JP5307340B2 - Electromagnetic induction heating fixing device and image forming apparatus provided with the same - Google Patents

Electromagnetic induction heating fixing device and image forming apparatus provided with the same Download PDF

Info

Publication number
JP5307340B2
JP5307340B2 JP2007029163A JP2007029163A JP5307340B2 JP 5307340 B2 JP5307340 B2 JP 5307340B2 JP 2007029163 A JP2007029163 A JP 2007029163A JP 2007029163 A JP2007029163 A JP 2007029163A JP 5307340 B2 JP5307340 B2 JP 5307340B2
Authority
JP
Japan
Prior art keywords
temperature
power
switching element
power value
electromagnetic induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007029163A
Other languages
Japanese (ja)
Other versions
JP2008197135A (en
Inventor
慎一郎 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007029163A priority Critical patent/JP5307340B2/en
Publication of JP2008197135A publication Critical patent/JP2008197135A/en
Application granted granted Critical
Publication of JP5307340B2 publication Critical patent/JP5307340B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve controllability, that will not apply excessive load on the switching element of a high-frequency power source and to save energy, by avoiding deterioration in heating efficiency in an electromagnetic induction heating fixing unit using magnetic shunt alloy in a body to be heated. <P>SOLUTION: An IH control part 50 for controlling the switching element 44 so that power supplied to an excitation coil 32 has power-varying control carried out adjusting supplied power according to detected temperature of a thermistor 49, in order to maintain a heat roller 21 at a fixing temperature after termination of warming up, when power required for maintaining the fixing temperature reaches a minimum power value; a fixed power intermittent control is carried out intermittently carrying out power supply in which casted power is fixed according to the detected temperature of the thermistor; a minimum power value which is to become a reference, when power varying control is switched to fixed power intermittent control is determined, based on the input voltage and the detected temperature of the thermistor. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、電磁誘導作用により加熱ローラなどの被加熱体を加熱する電磁誘導加熱定着装置及びこれを備えた画像形成装置に関し、特に被加熱体に整磁合金を使用した電磁誘導加熱定着装置及びこれを備えた画像形成装置に関するものである。   The present invention relates to an electromagnetic induction heating and fixing apparatus that heats a heated object such as a heating roller by electromagnetic induction and an image forming apparatus including the same, and more particularly, to an electromagnetic induction heating and fixing apparatus that uses a magnetic shunt alloy for the heated object, and The present invention relates to an image forming apparatus including the same.

電子写真プロセスにより記録紙に画像を形成する画像形成装置(プリンタ、ファクシミリ装置、複写機、及び複合機など)では、感光体から記録紙上に転写された未定着のトナーを熱と圧力により記録紙に定着させる定着装置が設けられている。この定着装置では、加熱ローラなどの被加熱体を電磁誘導作用によるジュール熱で加熱する電磁誘導加熱方式によるものが、加熱効率や熱応答性に優れた利点を有することから、近年、多用されるようになってきた。   In an image forming apparatus (such as a printer, a facsimile machine, a copying machine, and a multi-function machine) that forms an image on recording paper by an electrophotographic process, unfixed toner transferred from the photosensitive member onto the recording paper is recorded by heat and pressure. There is provided a fixing device for fixing the toner. In this fixing device, an electromagnetic induction heating method in which a heated object such as a heating roller is heated by Joule heat due to electromagnetic induction has an advantage of excellent heating efficiency and thermal responsiveness. It has become like this.

このような電磁誘導加熱型の定着装置では、キュリー温度に到達すると比透磁率が急激に低下する温度依存性磁気変態特性を有する整磁合金を加熱ローラに用いて、その整磁合金のキュリー温度を利用した自己温度制御を行う技術が知られている(特許文献1参照)。これによると、定着温度より高く且つその近傍にキュリー温度が設定された整磁合金を加熱ローラに使用することで、加熱ローラの温度が定着温度を大きく上回る異常な温度上昇を簡単に且つ確実に防止することができる。
特開2004−325678号公報
In such an electromagnetic induction heating type fixing device, a magnetic shunt alloy having a temperature-dependent magnetic transformation characteristic in which the relative permeability rapidly decreases when the Curie temperature is reached is used as a heating roller. A technique for performing self-temperature control using the above is known (see Patent Document 1). According to this, by using a magnetic shunt alloy having a Curie temperature higher than the fixing temperature and in the vicinity thereof for the heating roller, an abnormal temperature rise in which the temperature of the heating roller greatly exceeds the fixing temperature can be easily and reliably performed. Can be prevented.
JP 2004-325678 A

しかるに、定着装置では、ウォームアップにより加熱ローラの温度が所定の定着温度に到達すると、安定した定着処理が行われるように、加熱ローラを定着温度に一定に維持する温度制御が行われ、特に電磁誘導加熱型の定着装置では、インバータにより投入電力を増減して加熱量を調整する制御が行われ、このとき、周囲の温度上昇に伴う放熱量の低下に応じて、定着温度に維持するために必要な加熱量が低下するため、投入電力も徐々に絞る必要がある。   However, in the fixing device, when the temperature of the heating roller reaches a predetermined fixing temperature due to warm-up, temperature control is performed to keep the heating roller constant at the fixing temperature so that stable fixing processing is performed. In the induction heating type fixing device, the inverter is controlled to increase or decrease the input power to adjust the heating amount. At this time, in order to maintain the fixing temperature according to the decrease in the amount of heat radiation accompanying the surrounding temperature increase. Since the necessary amount of heating is reduced, it is necessary to gradually reduce the input power.

この場合、高周波電源では、投入電力を絞るのに応じて高周波電源の駆動周波数が上昇し、投入電力が大きく駆動周波数が低いときには、図7(A)に示すように、スイッチング素子のコレクタ・エミッタ間電圧Vceが0となるゼロクロス点で、コレクタ電流Icが理想的に立ち上がり、高周波電源の共振回路を正常に駆動させることができるが、投入電力が小さく駆動周波数が高くなると、共振用のコンデンサの放電が完了しないうちに次の動作に移行する現象が発生し、図7(B)に示すように、ゼロクロスすべきタイミングで電圧Vceが瞬間的に0に下がり、スイッチング素子に異常電流が発生する。   In this case, in the high frequency power supply, when the input power is reduced, the drive frequency of the high frequency power supply increases. When the input power is large and the drive frequency is low, as shown in FIG. The collector current Ic rises ideally at the zero cross point where the inter-voltage Vce becomes zero, and the resonance circuit of the high frequency power supply can be driven normally. However, when the input power is small and the drive frequency is high, the resonance capacitor A phenomenon of shifting to the next operation occurs before the discharge is completed, and as shown in FIG. 7B, the voltage Vce instantaneously drops to 0 at the timing of zero crossing, and an abnormal current is generated in the switching element. .

このスイッチング素子での異常電流は、スイッチング素子で発熱を生じさせることから、そのエネルギー損失で発熱効率が低下する他、スイッチング素子に大きな負荷を与えて、最悪の場合にはスイッチング素子の破壊に至ることから、避けることが望ましい。そこで、スイッチング素子に過大な負荷を与えることがないように、投入可能な電力の下限値として最小電力値を予め設定しておき、ウォームアップ後の温度制御時には、投入電力が最小電力値を下回ることがないように制御することで、スイッチング素子の破壊を防止することができる。   The abnormal current in the switching element generates heat in the switching element, so that the heat generation efficiency is reduced due to the energy loss, and a large load is applied to the switching element, and in the worst case, the switching element is destroyed. Therefore, it is desirable to avoid it. Therefore, in order not to give an excessive load to the switching element, a minimum power value is set in advance as a lower limit value of power that can be input, and the input power is below the minimum power value during temperature control after warm-up. By controlling so as not to occur, destruction of the switching element can be prevented.

この最小電力値は、加熱ローラが整磁合金でない場合には、図8(A)に示すように、入力電圧が高くなるのに応じて高くなるものの、通常、定着に用いる温度領域においては、加熱ローラの温度変化に対して大きな違いが生じないため、入力電圧に応じて一律に最小電力値を設定すれば良い。   When the heating roller is not a magnetic shunt alloy, the minimum power value increases as the input voltage increases as shown in FIG. 8A, but normally, in the temperature range used for fixing, Since there is no significant difference with respect to the temperature change of the heating roller, the minimum power value may be set uniformly according to the input voltage.

これに対して、前記のように定着温度より高く且つその近傍にキュリー温度が設定された整磁合金を加熱ローラに使用した場合には、図8(B)に示すように、加熱ローラの温度が上昇するのに応じて最小電力値が大きくなる。これは、加熱ローラの温度が、これを構成する整磁金属のキュリー温度に近づくのにしたがって、高周波電源での電圧共振におけるゼロクロスが難しくなることによるものであり、入力電圧に応じて最小電力値を一律に設定したのでは、加熱ローラが整磁合金でない場合に比較して最小電力値が大きな値になり、これにより電力の制御幅が狭くなるため、制御性が悪化するという問題が生じる。   On the other hand, when a magnetic shunt alloy having a Curie temperature higher than the fixing temperature and set in the vicinity thereof is used for the heating roller as described above, as shown in FIG. As the value rises, the minimum power value increases. This is because, as the temperature of the heating roller approaches the Curie temperature of the magnetic shunt metal constituting the heating roller, the zero crossing in the voltage resonance with the high frequency power source becomes difficult, and the minimum power value according to the input voltage. Is uniformly set, the minimum power value becomes a large value as compared with the case where the heating roller is not a magnetic shunt alloy, thereby reducing the control range of the power, resulting in a problem that the controllability is deteriorated.

本発明は、このような従来技術の問題点を解消するべく案出されたものであり、その主な目的は、被加熱体に整磁合金を使用した電磁誘導加熱定着装置において、制御性を向上させると共に、高周波電源のスイッチング素子に過大な負荷を与えることがなく、また加熱効率の低下を回避して省エネルギーを図ることができるように構成された電磁誘導加熱定着装置及びこれを備えた画像形成装置を提供することにある。   The present invention has been devised to solve such problems of the prior art, and its main purpose is to provide controllability in an electromagnetic induction heating and fixing apparatus using a magnetic shunt alloy as a heated object. An electromagnetic induction heating and fixing device configured to improve the energy efficiency of the switching element of the high-frequency power source without causing an excessive load and to avoid a decrease in heating efficiency and an image including the same It is to provide a forming apparatus.

本発明は、定着温度より高く且つその近傍にキュリー温度が設定された整磁合金からなる被加熱体と、この被加熱体を電磁誘導により発熱させる励磁コイルと、前記被加熱体の温度を検出する温度検出手段と、前記励磁コイルへの電力供給経路上に設けられたスイッチング素子と、前記励磁コイルに供給する電力を調整すべく前記スイッチング素子を制御するスイッチング素子制御手段とを具備し、このスイッチング素子制御手段が、ウォームアップ終了後に前記被加熱体を定着温度に維持すべく、前記温度検出手段の検出温度に応じて供給電力を調整する電力可変制御を行い、定着温度の維持に要する電力が最小電力値に到達すると、投入電力を固定した電力供給を前記温度検出手段の検出温度に応じて間欠的に行う電力固定間欠制御を行う電磁誘導加熱定着装置であって、前記温度検出手段の検出温度が高くなるにしたがって前記最小電力値が高く設定された最小電力値情報を有し、前記スイッチング素子制御手段が、前記電力可変制御から前記電力固定間欠制御に切り替える際の基準となる前記最小電力値を、前記温度検出手段の検出温度に応じて前記最小電力値情報から決定するようにした構成とする。 The present invention provides a heated body made of a magnetic shunt alloy having a Curie temperature higher than the fixing temperature, an excitation coil for generating heat by electromagnetic induction, and detecting the temperature of the heated body. Temperature detecting means, a switching element provided on a power supply path to the excitation coil, and a switching element control means for controlling the switching element to adjust the power supplied to the excitation coil. The switching element control means performs power variable control for adjusting the supply power according to the detected temperature of the temperature detecting means so as to maintain the heated body at the fixing temperature after the warm-up is completed, and the power required for maintaining the fixing temperature. line but reaches the minimum power value, the power fixed intermittent control for intermittently based a fixed power supply input power to the detected temperature of said temperature detecting means An electromagnetic induction heating fixing device, having said minimum power value information minimum power value is set higher as the detected temperature increases of the temperature detecting means, said switching element control means, from the power variable control It said minimum power value used as a reference when switching to the power fixed intermittent control, a configuration which is adapted to determine from said minimum power value information in accordance with the detected temperature before Symbol temperature detecting means.

本発明によれば、投入電力の制御幅を広げることができるため、制御性を向上させることができ、さらに高周波電源のスイッチング素子に過大な負荷を与えることを確実に避けることができ、またスイッチング素子での発熱により電力が無駄に消費されて加熱効率が低下することを回避して、省エネルギーを図ることができる。   According to the present invention, the control range of the input power can be widened, so that the controllability can be improved, and it is possible to surely avoid applying an excessive load to the switching element of the high-frequency power source, and switching. It is possible to save energy by avoiding that power is wasted due to heat generated by the element and heating efficiency is lowered.

上記課題を解決するためになされた第1の発明は、定着温度より高く且つその近傍にキュリー温度が設定された整磁合金からなる被加熱体と、この被加熱体を電磁誘導により発熱させる励磁コイルと、前記被加熱体の温度を検出する温度検出手段と、前記励磁コイルへの電力供給経路上に設けられたスイッチング素子と、前記励磁コイルに供給する電力を調整すべく前記スイッチング素子を制御するスイッチング素子制御手段とを具備し、このスイッチング素子制御手段が、ウォームアップ終了後に前記被加熱体を定着温度に維持すべく、前記温度検出手段の検出温度に応じて供給電力を調整する電力可変制御を行い、定着温度の維持に要する電力が最小電力値に到達すると、投入電力を固定した電力供給を前記温度検出手段の検出温度に応じて間欠的に行う電力固定間欠制御を行う電磁誘導加熱定着装置であって、前記温度検出手段の検出温度が高くなるにしたがって前記最小電力値が高く設定された最小電力値情報を有し、前記スイッチング素子制御手段が、前記電力可変制御から前記電力固定間欠制御に切り替える際の基準となる前記最小電力値を、前記温度検出手段の検出温度に応じて前記最小電力値情報から決定するようにした構成とする。 A first invention made to solve the above-described problems is a heated body made of a magnetic shunt alloy having a Curie temperature higher than the fixing temperature and a Curie temperature in the vicinity thereof, and excitation that causes the heated body to generate heat by electromagnetic induction. A coil, temperature detecting means for detecting the temperature of the object to be heated, a switching element provided on a power supply path to the exciting coil, and controlling the switching element to adjust power supplied to the exciting coil Switching element control means for controlling the power supply to adjust the supply power according to the detected temperature of the temperature detecting means so as to maintain the heated body at the fixing temperature after the warm-up is completed. When the power required for maintaining the fixing temperature reaches the minimum power value, the power supply with the fixed input power is adjusted according to the detected temperature of the temperature detecting means. Cormorant line intermittently power fixed intermittent control performed Te an electromagnetic induction heating fixing device, has a minimum power value information said minimum power value is set higher as the detected temperature increases of the temperature detecting means, so that the switching element control means, determines the minimum power value as a reference when switching from the power variable control to the power fixed intermittent control, from the minimum power value information in accordance with the detected temperature before Symbol temperature detecting means The configuration is as follows.

これによると、被加熱体の実際の温度が低く、キュリー温度まで十分な余裕があるために、電圧共振が適切に行われ易い状態にある場合には、最小電力値が低い値に設定されるため、投入電力の制御幅を広げることができ、制御性を向上させることができる。他方、被加熱体の実際の温度が高く、キュリー温度の直近にあるために、電圧共振が適切に行われ難い状態にある場合には、最小電力値が高い値に設定されるため、高周波電源のスイッチング素子に過大な負荷を与えることを確実に避けることができ、また、スイッチング素子での発熱により電力が無駄に消費されて加熱効率が低下することを回避して、省エネルギーを図ることができる。   According to this, since the actual temperature of the object to be heated is low and there is a sufficient margin up to the Curie temperature, the minimum power value is set to a low value when voltage resonance is easily performed appropriately. Therefore, the control range of input power can be widened, and controllability can be improved. On the other hand, since the actual temperature of the object to be heated is high and close to the Curie temperature, it is difficult to properly perform voltage resonance, so the minimum power value is set to a high value. It is possible to surely avoid applying an excessive load to the switching element, and it is possible to save energy by avoiding power consumption being wasted due to heat generated by the switching element and reducing the heating efficiency. .

前記課題を解決するためになされた第2の発明は、前記最小電力値情報は、複数に分割された検出温度領域ごとに最小電力値が設定されている構成とする。 A second invention has been made in order to solve the above problems, the minimum power value information, the minimum power value for each detected temperature region divided into a plurality are configured as a constituent Ru Empire.

これによると、入力電圧及び温度検出手段の検出温度と最小電力値との相関関係を示す最小電力値情報が、簡単なテーブルで済み、データ量を削減すると共に、計算式で求める場合のような煩雑な演算処理が不要になる。   According to this, the minimum power value information indicating the correlation between the input voltage and the detected temperature of the temperature detecting means and the minimum power value can be a simple table, reducing the amount of data, and obtaining by a calculation formula. Complex calculation processing is not required.

以下、本発明の実施の形態を、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明が適用される複写機の概略構成を示す模式的な断面図である。この複写機(画像形成装置)は、原稿の画像を読み取る原稿読取部1と、ここで読み取った原稿の画像をトナーで記録紙(画像形成媒体)上に形成する画像形成部2と、ここで記録紙上に形成されたトナー像を定着させる定着部(電磁誘導加熱定着装置)3とを有し、画像形成部2には給紙部4から記録紙が供給され、定着部3で定着処理が終わった記録紙が排紙部5に排出される。   FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a copying machine to which the present invention is applied. The copying machine (image forming apparatus) includes an original reading unit 1 that reads an image of an original, an image forming unit 2 that forms an image of the original read here on a recording paper (image forming medium) with toner, A fixing unit (electromagnetic induction heating fixing device) 3 for fixing a toner image formed on the recording paper. The recording paper is supplied from the paper supply unit 4 to the image forming unit 2, and the fixing unit 3 performs fixing processing. The finished recording paper is discharged to the paper discharge unit 5.

画像形成部2では、帯電ローラ11により一様に帯電された感光体ドラム12に対してレーザ走査ユニット13からレーザ光が照射されて感光体ドラム12の像形成面上に静電潜像が形成された後、現像ユニット14内のトナーが現像ローラ15を介して感光体ドラム12に供給されることでその像形成面上の静電潜像が現像され、これにより形成されたトナー像が転写ローラ16により記録紙に転写される。   In the image forming unit 2, the photosensitive drum 12 uniformly charged by the charging roller 11 is irradiated with laser light from the laser scanning unit 13 to form an electrostatic latent image on the image forming surface of the photosensitive drum 12. After that, the toner in the developing unit 14 is supplied to the photosensitive drum 12 through the developing roller 15 to develop the electrostatic latent image on the image forming surface, and the toner image formed thereby is transferred. The image is transferred onto the recording paper by the roller 16.

図2は、図1に示した定着部3の要部を示す断面図である。定着部3は、記録紙(画像形成媒体)S上のトナー像を熱溶融させる加熱ローラ(被加熱体)21と、図示しないばねにより加熱ローラ21に圧接する向きに付勢された加圧ローラ22とを有しており、加熱ローラ21と加圧ローラ22とによるニップ部に記録紙Sが送り込まれ、熱及び圧力の作用で記録紙S上のトナーが記録紙Sに定着される。   FIG. 2 is a cross-sectional view showing a main part of the fixing unit 3 shown in FIG. The fixing unit 3 includes a heating roller (heated body) 21 that heat-melts the toner image on the recording paper (image forming medium) S, and a pressure roller that is urged by a spring (not shown) so as to be in pressure contact with the heating roller 21. The recording paper S is fed into the nip portion between the heating roller 21 and the pressure roller 22, and the toner on the recording paper S is fixed to the recording paper S by the action of heat and pressure.

加熱ローラ21は、鉄ニッケル合金などの整磁合金からなる中空円筒状のローラ本体24を有し、このローラ本体24の内部には電磁誘導加熱ユニット25が収容されており、この電磁誘導加熱ユニット25は高周波電源26により駆動され、励磁コイル32が発生する高周波磁界によりローラ本体23が発熱する。ローラ本体24の表面にはフッ素樹脂などからなる離型層(図示せず)が形成されている。   The heating roller 21 has a hollow cylindrical roller body 24 made of a magnetic shunt alloy such as an iron-nickel alloy, and an electromagnetic induction heating unit 25 is accommodated in the roller body 24. The electromagnetic induction heating unit. 25 is driven by a high frequency power source 26, and the roller body 23 generates heat by a high frequency magnetic field generated by the exciting coil 32. A release layer (not shown) made of a fluorine resin or the like is formed on the surface of the roller body 24.

加熱ローラ21を構成する整磁合金のキュリー温度は、定着温度より高く且つその近傍に設定されており、これにより、加熱ローラ21の温度が定着温度を超えてキュリー温度に近づくと、比透磁率が低下して加熱ローラ21の発熱が抑制され、定着温度より大幅に上昇する異常な温度上昇を防止することができる。   The Curie temperature of the magnetic shunt alloy constituting the heating roller 21 is set higher than and near the fixing temperature, and when the temperature of the heating roller 21 exceeds the fixing temperature and approaches the Curie temperature, the relative magnetic permeability is set. And the heat generation of the heating roller 21 is suppressed, and an abnormal temperature rise that is significantly higher than the fixing temperature can be prevented.

ローラ本体24の内周面には、発熱効率を向上させるための非磁性金属層27が電気的絶縁層28を介して形成されており、励磁コイル32が発生する高周波磁界によりローラ本体24と共に非磁性金属層27が発熱する。この非磁性金属層27には、非磁性金属層の影響による励磁コイル32の抵抗負荷の増大を抑えて、高周波電源の共振回路を正常に駆動させる目的で、周方向の一部分を切除する態様の切り欠き29が形成されている。   A nonmagnetic metal layer 27 for improving the heat generation efficiency is formed on the inner peripheral surface of the roller body 24 via an electrically insulating layer 28. The roller body 24 and the roller body 24 are not coated with a high frequency magnetic field generated by the excitation coil 32. The magnetic metal layer 27 generates heat. The nonmagnetic metal layer 27 has a mode in which a part in the circumferential direction is removed for the purpose of normally driving the resonance circuit of the high frequency power supply while suppressing an increase in the resistance load of the exciting coil 32 due to the influence of the nonmagnetic metal layer. A notch 29 is formed.

加圧ローラ22は、アルミニウム合金材からなる芯金30と、この芯金30の周囲に形成された発泡シリコーンゴムなどのスポンジ材からなる弾性層31とを有している。   The pressure roller 22 has a metal core 30 made of an aluminum alloy material and an elastic layer 31 made of a sponge material such as foamed silicone rubber formed around the metal core 30.

図3は、図2に示した加熱ローラ21の軸方向の断面図である。加熱ローラ21の内部に収容される電磁誘導加熱ユニット25は、軸方向に直列に並んで設けられた複数の励磁コイル32と、この複数の励磁コイル32に個別に設けられた磁性体コア33と、励磁コイル32及び磁性体コア33を保持するために軸方向に延在するアルミニウムなどの非磁性の材料にて形成された芯材34とからなっている。   FIG. 3 is a cross-sectional view of the heating roller 21 shown in FIG. 2 in the axial direction. The electromagnetic induction heating unit 25 housed in the heating roller 21 includes a plurality of exciting coils 32 provided in series in the axial direction, and a magnetic core 33 provided individually in the plurality of exciting coils 32. In order to hold the exciting coil 32 and the magnetic core 33, the core 34 is made of a nonmagnetic material such as aluminum extending in the axial direction.

励磁コイル32は、加熱ローラ21の中心線周りに巻回された導線(リッツ線)36により、加熱ローラ21と同軸的に形成されている。励磁コイル32の各々には、同一の軸方向位置で且つ加熱ローラ21の中心線を中心にした対称位置に磁性体コア33が2つ設けられており、この2つ1組の磁性体コア33の周囲に導線36を巻回して1つの励磁コイル32が形成される。また磁性体コア33は、軸方向に隣り合う磁性体コア33と、加熱ローラ21の中心線を中心にした配置角度が周方向に90度ずれている。   The exciting coil 32 is formed coaxially with the heating roller 21 by a conducting wire (Litz wire) 36 wound around the center line of the heating roller 21. Each of the exciting coils 32 is provided with two magnetic cores 33 at the same axial position and at symmetrical positions with the center line of the heating roller 21 as the center. An exciting coil 32 is formed by winding a conducting wire 36 around the wire. In addition, the magnetic core 33 and the magnetic cores 33 adjacent to each other in the axial direction are shifted from each other by 90 degrees in the circumferential direction with respect to the center line of the heating roller 21.

磁性体コア33は、フェライトなどの強磁性を有する材料にて形成され、励磁コイル32の内側に延在する基部33aから励磁コイル32の外側に突出されて、先端が加熱ローラ21の内周面に近接する一対の突出部33bを備えている。励磁コイル32により発生した磁束は、磁性体コア33により誘導されて突出部33bの先端面から略径方向に進み、ローラ本体24の内周面に対して略直交する向きに進入する。   The magnetic core 33 is made of a ferromagnetic material such as ferrite, protrudes from the base 33 a extending inside the exciting coil 32 to the outside of the exciting coil 32, and the tip is the inner peripheral surface of the heating roller 21. Is provided with a pair of projecting portions 33b. The magnetic flux generated by the exciting coil 32 is guided by the magnetic core 33 and proceeds in a substantially radial direction from the front end surface of the protruding portion 33 b and enters in a direction substantially orthogonal to the inner peripheral surface of the roller body 24.

図4は、図2に示した高周波電源26の概略構成を示すブロック図である。この高周波電源26は、AC電源41からの交流を整流する整流回路42と、励磁コイル32に並列接続されてLC共振回路を構成する共振用のコンデンサ43と、励磁コイル32への電力供給を制御するIGBT(Insulated Gate Bipolar Transistor)などのスイッチング素子44と、このスイッチング素子44に並列接続されたダイオード45と、スイッチング素子44を駆動する駆動回路46と、励磁コイル32を含む回路ブロックに入力される電流値を検出する電流検出部47と、励磁コイル32を含む回路ブロックに入力される電圧値を検出する電圧検出部48と、加熱ローラ21の温度を検出するサーミスタ(温度検出手段)49と、電流検出部47、電圧検出部48、及びサーミスタ49で検出された電流、電圧、及び温度に基づいて励磁コイル32への電力供給を制御するIH制御部(スイッチング素子制御手段)50とを有している。   FIG. 4 is a block diagram showing a schematic configuration of the high-frequency power source 26 shown in FIG. The high-frequency power source 26 controls the power supply to the exciting coil 32, the rectifying circuit 42 that rectifies the alternating current from the AC power source 41, the resonance capacitor 43 that is connected in parallel to the exciting coil 32 and constitutes the LC resonance circuit. A switching element 44 such as an insulated gate bipolar transistor (IGBT), a diode 45 connected in parallel to the switching element 44, a drive circuit 46 for driving the switching element 44, and a circuit block including the exciting coil 32 are input. A current detector 47 for detecting a current value, a voltage detector 48 for detecting a voltage value input to a circuit block including the exciting coil 32, a thermistor (temperature detector) 49 for detecting the temperature of the heating roller 21, Excitation based on current, voltage, and temperature detected by current detector 47, voltage detector 48, and thermistor 49 IH control unit for controlling power supply to yl 32 and a (switching element control unit) 50.

IH制御部50は、電流検出部47、電圧検出部48、及びサーミスタ49の出力信号をA/D変換するA/D変換部52と、このA/D変換部52で取得した電流、電圧、及び温度の各値に基づいて、駆動回路46を介してスイッチング素子44のスイッチング動作を制御するCPU53と、CPU53が実行する処理プログラム等を記憶するROM54と、CPU53の演算のためのワークエリアとして機能するRAM55とを有している。   The IH control unit 50 includes an A / D conversion unit 52 that performs A / D conversion on the output signals of the current detection unit 47, the voltage detection unit 48, and the thermistor 49, and the current, voltage, And a CPU 53 for controlling the switching operation of the switching element 44 via the drive circuit 46 based on each value of the temperature, a ROM 54 for storing a processing program executed by the CPU 53, and a work area for the calculation of the CPU 53. And a RAM 55.

またここでは、投入電力を固定した電力供給を間欠的に行う電力固定間欠制御を行うために、IH制御部50からの電力制御信号に応じて駆動回路46から出力される駆動信号(オン信号)が電力調整用のスイッチング素子44に入力されることを阻止または許容する間欠制御用のスイッチング素子56と、このスイッチング素子56を駆動する駆動回路46とが設けられており、IH制御部50のCPU53により、駆動回路46を介してスイッチング素子56のスイッチング動作が制御される。   Further, here, in order to perform power fixed intermittent control that intermittently supplies power with fixed input power, a drive signal (ON signal) output from the drive circuit 46 in response to a power control signal from the IH control unit 50. Is provided with an intermittent control switching element 56 that prevents or allows input of power to the power adjustment switching element 44, and a drive circuit 46 that drives the switching element 56. Thus, the switching operation of the switching element 56 is controlled via the drive circuit 46.

間欠制御用のスイッチング素子56は、オン状態で電力調整用のスイッチング素子44のエミッタとゲートとを短絡するように設けられ、IH制御部50から入力されるオン/オフ制御信号に応じて駆動回路57から出力される駆動信号(オン信号)により、スイッチング素子56がオンとなると、駆動回路46から出力される駆動信号が電力調整用のスイッチング素子44に入力されることが阻止されて、駆動回路46からの駆動信号のオン/オフに関係なく、スイッチング素子44はオフのままとなり、励磁コイル32に電力が供給されない。   The switching element 56 for intermittent control is provided so as to short-circuit the emitter and the gate of the switching element 44 for power adjustment in the on state, and a drive circuit according to an on / off control signal input from the IH control unit 50 When the switching element 56 is turned on by the drive signal (ON signal) output from the drive circuit 57, the drive signal output from the drive circuit 46 is prevented from being input to the switching element 44 for power adjustment. Regardless of whether the drive signal from 46 is on or off, the switching element 44 remains off and no power is supplied to the exciting coil 32.

他方、駆動回路57から出力される駆動信号(オフ信号)により、間欠制御用のスイッチング素子56がオフとなると、駆動回路46から出力される駆動信号が電力調整用のスイッチング素子44に入力されることが許容されて、駆動回路46からの駆動信号に応じて電力調整用のスイッチング素子44がオン/オフ動作して、励磁コイル32に所要の電力が供給される。   On the other hand, when the switching element 56 for intermittent control is turned off by the drive signal (off signal) output from the drive circuit 57, the drive signal output from the drive circuit 46 is input to the switching element 44 for power adjustment. In response to the drive signal from the drive circuit 46, the switching element 44 for power adjustment is turned on / off, and the required power is supplied to the exciting coil 32.

図5は、図4に示した加熱ローラ21の温度及び高周波電源26から励磁コイル32に供給される電力の変化状況を示している。ここでは、電源がオンされると、最大電力(例えば1300W)が投入されて加熱ローラ21を急速に昇温させるウォームアップが行われ、定着温度(例えば200℃)より低く設定された基準温度に到達すると、加熱ローラ21を定着温度に維持する温度制御が開始される。   FIG. 5 shows a change state of the temperature of the heating roller 21 shown in FIG. 4 and the power supplied from the high frequency power supply 26 to the exciting coil 32. Here, when the power is turned on, the maximum power (for example, 1300 W) is turned on to warm up the heating roller 21 rapidly, and the reference temperature is set lower than the fixing temperature (for example, 200 ° C.). When it reaches, temperature control for maintaining the heating roller 21 at the fixing temperature is started.

この温度制御では、まずサーミスタ49の検出温度に応じて供給電力を調整する電力可変制御が行われ、周囲の温度上昇に伴う放熱量の低下に応じて、定着温度に維持するために必要な電力が小さくなって最小電力値を下回ると、投入電力を固定した電力供給をサーミスタ49の検出温度に応じて間欠的に行う電力固定間欠制御が行われる。   In this temperature control, first, variable power control is performed to adjust the supplied power in accordance with the detected temperature of the thermistor 49, and the electric power necessary to maintain the fixing temperature in accordance with a decrease in the amount of heat radiation accompanying an increase in ambient temperature. When becomes smaller than the minimum power value, fixed power intermittent control is performed in which power supply with fixed input power is intermittently performed according to the detected temperature of the thermistor 49.

電力可変制御では、サーミスタ49の検出温度に基づいて加熱ローラ21の温度が定着温度に一定に維持されるように励磁コイル32に供給される電力量が調整され、このとき、駆動回路46に出力する電力制御信号のオンデューティ(スイッチング素子44をオン状態にする時間の割合)を変化させることで、加熱ローラ21の温度を定着温度に一定に維持するために必要な電力が励磁コイル32に供給される。   In the variable power control, the amount of power supplied to the exciting coil 32 is adjusted based on the temperature detected by the thermistor 49 so that the temperature of the heating roller 21 is kept constant at the fixing temperature. By changing the on-duty of the power control signal (the ratio of the time during which the switching element 44 is turned on), the power necessary to keep the temperature of the heating roller 21 constant at the fixing temperature is supplied to the exciting coil 32. Is done.

電力固定間欠制御では、最小電力値に固定した電力供給が、サーミスタ49の検出温度に応じて間欠的に行われ、このとき、最小電力値に対応するオンデューティによる電力制御信号が、電力調整用のスイッチング素子44を駆動する駆動回路46に出力される一方で、駆動回路46から出力される駆動信号(オン信号)のスイッチング素子44への入力を阻止・許容する間欠制御用のスイッチング素子56のオン/オフの時間を変化させることで、加熱ローラ21の温度を定着温度に一定に維持するために必要な電力が励磁コイル32に供給される。   In the power fixed intermittent control, the power supply fixed to the minimum power value is intermittently performed according to the detected temperature of the thermistor 49. At this time, the power control signal by the on-duty corresponding to the minimum power value is used for power adjustment. Of the switching element 56 for intermittent control that blocks / allows input of the driving signal (ON signal) output from the driving circuit 46 to the switching element 44, while being output to the driving circuit 46 that drives the switching element 44. By changing the ON / OFF time, electric power necessary for maintaining the temperature of the heating roller 21 at the fixing temperature constant is supplied to the exciting coil 32.

電力可変制御から電力固定間欠制御に切り替える際の基準となる最小電力値は、高周波電源26のスイッチング素子44を保護するために投入可能な電力の下限値であり、入力電圧とサーミスタ49の検出温度とに基づいて決定される。この最小電力値を求めるにあたっては、予め実験に基づいて入力電圧ごとに温度と最小電力値との相関関係を示す最小電力値情報として計算式あるいはテーブルが作成され、その最小電力値情報がIH制御部50のROM54に保持され、この最小電力値情報を参照してCPU53にて最小電力値を求める処理が実行される。   The minimum power value serving as a reference when switching from variable power control to fixed power intermittent control is a lower limit value of power that can be input to protect the switching element 44 of the high-frequency power supply 26, and the input voltage and the detected temperature of the thermistor 49. It is determined based on. In obtaining this minimum power value, a calculation formula or table is created as minimum power value information indicating the correlation between temperature and minimum power value for each input voltage based on experiments in advance, and the minimum power value information is controlled by IH control. The CPU 53 executes processing for obtaining the minimum power value by referring to the minimum power value information and stored in the ROM 54 of the unit 50.

最小電力値情報を作成するための実験では、図7(B)に示したように、スイッチング素子44に発生する異常電流の大きさを、各温度ごとに電力値を変化させながら測定し、その異常電流値を、スイッチング素子44を破壊するような過大な負荷とならない許容限界を示す所定のしきい値と比較して、異常電流値がしきい値を下回る条件を満足する最小の電力値を最小電力値として、図8に示したように、定着温度と最小電力値との相関関係を示すデータを取得する。   In the experiment for creating the minimum power value information, as shown in FIG. 7B, the magnitude of the abnormal current generated in the switching element 44 is measured while changing the power value for each temperature. Comparing the abnormal current value with a predetermined threshold value indicating an allowable limit that does not result in an excessive load that destroys the switching element 44, the minimum power value that satisfies the condition that the abnormal current value falls below the threshold value is obtained. As shown in FIG. 8, data indicating the correlation between the fixing temperature and the minimum power value is acquired as the minimum power value.

このように入力電圧とサーミスタ49の検出温度とに基づいて決定された最小電力値を基準にして電力可変制御から電力固定間欠制御に切り替えることにより、加熱ローラ21の温度が低く、キュリー温度まで十分な余裕があるために、高周波電源26での電圧共振が適切に行われ易い状態にある場合には、最小電力値が低い値に設定されるため、電力可変制御での投入電力の制御幅を広げることができ、制御性を向上させることができる。   In this way, by switching from the variable power control to the fixed power intermittent control based on the minimum power value determined based on the input voltage and the detected temperature of the thermistor 49, the temperature of the heating roller 21 is low, and the Curie temperature is sufficient. Because there is a sufficient margin, when the voltage resonance at the high frequency power supply 26 is in a state where it is easily performed, the minimum power value is set to a low value. It can be expanded and controllability can be improved.

他方、加熱ローラ21の温度が高く、キュリー温度の直近にあるために、高周波電源26での電圧共振が適切に行われ難い状態にある場合には、最小電力値が高い値に設定されるため、高周波電源26のスイッチング素子44に過大な負荷を与えることを確実に避けることができ、また、スイッチング素子44での発熱により電力が無駄に消費されて加熱効率が低下することを回避して、省エネルギーを図ることができる。   On the other hand, since the temperature of the heating roller 21 is high and close to the Curie temperature, the minimum power value is set to a high value when voltage resonance at the high frequency power supply 26 is difficult to be performed properly. In addition, it is possible to reliably avoid applying an excessive load to the switching element 44 of the high-frequency power supply 26. Also, it is possible to avoid that power is wasted due to heat generated in the switching element 44 and heating efficiency is reduced. Energy saving can be achieved.

図6は、図5に示した最小電力値を入力電圧及びサーミスタ49の検出温度から求める要領を説明するグラフである。図6(A)に示す例では、電力可変制御時に予測される加熱ローラ21の温度の変動範囲(ここでは、150℃〜210℃)において、最小電力値が連続的に変化する曲線で示されており、この場合、図8に示したように、実験により取得した各温度ごとの最小電力値に基づいて、入力電圧ごとに検出温度と最小電力値との相関関係を示す計算式が設定され、この計算式にしたがって入力電圧とサーミスタ49の検出温度とから最小電力値が求められる。   FIG. 6 is a graph for explaining a procedure for obtaining the minimum power value shown in FIG. 5 from the input voltage and the detected temperature of the thermistor 49. In the example shown in FIG. 6A, the minimum power value is indicated by a curve that continuously changes in the temperature fluctuation range (here, 150 ° C. to 210 ° C.) of the heating roller 21 predicted at the time of variable power control. In this case, as shown in FIG. 8, a calculation formula indicating the correlation between the detected temperature and the minimum power value is set for each input voltage based on the minimum power value for each temperature obtained by experiment. The minimum power value is obtained from the input voltage and the detected temperature of the thermistor 49 according to this calculation formula.

図6(B)に示す例では、電力可変制御時に予測される加熱ローラ21の温度の変動範囲(ここでは、150℃〜210℃)において、最小電力値が階段状に変化する直線で示され、複数の温度領域(ここでは、10℃単位)ごとに最小電力値が設定されており、この場合、図8に示したように、実験により取得した各温度ごとの最小電力値に基づいて、入力電圧ごとに温度領域と最小電力値との相関関係を示すテーブルが設定され、このテーブルにしたがって入力電圧とサーミスタ49の検出温度とから最小電力値が求められる。特にここでは、温度領域ごとの最小電力値が、その温度領域内で安全側になる最も高い値に設定されている。   In the example shown in FIG. 6B, the minimum power value is indicated by a straight line that changes stepwise in the temperature fluctuation range (150 ° C. to 210 ° C. in this case) of the heating roller 21 predicted during the variable power control. The minimum power value is set for each of a plurality of temperature regions (here, 10 ° C. unit). In this case, as shown in FIG. 8, based on the minimum power value for each temperature obtained by experiment, A table indicating the correlation between the temperature region and the minimum power value is set for each input voltage, and the minimum power value is obtained from the input voltage and the detected temperature of the thermistor 49 according to this table. In particular, here, the minimum power value for each temperature region is set to the highest value that is on the safe side within the temperature region.

なお、前記の例では、誘導加熱ユニットが収容された加熱ローラに加圧ローラを圧接させて両者間に形成されるニップ部に記録紙を通す構成について説明したが、この他に、温度の立ち上がり特性を改善するために、ローラより熱容量が小さくなる加熱ベルトを用いる構成でも同様に適用可能である。この場合、無端帯状の加熱ベルトを、誘導加熱ユニットが収容された加熱ローラと定着ローラとに巻き掛け、定着ローラに対向配置された加圧ローラと、定着ローラに対する加熱ベルトの巻き掛け部分との間に記録紙を通すことで、記録紙上のトナーが熱及び圧力の作用で記録紙に定着される。   In the above example, the configuration in which the pressure roller is brought into pressure contact with the heating roller in which the induction heating unit is accommodated and the recording paper is passed through the nip formed between the two is described. In order to improve the characteristics, a configuration using a heating belt having a smaller heat capacity than that of the roller can be similarly applied. In this case, an endless belt-shaped heating belt is wound around the heating roller and the fixing roller in which the induction heating unit is accommodated, and a pressure roller disposed opposite to the fixing roller and a portion where the heating belt is wound around the fixing roller. By passing the recording paper between them, the toner on the recording paper is fixed to the recording paper by the action of heat and pressure.

本発明にかかる電磁誘導加熱定着装置及びこれを備えた画像形成装置は、制御性を向上させると共に、高周波電源のスイッチング素子に過大な負荷を与えることがなく、また加熱効率の低下を回避して省エネルギーを図ることができる効果を有し、加熱ローラなどの被加熱体に整磁合金を使用した電磁誘導加熱定着装置及びこれを備えた画像形成装置、例えばプリンタ、ファクシミリ装置、複写機、及び複合機などとして有用である。   The electromagnetic induction heating fixing device and the image forming apparatus including the same improve the controllability, do not apply an excessive load to the switching element of the high frequency power supply, and avoid a decrease in heating efficiency. An electromagnetic induction heating and fixing device having an effect of energy saving and using a magnetic shunt alloy for a heated object such as a heating roller, and an image forming apparatus including the same, such as a printer, a facsimile machine, a copying machine, and a composite It is useful as a machine.

本発明が適用される複写機の概略構成を示す模式的な断面図Schematic sectional view showing a schematic configuration of a copying machine to which the present invention is applied 図1に示した定着部の要部を示す断面図Sectional drawing which shows the principal part of the fixing | fixed part shown in FIG. 図2に示した加熱ローラの軸方向の断面図A sectional view in the axial direction of the heating roller shown in FIG. 図2に示した高周波電源の概略構成を示すブロック図The block diagram which shows schematic structure of the high frequency power supply shown in FIG. 図4に示した加熱ローラの温度及び高周波電源から励磁コイルに供給される電力の変化状況を示す図The figure which shows the change condition of the electric power supplied to the exciting coil from the temperature of a heating roller shown in FIG. 4, and a high frequency power supply 図5に示した最小電力値を入力電圧及びサーミスタの検出温度から求める要領を説明する図The figure explaining the point which calculates | requires the minimum electric power value shown in FIG. 5 from input voltage and the detection temperature of a thermistor. スイッチング素子(IGBT)の電圧及び電流の変化状況を示す図The figure which shows the change condition of the voltage and electric current of a switching element (IGBT) 定着温度と最小電力値との相関関係を示す図Diagram showing correlation between fixing temperature and minimum power value

符号の説明Explanation of symbols

3 定着部(電磁誘導加熱定着装置)
21 加熱ローラ(被加熱体)
24 ローラ本体
25 電磁誘導加熱ユニット
26 高周波電源
32 励磁コイル
44 スイッチング素子
46 駆動回路
47 電流検出部
48 電圧検出部
49 サーミスタ
50 IH制御部(スイッチング素子制御手段)
56 スイッチング素子
57 駆動回路
3 Fixing part (electromagnetic induction heating fixing device)
21 Heating roller (object to be heated)
24 Roller body 25 Electromagnetic induction heating unit 26 High frequency power supply 32 Excitation coil 44 Switching element 46 Drive circuit 47 Current detection part 48 Voltage detection part 49 Thermistor 50 IH control part (switching element control means)
56 switching element 57 drive circuit

Claims (3)

定着温度より高く且つその近傍にキュリー温度が設定された整磁合金からなる被加熱体と、この被加熱体を電磁誘導により発熱させる励磁コイルと、前記被加熱体の温度を検出する温度検出手段と、前記励磁コイルへの電力供給経路上に設けられたスイッチング素子と、前記励磁コイルに供給する電力を調整すべく前記スイッチング素子を制御するスイッチング素子制御手段とを具備し、
このスイッチング素子制御手段が、ウォームアップ終了後に前記被加熱体を定着温度に維持すべく、前記温度検出手段の検出温度に応じて供給電力を調整する電力可変制御を行い、定着温度の維持に要する電力が最小電力値に到達すると、投入電力を固定した電力供給を前記温度検出手段の検出温度に応じて間欠的に行う電力固定間欠制御を行う電磁誘導加熱定着装置であって、
前記温度検出手段の検出温度が高くなるにしたがって前記最小電力値が高く設定された最小電力値情報を有し、
前記スイッチング素子制御手段が、前記電力可変制御から前記電力固定間欠制御に切り替える際の基準となる前記最小電力値を、前記温度検出手段の検出温度に応じて前記最小電力値情報から決定するようにしたことを特徴とする電磁誘導加熱定着装置。
A heated body made of a magnetic shunt alloy having a Curie temperature higher than the fixing temperature and a Curie temperature in the vicinity thereof, an exciting coil that heats the heated body by electromagnetic induction, and a temperature detection means for detecting the temperature of the heated body And a switching element provided on a power supply path to the excitation coil, and a switching element control means for controlling the switching element to adjust the power supplied to the excitation coil,
The switching element control means performs variable power control for adjusting the supply power according to the temperature detected by the temperature detecting means so as to maintain the heated body at the fixing temperature after the warm-up is completed, and is required for maintaining the fixing temperature. When the power reaches a minimum power value, a row cormorants electromagnetic induction heating fixing device power fixed intermittent control for intermittently based a fixed power supply input power to the detected temperature of said temperature detecting means,
The minimum power value information is set such that the minimum power value is set higher as the detection temperature of the temperature detection means becomes higher,
So that the switching element control means, determines the minimum power value as a reference when switching from the power variable control to the power fixed intermittent control, from the minimum power value information in accordance with the detected temperature before Symbol temperature detecting means An electromagnetic induction heating fixing device characterized by that.
前記最小電力値情報は複数に分割された検出温度領域ごとに最小電力値が設定されていることを特徴とする請求項1に記載の電磁誘導加熱定着装置。 It said minimum power value information electromagnetic induction heating fixing device according to claim 1 minimum power value for each detected temperature area divided into a plurality, characterized in Tei Rukoto is set. 請求項1若しくは請求項2に記載の電磁誘導加熱定着装置を備えた画像形成装置。   An image forming apparatus comprising the electromagnetic induction heating and fixing device according to claim 1.
JP2007029163A 2007-02-08 2007-02-08 Electromagnetic induction heating fixing device and image forming apparatus provided with the same Expired - Fee Related JP5307340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007029163A JP5307340B2 (en) 2007-02-08 2007-02-08 Electromagnetic induction heating fixing device and image forming apparatus provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007029163A JP5307340B2 (en) 2007-02-08 2007-02-08 Electromagnetic induction heating fixing device and image forming apparatus provided with the same

Publications (2)

Publication Number Publication Date
JP2008197135A JP2008197135A (en) 2008-08-28
JP5307340B2 true JP5307340B2 (en) 2013-10-02

Family

ID=39756179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007029163A Expired - Fee Related JP5307340B2 (en) 2007-02-08 2007-02-08 Electromagnetic induction heating fixing device and image forming apparatus provided with the same

Country Status (1)

Country Link
JP (1) JP5307340B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8005389B2 (en) 2008-04-11 2011-08-23 Kabushiki Kaisha Toshiba Fixing device and temperature control method therefor
JP5958297B2 (en) * 2012-11-19 2016-07-27 コニカミノルタ株式会社 Fixing apparatus and image forming apparatus
JP7350472B2 (en) 2018-09-27 2023-09-26 キヤノン株式会社 image heating device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004021174A (en) * 2002-06-20 2004-01-22 Canon Inc Induction heating fixation device and image forming apparatus
JP2006164615A (en) * 2004-12-03 2006-06-22 Canon Inc Heater power control method, and image forming apparatus

Also Published As

Publication number Publication date
JP2008197135A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
US8099008B2 (en) Image heating apparatus with control means for controlling power to the coil that generates magnetic flux
JP3687439B2 (en) Induction heating fixing device
JP2008185991A (en) Temperature control method for heating device, fixing device and heating member, and image forming apparatus
US6492630B2 (en) Induction heating apparatus for heating image formed on recording material
JP4218478B2 (en) Electromagnetic induction heating device, fixing device, and control method of electromagnetic induction heating device
JP5693196B2 (en) Image heating device
JP5307340B2 (en) Electromagnetic induction heating fixing device and image forming apparatus provided with the same
JP2006337740A (en) Induction heating fixing device and image forming apparatus using it
JP2005049815A (en) Induction-heating fixing device and image forming apparatus
JP2004004205A (en) Fixing device and image forming device
JP2003347030A (en) Heating device, image heating device, and image forming device
JP3496485B2 (en) Induction heating fixing device
JP5629566B2 (en) Image forming apparatus
JP3324351B2 (en) Induction heating fixing device
JP2007078825A (en) Image forming apparatus
JP2008197319A (en) Fixing device
JP2007140329A (en) Image forming apparatus and fixing device
JP2007233042A (en) Electromagnetic induction heat fixing device and image forming apparatus having the same
JP4873702B2 (en) Fixing device
JP5263356B2 (en) Fixing device and color image forming apparatus using the same
JP5199158B2 (en) Electromagnetic induction heating inverter device, fixing device including the same, and image forming apparatus
JP4194530B2 (en) Fixing device
JP4831579B2 (en) Fixing device and image forming apparatus having the same
JP2009025588A (en) Fixing device and image forming apparatus
JP2008197318A (en) Fixing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees