JP5307684B2 - Method for manufacturing chassis component having better long-term durability limit and chassis component - Google Patents

Method for manufacturing chassis component having better long-term durability limit and chassis component Download PDF

Info

Publication number
JP5307684B2
JP5307684B2 JP2009239958A JP2009239958A JP5307684B2 JP 5307684 B2 JP5307684 B2 JP 5307684B2 JP 2009239958 A JP2009239958 A JP 2009239958A JP 2009239958 A JP2009239958 A JP 2009239958A JP 5307684 B2 JP5307684 B2 JP 5307684B2
Authority
JP
Japan
Prior art keywords
semi
finished product
nitriding
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009239958A
Other languages
Japanese (ja)
Other versions
JP2010133011A (en
Inventor
ツーバー アルミン
フレーン アンドレアス
トエウス ルディ
Original Assignee
ベンテラー オートモビールテヒニク ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベンテラー オートモビールテヒニク ゲーエムベーハー filed Critical ベンテラー オートモビールテヒニク ゲーエムベーハー
Publication of JP2010133011A publication Critical patent/JP2010133011A/en
Application granted granted Critical
Publication of JP5307684B2 publication Critical patent/JP5307684B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Description

本発明は、より優れた長期耐久限度を有するシャシ構成要素の製造方法と、そのような製造方法により製造されたシャシ構成要素に関わる。   The present invention relates to a method of manufacturing a chassis component having a better long-term durability limit and a chassis component manufactured by such a manufacturing method.

シャシ用トーション形鋼など、自動車のシャシ構成要素の製造に際しては、最終製品の長期耐久限度を含めた機械的特性に高い要求が課されるだけでなく、プロセスやコストの最適化に対しても高い要求が課される。   When manufacturing automotive chassis components, such as chassis torsion sections, not only are there high demands on mechanical properties, including long-term endurance limits of the final product, but also for process and cost optimization. High demands are imposed.

技術の現況では、シャシ構成要素について要求される周期的強度を得るのに、表面硬化という機械的方法がとられている。そのような方法は、たとえば独国特許出願公開第102004018586号明細書に記載されている。この場合部品の表面硬化は、投射材の投射により行われる。   In the current state of the art, a mechanical method called surface hardening is used to obtain the required periodic strength for the chassis components. Such a method is described, for example, in German Offenlegungsschrift 102004018586. In this case, the surface of the component is hardened by projecting the projection material.

この方法の欠点は、部品の表面のみが硬化し、硬化層の厚さが僅少であることである。また複雑な構造を持つ部品の場合、内側に入り込んだ表面の硬化は、この方法では手間がかかるか、部分的に不可能である。また投射が強過ぎると表面を傷付ける可能性があり、疲労強度の点で問題が生じる恐れがある。さらには、壁厚の比較的薄いものへの投射処理は、常に悪い結果をもたらすことが分かっている。   The disadvantage of this method is that only the surface of the part is cured and the thickness of the cured layer is small. Further, in the case of a part having a complicated structure, the hardening of the surface that has entered inside is troublesome or partially impossible by this method. Further, if the projection is too strong, the surface may be damaged, and there may be a problem in terms of fatigue strength. Furthermore, it has been found that the projection process on relatively thin walls always gives bad results.

また、高強度構造部品を製造する方法としては、硬化鋼の利用、ならびに硬化鋼の加熱、硬化、成形プロセスが知られている。この方法は、たとえば独国特許出願公開第10339119号明細書に記載されている。この製造方法の欠点は、構造部品の成形を、硬化過程を終えてから冷間成形で行わなければならないことにある。そのため冷間成形過程には、より大きなエネルギーを投入せねばならず、また冷間成形で誘導される応力も増える。さらにこの製造方法の場合、冷間成形中に誘導される応力を除去するために、冷間成形に続いて応力除去焼きなましが必要になる可能性がある。   In addition, as a method for producing a high-strength structural part, use of hardened steel and heating, hardening and forming processes of the hardened steel are known. This method is described, for example, in German Offenlegungsschrift 10339119. The disadvantage of this production method is that the structural parts must be molded by cold forming after the curing process has been completed. Therefore, more energy must be input into the cold forming process, and the stress induced by the cold forming increases. In addition, this manufacturing method may require stress relief annealing subsequent to cold forming to remove stresses induced during cold forming.

独国特許出願公開第102004018586号明細書German Patent Application No. 102004018586 独国特許出願公開第10339119号明細書German Patent Application No. 10339119

本発明の課題は、シャシ構成要素の製造を簡略化し、それと同時に耐用年数の長いシャシ構成要素を獲得することにある。   The object of the present invention is to simplify the manufacture of chassis components and at the same time to obtain chassis components with a long service life.

よって本発明は、課題の第1の観点から見て、半製品が冷間成形によって成形されるというシャシ構成要素の製造方法に関わる。この方法は、冷間成形後の半製品に窒化処理を施すことを特徴とする。   Accordingly, the present invention relates to a method for manufacturing a chassis component in which a semi-finished product is formed by cold forming as viewed from the first viewpoint of the problem. This method is characterized by nitriding a semi-finished product after cold forming.

本発明による方法の第1の実施例のプロセス進行図式。1 is a process progress diagram of a first embodiment of a method according to the invention. 本発明による方法の第2の実施例のプロセス進行図式。FIG. 4 is a process progress diagram of a second embodiment of the method according to the invention.

本発明では、シャシ構成要素は鋼からなる。本発明で言うところの半製品とは、管などの中空形鋼または薄板を意味する。これらの半製品には、冷間成形過程において、プレス、曲げ、または他の成形法により、製造されるべき最終製品の形状が与えられる。成形済み半製品を窒化することによって、成形済み半製品の表面は硬化する。ショットピーニング等の表面投射による純粋に機械的な表面硬化と比べて、熱化学処理すなわち窒化処理では、表面硬化による硬化層の深さを適切に調整することができる。この窒化処理は、複室式かまどまたは連続加熱炉で行うことができる。   In the present invention, the chassis component is made of steel. The semi-finished product referred to in the present invention means a hollow steel such as a tube or a thin plate. These semi-finished products are given the shape of the final product to be manufactured by pressing, bending or other forming methods in the cold forming process. By nitriding the molded semi-finished product, the surface of the molded semi-finished product is cured. Compared with purely mechanical surface hardening by surface projection such as shot peening, the depth of the hardened layer by surface hardening can be appropriately adjusted in thermochemical treatment, that is, nitriding treatment. This nitriding treatment can be performed in a double chamber type furnace or a continuous heating furnace.

窒化の場合、鋼製の半製品の中心部分にはフェライト構造等の基本構造が残る。さらに、窒素の浸透が、表面近くにオーステナイトが形成されるのを防ぐ。成形済み半製品(これ以降未完成品と呼ぶ)の表面には、窒素の浸透によって非常に硬い表面化合層が形成される。この化合層の下には浸透ゾーンが形成され、そこでは窒素が、ある特定の深さまで基本構造の金属母材(たとえばフェライト金属母材)内に沈積する。この固溶体内に沈積した窒素は、未完成品の長期耐久限度を向上させる。さらに、表面近傍領域における析出物形成によって、耐磨耗性が得られるとともに、周期負荷時の耐用期間が延びる。窒化のプロセスによって、最終製品すなわちシャシ構成要素の耐用期間を周期負荷時にも保証するような未完成品の長期耐久限度(疲れ限度とも言われる)が得られる。未完成品の表面には、窒化物形成によって強度と耐磨耗性に優れた層が形成されるので、最終製品すなわちシャシ構成要素に要求される強度は、壁厚の薄い未完成品によっても得ることができ、その結果材料の需要量ならびにシャシ構成要素の重量を低減することができる。   In the case of nitriding, a basic structure such as a ferrite structure remains in the central portion of the steel semi-finished product. In addition, nitrogen permeation prevents austenite from forming near the surface. A very hard surface compound layer is formed on the surface of the molded semi-finished product (hereinafter referred to as incomplete product) by nitrogen permeation. Under this compound layer, an infiltration zone is formed, where nitrogen is deposited into a basic metal matrix (eg, ferrite metal matrix) to a certain depth. Nitrogen deposited in this solid solution improves the long-term endurance limit of unfinished products. Furthermore, the formation of precipitates in the vicinity of the surface provides wear resistance and extends the service life during cyclic loading. The nitriding process provides a long-term endurance limit (also referred to as a fatigue limit) of the unfinished product that ensures the end product or chassis component lifetime during cyclic loading. Since the surface of the unfinished product is formed with a layer with excellent strength and wear resistance due to nitridation, the strength required for the final product, i.e. As a result of which the demand for material as well as the weight of the chassis components can be reduced.

窒化は通常400〜600℃で行われる。この処理温度によって、冷間成形中に未完成品内に誘導された応力は解消される。よって本発明に基づき行われる窒化過程は、冷間成形部品で別個に必要となる応力除去焼きなまし過程を代替することになり、その結果製造プロセス全体が短縮され、コスト面での最適化がはかられる。さらに、窒化は一般的に真空状態のもとで行われるので、未完成品の表面には酸化物がなく、塗装処理前の表面の清掃投射処理過程が不要になる。これによりさらに製造プロセス全体の短縮化とコスト面の最適化がはかられる。   Nitriding is usually performed at 400 to 600 ° C. This treatment temperature eliminates stresses induced in the unfinished product during cold forming. Thus, the nitriding process performed in accordance with the present invention replaces the stress relief annealing process that is separately required for cold-formed parts, resulting in a shortened overall manufacturing process and cost optimization. It is. Furthermore, since nitriding is generally performed under vacuum conditions, there is no oxide on the surface of the unfinished product, and there is no need for a process of cleaning and projecting the surface before the coating process. As a result, the entire manufacturing process can be shortened and the cost can be optimized.

さらに、窒化によりシャシ構成要素の長期耐久限度が向上するだけでなく、耐腐食性も向上し磨耗保護層が作られる。   Furthermore, nitriding not only improves the long-term durability limit of the chassis components, but also improves corrosion resistance and creates a wear protection layer.

本発明のある優先的な実施形態では、半製品の原料は、炭素含有量(C)0.30重量%以下の鋼である。このように炭素含有量が少なくても、窒化により十分な表面硬度が得られることが分かっている。炭素含有量が通常0.3〜0.4重量%である窒化鋼とは異なり、本発明による方法では、自動車用途用に加工可能なシャシ構成要素を製造することができる。たとえば本発明によって製造されたシャシ構成要素は、他の構成要素と溶接により接合することができる。   In one preferred embodiment of the invention, the raw material of the semi-finished product is steel with a carbon content (C) of 0.30% by weight or less. Thus, it has been found that sufficient surface hardness can be obtained by nitriding even if the carbon content is small. Unlike nitrided steel, which normally has a carbon content of 0.3-0.4% by weight, the method according to the invention makes it possible to produce chassis components that can be processed for automotive applications. For example, a chassis component manufactured in accordance with the present invention can be joined to other components by welding.

ある優先的な実施形態では、半製品に冷間成形によって、すなわち窒化前に最終形状が与えられる。最終形状とは、シャシ構成要素がシャシへの取り付け前または他の構成要素との接合前に有している形と寸法を意味する。これにより最終製品において機械的な負荷にさらされることになる表面を、確実に硬化させることができる。さらに、表面硬化の済んだ部品をさらに成形する必要がないので、窒化により生成された表面硬化層を破壊しなくて済む。   In one preferred embodiment, the semi-finished product is given a final shape by cold forming, i.e. before nitriding. By final shape is meant the shape and dimensions that the chassis component has before being attached to the chassis or joined to other components. This ensures that the surface that will be exposed to mechanical loads in the final product can be cured. Furthermore, since it is not necessary to further mold the surface-cured part, it is not necessary to destroy the surface hardened layer generated by nitriding.

窒化処理とは主としてプラズマ窒化法による窒化である。本発明において成形済み半製品の窒化は、ガス窒化またはプラズマ窒化(イオン窒化とも言われる)により行われる。ただし窒化の処理時間を数時間に短縮できることから、プラズマ窒化の方が優先される。プラズマ窒化およびガス窒化の優れた利点は、複雑な構造を持つ部品であっても確実に処理できる点にある。特にシャシ構成要素によく見られる中空形鋼の場合、内部に入り込んだ表面も容易に硬化させることができるので、部品全体の強度が向上する。表面硬化した部品への窒化後の追加処理は不要である。よって浴窒化などの方法と比べてさらなる最適化が達成される。   Nitriding is nitriding mainly by plasma nitriding. In the present invention, nitriding of the molded semi-finished product is performed by gas nitriding or plasma nitriding (also called ion nitriding). However, since the nitriding treatment time can be shortened to several hours, plasma nitriding is prioritized. An excellent advantage of plasma nitriding and gas nitriding is that even a component having a complicated structure can be reliably processed. In particular, in the case of a hollow steel often found in chassis components, the surface entering the inside can be easily hardened, so that the strength of the entire part is improved. No additional processing after nitriding on the surface-hardened part is necessary. Thus, further optimization is achieved compared to methods such as bath nitriding.

さらなる実施例では、窒化処理後に成形済み半製品の表面の少なくとも一部に投射材を投射するという過程が加わる。既に窒化によって硬化した表面に、投射による表面硬化を施すことによって、窒化時に形成された化合層は、機械的な硬化によってさらに硬くなる。その結果部品の耐用期間はさらに延びる。さらに、表面の一部に投射することで、局所的な強度の引き上げを適切に行うことができる。さらに、それ以前のプロセスで生じた比較的小さな表面の瑕疵は、成形済み半製品への投射時に除去されるので、長期耐久限度の向上がはかられる。   In a further embodiment, a process of projecting the projection material onto at least a part of the surface of the molded semi-finished product after nitriding is added. By subjecting the surface already hardened by nitriding to surface hardening by projection, the compound layer formed at the time of nitriding becomes harder by mechanical hardening. As a result, the service life of the parts is further extended. Furthermore, local intensity | strength raise can be performed appropriately by projecting on a part of surface. In addition, the relatively small surface wrinkles produced by the previous process are removed upon projection onto the molded semi-finished product, thus improving the long-term durability limit.

窒化処理後の最終製品は、場合によって行われる強度投射処理を除いては、さらなる成形過程や熱処理過程に回されることはない。つまり、追加的な熱処理や機械的処理が不要だということである。これにより、窒化時および場合によって追加される強度投射時に部品内に生成された構造(表面強度と中心部の粘性が高い)は、確実に保持される。さらに、この製造プロセスは過程数が少ないので短時間で済み、時間とコストの節約になる。また、窒化時の歪みや変形がごくわずかであるか、もしくは皆無であることから、窒化処理に供される成形済み半製品を、完成時の寸法に造ることができる。冷間成形の際、自動車の各種最終寸法を確実かつ容易に許容差内に調整することができる。   The final product after the nitriding treatment is not sent to a further molding process or heat treatment process except for an intensity projection process that is performed in some cases. In other words, no additional heat treatment or mechanical treatment is required. Thereby, the structure (the surface strength and the viscosity of the central part are high) generated in the part at the time of nitriding and the intensity projection to be added depending on the case is reliably maintained. In addition, this manufacturing process requires fewer steps and therefore requires less time, saving time and costs. Further, since there is little or no distortion or deformation during nitriding, a molded semi-finished product to be subjected to nitriding can be made to the dimensions as completed. During cold forming, the various final dimensions of the vehicle can be reliably and easily adjusted within tolerances.

半製品の原料には、マイクロ合金鋼や調質鋼を使用できる。窒化鋼と比べたこれらの原料の利点は、製造コストが安く、また炭素含有量が低いので最終製品の状態で加工(特に溶接)が可能であることにある。   Microalloy steel and tempered steel can be used as raw materials for semi-finished products. The advantages of these raw materials over nitrided steel are that the manufacturing cost is low and the carbon content is low, so that processing (particularly welding) is possible in the final product state.

本発明による方法に使用できる鋼は、たとえばベンテラーAG社がBTR165の商品名で販売している調質鋼である。原料として使用されるこの鋼は、鉄ならびに溶融に起因する汚染物のほかに、たとえば表1に示した3つの組み合わせのうちいずれかの組み合わせの合金元素(重量%)を有する。   Steel that can be used in the method according to the invention is, for example, tempered steel sold by Bentler AG under the trade name BTR165. This steel used as a raw material has, in addition to iron and contaminants resulting from melting, for example, any one of the three combinations shown in Table 1 in alloy elements (% by weight).

Figure 0005307684
Figure 0005307684

ある実施形態では、半製品の原料鋼が以下のものからなる(重量%)。
炭素(C): 0.22〜0.25%
珪素(Si): 0.20〜0.30%
マンガン(Mn): 1.20〜1.40%
燐(P): 0.020%以下
硫黄(S): 0.010%以下
アルミニウム(Al): 0.020〜0.060%
ホウ素(B): 0.0020〜0.0035%
クロム(Cr): 0.10〜0.20%
チタン(Ti): 0.020〜0.050%
モリブデン(Mo): 0.35%以下
銅(Cu): 0.10%以下
ニッケル(Ni): 0.30%以下
残り: 鉄および溶融に起因する汚染物
In one embodiment, the semi-finished raw steel consists of (wt%):
Carbon (C): 0.22 to 0.25%
Silicon (Si): 0.20 to 0.30%
Manganese (Mn): 1.20 to 1.40%
Phosphorus (P): 0.020% or less Sulfur (S): 0.010% or less Aluminum (Al): 0.020 to 0.060%
Boron (B): 0.0020 to 0.0035%
Chromium (Cr): 0.10 to 0.20%
Titanium (Ti): 0.020 to 0.050%
Molybdenum (Mo): 0.35% or less Copper (Cu): 0.10% or less Nickel (Ni): 0.30% or less Remaining: Iron and contamination caused by melting

これらの合金を窒化して得られる表面硬度は、いずれも自動車のシャシ構成要素として十分な長期耐久限度を有することが判明している。さらに、これらの鋼合金は低コストで製造可能であり、また炭素含有量が少ないことから溶接が可能である。   It has been found that the surface hardness obtained by nitriding these alloys has a long-term durability limit sufficient as a chassis component of an automobile. Furthermore, these steel alloys can be produced at low cost and can be welded because of their low carbon content.

さらなる実施形態では、原料鋼の合金元素は、表1の例の範囲内にあるが、アルミニウム含有量だけ増やしてある。たとえばアルミニウム含有量を0.020〜0.100重量%にすることができる。アルミニウム含有量を増やすと、化合層と浸透層からなる窒化層の硬度はさらに増大し、磨耗耐性もさらに向上する。   In a further embodiment, the alloying elements of the raw steel are within the range of the examples in Table 1, but increased by the aluminum content. For example, the aluminum content can be 0.020 to 0.100% by weight. When the aluminum content is increased, the hardness of the nitride layer composed of the compound layer and the permeation layer is further increased, and the wear resistance is further improved.

本発明では、バナジウム(V)含有量が0.100重量%以下の鋼を原料として使うことが追加的または代替的に可能である。特に好ましいのは、表1のいずれかの組成の鋼に0.100重量%以下のバナジウム(V)を添加した合金を使用することである。   In the present invention, it is additionally or alternatively possible to use steel having a vanadium (V) content of 0.100% by weight or less as a raw material. It is particularly preferable to use an alloy in which 0.100% by weight or less of vanadium (V) is added to steel having any composition in Table 1.

半製品の製造原料としては、鉄ならびに溶融に起因する汚染物と以下の合金元素(重量%)からなる合金もまた可能である。
炭素(C): 0.02〜0.14%
珪素(Si): 0.15%以下
マンガン(Mn): 0.15〜1.50%
燐(P): 0.035%以下
硫黄(S): 0.020%以下
アルミニウム(Al): 0.015〜0.060%
ニオビウム(Nb): 0.020〜0.120%
チタン(Ti): 0.100%以下
バナジウム(V): 0.100%以下
モリブデン(Mo): 0.10%以下
As a raw material for producing a semi-finished product, an alloy composed of iron and contaminants resulting from melting and the following alloy elements (% by weight) is also possible.
Carbon (C): 0.02 to 0.14%
Silicon (Si): 0.15% or less Manganese (Mn): 0.15-1.50%
Phosphorus (P): 0.035% or less Sulfur (S): 0.020% or less Aluminum (Al): 0.015-0.060%
Niobium (Nb): 0.020 to 0.120%
Titanium (Ti): 0.100% or less Vanadium (V): 0.100% or less Molybdenum (Mo): 0.10% or less

本発明に基づき半製品の原料として使用可能なさらなる合金は、鉄ならびに溶融に起因する汚染物のほかに以下の合金元素(重量%)を含む。
炭素(C): 0.02〜0.10%
珪素(Si): 0.40%以下
マンガン(Mn): 0.50〜1.60%
燐(P): 0.025%以下
硫黄(S): 0.010%以下
アルミニウム(Al): 0.020%以上
ニオビウム(Nb): 0.008〜0.060%
チタン(Ti): 0.008〜0.060%
バナジウム(V): 0.008〜0.060%
Further alloys that can be used as raw materials for semi-finished products according to the invention include the following alloying elements (wt%) in addition to iron and contaminants due to melting.
Carbon (C): 0.02 to 0.10%
Silicon (Si): 0.40% or less Manganese (Mn): 0.50 to 1.60%
Phosphorus (P): 0.025% or less Sulfur (S): 0.010% or less Aluminum (Al): 0.020% or more Niobium (Nb): 0.008 to 0.060%
Titanium (Ti): 0.008 to 0.060%
Vanadium (V): 0.008 to 0.060%

さらに、上述の各合金組成(特に最後に挙げた合金組成)から外れる形で、窒化物形成元素(Al、Ti、V、Mo、Cr)を個別に、もしくは組み合わせて添加することも可能である。   Further, nitride forming elements (Al, Ti, V, Mo, Cr) can be added individually or in combination in a form deviating from the above-described alloy compositions (particularly the last alloy composition listed). .

本発明に基づく方法に使用できる上記の鋼合金は、炭素含有量が低いこと、窒化物形成元素(Al、Ti、V、Mo、Cr)が各合金に適量含まれること、それらの合金を含む鋼の成形性が良いこと、鋼の価格が安いこと、そして原料が入手しやすいこと、などの点で特に傑出している。   The steel alloys that can be used in the method according to the present invention include a low carbon content, appropriate amounts of nitride-forming elements (Al, Ti, V, Mo, Cr), and alloys thereof. It is particularly outstanding in terms of the good formability of steel, the low price of steel, and the availability of raw materials.

ある実施形態では、半製品が中空形鋼、それも特に肉薄の中空形鋼である。中空形鋼、それも特に肉薄の中空形鋼の場合、中空でない部品と比べて、最終製品において周期負荷の要求に耐えられるような表面硬度とねじれ柔軟性の確保が特に重要となる。そのような半製品の製造に本発明による方法を採用すれば、特に大きな成果が得られる。   In one embodiment, the semi-finished product is a hollow steel, which is also a particularly thin hollow steel. In the case of a hollow steel, especially a thin hollow steel, it is particularly important to ensure surface hardness and torsional flexibility that can withstand the requirements of cyclic loads in the final product, compared to non-hollow parts. If the method according to the invention is employed for the production of such semi-finished products, particularly great results are obtained.

本発明による製造方法は、主として連続的方法である。連続的方法とは、シャシ構成要素を量産するための方法ということであり、個々の過程の工程時間が互いに調整されている。その際この製造プロセスは、一つの生産連鎖として統合されており、一つの過程を終了した製品はすぐに次の処理過程に送られる。この方法の利点は、中継保管が不要なことからコストが最適化できることにある。さらに、窒化の処理時間が短いため、従来のシャシ構成要素製造法で採用されている製造プロセス工程時間を延ばす必要がない。つまり窒化を、工程時間を変更することなく製造プロセスに組み込むことができる。   The production process according to the invention is mainly a continuous process. The continuous method is a method for mass production of chassis components, and the process times of the individual processes are adjusted to each other. In this case, this manufacturing process is integrated as one production chain, and a product that has finished one process is immediately sent to the next process. The advantage of this method is that the cost can be optimized since no relay storage is required. Furthermore, since the nitriding treatment time is short, it is not necessary to extend the manufacturing process step time employed in the conventional chassis component manufacturing method. In other words, nitriding can be incorporated into the manufacturing process without changing the process time.

本発明は、もう一つの観点から見ると、本発明による方法に基づき製造されたシャシ構成要素に関わる。このシャシ構成要素としては、たとえばトーション形鋼、スタビライザー(曲がっているもの、または真っ直ぐなもの)、投入後に周期負荷にさらされるその他の管状構成要素などが考えられる。   Viewed from another aspect, the invention relates to a chassis component manufactured according to the method according to the invention. As this chassis component, for example, a torsion section steel, a stabilizer (bent or straight), and other tubular components that are exposed to a cyclic load after being charged can be considered.

シャシ構成要素の例としては、クロスメンバー、トランスバースリンク、マルチリンク・リヤサスペンション、半独立サスペンション、フロントアクスル、サスペンションリンク、管または薄板からなる縦・横トラバース、ドライブシャフトなどがある。   Examples of chassis components include a cross member, a transverse link, a multi-link rear suspension, a semi-independent suspension, a front axle, a suspension link, a longitudinal or lateral traverse made of tubes or thin plates, a drive shaft, and the like.

本発明による方法では、優れた表面硬度とトーション柔軟性が併せて得られるため、これらのシャシ構成要素のすべてに、本発明に基づく方法(優先的に使用される鋼合金を使用)は特に適している。また、優先的に使用される合金ならびに本発明による製造方法が低コストであることも、これらのシャシ構成要素にとっては有利である。   Since the method according to the invention provides a combination of excellent surface hardness and torsional flexibility, the method according to the invention (using the preferentially used steel alloy) is particularly suitable for all these chassis components. ing. It is also advantageous for these chassis components that the preferentially used alloys and the production method according to the invention are low-cost.

方法について述べた利点および特徴は、本発明によるシャシ構成要素にも然るべくあてはまり、またその逆も言える。さらに、ある一つの実施形態について述べた利点および特徴は、他の実施形態にもあてはまるが、ただし他の実施形態がそれ以外のある実施形態の必ずしもすべての特徴を有するわけではない。   The advantages and features mentioned for the method apply accordingly to the chassis component according to the invention, and vice versa. Furthermore, the advantages and features described in connection with one embodiment apply to other embodiments, but other embodiments do not necessarily have all the features of one other embodiment.

本発明を、考えられる実施例をもとに添付の図を参照しながら以下に説明する。   The invention will be described below on the basis of possible embodiments and with reference to the accompanying drawings.

図1のAは管状の半製品を示すもので、これからシャシ構成要素が製造される。この管は、一つまたは複数の成形過程を経てBで示す成形済み半製品となる。その際曲げ、およびその他の切削によらない成形法が採用される。   FIG. 1A shows a tubular semi-finished product from which the chassis components are manufactured. This tube becomes a molded semi-finished product indicated by B after one or more molding processes. In this case, bending and other forming methods that do not depend on cutting are employed.

そのようにして成形された半製品は、次に窒化プロセスのための処理室(図1C)へ送られる。この処理室では、真空状態の中、窒素含有ガスがたとえば電場によってイオン化される。その結果、処理室に送り込まれた未完成品の表面には化合層が生成され、この化合層では、窒化鉄のほかに、アルミニウム、クロム、モリブデン、バナジウム、チタンなどの窒化物が形成されている。この化合層の下には浸透層と言われる層ができており、窒素が微細窒化物という形で存在している。窒化処理は、処理室の代わりに連続加熱炉を使用しても可能である。   The semi-finished product so formed is then sent to the processing chamber (FIG. 1C) for the nitriding process. In this processing chamber, the nitrogen-containing gas is ionized by, for example, an electric field in a vacuum state. As a result, a compound layer is generated on the surface of the unfinished product sent into the processing chamber, and in this compound layer, nitrides such as aluminum, chromium, molybdenum, vanadium, and titanium are formed in addition to iron nitride. Yes. Under this compound layer, a layer called a permeation layer is formed, and nitrogen exists in the form of fine nitride. The nitriding treatment can be performed using a continuous heating furnace instead of the treatment chamber.

設定された処理時間の経過後、未完成品は最終完成製品(D)として処理室から取り出される。   After the set processing time has passed, the unfinished product is taken out from the processing chamber as a final finished product (D).

図2は、本発明による方法のもう一つの実施形態を示す。この場合、処理室(C)で窒化された未完成品は、表面投射の処理(図2E)に回される。この処理過程では、表面の全体または一部に投射材が投射されて、それにより表面に圧縮応力が生じる。投射材を除去すると最終完成製品(図2D)が出来上がる。   FIG. 2 shows another embodiment of the method according to the invention. In this case, the incomplete product nitrided in the processing chamber (C) is sent to the surface projection processing (FIG. 2E). In this process, the projection material is projected on the entire surface or a part of the surface, thereby generating a compressive stress on the surface. When the projection material is removed, the final finished product (FIG. 2D) is completed.

本発明によって数々の利点が得られる。特に、比較的安い製造コストで耐用期間の長いシャシ構成要素が得られる。製造コストの低減は、応力除去焼きなましなどの熱処理が、窒化プロセスゆえに不要であることに起因する。これらのシャシ構成要素(特に窒化トーション形鋼)の耐用期間は、既知の製造方法で製造された部品の耐用期間の数倍に相当する。さらに、得られる長期耐久限度から考えて、シャシ構成要素の壁厚を、既知の製造方法で製造されたものより薄くすることが可能である。その結果シャシ構成要素の重量低減が可能となる。本発明による方法を用いれば、合金元素の含有量が少ない鋼合金であっても、窒化プロセス用に特別に調整してあるため、さらなるコスト低減が可能である。   A number of advantages are obtained by the present invention. In particular, chassis components with a long service life can be obtained at relatively low production costs. The reduction in manufacturing cost is due to the fact that a heat treatment such as stress relief annealing is unnecessary because of the nitridation process. The service life of these chassis components (particularly nitrided torsion section steel) corresponds to several times the service life of parts manufactured by known manufacturing methods. Furthermore, in view of the long-term durability limits obtained, the wall thickness of the chassis component can be made thinner than that produced by known production methods. As a result, the weight of the chassis component can be reduced. By using the method according to the present invention, even a steel alloy with a low content of alloy elements can be further reduced in cost because it is specially adjusted for the nitriding process.

Claims (9)

半製品が冷間成形によって成形されるというシャシ構成要素の製造方法であって、冷間成形後の成形済み半製品に窒化処理を施し、
前記半製品に冷間成形によって最終形状が与えられ、
前記窒化処理が、プラズマ窒化法による窒化であり、
前記方法がさらに、前記成形済み半製品の表面の少なくとも一部に投射材を投射する処理という過程を含み、
前記半製品の原料が、以下のもの(重量%):
炭素(C): 0.22〜0.25%
珪素(Si): 0.20〜0.30%
マンガン(Mn): 1.20〜1.40%
燐(P): 0.020%以下
硫黄(S): 0.010%以下
アルミニウム(Al): 0.020〜0.060%
ホウ素(B): 0.0020〜0.0035%
クロム(Cr): 0.10〜0.20%
チタン(Ti): 0.020〜0.050%
モリブデン(Mo): 0.35%以下
銅(Cu): 0.10%以下
ニッケル(Ni): 0.30%以下
残り: 鉄および溶融に起因する汚染物
からなる鋼であることを特徴とする方法。
A method of manufacturing a chassis component in which a semi-finished product is formed by cold forming, and a nitriding treatment is applied to the formed semi-finished product after cold forming,
The semi-finished product is given a final shape by cold forming,
The nitriding treatment is nitriding by a plasma nitriding method,
It said method further comprises the step of processing for projecting blast material to at least a portion of the preformed semi-finished surface,
The raw material of the semi-finished product is as follows (wt%):
Carbon (C): 0.22 to 0.25%
Silicon (Si): 0.20 to 0.30%
Manganese (Mn): 1.20 to 1.40%
Phosphorus (P): 0.020% or less Sulfur (S): 0.010% or less Aluminum (Al): 0.020 to 0.060%
Boron (B): 0.0020 to 0.0035%
Chromium (Cr): 0.10 to 0.20%
Titanium (Ti): 0.020 to 0.050%
Molybdenum (Mo): 0.35% or less Copper (Cu): 0.10% or less Nickel (Ni): 0.30% or less Remaining: Steel made of iron and contaminants caused by melting Method.
前記成形済み半製品の表面の少なくとも一部に投射材を投射する処理という過程が窒化処理後に実施されることを特徴とする、請求項1に記載の方法。 The method according to claim 1, wherein a process of projecting a projection material onto at least a part of the surface of the molded semi-finished product is performed after the nitriding process. 窒化処理後の最終製品に、強度の引き上げのために前記成形済み半製品の表面の少なくとも一部に投射材を投射する処理を除いて、さらなる成形過程または熱処理過程を施さないことを特徴とする、請求項1または2に記載の方法。 The final product after the nitriding treatment is not subjected to further molding process or heat treatment process except for a process of projecting a projection material onto at least a part of the surface of the molded semi-finished product for increasing strength. The method according to claim 1 or 2. 半製品の原料が、マイクロ合金鋼または調質鋼からなることを特徴とする、請求項1から3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the raw material of the semi-finished product is made of microalloy steel or tempered steel. 前記原料が、0.020〜0.100重量%のアルミニウムを有することを特徴とする、請求項4に記載の方法。 The method according to claim 4, wherein the raw material has 0.020 to 0.100 wt% aluminum. 前記原料が、0.100重量%以下のバナジウム(V)を有することを特徴とする、請求項1から5のいずれか一項に記載の方法。 The method according to claim 1, wherein the raw material has 0.100% by weight or less of vanadium (V). 前記半製品が肉薄の中空形鋼であることを特徴とする、請求項1から6のいずれか一項に記載の方法。 The method according to claim 1, wherein the semi-finished product is a thin hollow steel. 方法が連続的方法であることを特徴とする、請求項1から7のいずれか一項に記載の方法。 8. A method according to any one of the preceding claims, characterized in that the method is a continuous method. 請求項1から8の少なくとも1つに記載の方法によって製造されたシャシ構成要素であって、それらが、トーション形鋼、スタビライザー、または投入後に周期負荷にさらされるその他の構成要素であることを特徴とするシャシ構成要素。

9. Chassis components produced by the method according to claim 1, characterized in that they are torsion sections, stabilizers or other components that are subjected to cyclic loading after application. A chassis component.

JP2009239958A 2008-12-02 2009-10-19 Method for manufacturing chassis component having better long-term durability limit and chassis component Expired - Fee Related JP5307684B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008060161A DE102008060161B4 (en) 2008-12-02 2008-12-02 Method for producing a suspension component with increased fatigue strength and chassis component
DE102008060161.6 2008-12-02

Publications (2)

Publication Number Publication Date
JP2010133011A JP2010133011A (en) 2010-06-17
JP5307684B2 true JP5307684B2 (en) 2013-10-02

Family

ID=42145476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009239958A Expired - Fee Related JP5307684B2 (en) 2008-12-02 2009-10-19 Method for manufacturing chassis component having better long-term durability limit and chassis component

Country Status (4)

Country Link
JP (1) JP5307684B2 (en)
DE (1) DE102008060161B4 (en)
FR (1) FR2939148B1 (en)
IT (1) IT1396738B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009049398C5 (en) 2009-10-14 2015-05-07 Benteler Automobiltechnik Gmbh Method for producing a structural component for a motor vehicle and structural component
US9475107B2 (en) 2013-02-05 2016-10-25 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle axle component
JP6232324B2 (en) * 2014-03-24 2017-11-15 Jfeスチール株式会社 Stabilizer steel and stabilizer with high strength and excellent corrosion resistance, and method for producing the same
DE102016121902A1 (en) 2016-11-15 2018-05-17 Salzgitter Flachstahl Gmbh Process for the production of chassis parts made of micro-alloyed steel with improved cold workability

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE152166C (en) *
AT16293B (en) 1902-10-11 1904-05-25 Filzfabrik Ges Mit Beschraenkt
FR2506339A1 (en) * 1981-05-21 1982-11-26 Creusot Loire METHOD FOR THE ION NITRURATION OF A PLASTICALLY PREFORMED DEFORMED STEEL PART
JP2783145B2 (en) * 1993-12-28 1998-08-06 株式会社神戸製鋼所 Steel for nitrided spring and nitrided spring with excellent fatigue strength
JP2000264205A (en) * 1999-03-19 2000-09-26 Tokico Ltd Vibration control device for vehicle
DE20023814U1 (en) * 1999-07-21 2006-06-08 Nsk Ltd. Steel cage for rolling bearing used, e.g., in industrial machine or automobile engine, has compound layer formed by nitriding on its surface
DE10339119B3 (en) 2003-08-22 2005-03-17 Benteler Automobiltechnik Gmbh Method of making hardened steel structural component, involves cutting panel from coil, heating, hardening and cold-forming to form structural component
JP4561136B2 (en) * 2004-03-17 2010-10-13 Jfeスチール株式会社 Steel sheet for nitriding treatment
DE102004018586A1 (en) 2004-04-16 2005-11-03 Rolls-Royce Deutschland Ltd & Co Kg Method for compacting surface using bead blasting with intensity and pressure programmed to match geometry of workpiece
JP4646858B2 (en) * 2006-06-14 2011-03-09 株式会社神戸製鋼所 Steel sheet for nitriding treatment
JP2009085381A (en) * 2007-10-01 2009-04-23 Ntn Corp Power-transmission shaft

Also Published As

Publication number Publication date
DE102008060161B4 (en) 2012-07-19
DE102008060161A1 (en) 2010-06-10
IT1396738B1 (en) 2012-12-14
FR2939148B1 (en) 2016-01-01
FR2939148A1 (en) 2010-06-04
JP2010133011A (en) 2010-06-17
ITRM20090628A1 (en) 2010-06-03

Similar Documents

Publication Publication Date Title
JP4282731B2 (en) Manufacturing method of automobile underbody parts with excellent fatigue characteristics
JP5777090B2 (en) Steel for machine structural use with excellent surface fatigue strength
JP5693126B2 (en) Coil spring and manufacturing method thereof
JP5196934B2 (en) High fatigue life quenched and tempered steel pipe and method for manufacturing the same
WO2011111623A1 (en) Solid stabilizer, steel material for solid stabilizer and method for producing solid stabilizer
JP5307684B2 (en) Method for manufacturing chassis component having better long-term durability limit and chassis component
JP2005002365A (en) High strength stabilizer
WO2011048971A1 (en) Steel for high-strength bolts and process for production of high-strength bolts
JP5258642B2 (en) Automobile undercarriage parts with unusual cross-sectional shape with excellent fatigue characteristics
JP5286966B2 (en) Gear parts
JP2001254143A (en) Soft-nitriding non-thermally refined crank shaft and its producing method
KR100716344B1 (en) Heat treatment method of cr-mo alloy for transmission gear and shaft
EP1876255B1 (en) Carbonitriding or cementation steel and method of producing parts with said steel
JP2002121643A (en) Steel for diecasting die, method for producing diecasting die composed by using the same and diecasting die
KR20150074645A (en) Material for high carburizing steel and method for producing gear using the same
KR20180123492A (en) High strength air-hardened steel for use as a filler
JP2000239780A (en) Spheroid al graphite cast iron and machine parts such as gear using the same
JP5734050B2 (en) Medium carbon steel with excellent rolling fatigue properties and induction hardenability
JP4510515B2 (en) Hollow parts with excellent fatigue characteristics
JP2017186658A (en) Steel material, crank shaft and automobile component
JP6816729B2 (en) Clad steel sheet and its manufacturing method
JP4821711B2 (en) Steel for soft nitriding
JP2012251184A (en) Steel excellent in fatigue characteristic and toughness
JP7175182B2 (en) Automobile mechanical parts made of carburizing steel with excellent static torsional strength and torsional fatigue strength
JP2000297351A (en) Steel for diecasting die and diecasting die

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120625

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120924

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130328

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130402

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130426

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees