔の位置を検出する瞳孔検出手段と、
該瞳孔検出手段により検出された前記瞳孔の位置に応じて前記第1の機構を動作させる制御手段とを有することを特徴とする請求項1から3のいずれか1つに記載の走査型表示装置。
Pupil detection means for detecting the position of the pupil of the eye;
4. The scanning display device according to claim 1, further comprising a control unit that operates the first mechanism in accordance with the position of the pupil detected by the pupil detection unit. 5. .
前記走査光学系は、前記走査ユニットからの光束が入射する第1の走査光学系と、該第1の走査光学系からの光束を前記接眼光学系に向けて反射する第2の反射面を含む第2の走査光学系とを含み、
前記第2の走査光学系を、前記接眼光学系とともに、前記第1の走査光学系及び前記走査ユニットに対して、該第1の走査光学系から前記第2の走査光学系への光束の進行方向に沿った方向に移動可能とする第2の機構を有することを特徴とする請求項1から4のいずれか1つに記載の走査型表示装置。
The scanning optical system includes a first scanning optical system on which a light beam from the scanning unit is incident, and a second reflecting surface that reflects the light beam from the first scanning optical system toward the eyepiece optical system. A second scanning optical system,
The second scanning optical system, together with the eyepiece optical system, travels light flux from the first scanning optical system to the second scanning optical system with respect to the first scanning optical system and the scanning unit. 5. The scanning display device according to claim 1, further comprising a second mechanism that is movable in a direction along the direction.
JP2008150718A 2008-06-09 2008-06-09 Scanning display device Expired - Fee Related JP5311887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008150718A JP5311887B2 (en) 2008-06-09 2008-06-09 Scanning display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008150718A JP5311887B2 (en) 2008-06-09 2008-06-09 Scanning display device

Publications (3)

Publication Number Publication Date
JP2009294605A JP2009294605A (en) 2009-12-17
JP2009294605A5 JP2009294605A5 (en) 2011-07-21
JP5311887B2 true JP5311887B2 (en) 2013-10-09

Family

ID=41542813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008150718A Expired - Fee Related JP5311887B2 (en) 2008-06-09 2008-06-09 Scanning display device

Country Status (1)

Country Link
JP (1) JP5311887B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5485093B2 (en) 2010-09-16 2014-05-07 オリンパス株式会社 Head-mounted image display device
WO2013135943A1 (en) * 2012-03-16 2013-09-19 Nokia Corporation Image providing apparatus and method
WO2014024403A1 (en) * 2012-08-08 2014-02-13 株式会社ニコン Head-mounted display optical assembly and head-mounted display
CN105593745B (en) * 2013-10-02 2018-03-27 株式会社尼康 Head mounted display optical system and head mounted display
WO2017033601A1 (en) * 2015-08-25 2017-03-02 ソニー株式会社 Display device and display device adjustment method
CN113767319A (en) 2019-06-18 2021-12-07 索尼集团公司 Image display device and display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352903A (en) * 1998-06-11 1999-12-24 Nec Corp Image display device
DE10233491B4 (en) * 2002-07-24 2012-12-20 Heidelberger Druckmaschinen Ag Compact device for imaging a printing form
JP2005107038A (en) * 2003-09-29 2005-04-21 Brother Ind Ltd Retina scanning and display device
US20080266530A1 (en) * 2004-10-07 2008-10-30 Japan Science And Technology Agency Image Display Unit and Electronic Glasses

Also Published As

Publication number Publication date
JP2009294605A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP5283976B2 (en) Optical scanning device
US7755837B2 (en) Image display apparatus
JP5311887B2 (en) Scanning display device
JP3787939B2 (en) 3D image display device
US20100002289A1 (en) Microscope optical system, microscope, and virtual slide forming system
JPH0821975A (en) Head-mounted type video display system
JP4933056B2 (en) Image display device and imaging device using the same
JP2022536860A (en) Wearable display for near-eye viewing with extended beam
JP2010091944A (en) Image display device and image display system
JP4689266B2 (en) Image display device
CN212460199U (en) Head-mounted display device
EP1480069B1 (en) Optical system for displaying images
WO2014185188A1 (en) Fundus photographing device
JP2006011145A (en) Binocular microscope apparatus
JP2010000110A (en) Binocular stereo video microscope apparatus
JP2006053321A (en) Projection observation device
JP2000310747A (en) Image observation device
US11786118B2 (en) Image display device and image display system
JPH0876030A (en) Solid endoscope having curved peeping direction
US20220350153A1 (en) Digital illumination assisted gaze tracking for augmented reality near to eye displays
JP3414451B2 (en) Stereo microscope
JPH1184306A (en) Video observing device
JP5911379B2 (en) Stereoscopic imaging optical system and endoscope having the same
JP6984745B2 (en) Image display device, image display system, image display method and image processing program
JP2003270544A (en) Stereomicroscope

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R151 Written notification of patent or utility model registration

Ref document number: 5311887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees