JP5305180B2 - Room-temperature insulated superconducting cable and manufacturing method thereof - Google Patents

Room-temperature insulated superconducting cable and manufacturing method thereof Download PDF

Info

Publication number
JP5305180B2
JP5305180B2 JP2011033151A JP2011033151A JP5305180B2 JP 5305180 B2 JP5305180 B2 JP 5305180B2 JP 2011033151 A JP2011033151 A JP 2011033151A JP 2011033151 A JP2011033151 A JP 2011033151A JP 5305180 B2 JP5305180 B2 JP 5305180B2
Authority
JP
Japan
Prior art keywords
room temperature
temperature
coating
conductor
superconducting cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011033151A
Other languages
Japanese (ja)
Other versions
JP2012174404A (en
Inventor
祐一 芦辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011033151A priority Critical patent/JP5305180B2/en
Publication of JP2012174404A publication Critical patent/JP2012174404A/en
Application granted granted Critical
Publication of JP5305180B2 publication Critical patent/JP5305180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、導体部を断熱管内に収納してなる低温導電部と、その低温導電部の外周を取り囲む常温側電気絶縁層を有する常温被覆部と、を備える常温絶縁型超電導ケーブル、およびその製造方法に関するものである。   The present invention relates to a room temperature insulation type superconducting cable comprising a low temperature conductive part in which a conductor part is housed in a heat insulating tube, and a room temperature coated part having a room temperature side electric insulation layer surrounding the outer periphery of the low temperature conductive part, and its manufacture It is about the method.

超電導ケーブルでは、一般にフォーマの外周上に超電導導体層を有する導体部を二重の金属管で構成される断熱管内に収納してなる構成を備える。このような超電導ケーブルにおいて、超電導ケーブルを外部から電気的に絶縁する構成には以下の二つが挙げられる。一つ目の構成は、超電導導体層の上に電気絶縁層を備えた導体部が上記断熱管に収納され、導体部に備わる当該電気絶縁層も冷媒により冷却される低温絶縁型の構成である。二つ目の構成は、フォーマと超電導導体層を備える低温導電部が上記断熱管に収納され、かつその断熱管の上に電気絶縁層が形成されており、当該電気絶縁層が冷媒により冷却されない常温絶縁型の構成である(例えば、非特許文献1を参照)。特に、後者の常温絶縁型超電導ケーブルは、既存の常電導ケーブルの絶縁材料および構造が適用できるという利点がある。   In general, a superconducting cable has a configuration in which a conductor portion having a superconducting conductor layer on the outer periphery of a former is housed in a heat insulating tube made of a double metal tube. In such a superconducting cable, there are the following two configurations for electrically insulating the superconducting cable from the outside. The first configuration is a low-temperature insulation type configuration in which a conductor portion provided with an electric insulation layer on a superconducting conductor layer is accommodated in the heat insulating tube, and the electric insulation layer provided in the conductor portion is also cooled by a refrigerant. . In the second configuration, a low-temperature conductive portion including a former and a superconducting conductor layer is accommodated in the heat insulating tube, and an electric insulating layer is formed on the heat insulating tube, and the electric insulating layer is not cooled by the refrigerant. It is a room temperature insulation type structure (see, for example, Non-Patent Document 1). In particular, the latter room-temperature insulated superconducting cable has an advantage that the insulation material and structure of an existing normal conducting cable can be applied.

『Experimental 35kV/121MVA Superconducting Cable System Installed at Puji Substation in Southern China Power Grid』 Transactions on Electrical and Electronic Engineering 1巻1号8−13ページ"Experimental 35kV / 121MVA Superconducting Cable System Installed at Pujy Substituting in Southern China Power Grid 1 Transactions on Electric 13"

しかし、上述した常温絶縁型超電導ケーブルは、生産性の点で改善の余地がある。   However, the room-temperature insulated superconducting cable described above has room for improvement in terms of productivity.

上記常温絶縁型超電導ケーブルは、その中心側から順次作製していくことが一般的である。その場合、常温絶縁型超電導ケーブルが出来上がった段階で低温導電部と常温被覆部のいずれかに不具合があれば、超電導ケーブル全体を作り直さなければならない。しかも、低温導電部の外周に常温被覆部を形成する過程で、常温被覆部の電気絶縁層や、低温導電部の断熱管に損傷を与えてしまう可能性もあり、その場合もやはり超電導ケーブル全体を作りなおさなければならない。このように、常温絶縁型超電導ケーブルの生産性が芳しくない。   In general, the room-temperature insulated superconducting cable is manufactured sequentially from the center side. In that case, if there is a defect in either the low temperature conductive part or the normal temperature coated part at the stage when the room temperature insulated superconducting cable is completed, the entire superconducting cable must be remade. Moreover, in the process of forming the room temperature coating part on the outer periphery of the low temperature conductive part, there is a possibility of damaging the electric insulation layer of the room temperature coating part and the heat insulation tube of the low temperature conductive part. Must be remade. Thus, the productivity of the room temperature insulated superconducting cable is not good.

本発明は上記事情に鑑みてなされたものであり、その目的の一つは、従来よりも生産性に優れる常温絶縁型超電導ケーブルと、その製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a room temperature insulated superconducting cable that is more productive than the conventional one and a method for manufacturing the same.

本発明常温絶縁型超電導ケーブルの製造方法は、以下の工程を備えることを特徴とする。
(工程A)フォーマの外周に超電導導体層を形成してなる導体部と、その導体部を内部に収納して、導体部を極低温に維持する断熱管と、その断熱管の外周に形成されるコーティング層と、を有する低温導電部を作製する。
(工程B)低温導電部の外径よりも大きな内径を有するパイプ状構造物と、そのパイプ状構造物の外周に形成される常温側電気絶縁層と、を有する常温被覆部を作製する。
(工程C)工程Aで作製した低温導電部を、工程Bで作製した常温被覆部の内部に挿入する。
The manufacturing method of the room temperature insulated superconducting cable according to the present invention includes the following steps.
(Process A) formed on the outer periphery of the conductor part formed by forming a superconducting conductor layer on the outer periphery of the former, the heat insulating pipe that accommodates the conductor part inside and maintaining the conductor part at a cryogenic temperature, and the heat insulating pipe A low-temperature conductive portion having a coating layer.
(Step B) A room-temperature coated portion having a pipe-like structure having an inner diameter larger than the outer diameter of the low-temperature conductive portion and a room-temperature side electric insulating layer formed on the outer periphery of the pipe-like structure is produced.
(Step C) The low-temperature conductive part produced in Step A is inserted into the room temperature coating part produced in Step B.

本発明常温絶縁型超電導ケーブルの製造方法のように、低温導電部と常温被覆部とを個別に作製し、その後、常温被覆部の内部に低温導電部を挿入して超電導ケーブルを作製すれば、超電導ケーブルの歩留りを向上させることができる。それは、低温導電部と常温被覆部とをそれぞれ検品し、不具合のない低温導電部と常温被覆部とを組み合わせて超電導ケーブルを作製できるからである。これに対して、上記本発明の製造方法と異なり、超電導ケーブルの中心側から順次超電導ケーブルを作製していく場合、超電導ケーブルが出来上がった段階で低温導電部と常温被覆部のいずれかに不具合があれば、超電導ケーブル全体を作り直さなければならないし、低温導電部の外周に常温被覆部を形成する過程で、常温被覆部の常温側電気絶縁層や、低温導電部の断熱管に損傷を与えてしまう可能性もある。   As in the method for producing a room temperature insulated superconducting cable of the present invention, a low temperature conductive part and a room temperature coated part are individually manufactured, and then a low temperature conductive part is inserted into the room temperature coated part to produce a superconducting cable. The yield of superconducting cables can be improved. This is because the superconducting cable can be manufactured by inspecting the low-temperature conductive portion and the normal-temperature coating portion, respectively, and combining the low-temperature conductive portion and the normal-temperature coating portion without any defects. On the other hand, unlike the manufacturing method of the present invention, when the superconducting cable is manufactured sequentially from the center side of the superconducting cable, there is a problem in either the low temperature conductive part or the room temperature covering part at the stage where the superconducting cable is completed. If so, the entire superconducting cable must be re-created, and in the process of forming the room temperature coating on the outer periphery of the low temperature conductive part, the room temperature side electrical insulation layer of the room temperature coating part and the insulation tube of the low temperature conductive part are damaged. There is also a possibility of end.

また、本発明常温絶縁型超電導ケーブルの製造方法では、筒状の常温被覆部の最内周にパイプ状構造物が形成されていると共に、この常温被覆部に挿入する低温導電部の最外周にコーティング層が形成されている。そのため、常温被覆部の内部に低温導電部を挿入する際、常温絶縁型超電導ケーブルの運転に必須の構成が損傷することを効果的に防止することができる。この必須の構成とは、常温被覆部においては常温側電気絶縁層であり、低温導電部においては超電導導体を極低温に維持する断熱管である。   Further, in the method for manufacturing a room temperature insulated superconducting cable according to the present invention, a pipe-like structure is formed on the innermost periphery of the cylindrical room temperature coated portion, and on the outermost periphery of the low temperature conductive portion inserted into the room temperature coated portion. A coating layer is formed. Therefore, when a low temperature conductive part is inserted into the inside of the room temperature covering part, it is possible to effectively prevent damage to the configuration essential for the operation of the room temperature insulated superconducting cable. This essential structure is a room temperature side electric insulation layer in the room temperature coating part, and a heat insulating tube that maintains the superconducting conductor at an extremely low temperature in the low temperature conductive part.

また、本発明常温絶縁型超電導ケーブルは、フォーマの外周に超電導導体層を形成してなる導体部、およびその導体部を内部に収納して、導体部を極低温に維持する断熱管を有する低温導電部と、断熱管の外周を取り囲む常温側電気絶縁層を有する常温被覆部と、を備える。この本発明常温絶縁型超電導ケーブルにおいて、常温被覆部は、常温側電気絶縁層を内周側から支持するパイプ状構造物を有し、低温導電部は、断熱管の外周に形成されるコーティング層を有することを特徴とする。   Further, the room temperature insulation type superconducting cable of the present invention has a conductor part formed by forming a superconducting conductor layer on the outer periphery of the former, and a low-temperature tube having a heat insulating tube for accommodating the conductor part therein and maintaining the conductor part at a very low temperature. A conductive portion and a normal temperature covering portion having a normal temperature side electric insulating layer surrounding the outer periphery of the heat insulating tube. In the room temperature insulation type superconducting cable of the present invention, the room temperature coating portion has a pipe-like structure that supports the room temperature side electric insulation layer from the inner peripheral side, and the low temperature conductive portion is a coating layer formed on the outer periphery of the heat insulating tube. It is characterized by having.

上記本発明常温絶縁型超電導ケーブルによれば、低温導電部と常温被覆部とを個別に扱うことができる。その結果、布設後の常温絶縁型超電導ケーブルの使用に伴い、当該ケーブルの低温導電部が損傷した場合、低温導電部のみを交換することができる。特に、低温導電部の最外周にコーティング層が形成されていることから、低温導電部を交換する際、常温被覆部から低温導電部を引抜き易い。また、常温被覆部にパイプ状構造物を設けると共に、低温導電部にコーティング層を設けることで、常温被覆部の内部に低温導電部を挿入するときも、常温被覆部の内部から低温導電部を引抜くときも、常温被覆部の常温側電気絶縁層や、低温導電部の断熱管などの、常温絶縁型超電導ケーブルの運転に必須の構成が損傷することを効果的に防止することができる。   According to the above-described room temperature insulated superconducting cable of the present invention, the low temperature conductive part and the room temperature coating part can be handled separately. As a result, when the low-temperature conductive part of the cable is damaged along with the use of the room-temperature insulated superconducting cable after installation, only the low-temperature conductive part can be replaced. In particular, since the coating layer is formed on the outermost periphery of the low-temperature conductive portion, when replacing the low-temperature conductive portion, the low-temperature conductive portion can be easily pulled out from the normal temperature coating portion. In addition, by providing a pipe-like structure on the room temperature coating part and a coating layer on the low temperature conductive part, when inserting the low temperature conductive part inside the room temperature coating part, the low temperature conductive part is inserted from the inside of the room temperature coating part. Even when it is pulled out, it is possible to effectively prevent damage to the components essential to the operation of the room temperature insulated superconducting cable, such as the room temperature side electrical insulation layer of the room temperature coated part and the heat insulating tube of the low temperature conductive part.

以下、本発明常温絶縁型超電導ケーブルの好ましい形態について詳細に説明する。   Hereinafter, preferred embodiments of the room temperature insulated superconducting cable of the present invention will be described in detail.

本発明常温絶縁型超電導ケーブルの一形態として、常温被覆部は、常温側電気絶縁層の内側で、かつ断熱管の外側に配置され、短絡電流に代表される過大な異常時電流を分担する常電導の分流導体を備えることが好ましい。   As one form of the room temperature insulation type superconducting cable of the present invention, the room temperature coating part is disposed inside the room temperature side electric insulation layer and outside the heat insulating tube, and normally shares an excessive abnormal current typified by a short circuit current. It is preferable to provide a conductive shunt conductor.

常温被覆部に異常時電流を分担する分流導体を備えることにより、異常時電流が発生した際、低温導電部に流れる異常時電流量を低減することができる。その結果、低温導電部における冷媒温度の上昇を抑制できるし、過大な電流による超電導導体層の劣化を抑制できる。特に、冷媒温度の上昇を抑制することで、超電導送電に適した温度に冷媒温度を復旧させることが容易になるし、冷媒を液体冷媒としたときの冷媒温度の上昇による液体冷媒のガス化を抑制できる。   By providing the shunt conductor for sharing the abnormal current in the normal temperature coating portion, the abnormal current amount flowing in the low temperature conductive portion when the abnormal current is generated can be reduced. As a result, it is possible to suppress an increase in the refrigerant temperature in the low temperature conductive part, and it is possible to suppress deterioration of the superconducting conductor layer due to an excessive current. In particular, by suppressing the rise in the refrigerant temperature, it becomes easy to restore the refrigerant temperature to a temperature suitable for superconducting power transmission, and the liquid refrigerant is gasified by the rise in the refrigerant temperature when the refrigerant is a liquid refrigerant. Can be suppressed.

上記分流導体は銅で構成されていることが好ましい。銅の電気抵抗値は、種々の金属・合金の中でも低いため、分流導体として好適である。異常時電流の発生時、超電導導体層とフォーマと分流導体に異常時電流は分流するが、フォーマに流れる電流を小さくし、分流導体に流れる電流を大きくすることが望まれる。そのためには常電導導体である分流導体の抵抗値を小さくすることが有効であり、当該抵抗値を小さくするためには銅が好ましい。分流導体に流れる電流を大きくすると、その分だけフォーマの断面積を小さくすることができ、その結果として超電導ケーブルの寸法を小さくすることもできる。   The shunt conductor is preferably made of copper. Since the electrical resistance value of copper is low among various metals and alloys, it is suitable as a shunt conductor. When an abnormal current is generated, the abnormal current is diverted to the superconducting conductor layer, the former, and the shunt conductor. However, it is desirable to reduce the current flowing through the former and increase the current flowing through the shunt conductor. For this purpose, it is effective to reduce the resistance value of the shunt conductor, which is a normal conducting conductor, and copper is preferable for reducing the resistance value. When the current flowing through the shunt conductor is increased, the cross-sectional area of the former can be reduced correspondingly, and as a result, the size of the superconducting cable can be reduced.

本発明常温絶縁型超電導ケーブルの一形態として、パイプ状構造物に対するコーティング層の表面の静止摩擦係数は、0.3以下であることが好ましい。   As one form of the room temperature insulation type superconducting cable of the present invention, the coefficient of static friction of the surface of the coating layer with respect to the pipe-like structure is preferably 0.3 or less.

コーティング層の表面の静止摩擦係数は、常温被覆部への低温導電部の挿入し易さ、常温被覆部からの低温導電部の引抜き易さに関係する。コーティング層の静止摩擦係数は小さいほど、常温被覆部に対する低温導電部の挿抜が容易になるし、常温被覆部と低温導電部とが接触した際に両者が強く擦れあって損傷することを防止することもできる。静止摩擦係数は、0.2以下とすることがより好ましく、0.1以下とすることが最も好ましい。なお、静止摩擦係数は、JIS K7125に準拠する静止摩擦係数測定により求めることができる。   The coefficient of static friction on the surface of the coating layer is related to the ease of inserting the low temperature conductive part into the room temperature coating part and the ease of drawing out the low temperature conductive part from the room temperature coating part. The smaller the coefficient of static friction of the coating layer, the easier it is to insert and remove the low temperature conductive part from the room temperature coating part, and when the room temperature coating part and the low temperature conductive part come into contact with each other, they are both rubbed strongly to prevent damage. You can also The coefficient of static friction is more preferably 0.2 or less, and most preferably 0.1 or less. In addition, a static friction coefficient can be calculated | required by the static friction coefficient measurement based on JISK7125.

本発明常温絶縁型超電導ケーブルの一形態として、コーティング層の縦断面の外周輪郭線を、コーティング層の表面におけるパイプ状構造物との接触面積が小さくなるように凹凸形状に形成することが挙げられる。   As one form of the room temperature insulation type superconducting cable of the present invention, the outer peripheral contour line of the longitudinal section of the coating layer may be formed in an uneven shape so that the contact area with the pipe-like structure on the surface of the coating layer is reduced. .

常温被覆部に対する低温導電部の挿抜のし易さは、コーティング層をどのような材質で構成するかだけでなく、コーティング層の表面形状によっても変化する。上記構成のように、コーティング層の縦断面の外周輪郭線を凹凸形状に形成すると、コーティング層の表面におけるパイプ状構造物との接触面積が小さくなり、常温被覆部に対する低温導電部の挿抜がし易くなる。例えば、当該外周輪郭線を正弦波状としたり、のこぎり波状としたりすることが挙げられる。特に、後者の構成の場合、低温導電部の長手方向の一方に常温被覆部に対する低温導電部の挿抜が行い易くなる。反対に、低温導電部の長手方向の他方には、常温被覆部に対して低温導電部が移動し難くなるので、布設された常温絶縁型超電導ケーブルにおいて、常温被覆部内の低温導電部の移動を抑制できる。   The ease of inserting / removing the low temperature conductive portion with respect to the normal temperature coating portion varies depending on not only the material of the coating layer but also the surface shape of the coating layer. When the outer peripheral contour line of the longitudinal section of the coating layer is formed in an uneven shape as in the above configuration, the contact area with the pipe-like structure on the surface of the coating layer is reduced, and the low temperature conductive part is inserted into and removed from the room temperature coating part. It becomes easy. For example, the outer peripheral contour line may be a sine wave shape or a sawtooth wave shape. In particular, in the case of the latter configuration, it becomes easy to insert and remove the low temperature conductive portion with respect to the room temperature coating portion in one of the longitudinal directions of the low temperature conductive portion. On the other hand, since the low-temperature conductive part is difficult to move with respect to the room-temperature coated part on the other side in the longitudinal direction of the low-temperature conductive part, in the installed room-temperature insulated superconducting cable, the low-temperature conductive part in the room-temperature coated part is moved. Can be suppressed.

本発明常温絶縁型超電導ケーブルの製造方法によれば、歩留り良く常温絶縁型超電導ケーブルを作製することができる。また、本発明常温絶縁型超電導ケーブルによれば、当該超電導ケーブルの運転に伴い超電導ケーブルの低温導電部が損傷しても、その損傷した低温導電部のみを交換するだけで、超電導ケーブルの運転を再開できる。   According to the method for producing a room temperature insulation type superconducting cable of the present invention, a room temperature insulation type superconducting cable can be produced with good yield. Further, according to the room temperature insulated superconducting cable of the present invention, even if the low temperature conductive part of the superconducting cable is damaged due to the operation of the superconducting cable, the superconducting cable can be operated only by replacing the damaged low temperature conductive part. You can resume.

(A)は、実施形態1に記載される常温絶縁型超電導ケーブルの概略横断面図、(B)はその組立前の状態を示す横断面図である。(A) is a schematic cross-sectional view of the room-temperature insulated superconducting cable described in Embodiment 1, and (B) is a cross-sectional view showing a state before the assembly. 常温絶縁型超電導ケーブルに用いるコーティング付き断熱管の縦断面図である。It is a longitudinal cross-sectional view of the heat insulation pipe | tube with a coating used for a normal temperature insulation type superconducting cable. 常温絶縁型超電導ケーブルに用いるコーティング付き断熱管の縦断面図であって、図2とは異なる表面形状を有するコーティング層を示す図である。It is a longitudinal cross-sectional view of the heat insulation pipe | tube with a coating used for a normal temperature insulated superconducting cable, Comprising: It is a figure which shows the coating layer which has a surface shape different from FIG.

以下、図面に基づいて、本発明常温絶縁型超電導ケーブルの実施形態を説明する。図において同一符号は、同一名称物を示す。   Hereinafter, an embodiment of the room temperature insulated superconducting cable of the present invention will be described based on the drawings. In the figure, the same reference numeral indicates the same name object.

<実施形態1>
≪全体構成≫
図1(A)に示す常温絶縁型超電導ケーブル100は、個別に作製された低温導電部1と、その低温導電部1を内部に収納するパイプ状の常温被覆部2と、を組み合わせることで形成されていることを特徴とする。そして、この常温絶縁型超電導ケーブル100では、常温被覆部2に対する低温導電部1の挿抜を容易にするために、低温導電部1の最外周にコーティング層16が設けられ、常温被覆部2の最内周にパイプ状構造物21が設けられている。以下、各構成を順次詳細に説明する。
<Embodiment 1>
≪Overall structure≫
A room-temperature insulated superconducting cable 100 shown in FIG. 1A is formed by combining a separately manufactured low-temperature conductive part 1 and a pipe-shaped normal-temperature covering part 2 that accommodates the low-temperature conductive part 1 therein. It is characterized by being. In this room temperature insulated superconducting cable 100, a coating layer 16 is provided on the outermost periphery of the low temperature conductive part 1 in order to facilitate the insertion / extraction of the low temperature conductive part 1 with respect to the normal temperature covered part 2. A pipe-like structure 21 is provided on the inner periphery. Hereinafter, each configuration will be sequentially described in detail.

≪低温導電部≫
低温導電部1は、断熱管13の内部に、導体部10が収納されてなる長尺体である。
≪Low temperature conductive part≫
The low temperature conductive part 1 is a long body in which the conductor part 10 is accommodated inside the heat insulating tube 13.

[導体部]
導体部10は、代表的には、中心から順にフォーマ11、超電導導体層12、保護層(図示せず)を備える。フォーマ11は、超電導導体層12の支持体に利用される部材であり、例えば、図1に示すようなパイプ状の中空体をフォーマ11として利用できる。中空体のフォーマ11は、その内部を冷媒131の流路として利用することができる。フォーマ11の形状としては、中空体の他、中実体を利用することもできる。一方、フォーマ11の材質も特に限定されない。単に超電導導体層12の支持体としてフォーマ11を利用するのであれば、フォーマ11は樹脂などの非導電性材料から構成しても良いし、フォーマ11に異常時電流(短絡電流)の分流路としての機能も持たせるのであれば、銅やアルミニウムなどの常電導の金属材料から構成しても良い。但し、フォーマ11を非導電性材料から構成するのであれば、後述する常温被覆部2において分流導体22を形成することが好ましい。以上の点を考慮してフォーマ11の具体的な構成を例示すると、中空体のフォーマ11としては例えば、金属材料からなるパイプを挙げることができるし、中実体のフォーマ11としては例えば、エナメルなどの絶縁被覆を備える複数の金属線を撚り合わせたものを挙げることができる。
[Conductor]
The conductor 10 typically includes a former 11, a superconducting conductor layer 12, and a protective layer (not shown) in order from the center. The former 11 is a member used as a support for the superconducting conductor layer 12. For example, a pipe-shaped hollow body as shown in FIG. 1 can be used as the former 11. The hollow former 11 can use the inside as a flow path of the refrigerant 131. As the shape of the former 11, a solid body can be used in addition to the hollow body. On the other hand, the material of the former 11 is not particularly limited. If the former 11 is simply used as a support for the superconducting conductor layer 12, the former 11 may be made of a non-conductive material such as a resin, or the former 11 may be used as a flow path for abnormal current (short-circuit current). As long as this function is also provided, it may be made of a normal conductive metal material such as copper or aluminum. However, if the former 11 is made of a non-conductive material, it is preferable to form the shunt conductor 22 in the room temperature coating 2 described later. Taking the above points into consideration, a specific configuration of the former 11 is exemplified. For example, the hollow body former 11 may be a pipe made of a metal material, and the solid former 11 may be enamel, for example. The thing which twisted together the some metal wire provided with this insulation coating can be mentioned.

次に、超電導導体層12としては、例えば、酸化物超電導体を備えるテープ状線材が好適に利用できる。テープ状線材は、例えば、Bi2223系超電導テープ線(Ag−MnやAgなどの安定化金属中に酸化物超電導体からなるフィラメントが配されたシース線)、RE123系薄膜線材(RE:希土類元素、例えばY、Ho、Nd、Sm、Gdなど。金属基板に酸化物超電導相が成膜された積層線材)が挙げられる。超電導導体層12は、上記テープ状線材を螺旋状に巻回して形成した単層構造又は多層構造が挙げられる。   Next, as the superconducting conductor layer 12, for example, a tape-like wire material including an oxide superconductor can be suitably used. Examples of the tape-shaped wire include Bi2223 superconducting tape wire (sheath wire in which a filament made of an oxide superconductor is arranged in a stabilizing metal such as Ag-Mn and Ag), RE123 thin film wire (RE: rare earth element, For example, Y, Ho, Nd, Sm, Gd, etc. (Laminated wire material in which an oxide superconducting phase is formed on a metal substrate). The superconducting conductor layer 12 includes a single layer structure or a multilayer structure formed by spirally winding the tape-shaped wire.

図示しない保護層は、上記超電導導体層12を保護し、断熱管13との絶縁を確保するためのものであり、クラフト紙などを巻回することで形成できる。   The protective layer (not shown) is for protecting the superconducting conductor layer 12 and ensuring insulation from the heat insulating tube 13, and can be formed by winding kraft paper or the like.

[断熱管]
上記導体部10を収納する断熱管13は、導体部10を内部に収納する内管14と、内管14を内部に収納する外管15と、を備える。内管14は、その内部に、超電導導体層12を超電導状態に維持するための冷媒131(代表的には、液体窒素や液体ヘリウム、ヘリウムガスなど)が充填され、冷媒流路として機能する。この内管14と、内管14の外周に設けられる外管15とで断熱管13を構成することで、外部からの侵入熱などにより冷媒131の温度が上昇することを抑制する。内管14と外管15との間は真空引きされ、それによって真空断熱層が形成されている。その他、内管14と外管15との間にスーパーインシュレーションといった断熱材や、内管14と外管14とを離隔させるスペーサを配置すると、断熱管13の断熱性を高められる。なお、本実施形態では、断熱管として二重管構造の断熱管を利用しているが、三重管以上の断熱管を利用しても良い。
[Insulated pipe]
The heat insulating tube 13 that houses the conductor portion 10 includes an inner tube 14 that houses the conductor portion 10 therein, and an outer tube 15 that houses the inner tube 14 inside. The inner tube 14 is filled with a refrigerant 131 (typically liquid nitrogen, liquid helium, helium gas, etc.) for maintaining the superconducting conductor layer 12 in a superconducting state, and functions as a refrigerant flow path. By forming the heat insulating tube 13 with the inner tube 14 and the outer tube 15 provided on the outer periphery of the inner tube 14, it is possible to suppress the temperature of the refrigerant 131 from rising due to heat entering from the outside. A vacuum is drawn between the inner tube 14 and the outer tube 15 to form a vacuum heat insulating layer. In addition, if a heat insulating material such as super insulation or a spacer that separates the inner tube 14 and the outer tube 14 is disposed between the inner tube 14 and the outer tube 15, the heat insulating property of the heat insulating tube 13 can be improved. In addition, in this embodiment, although the heat insulation pipe | tube of a double pipe structure is utilized as a heat insulation pipe | tube, you may utilize the heat insulation pipe | tube more than a triple pipe.

内管14及び外管15の構成材料は、ステンレス鋼、アルミニウムやその合金などの金属が挙げられる。上記金属は、耐食性に優れることから、種々の流体の保持や輸送を行う断熱管13の構成材料に適する。両管14,15の材質を異ならせてもよい。また、両管14,15はいずれも、その全長に亘ってコルゲート加工が施されたコルゲート管としたり、アルミニウムやその合金などの比較的柔らかく可撓性を有する材質からなるストレート管としたりすることで屈曲可能となる。このように可撓性を有する断熱管13を採用することで、搬送時や布設時に超電導ケーブル100を曲げ易くすることができる。さらに、コルゲート管で断熱管13を形成することで、断熱管13が冷媒131に冷却されて熱収縮する際に変形することで熱応力を緩和できる。   Examples of the constituent material of the inner tube 14 and the outer tube 15 include metals such as stainless steel, aluminum, and alloys thereof. Since the metal is excellent in corrosion resistance, it is suitable as a constituent material of the heat insulating tube 13 for holding and transporting various fluids. The materials of both pipes 14 and 15 may be different. Both pipes 14 and 15 should be corrugated pipes that have been corrugated over their entire length, or straight pipes made of a relatively soft and flexible material such as aluminum or its alloys. Can be bent. By adopting the heat insulating tube 13 having flexibility in this way, the superconducting cable 100 can be easily bent at the time of transportation or laying. Furthermore, by forming the heat insulating tube 13 with a corrugated tube, the heat stress can be relieved by deformation when the heat insulating tube 13 is cooled by the refrigerant 131 and thermally contracts.

[コーティング層]
本実施形態の断熱管13はさらに、外管15の外周に形成されるコーティング層16を備える。コーティング層16は、後述する常温絶縁型超電導ケーブル100の製造方法に示すように、常温被覆部2の内部に後から低温導電部1を挿入する際、上記断熱管13の損傷を防止する機能を有する。また、コーティング層16は、常温被覆部2の内部に低温導電部1を挿入し易く、かつ常温被覆部2に収納された低温導電部1を引抜き易くする機能も担う。これらの機能を両立させるためにコーティング層16に要求される特性としては、コーティング層16と擦れ合うパイプ状構造物21に対するコーティング層16の表面の静止摩擦係数が0.3以下、好ましくは0.2以下、最も好ましくは0.1以下であることである。コーティング層16の表面の静止摩擦係数が小さければ、常温被覆部2に低温導電部1を挿抜し易いし、その挿抜の際に、常温被覆部2の内周面(後述するパイプ状構造物21の内周面)に低温導電部1の外周面が強く擦れることを防止できる。
[Coating layer]
The heat insulating tube 13 of this embodiment further includes a coating layer 16 formed on the outer periphery of the outer tube 15. The coating layer 16 has a function of preventing the heat insulating tube 13 from being damaged when the low temperature conductive part 1 is inserted into the room temperature covering part 2 later, as shown in a method for manufacturing the room temperature insulated superconducting cable 100 described later. Have. The coating layer 16 also has a function of easily inserting the low temperature conductive portion 1 into the room temperature coating portion 2 and facilitating extraction of the low temperature conductive portion 1 housed in the room temperature coating portion 2. As a characteristic required for the coating layer 16 to achieve both of these functions, the coefficient of static friction of the surface of the coating layer 16 with respect to the pipe-like structure 21 that rubs against the coating layer 16 is 0.3 or less, preferably 0.2. Hereinafter, it is most preferably 0.1 or less. If the coefficient of static friction on the surface of the coating layer 16 is small, the low temperature conductive part 1 can be easily inserted into and removed from the room temperature coating part 2, and the inner peripheral surface of the room temperature coating part 2 (a pipe-like structure 21 to be described later) during the insertion and removal. It is possible to prevent the outer peripheral surface of the low-temperature conductive portion 1 from rubbing strongly against the inner peripheral surface).

ここで、コーティング層16の表面の静止摩擦係数は、以下のようにして求めることができる。まず、コーティング層16の構成材料で平板状の試験片を作製すると共に、パイプ状構造物21の構成材料でも平板状の試験片を作製する。そして、これら試験片を用いて、JIS K7125に準拠する静止摩擦係数測定を行う。   Here, the static friction coefficient of the surface of the coating layer 16 can be obtained as follows. First, a flat test piece is prepared from the constituent material of the coating layer 16, and a flat test piece is also prepared from the constituent material of the pipe-like structure 21. And using these test pieces, the static friction coefficient measurement based on JIS K7125 is performed.

コーティング層16の表面の静止摩擦係数を決定する要因は、コーティング層16を構成する材質である。コーティング層16の構成材料としては、例えば、エポキシや、ポリ塩化ビニル、ポリエチレンなどの樹脂材料を挙げることができる。これら樹脂材料は、適度な弾性を有しており、コーティング層16自身が損傷することも低減できるし、コーティング層16に擦れ合うパイプ状構造物21(後述する)が損傷することも低減できる。また、これらの樹脂材料によれば、断熱管13の外周に押出しなどで容易に形成することができる。なお、テープ状の樹脂材料を断熱管13の外周に巻回することでコーティング層16を形成しても良い。   The factor that determines the static friction coefficient of the surface of the coating layer 16 is the material constituting the coating layer 16. Examples of the constituent material of the coating layer 16 include resin materials such as epoxy, polyvinyl chloride, and polyethylene. These resin materials have moderate elasticity, and can reduce damage to the coating layer 16 itself, and can also reduce damage to a pipe-like structure 21 (described later) that rubs against the coating layer 16. Moreover, according to these resin materials, it can form easily in the outer periphery of the heat insulation pipe | tube 13 by extrusion etc. The coating layer 16 may be formed by winding a tape-shaped resin material around the outer periphery of the heat insulating tube 13.

上記コーティング層16の材質の他、常温被覆部2に対する低温導電部1の挿抜のし易さを決定する要因として、コーティング層16の形状を挙げることができる。具体的には、コーティング層16と、常温被覆部2の内周面(後述するパイプ状構造物21の内周面)との接触面積が小さければ、常温被覆部2に対する低温導電部1の挿抜を行い易くなる。そのため、コーティング層16の表面に凹凸形状を形成することが好ましい。具体的なコーティング層16の表面形状の例について、常温絶縁型超電導ケーブルの縦断面図である図2、図3に基づいて説明する。なお、これら図2,3では、外管15とコーティング層16のみを図示する。   In addition to the material of the coating layer 16, the shape of the coating layer 16 can be cited as a factor that determines the ease with which the low temperature conductive portion 1 can be inserted into and removed from the room temperature coating portion 2. Specifically, if the contact area between the coating layer 16 and the inner circumferential surface of the room temperature coating portion 2 (the inner circumferential surface of the pipe-like structure 21 described later) is small, the low temperature conductive portion 1 is inserted into and removed from the room temperature coating portion 2. It becomes easy to do. Therefore, it is preferable to form an uneven shape on the surface of the coating layer 16. Specific examples of the surface shape of the coating layer 16 will be described with reference to FIGS. 2 and 3, which are longitudinal sectional views of a room temperature insulated superconducting cable. 2 and 3, only the outer tube 15 and the coating layer 16 are shown.

まず、図2に示すコーティング層16は、コルゲート状の外管15の外周面形状に沿って形成されている。この図2に示すコーティング層16の外周輪郭線は正弦波状となっており、外管15の凹凸の谷部分においてコーティング層16の厚さが大きくなっている。このような形状は、断熱管13の外周に樹脂材料を押出したり、溶融樹脂材料を断熱管13の外周に吹き付けるなどして形成することができる。押出により、外管15の長手方向におけるコーティング層16の厚さを変化させるには、押出の過程で樹脂材料の供給量を随時変化させれば良い。また、図2とは異なり、コーティング層は、外管の山部分に厚く、谷部分に薄く形成されていても良い。山部分を厚くすることで、常温被覆部の内周面と実際に擦れ合う部分を効果的に保護することができる。この観点からすれば、外管の山部分にのみコーティング層が形成されていても良い。その他、外管の形状に沿ったほぼ均一な厚みのコーティング層であっても良い。   First, the coating layer 16 shown in FIG. 2 is formed along the outer peripheral surface shape of the corrugated outer tube 15. The outer peripheral contour line of the coating layer 16 shown in FIG. 2 has a sine wave shape, and the thickness of the coating layer 16 is increased in the concave and convex valley portions of the outer tube 15. Such a shape can be formed by extruding a resin material on the outer periphery of the heat insulating tube 13 or spraying a molten resin material on the outer periphery of the heat insulating tube 13. In order to change the thickness of the coating layer 16 in the longitudinal direction of the outer tube 15 by extrusion, the supply amount of the resin material may be changed at any time during the extrusion process. Further, unlike FIG. 2, the coating layer may be formed thick in the crest portion of the outer tube and thin in the trough portion. By thickening the crest portion, it is possible to effectively protect the portion that actually rubs against the inner peripheral surface of the room temperature coating portion. From this point of view, the coating layer may be formed only on the crest portion of the outer tube. In addition, the coating layer may have a substantially uniform thickness along the shape of the outer tube.

一方、図3に例示するコーティング層16の外周輪郭線は、のこぎり波状に形成されている。のこぎり波形状には、山部分の頂点を挟む2辺がほぼ等しい略二等辺三角形状のものや、同頂点を挟む一方の辺が他方の辺よりも長い略三角形状のものを挙げることができる。のこぎり波状の外周輪郭線を有するコーティング層16によれば、図2の構成に比べて、のこぎり波の長辺が配列されている方向(図面上、右方向)に限って、常温被覆部2に対する低温導電部1の移動抵抗を低減させることができる。反対に、のこぎり波の短辺が配列される方向(紙面左方向)には、常温被覆部2に対して低温導電部1が移動し難くなるので、布設された常温絶縁型超電導ケーブル100において、常温被覆部2内の低温導電部1の移動を抑制できる。   On the other hand, the outer peripheral outline of the coating layer 16 illustrated in FIG. 3 is formed in a sawtooth wave shape. Examples of the sawtooth wave shape include a substantially isosceles triangle shape in which two sides sandwiching the apex of the mountain portion are substantially equal, and a substantially triangular shape in which one side sandwiching the vertex is longer than the other side. . According to the coating layer 16 having the sawtooth-like outer peripheral contour line, compared to the configuration of FIG. 2, only the direction in which the long sides of the sawtooth are arranged (rightward in the drawing) is applied to the room temperature coating portion 2. The movement resistance of the low temperature conductive part 1 can be reduced. On the other hand, in the direction in which the short sides of the sawtooth wave are arranged (the left direction in the drawing), the low-temperature conductive part 1 is difficult to move with respect to the normal-temperature covering part 2, so in the installed room-temperature insulated superconducting cable 100, The movement of the low temperature conductive part 1 in the room temperature covering part 2 can be suppressed.

なお、上記コーティング層16は、材質の異なる複数の層から構成されていても良い。その場合、例えば、断熱管13の直上に形成される層では、断熱管13との密着性や強度などを優先させて材質を選定すれば良い。一方、最外周に形成される層では、静止摩擦係数が小さい材質を用いると良い。   The coating layer 16 may be composed of a plurality of layers made of different materials. In that case, for example, in the layer formed immediately above the heat insulating tube 13, the material may be selected by giving priority to the adhesion and strength with the heat insulating tube 13. On the other hand, a material having a small coefficient of static friction is preferably used for the layer formed on the outermost periphery.

≪常温被覆部≫
常温被覆部2は、パイプ状構造物21と、その外周に形成される常温側電気絶縁層23と、を備える。ここで、常温被覆部2はさらに、パイプ状構造物21と常温側電気絶縁層23との間に、異常時電流の分流路となる分流導体22を備えることが好ましい。この実施形態では、分流導体22を備える常温被覆部2を説明する。
≪Normal temperature coating part≫
The room temperature covering portion 2 includes a pipe-like structure 21 and a room temperature side electrical insulating layer 23 formed on the outer periphery thereof. Here, it is preferable that the room temperature covering portion 2 further includes a shunt conductor 22 serving as a flow path for the abnormal current between the pipe-like structure 21 and the room temperature side electrical insulating layer 23. In this embodiment, the room temperature coating | coated part 2 provided with the shunt conductor 22 is demonstrated.

[パイプ状構造物]
パイプ状構造物21は、その外周面に形成される分流導体22や常温側電気絶縁層23を保形すると共に、保護する部材である。このパイプ状構造物21における最も重要な特性は強度である。また、超電導ケーブル100に所定の可撓性を持たせるために、パイプ状構造物21も所定の可撓性を有することが求められる。これらの点を考慮して、パイプ状構造物21としては、アルミニウムのストレートパイプや、SUSのコルゲートパイプなどを利用することができる。その他、パイプ状構造物21は、樹脂などの非導電材料でできていても良い。なお、このパイプ状構造物21が導電材料であれば、それ自身も分流導体22の機能の一部を分担できる。
[Pipe-like structure]
The pipe-like structure 21 is a member that retains and protects the shunt conductor 22 and the room-temperature-side electrical insulation layer 23 formed on the outer peripheral surface thereof. The most important characteristic of the pipe-like structure 21 is strength. In order to give the superconducting cable 100 a predetermined flexibility, the pipe-like structure 21 is also required to have a predetermined flexibility. In consideration of these points, as the pipe-like structure 21, an aluminum straight pipe, a SUS corrugated pipe, or the like can be used. In addition, the pipe-like structure 21 may be made of a non-conductive material such as resin. In addition, if this pipe-like structure 21 is a conductive material, it can share a part of the function of the shunt conductor 22 itself.

ここで、上記コーティング層16の表面が凹凸形状を有している場合、パイプ状構造物21をコルゲートパイプとすると、コーティング層16の凹凸と、パイプ状構造物21の内周面の凹凸が引っ掛かる恐れがある。そこで、コーティング層16とパイプ状構造物21のいずれかを凹凸の無い形状とすることが好ましい。特に、コーティング層16に凹凸を設け、パイプ状構造物21をストレートパイプとする組み合わせが好ましい。後述するように、パイプ状構造物21の外周側に分流導体22や常温側電気絶縁層23を形成する際、凹凸を有するパイプ状構造物21では隙間が形成され易く、隙間が形成されるとその隙間が電気的弱点となる恐れがあるからである。   Here, when the surface of the coating layer 16 has an uneven shape, if the pipe-like structure 21 is a corrugated pipe, the unevenness of the coating layer 16 and the unevenness of the inner peripheral surface of the pipe-like structure 21 are caught. There is a fear. Therefore, it is preferable that either the coating layer 16 or the pipe-like structure 21 has a shape without unevenness. In particular, a combination in which the coating layer 16 is provided with irregularities and the pipe-like structure 21 is a straight pipe is preferable. As will be described later, when the shunt conductor 22 and the room temperature side electrical insulating layer 23 are formed on the outer peripheral side of the pipe-like structure 21, a gap is easily formed in the pipe-like structure 21 having irregularities, and the gap is formed. This is because the gap may become an electrical weak point.

[分流導体]
分流導体22は、異常時電流(短絡電流)が生じたときに、その異常時電流を分担する常電導導体である。この分流導体22は、超電導ケーブル線路の長手方向のどこか(代表的には、超電導ケーブル100の中間接続部や終端接続部など)で超電導導体層12、およびフォーマ11に接続されることで、異常時電流を超電導導体層12の金属成分、およびフォーマ11と分担できるようになっている。
[Branch conductor]
The shunt conductor 22 is a normal conducting conductor that shares an abnormal current when an abnormal current (short-circuit current) is generated. The shunt conductor 22 is connected to the superconducting conductor layer 12 and the former 11 at somewhere in the longitudinal direction of the superconducting cable line (typically, an intermediate connection portion or a termination connection portion of the superconducting cable 100). An abnormal current can be shared with the metal component of the superconducting conductor layer 12 and the former 11.

分流導体22は、異常時電流を分担する役割を担う観点から、パイプ状構造物21よりも高導電性の金属材料、つまり電気抵抗値が低い銅やアルミニウム、銀などの金属材料から構成される。特に、銅は、銀に次ぐ高い導電率を有し、銀よりも格段に安価である点で、分流導体22として好適である。   The shunt conductor 22 is composed of a metal material having a higher conductivity than that of the pipe-like structure 21, that is, a metal material such as copper, aluminum, or silver having a lower electric resistance value, from the viewpoint of sharing the current during an abnormality. . In particular, copper is suitable as the shunt conductor 22 in that it has the second highest conductivity after silver and is much cheaper than silver.

上記分流導体22は、銅撚り線で構成されるセグメント導体など既存常電導ケーブルの導体に準じた部材をパイプ状構造物21上に巻回することで形成することができる。   The said shunt conductor 22 can be formed by winding the member according to the conductor of the existing normal conducting cable, such as a segment conductor comprised with a copper strand wire, on the pipe-shaped structure 21. As shown in FIG.

上記分流導体22の形成厚さは、超電導ケーブル線路の運転上、どの程度の異常時電流が発生し得るか、その発生した異常時電流を分流導体22にどの程度負担させるかによって適宜選択すれば良い。例えば、上述した低温導電部1のフォーマ11を非導電性材料で構成する場合、異常時電流の大部分を分流導体22に流せるように分流導体22の厚さを決定し、分流導体22と超電導導体層12の金属成分とで異常時電流を分担させることで、超電導導体層12を保護する。また、当該フォーマ11を導電性材料とし、異常時電流を分流導体22と超電導導体層12の金属成分に分担させるだけでなく、フォーマ11にも分担させる構成であれば、分流導体22に分担させる異常時電流を流せるように分流導体22の厚さを決定すれば良い。   The formation thickness of the shunt conductor 22 may be appropriately selected depending on how much abnormal current can be generated in the operation of the superconducting cable line and how much the abnormal current generated is borne by the shunt conductor 22. good. For example, when the former 11 of the low-temperature conductive portion 1 described above is made of a non-conductive material, the thickness of the shunt conductor 22 is determined so that most of the abnormal current can flow through the shunt conductor 22, and the shunt conductor 22 and the superconductor The superconducting conductor layer 12 is protected by sharing an abnormal current with the metal component of the conductor layer 12. Further, if the former 11 is made of a conductive material and the abnormal current is shared not only by the metal components of the shunt conductor 22 and the superconducting conductor layer 12 but also by the former 11, it is shared by the shunt conductor 22. What is necessary is just to determine the thickness of the shunt conductor 22 so that the electric current at the time of abnormality may flow.

[常温側電気絶縁層]
常温側電気絶縁層23は、超電導ケーブル100を外部環境から電気的に絶縁する層である。この常温側電気絶縁層23には、常電導ケーブルで実績がある電気絶縁強度に優れる材料、代表的にはCVケーブルに利用される架橋ポリエチレン(XLPE)などを利用できる。架橋ポリエチレンなどの絶縁性樹脂であれば、パイプ状構造物21に分流導体22を形成した筒状部材の外周に絶縁性樹脂を押し出すだけで常温側電気絶縁層23を容易に形成できる。その他、常温側電気絶縁層23には、OFケーブルにおける絶縁層と同様の構成を採用することができる。例えば、分流導体22の外周にテープ状のクラフト紙や半合成紙を多層に巻回し、その絶縁層に合成油などの絶縁油を含浸させることで常温側電気絶縁層23を形成することができる。
[Room-temperature electrical insulation layer]
The room temperature side electrical insulation layer 23 is a layer that electrically insulates the superconducting cable 100 from the external environment. The room-temperature side electrical insulation layer 23 can be made of a material having an excellent electrical insulation strength that has been proven in ordinary conductive cables, typically, crosslinked polyethylene (XLPE) used for CV cables. If the insulating resin such as cross-linked polyethylene is used, the room-temperature-side electrical insulating layer 23 can be easily formed simply by extruding the insulating resin on the outer periphery of the tubular member in which the shunt conductor 22 is formed on the pipe-like structure 21. In addition, the room temperature side electrical insulation layer 23 can employ the same configuration as the insulation layer in the OF cable. For example, the room temperature side electrical insulation layer 23 can be formed by winding tape-like kraft paper or semi-synthetic paper around the outer periphery of the shunt conductor 22 in multiple layers and impregnating the insulation layer with insulation oil such as synthetic oil. .

[その他の構成]
常温側電気絶縁層23の外周には、代表的には、銅やアルミニウムなどの常電導材料から構成された外側導体層(図示せず)が設けられる。外側導体層は、代表的には電磁シールドに利用される。常温絶縁型超電導ケーブル100では、上述のように外部導体層にも常電導材料を利用できるため、超電導ケーブルの製造性に優れる。また、外側導体層の外周には、外側導体層を保護する防食層(図示せず)が設けられている。
[Other configurations]
An outer conductor layer (not shown) made of a normal conducting material such as copper or aluminum is typically provided on the outer periphery of the room temperature side electrical insulating layer 23. The outer conductor layer is typically used for electromagnetic shielding. The room-temperature insulated superconducting cable 100 is excellent in manufacturability of the superconducting cable because the normal conducting material can be used for the outer conductor layer as described above. Further, an anticorrosion layer (not shown) for protecting the outer conductor layer is provided on the outer periphery of the outer conductor layer.

≪常温絶縁型超電導ケーブルの効果≫
実施形態の常温絶縁型超電導ケーブル100の構成であれば、超電導ケーブル100の運転にあたり低温導電部1が損傷したとき、その損傷した低温導電部1を交換するだけで、超電導ケーブル100の運転を再開することができる。また、この交換に際し、低温導電部1に形成されるコーティング層16と、常温被覆部2のパイプ状構造物21とが存在することにより、常温被覆部2の常温電気絶縁層23や低温導電部1の断熱管13など、常温絶縁型超電導ケーブル100の運転に必須の構成が損傷することがない。
≪Effect of room temperature insulated superconducting cable≫
With the configuration of the room temperature insulated superconducting cable 100 according to the embodiment, when the low temperature conductive part 1 is damaged during the operation of the superconducting cable 100, the operation of the superconducting cable 100 can be resumed simply by replacing the damaged low temperature conductive part 1. can do. Further, at the time of this replacement, the coating layer 16 formed on the low temperature conductive portion 1 and the pipe-like structure 21 of the normal temperature coating portion 2 exist, so that the normal temperature electrical insulating layer 23 and the low temperature conductive portion of the normal temperature coating portion 2 are present. The components essential for the operation of the room temperature insulated superconducting cable 100 such as the one heat insulating tube 13 are not damaged.

また、本実施形態の常温絶縁型超電導ケーブル100では、常温被覆部2に分流導体22が形成されていることにより、異常時電流が発生したときに、その異常時電流を分流導体22に分担させることができる。そのため、超電導導体層12がクエンチして超電導導体層12が劣化することを回避できる。さらに、常温被覆部2に分流導体22が設けられていることで、分流導体22で生じるジュール熱により低温導電部1の冷媒131が熱せられることがない。そのため、冷媒131が熱せられてガス化することを抑制できるし、冷媒131を運用可能な温度まで冷却するための時間を短くすることもできるので、異常時電流の発生から短時間で超電導ケーブル線路を通常運転に復帰させることができる。   Further, in the room temperature insulated superconducting cable 100 of the present embodiment, since the shunt conductor 22 is formed in the room temperature covering portion 2, when an abnormal current occurs, the abnormal current is shared by the shunt conductor 22. be able to. Therefore, it can be avoided that the superconducting conductor layer 12 is quenched and the superconducting conductor layer 12 is deteriorated. Further, since the shunt conductor 22 is provided in the room temperature covering portion 2, the refrigerant 131 of the low temperature conductive portion 1 is not heated by Joule heat generated in the shunt conductor 22. Therefore, the refrigerant 131 can be prevented from being heated and gasified, and the time for cooling the refrigerant 131 to an operable temperature can be shortened. Can be returned to normal operation.

≪常温絶縁型超電導ケーブルの製造方法≫
以上説明した超電導ケーブル100は、図1(B)に示すように、次の工程A〜Cにより作製することができる。なお、工程Aと工程Bの順序は入れ替え可能である。
≪Method of manufacturing room temperature insulated superconducting cable≫
The superconducting cable 100 described above can be manufactured by the following steps A to C as shown in FIG. In addition, the order of the process A and the process B is interchangeable.

[工程A]
工程Aでは、低温導電部1を作製する。低温導電部1は、導体部10を作製し、その導体部10の外周に、順次内管14、外管15、コーティング層16を形成することで作製することができる。その他、導体部10と断熱管13とを別個に作製し、断熱管13の内管14内に導体部10を挿入することで、低温導電部1を作製しても良い。
[Step A]
In step A, the low temperature conductive portion 1 is produced. The low temperature conductive part 1 can be produced by producing the conductor part 10 and sequentially forming the inner tube 14, the outer pipe 15 and the coating layer 16 on the outer periphery of the conductor part 10. In addition, the low-temperature conductive portion 1 may be manufactured by separately manufacturing the conductor portion 10 and the heat insulating tube 13 and inserting the conductor portion 10 into the inner tube 14 of the heat insulating tube 13.

[工程B]
工程Bでは、上記低温導電部1とは別に、常温被覆部2を作製する。まずパイプ状構造物21を用意し、その外周に、例えば銅撚り線で構成されるセグメント導体を巻回して分流導体22を形成する。次いで、分流導体22の外周に、例えば押出などにより絶縁性樹脂を被覆し、常温側電気絶縁層23を形成する。常温側電気絶縁層23は、クラフト紙やPPLP(住友電気工業の登録商標)を巻回することで形成しても良い。
[Step B]
In step B, a room temperature coating portion 2 is produced separately from the low temperature conductive portion 1. First, a pipe-like structure 21 is prepared, and a segment conductor composed of, for example, a copper stranded wire is wound around the outer periphery thereof to form a shunt conductor 22. Next, an insulating resin is coated on the outer periphery of the shunt conductor 22 by, for example, extrusion to form the room temperature side electric insulation layer 23. The room temperature side electrical insulation layer 23 may be formed by winding kraft paper or PPLP (registered trademark of Sumitomo Electric Industries).

ここで、低温導電部1の長さと、常温被覆部2の長さとは、同じである必要はない。例えば、低温導電部1を常温被覆部2よりも長くしてもかまわない。その場合、低温導電部1の両端部が常温被覆部2から露出するので、複数の超電導ケーブル100を接続して超電導ケーブル線路を構築する際、隣接する低温導電部1同士の接続を容易に行える。   Here, the length of the low temperature conductive portion 1 and the length of the room temperature coating portion 2 do not have to be the same. For example, the low temperature conductive part 1 may be longer than the room temperature coating part 2. In that case, since both ends of the low temperature conductive part 1 are exposed from the room temperature covering part 2, when connecting a plurality of superconducting cables 100 to construct a superconducting cable line, adjacent low temperature conductive parts 1 can be easily connected. .

[工程C]
工程Aで作製した低温導電部1を、工程Bで作製した常温被覆部2の内部に挿入する。低温導電部1を常温被覆部2に挿入する際は、低温導電部1のフォーマ11や断熱管13の部分を引っ張って、常温被覆部2の内部に低温導電部1を引込むようにすると良い。ここで、工程Aにおいて低温導電部1にテンションメンバを設けておき、常温被覆部2の内部に低温導電部1を引込む際の引込み張力をテンションメンバに分担させても良い。このテンションメンバにより、低温導電部1の損傷を防止できる。
[Step C]
The low temperature conductive part 1 produced in the process A is inserted into the room temperature coating part 2 produced in the process B. When the low temperature conductive part 1 is inserted into the room temperature coating part 2, the low temperature conductive part 1 may be drawn into the room temperature coating part 2 by pulling the former 11 and the heat insulating tube 13 of the low temperature conductive part 1. Here, a tension member may be provided in the low temperature conductive part 1 in the step A, and the tension member may be assigned the pulling tension when the low temperature conductive part 1 is drawn into the room temperature coating part 2. This tension member can prevent the low temperature conductive portion 1 from being damaged.

以上説明した常温絶縁型超電導ケーブル100の製造方法によれば、歩留り良く本発明常温絶縁型超電導ケーブル100を作製することができる。それは、工程Cで常温絶縁型超電導ケーブル100を完成させる前に、低温導電部1と常温被覆部2とをそれぞれ検品することができ、不具合のない低温導電部1と常温被覆部2とで常温絶縁型超電導ケーブル100を完成させることができるからである。   According to the manufacturing method of the room temperature insulated superconducting cable 100 described above, the room temperature insulated superconducting cable 100 of the present invention can be manufactured with a high yield. It is possible to inspect the low-temperature conductive part 1 and the normal-temperature coating part 2 before completing the normal-temperature insulated superconducting cable 100 in Step C. This is because the insulated superconducting cable 100 can be completed.

また、低温導電部1に形成されるコーティング層16と、常温被覆部2のパイプ状構造物21とが存在することにより、常温被覆部2の内部に低温導電部1を挿入する際、常温被覆部2の常温電気絶縁層23や低温導電部1の断熱管13など、常温絶縁型超電導ケーブル100の運転に必須の構成が損傷することがない。特に、コーティング層16の静止摩擦係数を小さくすることで、常温被覆部2の内部に低温導電部1を挿抜し易く、かつその際、常温被覆部2の内周面に低温導電部1の外周面が強く擦れて、互いに損傷することを効果的に防止できる。   Further, since the coating layer 16 formed on the low temperature conductive part 1 and the pipe-like structure 21 of the room temperature coating part 2 exist, when the low temperature conductive part 1 is inserted into the room temperature coating part 2, the room temperature coating is performed. The components essential to the operation of the room-temperature insulated superconducting cable 100 such as the room-temperature electrical insulation layer 23 of the section 2 and the heat insulating tube 13 of the low-temperature conductive section 1 are not damaged. In particular, by reducing the static friction coefficient of the coating layer 16, the low temperature conductive part 1 can be easily inserted into and extracted from the room temperature coating part 2, and the outer periphery of the low temperature conductive part 1 is formed on the inner peripheral surface of the room temperature coating part 2. It is possible to effectively prevent the surfaces from rubbing strongly and damaging each other.

<変形実施形態>
上述した実施形態では、コルゲート状の断熱管13の外周に形成されるコーティング層16を波付き形状としたが、コルゲート状の断熱管13の谷部分を埋めるようにコーティング層16を形成し、コーティング層16の外周面が平滑な円筒面になるようにしても良い。つまり、断熱管13の外周面を完全にコーティング層16で覆ってしまい、このコーティング層16を被覆したコルゲート状の断熱管13が、見た目上ストレートパイプとなるようにする。このようにコーティング層16を形成することで、コルゲート状の断熱管13の引込み時に断熱管13が長手方向に変形すること(伸びること)を抑制できるという利点がある。
<Modified Embodiment>
In the embodiment described above, the coating layer 16 formed on the outer periphery of the corrugated heat insulating tube 13 has a corrugated shape. However, the coating layer 16 is formed so as to fill the valley portion of the corrugated heat insulating tube 13, and the coating is performed. The outer peripheral surface of the layer 16 may be a smooth cylindrical surface. In other words, the outer peripheral surface of the heat insulating tube 13 is completely covered with the coating layer 16 so that the corrugated heat insulating tube 13 covering the coating layer 16 looks like a straight pipe. By forming the coating layer 16 in this way, there is an advantage that the heat insulating tube 13 can be prevented from being deformed (elongated) in the longitudinal direction when the corrugated heat insulating tube 13 is retracted.

なお、本発明の実施形態は、上述した実施形態に限定されるわけではなく、本発明の要旨を逸脱しない範囲において適宜変更することが可能である。例えば、実施形態では説明を省略したが、常温側電気絶縁層23の内周部と外周部の各々に内部半導電層と外部半導電層を形成するのが一般的である。   The embodiment of the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, although the description is omitted in the embodiment, it is general to form an internal semiconductive layer and an external semiconductive layer on each of the inner peripheral portion and the outer peripheral portion of the room temperature side electric insulating layer 23.

本発明常温絶縁型超電導ケーブルは、大電流送電網の形成に好適に利用することができる。また、本発明常温絶縁型超電導ケーブルの製造方法は、本発明常温絶縁型超電導ケーブルの製造に好適に利用することができる。   The room temperature insulated superconducting cable of the present invention can be suitably used for forming a large current transmission network. Moreover, the manufacturing method of the room temperature insulation type superconducting cable of the present invention can be suitably used for the production of the room temperature insulation type superconducting cable of the present invention.

100 常温絶縁型超電導ケーブル
1 低温導電部
10 導体部 11 フォーマ 12 超電導導体層
13 断熱管 14 内管 15 外管 131 冷媒
16 コーティング層
2 常温被覆部
21 パイプ状構造物
22 分流導体
23 常温側電気絶縁層
DESCRIPTION OF SYMBOLS 100 Room temperature insulation type superconducting cable 1 Low temperature conductive part 10 Conductor part 11 Former 12 Superconducting conductor layer 13 Heat insulation pipe 14 Inner pipe 15 Outer pipe 131 Refrigerant 16 Coating layer 2 Room temperature coating part 21 Pipe-shaped structure 22 Shunt conductor 23 Room temperature side electric insulation layer

Claims (6)

フォーマの外周に超電導導体層を形成してなる導体部、およびその導体部を内部に収納して、導体部を極低温に維持する断熱管を有する低温導電部と、
前記断熱管の外周を取り囲む常温側電気絶縁層を有する常温被覆部と、
を備える常温絶縁型超電導ケーブルであって、
前記常温被覆部は、常温側電気絶縁層を内周側から支持するパイプ状構造物を有し、
前記低温導電部は、断熱管の外周に形成されるコーティング層を有し、
前記低温導電部と前記常温被覆部とは別個に作製され、前記常温被覆部の内部に対して前記低温導電部が挿抜可能に構成されており、
前記パイプ状構造物に対する前記コーティング層の表面の静止摩擦係数は、0.3以下であることを特徴とする常温絶縁型超電導ケーブル。
A conductor part formed by forming a superconducting conductor layer on the outer periphery of the former, and a low-temperature conductive part having a heat insulating tube for storing the conductor part therein and maintaining the conductor part at a cryogenic temperature;
A room temperature coating portion having a room temperature side electric insulation layer surrounding the outer periphery of the heat insulating tube;
A room temperature insulated superconducting cable comprising:
The room temperature coating portion has a pipe-like structure that supports the room temperature side electrical insulating layer from the inner peripheral side,
It said cold conductive section may have a coating layer formed on the outer periphery of the heat-insulated pipe,
The low-temperature conductive part and the room temperature coating part are separately manufactured, and the low-temperature conductive part is configured to be insertable / removable with respect to the inside of the room temperature coating part,
The coefficient of static friction of the surface of the coating layer to the pipe-like structure, cold-insulated superconducting cable according to claim and this is 0.3 or less.
前記常温被覆部は、前記常温側電気絶縁層の内側で、かつ前記断熱管の外側に配置され、異常時電流を分担する常電導の分流導体を備えることを特徴とする請求項1に記載の常温絶縁型超電導ケーブル。   The said normal temperature coating | coated part is arrange | positioned inside the said normal temperature side electric insulation layer and the outer side of the said heat insulation pipe | tube, and is provided with the normal conducting shunt conductor which shares an abnormal time electric current. Room-temperature insulated superconducting cable. 前記コーティング層の縦断面の外周輪郭線は、前記コーティング層の表面における前記パイプ状構造物との接触面積が小さくなるように凹凸形状に形成されていることを特徴とする請求項1または請求項2に記載の常温絶縁型超電導ケーブル。 Outer peripheral contour of the longitudinal section of the coating layer, according to claim 1 or claim, characterized in that the contact area between the pipe-like structure on the surface of the coating layer is formed in an uneven shape so as to be smaller 2. A room-temperature insulated superconducting cable according to 2. 前記外周輪郭線は、正弦波状であることを特徴とする請求項3に記載の常温絶縁型超電導ケーブル。 The room temperature insulated superconducting cable according to claim 3 , wherein the outer peripheral outline is sinusoidal. 前記外周輪郭線は、のこぎり波状であることを特徴とする請求項3に記載の常温絶縁型超電導ケーブル。 The room temperature insulation type superconducting cable according to claim 3 , wherein the outer peripheral contour line has a sawtooth wave shape. フォーマの外周に超電導導体層を形成してなる導体部と、その導体部を内部に収納して、導体部を極低温に維持する断熱管と、その断熱管の外周に形成されるコーティング層と、を有する低温導電部を作製する工程Aと、
前記低温導電部の外径よりも大きな内径を有するパイプ状構造物と、そのパイプ状構造物の外周に形成される常温側電気絶縁層と、を有する常温被覆部を作製する工程Bと、
前記工程Aで作製した低温導電部を、前記工程Bで作製した常温被覆部の内部に挿入する工程Cと、
を備えることを特徴とする常温絶縁型超電導ケーブルの製造方法。
但し、前記パイプ状構造物に対する前記コーティング層の表面の静止摩擦係数は、0.3以下である。
A conductor portion formed by forming a superconducting conductor layer on the outer periphery of the former, a heat insulating tube that accommodates the conductor portion therein and maintains the conductor portion at a cryogenic temperature, and a coating layer formed on the outer periphery of the heat insulating tube; A process A for producing a low-temperature conductive part having
Step B for producing a room temperature coating part having a pipe-like structure having an inner diameter larger than the outer diameter of the low-temperature conductive part, and a room-temperature side electric insulating layer formed on the outer periphery of the pipe-like structure,
Inserting the low-temperature conductive part produced in the process A into the room temperature coating part produced in the process B; and
A method for manufacturing a room temperature insulated superconducting cable, comprising:
However, the coefficient of static friction of the surface of the coating layer with respect to the pipe-like structure is 0.3 or less.
JP2011033151A 2011-02-18 2011-02-18 Room-temperature insulated superconducting cable and manufacturing method thereof Expired - Fee Related JP5305180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033151A JP5305180B2 (en) 2011-02-18 2011-02-18 Room-temperature insulated superconducting cable and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033151A JP5305180B2 (en) 2011-02-18 2011-02-18 Room-temperature insulated superconducting cable and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012174404A JP2012174404A (en) 2012-09-10
JP5305180B2 true JP5305180B2 (en) 2013-10-02

Family

ID=46977161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033151A Expired - Fee Related JP5305180B2 (en) 2011-02-18 2011-02-18 Room-temperature insulated superconducting cable and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5305180B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3081259B1 (en) * 2018-05-17 2022-01-28 Inst Supergrid SUPERCONDUCTIVE CURRENT LIMITER WITH ELECTRICALLY CONDUCTIVE SPACER

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996465U (en) * 1972-12-13 1974-08-20
JPH0432108A (en) * 1990-05-24 1992-02-04 Sumitomo Electric Ind Ltd Superconductive cable
JP2006059695A (en) * 2004-08-20 2006-03-02 Sumitomo Electric Ind Ltd Superconductive cable
JP4956271B2 (en) * 2007-05-15 2012-06-20 古河電気工業株式会社 Superconducting cable
JP2008287897A (en) * 2007-05-15 2008-11-27 Furukawa Electric Co Ltd:The Superconductive cable

Also Published As

Publication number Publication date
JP2012174404A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
KR102388542B1 (en) Superconducting material
JP5053466B2 (en) Terminal structure of superconducting cable conductor
JP6399674B2 (en) Superconducting cable
JP5598718B2 (en) Multi-layer insulation joint and double pipe connection structure
JP2007087925A (en) Superconductive cable
KR20040100972A (en) Method of manufacturing a superconductive cable
KR101148574B1 (en) Superconducting cable
KR20110137769A (en) Superconductive electric cable
JP4956271B2 (en) Superconducting cable
JP5494975B2 (en) Superconducting tape wire and manufacturing method thereof
JP5443835B2 (en) Superconducting cable line
JP2006059695A (en) Superconductive cable
JP5305180B2 (en) Room-temperature insulated superconducting cable and manufacturing method thereof
JP2013069585A (en) Superconducting cable manufacturing method
JP5252324B2 (en) Superconducting power transmission system
RU2379777C2 (en) Superconducting cable
WO2014132765A1 (en) Super-electroconductive cable, covered heat-insulated pipe, and method of producing covered heat-insulated pipe
JP5252323B2 (en) Room-temperature insulated superconducting cable and manufacturing method thereof
JP5273572B2 (en) Laying the superconducting cable
JP5505866B2 (en) Insulated tube and superconducting cable
JP3877057B2 (en) High temperature superconducting cable
JP4716160B2 (en) Superconducting cable
JP2006141186A (en) Connection structure of superconducting cable
JP2008287897A (en) Superconductive cable
JP2006156163A (en) Superconductor and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees