JP5304223B2 - Vehicle steering device, vehicle with vehicle steering device, and vehicle steering method - Google Patents

Vehicle steering device, vehicle with vehicle steering device, and vehicle steering method Download PDF

Info

Publication number
JP5304223B2
JP5304223B2 JP2008328910A JP2008328910A JP5304223B2 JP 5304223 B2 JP5304223 B2 JP 5304223B2 JP 2008328910 A JP2008328910 A JP 2008328910A JP 2008328910 A JP2008328910 A JP 2008328910A JP 5304223 B2 JP5304223 B2 JP 5304223B2
Authority
JP
Japan
Prior art keywords
steering
turning angle
reaction force
deviation
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008328910A
Other languages
Japanese (ja)
Other versions
JP2010149650A (en
Inventor
佑文 蔡
拓 鈴木
孝彰 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008328910A priority Critical patent/JP5304223B2/en
Publication of JP2010149650A publication Critical patent/JP2010149650A/en
Application granted granted Critical
Publication of JP5304223B2 publication Critical patent/JP5304223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、運転者によって操舵操作な操舵部と、該操舵部と機械的に分離され、操舵部の操舵角に応じて操向輪を転舵する転舵部と、操舵部に操作反力を付与する反力アクチュエータとを備えた車両用操舵装置、車両用操舵装置付き車両および車両用操舵方法の技術分野に属する。   The present invention includes a steering unit that is steered by a driver, a steering unit that is mechanically separated from the steering unit and steers steered wheels according to a steering angle of the steering unit, and an operational reaction force applied to the steering unit. The present invention belongs to the technical field of a vehicle steering apparatus, a vehicle with a vehicle steering apparatus, and a vehicle steering method.

この種の技術としては、特許文献1に記載の技術が開示されている。この公報では、運転者が操作可能な操舵ハンドル(操舵部)と、該操舵ハンドルと機械的に分離され、操舵ハンドルの操舵角に応じて操向輪を転舵する転舵軸モータと、操舵ハンドルに接続された操舵軸を回転駆動する(反力トルクを付与する)事により、操舵軸を介して操舵ハンドルに反力を付与する操舵軸モータ(反力アクチュエータ)とを備えた車両用操舵装置において、操舵ハンドルに接続した操作軸の操舵角に基づいて目標転舵量を演算し、演算した目標転舵量と転舵変位量との偏差に基づき転舵軸モータを制御して操向輪を転舵駆動すると共に、操舵力と転舵反力との偏差及び目標転舵量と転舵変位量との偏差に基づき、操舵軸モータを制御して、操舵ハンドルに反力を付与するものが開示されている。
特開平10−217998号公報
As this type of technology, the technology described in Patent Document 1 is disclosed. In this publication, a steering handle (steering unit) that can be operated by a driver, a steered shaft motor that is mechanically separated from the steering handle and steers steered wheels according to the steering angle of the steering handle, Vehicle steering equipped with a steering shaft motor (reaction force actuator) that applies a reaction force to the steering handle via the steering shaft by rotationally driving a steering shaft connected to the handle (applying a reaction force torque) In the device, the target turning amount is calculated based on the steering angle of the operation shaft connected to the steering handle, and the steering shaft motor is controlled based on the deviation between the calculated target turning amount and the turning displacement amount. The wheel is steered and the steering shaft motor is controlled based on the deviation between the steering force and the turning reaction force and the deviation between the target turning amount and the turning displacement amount to apply a reaction force to the steering wheel. Are disclosed.
JP-A-10-217998

しかしながら、上記従来技術にあっては、例えば運転者が操舵ハンドルを急激に操舵した場合など、目標転舵量の変化速度が大きくなると、目標転舵量と転舵変位量との偏差が大きくなり、運転者に違和感を与えるおそれがあった。   However, in the above prior art, when the change speed of the target turning amount increases, for example, when the driver steers the steering wheel suddenly, the deviation between the target turning amount and the turning displacement amount increases. The driver may feel uncomfortable.

本発明は、上記問題を解決するためになされたもので、その目的とするところは、操舵ハンドルに適切な操舵反力を付与する事により、操舵時に運転者への違和感を抑制することができる車両用操舵装置、車両用操舵装置付き車両および車両用操舵方法を提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide an appropriate steering reaction force to the steering wheel, thereby suppressing a sense of discomfort to the driver during steering. A vehicle steering device, a vehicle with a vehicle steering device, and a vehicle steering method are provided.

上述の目的を達成するため、本発明では、転舵角の推定値としての推定転舵角と実転舵角との偏差である転舵角偏差の正負の符号と、転舵角偏差の変化速度の正負の符号とが一致するときに、転舵角偏差が増加していると判定し、前記転舵角偏差が増加している場合には、転舵角偏差が増加していない場合の操舵反力に対して、転舵角偏差の変化速度が大きくなるほど増大する付加反力を加算する事により、転舵角偏差が増加していない場合よりも大きな操舵反力を操舵部に付与するようにした。

In order to achieve the above-described object, in the present invention, the sign of the turning angle deviation, which is the deviation between the estimated turning angle and the actual turning angle as an estimated value of the turning angle, and the change in the turning angle deviation. When the positive and negative signs of the speed coincide with each other, it is determined that the turning angle deviation is increased, and when the turning angle deviation is increased , the turning angle deviation is not increased. By adding an additional reaction force that increases as the change speed of the steering angle deviation increases, a larger steering reaction force is applied to the steering unit than when the steering angle deviation does not increase. I did it.

よって、転舵角偏差が増加している場合には、転舵角偏差が増加していない場合よりも大きな操舵反力が作用するため、運転者による操作部の操舵速度を抑えることが可能となる。これにより、推定転舵角に対して転舵アクチュエータによる操向輪の転舵角が追いつくため、結果的に操舵角に対応した目標転舵角と操向輪の転舵角との偏差を減少し、運転者へ与える違和感を抑制することができる。   Therefore, when the turning angle deviation is increased, a larger steering reaction force is applied than when the turning angle deviation is not increased, so that the steering speed of the operation unit by the driver can be suppressed. Become. As a result, the steered wheel steered angle by the steered actuator catches up with the estimated steered angle, and consequently the deviation between the target steered angle corresponding to the steered angle and the steered wheel steered angle is reduced. In addition, the uncomfortable feeling given to the driver can be suppressed.

以下、本発明の車両用操舵装置、車両用操舵装置付き車両および車両用操舵方法を実現する最良の形態を、実施例1に基づいて説明する。   Hereinafter, the best mode for realizing the vehicle steering device, the vehicle with the vehicle steering device, and the vehicle steering method of the present invention will be described based on the first embodiment.

[実施例1]
まず、構成を説明する。
〔全体構成〕
図1は、実施例1の車両用操舵装置を適用した車両1の全体構成図である。この車両1は、前輪2FL,2FRと後輪3RL,3RRのうち、前輪2が転舵を行う操向輪となっている。また実施例1の車両用操舵装置は、操舵機構16と転舵機構17とが機械的に切り離された、いわゆる、ステア・バイ・ワイヤ・システムである。
[Example 1]
First, the configuration will be described.
〔overall structure〕
FIG. 1 is an overall configuration diagram of a vehicle 1 to which a vehicle steering apparatus according to a first embodiment is applied. The vehicle 1 is a steered wheel in which the front wheel 2 of the front wheels 2FL and 2FR and the rear wheels 3RL and 3RR are steered. The vehicle steering apparatus according to the first embodiment is a so-called steer-by-wire system in which the steering mechanism 16 and the steering mechanism 17 are mechanically separated.

実施例1の車両用操舵装置は操舵機構16として、運転者が操舵を行うステアリング13と、ステアリング13に連結したステアリングシャフト18と、ステアリングシャフト18の回転角(操舵角)を検出する操舵角センサ19と、ステアリングシャフト18に入力されたトルク(操舵トルク)を検出する操舵トルクセンサ20と、ステアリングシャフト18に回転トルク(操舵反力)を付与する操舵軸モータ(反力アクチュエータ)8と、操舵軸モータ8の角度を検出する操舵軸モータ回転角センサ12とを有する。   In the vehicle steering apparatus according to the first embodiment, a steering mechanism 16 is used as a steering mechanism 16. A steering angle sensor for detecting a rotation angle (steering angle) of the steering shaft 18, a steering shaft 18 connected to the steering wheel 13, 19, a steering torque sensor 20 that detects torque (steering torque) input to the steering shaft 18, a steering shaft motor (reaction force actuator) 8 that applies rotational torque (steering reaction force) to the steering shaft 18, and steering And a steering shaft motor rotation angle sensor 12 for detecting the angle of the shaft motor 8.

また実施例1の車両用操舵装置は転舵機構17として、前輪2FL、2FRを転舵駆動する第1転舵モータ9a(転舵アクチュエータ)、第2転舵モータ9b(転舵アクチュエータ)と、第1転舵モータ9a、第2転舵モータ9bの角度を検出する転舵モータ回転角センサ10a,10bと、転舵モータ9の回転をラック5に伝達するピニオン11a,11bと、ラック5に連結したタイロッド21a,21bと、タイロッド21に連結したナックルアーム4a,4bと、ナックルアーム4に連結した前輪(操向輪)2FR,2FLと、前輪2FR,2FLの横力として前輪2FR,2FLからラック5の軸方向に入力する力(タイヤ横力)を検出するタイヤ横力センサ15a,15bとを有する。   In addition, the vehicle steering apparatus according to the first embodiment includes a first turning motor 9a (steering actuator) and a second turning motor 9b (steering actuator) that steer the front wheels 2FL and 2FR as the turning mechanism 17; Steering motor rotation angle sensors 10a and 10b that detect the angles of the first steering motor 9a and the second steering motor 9b, pinions 11a and 11b that transmit the rotation of the steering motor 9 to the rack 5, and the rack 5 The connected tie rods 21a and 21b, the knuckle arms 4a and 4b connected to the tie rod 21, the front wheels (steering wheels) 2FR and 2FL connected to the knuckle arm 4, and the front wheels 2FR and 2FL as a lateral force from the front wheels 2FR and 2FL. Tire lateral force sensors 15a and 15b for detecting a force (tire lateral force) input in the axial direction of the rack 5 are provided.

また実施例1の車両用操舵装置は、車両用操舵装置の故障等により転舵モータ9を正確に駆動できなくなったときに、ステアリングシャフト18とピニオン11bを機械的に接続する事により操舵機構16と転舵機構17とを機械的に接続して、運転者がステアリング13を操作して前輪2FR,2FLを転舵可能とするバックアップ機構6としてのバックアップクラッチ7を有している。   Further, the vehicle steering apparatus according to the first embodiment is configured such that the steering shaft 16 and the pinion 11b are mechanically connected to each other when the steering motor 9 cannot be accurately driven due to a failure of the vehicle steering apparatus or the like. And the steering mechanism 17 are mechanically connected to each other, and the driver has a backup clutch 7 as the backup mechanism 6 that enables the steering wheel 13 to steer the front wheels 2FR and 2FL.

また実施例1の車両用操舵装置は各装置の制御機構23として、第1電子コントロールユニット14a、第2電子コントロールユニット14b、第3電子コントロールユニット14cを有している。   The vehicle steering apparatus according to the first embodiment includes a first electronic control unit 14a, a second electronic control unit 14b, and a third electronic control unit 14c as the control mechanism 23 of each apparatus.

第1電子コントロールユニット14aは、転舵モータ回転角センサ10aから第1転舵モータ9aの回転角情報を入力し、また第1転舵モータ9aの制御を行う。第2電子コントロールユニット14bは、転舵モータ回転角センサ10bから第2転舵モータ9bの回転角情報を入力し、また第2転舵モータ9bの制御を行う。第3電子コントロールユニット14cは、操舵角センサ19から操舵角情報、操舵トルクセンサ20から操舵トルク情報、操舵軸モータ回転角センサ12から操舵軸モータ8の回転角情報、タイヤ横力センサ15a,15bからのタイヤ横力情報、ヨーレートセンサ26から車両のヨーレート、加速度センサ25から車両の横加速度を入力し、また操舵軸モータ8、バックアップクラッチ7の制御を行う。なお前輪2の実際の転舵角である実転舵角は、転舵モータ9aの回転角情報から算出することができる。   The first electronic control unit 14a inputs rotation angle information of the first turning motor 9a from the turning motor rotation angle sensor 10a, and controls the first turning motor 9a. The second electronic control unit 14b inputs rotation angle information of the second turning motor 9b from the turning motor rotation angle sensor 10b, and controls the second turning motor 9b. The third electronic control unit 14c includes steering angle information from the steering angle sensor 19, steering torque information from the steering torque sensor 20, rotation angle information of the steering shaft motor 8 from the steering shaft motor rotation angle sensor 12, and tire lateral force sensors 15a and 15b. The tire lateral force information from the yaw rate sensor 26, the vehicle yaw rate from the yaw rate sensor 26, and the vehicle lateral acceleration from the acceleration sensor 25 are input, and the steering shaft motor 8 and the backup clutch 7 are controlled. Note that the actual turning angle, which is the actual turning angle of the front wheel 2, can be calculated from the rotation angle information of the turning motor 9a.

第1電子コントロールユニット14a、第2電子コントロールユニット14b、第3電子コントロールユニット14cは、Controller Area Network(コントローラエリアネットワーク:以下、CAN)22により接続されている。第1電子コントロールユニット14a、第2電子コントロールユニット14b、第3電子コントロールユニット14cは、CAN22を介して互いにデータの送受信を行う事により情報を共有しており、いずれかの電子コントロールユニット14が故障したとしても、残りの電子コントロールユニット14により各センサから情報の入力、各装置の制御を行えるようになっている。また第1電子コントロールユニット14a、第2電子コントロールユニット14b、第3電子コントロールユニット14cはバッテリ24と接続し、バッテリ24から電力が供給されている。   The first electronic control unit 14a, the second electronic control unit 14b, and the third electronic control unit 14c are connected by a controller area network (CAN) 22. The first electronic control unit 14a, the second electronic control unit 14b, and the third electronic control unit 14c share information by transmitting and receiving data to and from each other via the CAN 22, and one of the electronic control units 14 fails. Even so, the remaining electronic control unit 14 can input information from each sensor and control each device. The first electronic control unit 14a, the second electronic control unit 14b, and the third electronic control unit 14c are connected to the battery 24, and power is supplied from the battery 24.

〔転舵モータ制御処理〕
転舵モータ9の制御は、以下のような処理によって行われる。
ステアリング13の操舵角を操舵角センサ19で検出し、第1電子コントロールユニット14aにおいて操舵角センサ19で検出した操舵角に基づいて目標転舵角θtを演算する。この目標転舵角θtは、操舵角に対する目標転舵角θtが予め定められたマップを参照する事により演算される。尚、操舵角に対する目標転舵角θtのマップは、例えば車速が高いほど操舵角に対する目標転舵角θtを小さく、また車速が低いほど操舵角に対する目標転舵角θtを大きくする等、車両の状態等に基づいて変更されるものであっても良い。
[Steering motor control processing]
The steering motor 9 is controlled by the following process.
The steering angle sensor 19 detects the steering angle of the steering wheel 13, and calculates the target turning angle θt based on the steering angle detected by the steering angle sensor 19 in the first electronic control unit 14a. The target turning angle θt is calculated by referring to a map in which the target turning angle θt with respect to the steering angle is predetermined. The map of the target turning angle θt with respect to the steering angle is such that, for example, the higher the vehicle speed, the smaller the target turning angle θt with respect to the steering angle, and the lower the vehicle speed, the larger the target turning angle θt with respect to the steering angle. It may be changed based on the state or the like.

第1、第2電子コントロールユニット14a,14bでは、実転舵角θaが目標転舵角θtと一致するように、転舵モータ9の駆動指令値が演算され、転舵モータ9が駆動されることで転舵動作が行われる。   In the first and second electronic control units 14a and 14b, the drive command value of the steered motor 9 is calculated so that the actual steered angle θa matches the target steered angle θt, and the steered motor 9 is driven. A steering operation is performed.

第1、第2電子コントロールユニット14a,14bで演算される駆動指令値は、目標転舵角θtに所定の応答特性で実転舵角θaが追従するように制御する角度サーボ系により演算される。
第1、第2電子コントロールユニット14a,14bの角度サーボ系は、ロバストモデルマッチング手法を用いた方法で構成される。この方法では、あらかじめ与えておいた所望の特性と一致させるためのモデルマッチング補償器により、目標転舵角θtに対し所定の規範応答特性を実現するための駆動指令値を演算し、ロバスト補償器により外乱成分に応じた補償電流が演算される。これにより、外乱発生時においても実転舵角θaが規範応答特性で追従可能な、耐外乱性に優れた制御系が実現できる。
The drive command values calculated by the first and second electronic control units 14a and 14b are calculated by an angle servo system that controls the actual turning angle θa to follow the target turning angle θt with a predetermined response characteristic. .
The angle servo system of the first and second electronic control units 14a and 14b is configured by a method using a robust model matching method. In this method, a drive command value for realizing a predetermined normative response characteristic with respect to the target turning angle θt is calculated by a model matching compensator for matching with a desired characteristic given in advance, and a robust compensator Thus, a compensation current corresponding to the disturbance component is calculated. As a result, it is possible to realize a control system with excellent disturbance resistance in which the actual turning angle θa can follow the normal response characteristics even when a disturbance occurs.

〔操舵軸モータ制御処理〕
図2は第3電子コントロールユニット14cにおいて行われる操舵軸モータ8の制御処理の流れを示すフローチャートである。
[Steering shaft motor control processing]
FIG. 2 is a flowchart showing a flow of control processing of the steering shaft motor 8 performed in the third electronic control unit 14c.

ステップS1では、車両状態としてのタイヤ横力センサ15a,15bで検出したタイヤ横力F1、転舵モータトルクF2、ヨーレートセンサ26で検出した車両のヨーレートF3及び、加速度センサ25で検出した車両の横加速度F4と、操舵角θsと、実転舵角θaとを入力し、ステップS2に移行する。転舵モータトルクFは、第1、第2電子コントロールユニット14a,14bによる転舵モータ9の駆動指令値から求めることができる。
ステップS2では、実転舵角θaを微分した実転舵角速度dθa/dtを演算して、ステップS3へ移行する。
In step S1, the tire lateral force F1 detected by the tire lateral force sensors 15a and 15b as the vehicle state, the steering motor torque F2, the vehicle yaw rate F3 detected by the yaw rate sensor 26, and the vehicle lateral detected by the acceleration sensor 25 are detected. The acceleration F4, the steering angle θs, and the actual turning angle θa are input, and the process proceeds to step S2. The steered motor torque F can be obtained from the drive command value of the steered motor 9 by the first and second electronic control units 14a and 14b.
In step S2, the actual turning angular velocity dθa / dt obtained by differentiating the actual turning angle θa is calculated, and the process proceeds to step S3.

ステップS3では、推定転舵角θeを演算して、ステップS4へ移行する。推定転舵角θeは、ステップS1において入力した操舵角θsに応じた目標転舵角θtを算出するとともに、算出した目標転舵角θtに転舵モータ9の応答遅れと等価なフィルタLpを乗算して、転舵角の推定値である推定転舵角θeを算出する。すなわち、目標転舵角θtに対する実際の転舵角は、主に転舵モータ9の応答遅れによる遅れが発生する為、上述の角度サーボ系や転舵モータの電流応答等による転舵モータ9の応答遅れを予め実験やシミュレーション等によって求めておき、求めた目標転舵角θtに応答遅れを模擬するフィルタLpを乗算して、転舵角の推定値である推定転舵角θeを算出する。
θe=Lp・θt
ステップS4では、推定転舵角θeの微分値である推定転舵角速度dθe/dtを演算して、ステップS5へ移行する。
In step S3, the estimated turning angle θe is calculated, and the process proceeds to step S4. For the estimated turning angle θe, the target turning angle θt corresponding to the steering angle θs input in step S1 is calculated, and the calculated turning angle θt is multiplied by a filter Lp equivalent to the response delay of the turning motor 9. Then, an estimated turning angle θe, which is an estimated value of the turning angle, is calculated. That is, the actual turning angle with respect to the target turning angle θt mainly causes a delay due to a response delay of the turning motor 9. The response delay is obtained in advance by experiments, simulations, and the like, and the estimated turning angle θe, which is an estimated value of the turning angle, is calculated by multiplying the obtained target turning angle θt by a filter Lp that simulates the response delay.
θe = Lp ・ θt
In step S4, an estimated turning angular velocity dθe / dt, which is a differential value of the estimated turning angle θe, is calculated, and the process proceeds to step S5.

ステップS5では、第1操舵反力TH1を演算して、ステップS6へ移行する。第1操舵反力TH1は、ステップS1において入力した車両状態としてのタイヤ横力F1、転舵モータトルクF2、車両ヨーレートF3及び車両横加速度F4と、運転者の操舵状態としての操舵角θs(ステップS1において入力した操舵角θs)、操舵角θsの一回微分値である操舵角速度、及び操舵角θsの二階微分値である操舵角加速度の操舵状態とにもとづいて、下記の式から求める。すなわち、第1操舵反力TH1は車両状態と運転者の操舵状態とに基づく操舵反力である。
TH1=G1・F1+G2・F2+G3・F3+G4・F4+G5・S1+G6・S2+G7・S3
尚、G1〜G7は実験等によって予め設定されたゲインである。
In step S5, the first steering reaction force TH1 is calculated, and the process proceeds to step S6. The first steering reaction force TH1 includes the tire lateral force F1, the steering motor torque F2, the vehicle yaw rate F3, and the vehicle lateral acceleration F4, which are input in step S1, and the steering angle θs (step Based on the steering angle θs) input in S1, the steering angular velocity that is a one-time differential value of the steering angle θs, and the steering state of the steering angular acceleration that is the second-order differential value of the steering angle θs, the following equation is used. That is, the first steering reaction force TH1 is a steering reaction force based on the vehicle state and the driver's steering state.
TH1 = G1 ・ F1 + G2 ・ F2 + G3 ・ F3 + G4 ・ F4 + G5 ・ S1 + G6 ・ S2 + G7 ・ S3
G1 to G7 are gains set in advance by experiments or the like.

ステップS6では、第2操舵反力TH2を演算して、ステップS8へ移行する。第2操舵反力TH2は、ステップS5において演算した推定転舵角θeとステップS1において入力した実転舵角θaとの差(転舵角偏差)に所定の重み係数Kを乗算して求める。
TH2=K・(θe−θa)
In step S6, the second steering reaction force TH2 is calculated, and the process proceeds to step S8. The second steering reaction force TH2 is obtained by multiplying the difference (the turning angle deviation) between the estimated turning angle θe calculated in step S5 and the actual turning angle θa input in step S1 by a predetermined weighting factor K.
TH2 = K ・ (θe−θa)

ステップS7では、第3操舵反力TH3を演算して、ステップS9へ移行する。第3操舵反力TH3は、ステップS2において演算した推定転舵角速度dθe/dtとステップS4において入力した実転舵角速度dθa/dtとの差に所定の重み係数(予め実験等によって定められたゲイン)Cを乗算して求める。
TH3=C・(dθe/dt−dθa/dt)
尚、上式は
TH3=C・d/dt(θe-θa)
であっても良い。
In step S7, the third steering reaction force TH3 is calculated, and the process proceeds to step S9. The third steering reaction force TH3 is obtained by adding a predetermined weighting factor (a gain previously determined through experiments or the like) to the difference between the estimated turning angular velocity dθe / dt calculated in step S2 and the actual turning angular velocity dθa / dt input in step S4. ) Multiply by C.
TH3 = C ・ (dθe / dt−dθa / dt)
The above formula is
TH3 = C ・ d / dt (θe-θa)
It may be.

いずれにおいても、推定転舵角θeと実転舵角θaとの偏差(転舵角偏差)の微分値に所定の係数Cを乗算した値が第3操舵反力TH3に相当する。
尚、以下では第3操舵反力TH3と第1操舵反力及び第2操舵反力とを区別する為、第3操舵反力TH3を付加反力TH3と記載する。また、推定転舵角θeと実転舵角θaとの偏差を、以下では転舵角偏差とも記載する。
In any case, a value obtained by multiplying the differential value of the deviation between the estimated turning angle θe and the actual turning angle θa (the turning angle deviation) by a predetermined coefficient C corresponds to the third steering reaction force TH3.
Hereinafter, in order to distinguish the third steering reaction force TH3 from the first steering reaction force and the second steering reaction force, the third steering reaction force TH3 is referred to as an additional reaction force TH3. In addition, the deviation between the estimated turning angle θe and the actual turning angle θa is hereinafter also referred to as a turning angle deviation.

ステップS8では、推定転舵角θeと実転舵角θaとの偏差(θe-θa)の正負の符号と、目標転舵角θtと実転舵角θaとの偏差(θt-θa)の正負の符号とが同一であるか否かを判定し、同一である場合にはステップS9へ移行し、同一でない場合にはステップS14へ移行する。   In step S8, the sign of the deviation (θe-θa) between the estimated turning angle θe and the actual turning angle θa, and the sign of the deviation (θt-θa) between the target turning angle θt and the actual turning angle θa are determined. The process proceeds to step S9 if they are the same, and the process proceeds to step S14 if they are not the same.

ステップS9では、推定転舵角θeと実転舵角θaとの偏差(θe-θa)の正負の符号と、偏差の微分値(dθe/dt-dθa/dt)の正負の符号とが同一であるか否かを判定し、符号が同一であればステップS10へ移行し、符号が同一でなければステップS14へ移行する。   In step S9, the sign of the deviation (θe−θa) between the estimated turning angle θe and the actual turning angle θa is the same as the sign of the differential value of the deviation (dθe / dt−dθa / dt). If it is determined whether or not there is the same code, the process proceeds to step S10. If the code is not the same, the process proceeds to step S14.

ステップS10では、付加反力TH3が予め定められた所定の上限値であるリミッタTLよりも大きいか否かを判定し、付加反力TH3がリミッタTLより大きいときにはステップS12へ移行し、付加反力TH3がリミッタTL以下であるときにはステップS11へ移行する。尚、リミッタTLは、付加反力TH3が大きすぎる事により操舵反力が大きくなりすぎ、運転者に違和感を与える可能性が有る値を予め実験等によって求めて設定した値である。   In step S10, it is determined whether or not the additional reaction force TH3 is larger than a limiter TL that is a predetermined upper limit value. If the additional reaction force TH3 is larger than the limiter TL, the process proceeds to step S12, where When TH3 is equal to or less than the limiter TL, the process proceeds to step S11. Note that the limiter TL is a value obtained by experimentally determining in advance a value that can cause the steering reaction force to become too large due to the additional reaction force TH3 being too large, which may cause the driver to feel uncomfortable.

ステップS11では、付加反力TH3の変化速度が予め定められた所定の速度SLよりも大きいか否かを判定し、付加反力TH3の変化速度が所定の速度SLよりも大きいときにはステップS13へ移行し、付加反力TH3の変化速度が所定の変化速度SL以下であるときにはステップS15へ移行する。
尚、所定の変化速度SLは、付加反力TH3の変化速度が大きすぎる事により操舵反力変化が急激となり、運転者に違和感を与える可能性が有る値を予め実験等によって求めて設定した値である。
In step S11, it is determined whether or not the changing speed of the additional reaction force TH3 is higher than a predetermined speed SL. If the changing speed of the additional reaction force TH3 is higher than the predetermined speed SL, the process proceeds to step S13. When the change speed of the additional reaction force TH3 is equal to or lower than the predetermined change speed SL, the process proceeds to step S15.
In addition, the predetermined change speed SL is a value set in advance by experimentally determining a value that may cause a sudden change in the steering reaction force due to the change speed of the additional reaction force TH3 being too large and causing the driver to feel uncomfortable. It is.

ステップS12では、付加反力TH3をリミッタTLに設定して、ステップS15へ移行する。
ステップS13では、付加反力TH3にフィルタSを乗算したものを新たな付加反力TH3として、ステップS15へ移行する。このフィルタSは、付加反力TH3の変化速度を抑制し、急激な付加反力TH3の立ち上がりを抑制する。
ステップS14では、付加反力TH3を0(ゼロ)として、ステップS15へ移行する。
ステップS15では、第1操舵反力TH1、第2操舵反力TH2、付加反力TH3の合計から操舵軸モータ8の駆動指令値を演算して処理を終了する。
In step S12, the additional reaction force TH3 is set to the limiter TL, and the process proceeds to step S15.
In step S13, the product obtained by multiplying the additional reaction force TH3 by the filter S is set as a new additional reaction force TH3, and the process proceeds to step S15. This filter S suppresses the rate of change of the additional reaction force TH3 and suppresses a sudden rise in the additional reaction force TH3.
In step S14, the additional reaction force TH3 is set to 0 (zero), and the process proceeds to step S15.
In step S15, the drive command value for the steering shaft motor 8 is calculated from the sum of the first steering reaction force TH1, the second steering reaction force TH2, and the additional reaction force TH3, and the process ends.

〔操舵軸モータ制御処理動作〕
推定転舵角θeと実転舵角θaとの偏差(θe-θa)の正負の符号と、目標転舵角θtと実転舵角θaとの偏差(θt-θa)の正負の符号とが同一であるときには、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS6→ステップS7→ステップS8→ステップS9へと移行し、推定転舵角θeと実転舵角θaとの偏差(θe-θa)の正負の符号と、目標転舵角θtと実転舵角θaとの偏差(θt-θa)の正負の符号とが同一でない場合はステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS6→ステップS7→ステップS8→ステップS14へと移行する。
[Steering shaft motor control processing operation]
The sign of the deviation (θe-θa) between the estimated turning angle θe and the actual turning angle θa and the sign of the deviation (θt-θa) between the target turning angle θt and the actual turning angle θa are: If they are the same, the process proceeds from step S1, step S2, step S3, step S4, step S5, step S6, step S7, step S8, and step S9, and the deviation between the estimated turning angle θe and the actual turning angle θa. If the sign of (θe−θa) and the sign of the deviation (θt−θa) between the target turning angle θt and the actual turning angle θa are not the same, step S1 → step S2 → step S3 → step The process proceeds from S4 → step S5 → step S6 → step S7 → step S8 → step S14.

またステップS9において、推定転舵角θeと実転舵角θaとの偏差(θe-θa)の正負の符号と、偏差の微分値(dθe/dt-dθa/dt)の正負の符号とが同一でないときには、ステップS14→ステップS15→RETURNへと移行する。
ステップS9において、推定転舵角θeと実転舵角θaとの偏差(θe-θa)の符号と、偏差の微分値(dθe/dt-dθa/dt)の符号とが同一であるときには、ステップS10へと移行する。
In step S9, the sign of the deviation (θe−θa) between the estimated turning angle θe and the actual turning angle θa is the same as the sign of the differential value of the deviation (dθe / dt−dθa / dt). If not, the process proceeds from step S14 to step S15 to RETURN.
In step S9, when the sign of the deviation (θe−θa) between the estimated turning angle θe and the actual turning angle θa is the same as the sign of the differential value of the deviation (dθe / dt-dθa / dt), The process proceeds to S10.

またステップS10において、付加反力TH3がリミッタTLより大きいときには、ステップS12→ステップS15→RETURNへと移行する。
一方、ステップS10において、付加反力TH3がリミッタTLより以下であるときには、ステップS11へと移行する。
In step S10, when the additional reaction force TH3 is larger than the limiter TL, the process proceeds from step S12 to step S15 to RETURN.
On the other hand, when the additional reaction force TH3 is less than the limiter TL in step S10, the process proceeds to step S11.

またステップS11において、付加反力TH3の増加速度が所定の速度SLよりも大きいときには、ステップS13→ステップS15→RETURNへと移行する。   In step S11, when the increasing speed of the additional reaction force TH3 is higher than the predetermined speed SL, the process proceeds from step S13 to step S15 to RETURN.

一方、ステップS11において、付加反力TH3の増加速度が所定の速度SL以下であるとときには、ステップS15→RETURNへと移行する。   On the other hand, when the increase speed of the additional reaction force TH3 is equal to or lower than the predetermined speed SL in step S11, the process proceeds from step S15 to RETURN.

(操舵反力について)
ステップS5において第1操舵反力TH1、ステップS7において第2操舵反力TH2を演算する。第1操舵反力TH1、第2操舵反力TH2は、操舵機構16と転舵機構17とが機械的に連結している(すなわちステア・バイ・ワイヤ・システムではない)車両用操舵装置において、ステアリングシャフト18に作用する操舵反力を模擬したものである。
(About steering reaction force)
In step S5, the first steering reaction force TH1 is calculated, and in step S7, the second steering reaction force TH2 is calculated. The first steering reaction force TH1 and the second steering reaction force TH2 are a vehicle steering apparatus in which the steering mechanism 16 and the steering mechanism 17 are mechanically coupled (that is, not a steer-by-wire system). The steering reaction force acting on the steering shaft 18 is simulated.

第1操舵反力TH1の演算に用いている転舵モータトルクFは、ラック5の軸力(ラック軸力)の反力によって生じる。図3はラック軸力の立ち上がりを示すグラフである。このラック軸力は、ステアリング13の操舵角θsに応じて転舵モータ9により前輪2が転舵し、その結果、ラック軸力が発生する。したがって、図3に示すように操舵初期にはラック軸力が発生せず、操舵開始後しばらくしてからラック軸力が発生する。そのため第1操舵反力TH1は、操舵初期では小さく、操舵開始後しばらくしてから第1操舵反力TH1も増大することになる。   The steered motor torque F used for the calculation of the first steering reaction force TH1 is generated by the reaction force of the rack 5 axial force (rack axial force). FIG. 3 is a graph showing the rise of the rack axial force. As for this rack axial force, the front wheel 2 is steered by the steering motor 9 in accordance with the steering angle θs of the steering 13, and as a result, the rack axial force is generated. Therefore, as shown in FIG. 3, the rack axial force is not generated at the initial stage of steering, and the rack axial force is generated after a while after the steering is started. Therefore, the first steering reaction force TH1 is small at the initial stage of steering, and the first steering reaction force TH1 also increases after a while from the start of steering.

また第2操舵反力TH2は、推定転舵角θeと実転舵角θaとの偏差に基づいて演算している。図4は推定転舵角θeと実転舵角θaとの偏差の立ち上がりを示すグラフである。操舵初期時に操舵角θsの増加に対応するが遅れると、図4に示すように、推定転舵角θeと実転舵角θaとの偏差が急激に増加する。そのため第2操舵反力TH2は、操舵初期から大きく立ち上がる。これにより、第1操舵反力TH1が小さい操舵初期から操舵反力を発生させることができる。   The second steering reaction force TH2 is calculated based on the deviation between the estimated turning angle θe and the actual turning angle θa. FIG. 4 is a graph showing the rise of the deviation between the estimated turning angle θe and the actual turning angle θa. If it corresponds to the increase in the steering angle θs at the initial stage of steering but is delayed, as shown in FIG. 4, the deviation between the estimated turning angle θe and the actual turning angle θa increases rapidly. Therefore, the second steering reaction force TH2 rises greatly from the initial stage of steering. As a result, the steering reaction force can be generated from the initial stage of steering when the first steering reaction force TH1 is small.

また付加反力TH3では、推定転舵角θeと実転舵角θaとの偏差の微分値に基づいて演算している。この付加反力TH3は、推定転舵角θeと実転舵角θaとの偏差の大きさが大きくなる以前の早期に操舵反力(付加反力)を付与することができる。   The additional reaction force TH3 is calculated based on the differential value of the deviation between the estimated turning angle θe and the actual turning angle θa. This additional reaction force TH3 can provide a steering reaction force (additional reaction force) at an early stage before the magnitude of the deviation between the estimated turning angle θe and the actual turning angle θa becomes large.

ステップS8では、推定転舵角θeと実転舵角θaとの偏差(転舵角偏差)の正負の符号と、目標転舵角θtと実転舵角θaとの偏差の正負の符号とが同一でない場合には、付加反力TH3を0(ゼロ)としている。
前輪2の切り込み(切り増し)や切り戻しから保舵へ移行するときなどのように、ステアリング13の操舵速度を減速すると、操舵角θsに応じて設定した推定転舵角θeに対して実転舵角θaがオーバシュートすることがある。その場合、推定転舵角θeと実転舵角θaとの偏差(転舵角偏差)の微分値に基づいて演算している付加反力TH3は、切り込みや切り戻しを続ける方向に操舵反力が発生するように値が演算されてしまう。そのため、ステアリング13に作用する操舵反力が不安定となり、運転者に違和感を与えてしまう。
In step S8, the sign of the deviation (steering angle deviation) between the estimated turning angle θe and the actual turning angle θa and the sign of the difference between the target turning angle θt and the actual turning angle θa are obtained. If they are not the same, the additional reaction force TH3 is set to 0 (zero).
When the steering speed of the steering wheel 13 is decelerated, such as when the front wheel 2 is turned (increase) or when the steering wheel is switched back to turning, the actual rotation is performed with respect to the estimated turning angle θe set according to the steering angle θs. The steering angle θa may overshoot. In that case, the additional reaction force TH3 calculated based on the differential value of the deviation (steering angle deviation) between the estimated turning angle θe and the actual turning angle θa is the steering reaction force in the direction of continuing cutting and turning back. The value is calculated so as to occur. As a result, the steering reaction force acting on the steering 13 becomes unstable, giving the driver a feeling of strangeness.

そこで、推定転舵角θeと実転舵角θaとの偏差(θe-θa)の正負の符号と、目標転舵角θtと実転舵角θaとの偏差(θt-θa)の正負の符号とが同一でないときには、付加反力TH3を0(ゼロ)とし、第1操舵反力TH1及び第2操舵反力のみに基づいて、ステアリング13に操舵反力を発生させるようにしている。   Therefore, the sign of the deviation (θe-θa) between the estimated turning angle θe and the actual turning angle θa and the sign of the deviation (θt-θa) between the target turning angle θt and the actual turning angle θa Are not the same, the additional reaction force TH3 is set to 0 (zero), and the steering reaction force is generated in the steering 13 based only on the first steering reaction force TH1 and the second steering reaction force.

また、ステップS9では、推定転舵角θeと実転舵角θaとの偏差(θe-θa)の正負の符号と、偏差の微分値(dθe/dt-dθa/dt)の正負の符号とが同一である場合には、ステップS15で第1操舵反力TH1及び第2操舵反力に付加反力TH3を加算する。   In step S9, the sign of the deviation (θe−θa) between the estimated turning angle θe and the actual turning angle θa and the sign of the differential value of the deviation (dθe / dt-dθa / dt) are obtained. If they are the same, in step S15, the additional reaction force TH3 is added to the first steering reaction force TH1 and the second steering reaction force.

推定転舵角θeと実転舵角θaとの偏差(θe-θa)の正負の符号と、偏差の微分値(dθe/dt-dθa/dt)の正負の符号とが同一である場合、すなわち推定転舵角θeと実転舵角θaとの偏差が発生し、且つ推定転舵角θeの変化速度が実転舵角θaの転舵角速度よりも大きい場合には、推定転舵角θeと実転舵角θaとの偏差(転舵角偏差)が増加している状態である。   When the sign of the deviation (θe-θa) between the estimated turning angle θe and the actual turning angle θa is the same as the sign of the differential value of the deviation (dθe / dt-dθa / dt), that is, When a deviation between the estimated turning angle θe and the actual turning angle θa occurs and the change speed of the estimated turning angle θe is larger than the turning angle speed of the actual turning angle θa, the estimated turning angle θe The deviation from the actual turning angle θa (the turning angle deviation) is increasing.

そこで、推定転舵角θeと実転舵角θaとの偏差(θe-θa)の正負の符号と、偏差の微分値(dθe/dt-dθa/dt)の正負の符号とが同一である場合には、第1操舵反力TH1及び第2操舵反力に付加反力TH3を加算する事により、運転者の操舵速度の増大を抑制し、推定転舵角θeと実転舵角θaとの偏差が拡大する前に、ステアリングの操舵角に応じて設定する目標転舵角θtの変化速度を小さくすることができ、推定転舵角θeと実転舵角θaとの偏差の拡大を抑制することができる。   Therefore, when the sign of the deviation (θe-θa) between the estimated turning angle θe and the actual turning angle θa is the same as the sign of the differential value of the deviation (dθe / dt-dθa / dt) In this case, by adding the additional reaction force TH3 to the first steering reaction force TH1 and the second steering reaction force, an increase in the steering speed of the driver is suppressed, and the estimated turning angle θe and the actual turning angle θa Before the deviation increases, the change speed of the target turning angle θt set according to the steering angle of the steering can be reduced, and the increase in deviation between the estimated turning angle θe and the actual turning angle θa is suppressed. be able to.

(付加抵抗力について)
ステップS7、ステップS12、ステップS13では、付加反力TH3を演算している。第1操舵反力TH1、第2操舵反力TH2が操舵反力を模擬したものであるのに対して、付加反力TH3はステアリング13の操舵角に応じて演算した目標転舵角θtの変位速度が大きく、推定転舵角θeの変化速度が転舵モータ9による前輪2の最大転舵速度を超えているときに、運転者によるステアリング13の操舵速度を抑制させるために付与する付加的な抵抗力(付加反力)である。付加反力TH3の詳細については後述する。
(Additional resistance)
In step S7, step S12, and step S13, an additional reaction force TH3 is calculated. Whereas the first steering reaction force TH1 and the second steering reaction force TH2 simulate the steering reaction force, the additional reaction force TH3 is a displacement of the target turning angle θt calculated according to the steering angle of the steering wheel 13. When the speed is high and the change speed of the estimated turning angle θe exceeds the maximum turning speed of the front wheels 2 by the turning motor 9, an additional is given to suppress the steering speed of the steering wheel 13 by the driver. Resistance force (additional reaction force). Details of the additional reaction force TH3 will be described later.

(ゲインについて)
ここで第2操舵反力TH2、付加反力TH3の演算に用いた重み係数K,Cを車速に応じて設定する。図5は重み係数K,Cのマップである。図5に示すように、重み係数K,Cを低車速では低く設定し、高車速では高く設定している。このように設定することにより低車速では操舵反力を小さくすることができ、低車速時には運転者は小さな操舵力でステアリング13を操舵することが可能となる。そのため、たとえば車庫入れ等のように前輪2の転舵角を大きくするようなときでも、運転者は楽に操舵を行うことができる。一方、高車速では操舵反力を大きくすることができ、高車速時には、運転者はステアリング13を操舵するために大きな操舵力が必要となる。そのため、高車速走行時の直進安定性を確保することができる。
(About gain)
Here, the weighting coefficients K and C used for the calculation of the second steering reaction force TH2 and the additional reaction force TH3 are set according to the vehicle speed. FIG. 5 is a map of the weighting factors K and C. As shown in FIG. 5, the weighting factors K and C are set low at low vehicle speeds and high at high vehicle speeds. By setting in this way, the steering reaction force can be reduced at low vehicle speeds, and the driver can steer the steering wheel 13 with a small steering force at low vehicle speeds. For this reason, the driver can easily steer even when the turning angle of the front wheels 2 is increased, such as in a garage. On the other hand, the steering reaction force can be increased at high vehicle speeds, and the driver needs a large steering force to steer the steering wheel 13 at high vehicle speeds. Therefore, it is possible to ensure straight running stability when traveling at a high vehicle speed.

〔実施例1の作用〕
ステアリング13の操舵角に応じて設定する推定転舵角θeの変化速度が、転舵モータ9による前輪2の転舵角の速度を超えると、推定転舵角θeと実転舵角θaとの差が累積してしまう。推定転舵角θeと実転舵角θaとの差が累積すると、推定転舵角θeと実転舵角θaとの偏差に応じて演算している第2操舵反力TH2が大きくなるため、運転者に過大な操舵反力を付与することとなり、操舵量や操舵反力が増えているにも関わらず転舵量が増加しないため運転者に違和感を与えるおそれがあった。
[Operation of Example 1]
When the change speed of the estimated turning angle θe set according to the steering angle of the steering wheel 13 exceeds the speed of the turning angle of the front wheel 2 by the turning motor 9, the estimated turning angle θe and the actual turning angle θa Differences accumulate. When the difference between the estimated turning angle θe and the actual turning angle θa is accumulated, the second steering reaction force TH2 calculated according to the deviation between the estimated turning angle θe and the actual turning angle θa increases. An excessive steering reaction force is applied to the driver, and the steering amount does not increase despite the increase in the steering amount and the steering reaction force, which may cause the driver to feel uncomfortable.

そこで実施例1の第3電子コントロールユニット14cにおいては、目標転舵角θtの変位速度が、転舵モータ9による前輪2の転舵速度を超えるときは、操舵反力TH1及びTH2に加えて付加反力TH3をステアリング13に付与するように操舵軸モータ8を制御するようにした。   Therefore, in the third electronic control unit 14c of the first embodiment, when the displacement speed of the target turning angle θt exceeds the turning speed of the front wheels 2 by the turning motor 9, it is added in addition to the steering reaction forces TH1 and TH2. The steering shaft motor 8 is controlled so that the reaction force TH3 is applied to the steering wheel 13.

この構成により、目標転舵角θtの変位速度が、転舵モータ9による前輪2の転舵速度を超えると操舵反力TH1及びTH2に加えて付加反力TH3がステアリングシャフト18に作用するため、運転者によるステアリング13の操舵速度を抑えることが可能となる。よって、推定転舵角θeと実転舵角θaとの偏差が拡大する前に、ステアリング13の操舵角に応じて設定する推定転舵角θeの変化速度を小さくすることができ、転舵モータ9による前輪2の転舵角が推定転舵角θeに追いつくため、推定転舵角θeと実転舵角θaとの偏差の拡大を抑制することができる。したがって、推定転舵角θeと実転舵角θaとの偏差に応じて演算している第2操舵反力TH2が増大することを抑制することができ、結果的に運転者に付与する操舵反力を減少し、操舵量や操舵反力の増加に応じて転舵量が増加するようになるため、運転者へ与える違和感を抑制することができる。   With this configuration, when the displacement speed of the target turning angle θt exceeds the turning speed of the front wheels 2 by the turning motor 9, the additional reaction force TH3 acts on the steering shaft 18 in addition to the steering reaction forces TH1 and TH2, It becomes possible to suppress the steering speed of the steering wheel 13 by the driver. Therefore, before the deviation between the estimated turning angle θe and the actual turning angle θa increases, the change speed of the estimated turning angle θe set according to the steering angle of the steering wheel 13 can be reduced, and the turning motor can be reduced. Since the turning angle of the front wheel 2 by 9 catches up with the estimated turning angle θe, an increase in deviation between the estimated turning angle θe and the actual turning angle θa can be suppressed. Therefore, an increase in the second steering reaction force TH2 calculated according to the deviation between the estimated turning angle θe and the actual turning angle θa can be suppressed, and as a result, the steering reaction applied to the driver is suppressed. Since the force is decreased and the turning amount increases according to the increase of the steering amount and the steering reaction force, it is possible to suppress the uncomfortable feeling given to the driver.

また実施例1の第3電子コントロールユニット14cにおいては、推定転舵角θeと実転舵角θaとの偏差とこの偏差の微分値の符号が一致するときに、偏差の微分値に基づいて付加反力TH3を演算するようにした。   Further, in the third electronic control unit 14c of the first embodiment, when the deviation between the estimated turning angle θe and the actual turning angle θa coincides with the sign of the differential value of this deviation, it is added based on the differential value of the deviation. The reaction force TH3 was calculated.

図6は推定転舵角θe、実転舵角θa、推定転舵角θeと実転舵角θaとの偏差、この偏差の微分値のタイムチャートである。図6より、推定転舵角θeと実転舵角θaとの偏差の正負の符号と、この偏差の微分値の正負の符号とが一致するときは、推定転舵角θeの変化速度が実転舵角θaの転舵角速度よりも大きいときであることがわかる。このときに付加反力TH3を発生させる(図6中の斜線部分)ことで、運転者のステアリング13の操舵速度を抑制することができる。したがって、推定転舵角θeと実転舵角θaとの偏差に応じて演算している第2操舵反力TH2が増大することを抑制することができ、結果的に運転者に付与する操舵反力を減少し、操舵量や操舵反力の増加に応じて転舵量が増加するようになるため、運転者へ与える違和感を抑制することができる。一方、推定転舵角θeの変化速度が実転舵角θaの転舵角速度以下であるときは、運転者のステアリング13の操舵速度は減少している。このときは付加反力TH3を発生させないことで、運転者に余計な操作負担を与えることを防ぐことができる。   FIG. 6 is a time chart of the estimated turning angle θe, the actual turning angle θa, the deviation between the estimated turning angle θe and the actual turning angle θa, and the differential value of this deviation. From FIG. 6, when the sign of the difference between the estimated turning angle θe and the actual turning angle θa matches the sign of the differential value of the deviation, the change speed of the estimated turning angle θe is actual. It can be seen that the turning angle θa is larger than the turning angular velocity. At this time, by generating the additional reaction force TH3 (shaded portion in FIG. 6), the steering speed of the driver's steering wheel 13 can be suppressed. Therefore, an increase in the second steering reaction force TH2 calculated according to the deviation between the estimated turning angle θe and the actual turning angle θa can be suppressed, and as a result, the steering reaction applied to the driver is suppressed. Since the force is decreased and the turning amount increases according to the increase of the steering amount and the steering reaction force, it is possible to suppress the uncomfortable feeling given to the driver. On the other hand, when the change speed of the estimated turning angle θe is equal to or lower than the turning angular speed of the actual turning angle θa, the steering speed of the driver's steering wheel 13 is decreased. At this time, by not generating the additional reaction force TH3, it is possible to prevent the driver from being given an extra operation burden.

また、実施例1の第3電子コントロールユニット14cにおいては、推定転舵角θeと実転舵角θaとの偏差の正負の符号と、目標転舵角θtと実転舵角θaとの偏差の正負の符号とが同一でないときには、付加反力TH3を0(ゼロ)とするようにした。   In the third electronic control unit 14c of the first embodiment, the sign of the difference between the estimated turning angle θe and the actual turning angle θa and the deviation between the target turning angle θt and the actual turning angle θa are as follows. When the positive and negative signs are not the same, the additional reaction force TH3 is set to 0 (zero).

図7は目標転舵角θt、推定転舵角θe、実転舵角θa、推定転舵角θeと実転舵角θaとの偏差、この偏差の微分値のタイムチャートである。転舵モータ9の慣性力により、図7に示すように、推定転舵角θeに対して実転舵角θaがオーバシュートすることがある。その場合、推定転舵角θeと実転舵角θaとの偏差に基づいて演算している付加反力TH3は、運転者の操舵方向と同じ方向に力が発生するように値が演算されてしまう。実転舵角θaの絶対値が推定転舵角θeの絶対値より大きいときには、付加反力TH3を0(ゼロ)と演算することによって、ステアリング13に作用する操舵反力を安定させ、運転者に与える違和感を抑制することができる。   FIG. 7 is a time chart of the target turning angle θt, the estimated turning angle θe, the actual turning angle θa, the deviation between the estimated turning angle θe and the actual turning angle θa, and the differential value of this deviation. As shown in FIG. 7, the actual turning angle θa may overshoot the estimated turning angle θe due to the inertial force of the turning motor 9. In that case, the additional reaction force TH3 calculated based on the deviation between the estimated turning angle θe and the actual turning angle θa is calculated so that a force is generated in the same direction as the driver's steering direction. End up. When the absolute value of the actual turning angle θa is larger than the absolute value of the estimated turning angle θe, the steering reaction force acting on the steering 13 is stabilized by calculating the additional reaction force TH3 as 0 (zero), and the driver Can suppress a sense of incongruity.

また実施例1の第3電子コントロールユニット14cにおいては、付加反力TH3の増加を抑制するフィルタSを用いて付加反力TH3を演算するようにした。
この構成により、付加反力TH3が急激に増大することを抑制することが可能となり、運転者に与える違和感を抑制することができる。
In the third electronic control unit 14c of the first embodiment, the additional reaction force TH3 is calculated using the filter S that suppresses the increase in the additional reaction force TH3.
With this configuration, it is possible to suppress a sudden increase in the additional reaction force TH3, and it is possible to suppress a sense of discomfort given to the driver.

また実施例1の第3電子コントロールユニット14cにおいては、付加反力TH3の大きさを制限するリミッタTLを用いて演算するようにした。
この構成により、付加反力TH3によりステアリングシャフト18に作用する抵抗力(反力)の粘性が強すぎることを防止し、また運転者に余計な操作負担を与えることを防ぐことができる。
In the third electronic control unit 14c of the first embodiment, the calculation is performed using the limiter TL that limits the magnitude of the additional reaction force TH3.
With this configuration, it is possible to prevent the resistance force (reaction force) acting on the steering shaft 18 from being too viscous due to the additional reaction force TH3, and it is possible to prevent the driver from being burdened with an extra operation.

〔実施例1の効果〕
次に実施例1の効果について、以下に列記する。
[Effect of Example 1]
Next, effects of Example 1 are listed below.

(1)運転者が操舵操作するステアリング13と機械的に分離した操向輪である前輪2を転舵する転舵モータ9と、前輪2の実際の転舵角である実転舵角θaを検出する転舵モータ回転角センサ10と、ステアリング13の操舵角θsに応じて前輪2の目標転舵角θtを演算し、前輪2の転舵角が目標転舵角θtとなるように転舵モータ9を制御する第1、第2電子コントロールユニット14a,14bと、ステアリング13に付与する操舵反力を算出する第3電子コントロールユニット14cと、第3電子コントロールユニット14cで算出された操舵反力に基づいてステアリング13に操舵反力を付与する操舵軸モータ8とを備え、第3電子コントロールユニット14cは、目標転舵角θtに対する転舵角の応答遅れに基づいて前輪2の転舵角の推定値である推定転舵角θeを算出し、算出した推定転舵角θeと転舵モータ回転角センサ10によって検出された実転舵角θaとの偏差である転舵角偏差が増加している場合には、転舵角偏差が増加していない場合よりも大きな操舵反力を算出するようにした。   (1) A steering motor 9 that steers the front wheel 2 that is a steering wheel mechanically separated from the steering wheel 13 that the driver steers, and an actual steering angle θa that is the actual steering angle of the front wheel 2 The target turning angle θt of the front wheels 2 is calculated according to the detected steering motor rotation angle sensor 10 and the steering angle θs of the steering 13, and the turning is performed so that the turning angle of the front wheels 2 becomes the target turning angle θt. The first and second electronic control units 14a and 14b for controlling the motor 9, the third electronic control unit 14c for calculating the steering reaction force applied to the steering 13, and the steering reaction force calculated by the third electronic control unit 14c. And a steering shaft motor 8 that applies a steering reaction force to the steering wheel 13 based on the steering wheel motor 8, and the third electronic control unit 14c determines the turning angle of the front wheels 2 based on the response delay of the turning angle with respect to the target turning angle θt. Guess The estimated turning angle θe, which is a value, is calculated, and the turning angle deviation, which is the deviation between the calculated estimated turning angle θe and the actual turning angle θa detected by the turning motor rotation angle sensor 10, is increasing. In this case, a larger steering reaction force is calculated than when the turning angle deviation is not increased.

よって、転舵角偏差が増加している場合には、転舵角偏差が増加していない場合よりも大きな操舵反力が作用するため、運転者による操作部の操舵速度を抑えることが可能となる。これにより、推定転舵角θeに対して転舵モータ9による前輪2の転舵角が追いつくため、結果的に操舵角に対応した目標転舵角θtと前輪2の転舵角との偏差を減少し、運転者へ与える違和感を抑制することができる。   Therefore, when the turning angle deviation is increased, a larger steering reaction force is applied than when the turning angle deviation is not increased, so that the steering speed of the operation unit by the driver can be suppressed. Become. As a result, the steered angle of the front wheel 2 by the steered motor 9 catches up with the estimated steered angle θe, and as a result, the deviation between the target steered angle θt corresponding to the steered angle and the steered angle of the front wheel 2 is increased. This can reduce the uncomfortable feeling given to the driver.

(2)第3電子コントロールユニット14cは、転舵角偏差の変化速度を算出し、転舵角偏差が増加している場合には、転舵角偏差が増加していない場合の操舵反力に対して、転舵角偏差の変化速度が大きくなるほど増大する付加反力TH3を加算する事により、転舵角偏差が増加していない場合よりも大きな操舵反力を算出するようにした。   (2) The third electronic control unit 14c calculates the change speed of the turning angle deviation. When the turning angle deviation increases, the third electronic control unit 14c determines the steering reaction force when the turning angle deviation does not increase. On the other hand, by adding an additional reaction force TH3 that increases as the change speed of the turning angle deviation increases, a larger steering reaction force is calculated than when the turning angle deviation does not increase.

よって、転舵角偏差が増加している場合には、操舵反力に転舵角偏差の変化速度が大きくなるほど増大する付加反力TH3を加算するため、運転者による操作部の操舵速度を抑えることが可能となる。これにより、推定転舵角θeに対して転舵モータ9による前輪2の転舵角が追いつくため、結果的に操舵角に対応した目標転舵角θtと前輪2の転舵角との偏差を減少し、運転者へ与える違和感を抑制することができる。   Therefore, when the turning angle deviation is increasing, the additional reaction force TH3, which increases as the change speed of the turning angle deviation increases, is added to the steering reaction force. It becomes possible. As a result, the steered angle of the front wheel 2 by the steered motor 9 catches up with the estimated steered angle θe, and as a result, the deviation between the target steered angle θt corresponding to the steered angle and the steered angle of the front wheel 2 is increased. This can reduce the uncomfortable feeling given to the driver.

(3)第3電子コントロールユニット14cは、転舵角偏差を微分して転舵角偏差の変化速度を算出するようにした。   (3) The third electronic control unit 14c differentiates the turning angle deviation to calculate the changing speed of the turning angle deviation.

よって、転舵角偏差が増加している場合には、操舵反力に転舵角偏差の変化速度が大きくなるほど増大する付加反力TH3を加算するため、運転者による操作部の操舵速度を抑えることが可能となる。これにより、推定転舵角θeに対して転舵モータ9による前輪2の転舵角が追いつくため、結果的に操舵角に対応した目標転舵角θtと前輪2の転舵角との偏差を減少し、運転者へ与える違和感を抑制することができる。   Therefore, when the turning angle deviation is increasing, the additional reaction force TH3, which increases as the change speed of the turning angle deviation increases, is added to the steering reaction force. It becomes possible. As a result, the steered angle of the front wheel 2 by the steered motor 9 catches up with the estimated steered angle θe, and as a result, the deviation between the target steered angle θt corresponding to the steered angle and the steered angle of the front wheel 2 is increased. This can reduce the uncomfortable feeling given to the driver.

(4)第3電子コントロールユニット14cは、転舵角偏差の正負の符号と転舵角偏差の変化速度の正負の符号とが一致するときに、転舵角偏差が増加していると判定するようにした。   (4) The third electronic control unit 14c determines that the turning angle deviation has increased when the sign of the turning angle deviation matches the sign of the change speed of the turning angle deviation. I did it.

転舵角偏差の正負の符号と転舵角偏差の変化速度の正負の符号とが一致するときは、転舵角偏差が大きくなる方向に変位しているときである。このとき、操舵反力に付加反力TH3を加算し、転舵角偏差に応じて演算している第2操舵反力TH2が増大することを抑制することができ、結果的に運転者に付与する操舵反力を減少し、操舵量や操舵反力の増加に応じて転舵量が増加するようになるため、運転者へ与える違和感を抑制することができる。   When the sign of the turning angle deviation matches the sign of the change speed of the turning angle deviation, the turning angle deviation is displaced in the increasing direction. At this time, the additional reaction force TH3 is added to the steering reaction force, and the increase in the second steering reaction force TH2 calculated according to the turning angle deviation can be suppressed. As a result, it is given to the driver. The steering reaction force to be reduced is decreased and the turning amount is increased in accordance with the increase of the steering amount and the steering reaction force, so that it is possible to suppress a sense of discomfort given to the driver.

(5)第3電子コントロールユニット14cは、目標転舵角θtと転舵モータ9の応答遅れとに基づいて前輪2の推定転舵角θeを算出するようにした。
よって、転舵角偏差が実際に生じ始める前に、付加反力TH3を発生させることができ、転舵角偏差の拡大を抑制することができる。
(5) The third electronic control unit 14c calculates the estimated turning angle θe of the front wheels 2 based on the target turning angle θt and the response delay of the turning motor 9.
Therefore, the additional reaction force TH3 can be generated before the turning angle deviation actually starts to occur, and the increase of the turning angle deviation can be suppressed.

(6)第3電子コントロールユニット14cは、付加反力TH3の変化速度を算出し、算出した変化速度が予め定められた所定の変化速度より大きい場合に、付加反力TH3の変化速度を抑制するようにした。
よって、付加反力TH3が急増することを抑制し、運転者へ与える違和感を抑制することができる。
(6) The third electronic control unit 14c calculates the change rate of the additional reaction force TH3, and suppresses the change rate of the additional reaction force TH3 when the calculated change rate is greater than a predetermined change rate. I did it.
Therefore, it is possible to suppress a sudden increase in the additional reaction force TH3 and to suppress a sense of discomfort given to the driver.

(7)第3電子コントロールユニット14cは、付加反力TH3を予め定められた所定の値以下に制限するようにした。
よって、付加反力TH3が大幅に増加することを抑制し、運転者へ与える違和感を抑制することができる。
(7) The third electronic control unit 14c limits the additional reaction force TH3 to a predetermined value or less.
Therefore, it is possible to suppress a significant increase in the additional reaction force TH3 and to suppress a sense of discomfort given to the driver.

(8)第3電子コントロールユニット14cは、目標転舵角θtと実転舵角θaとの偏差の正負の符号と、転舵角偏差の符号が同一でない場合には、付加反力TH3をゼロとするようにした。
転舵角偏差の正負の符号と転舵角偏差の変化速度の正負の符号とが一致しないときは、転舵角偏差が小さくなる方向に変位しているときである。このときは付加反力TH3を発生させないことで、運転者に余計な操作負担を与えることを防ぐことができる。
(8) When the sign of the deviation between the target turning angle θt and the actual turning angle θa is not the same as the sign of the turning angle deviation, the third electronic control unit 14c sets the additional reaction force TH3 to zero. I tried to do it.
When the sign of the turning angle deviation does not coincide with the sign of the change speed of the turning angle deviation, it is when the turning angle deviation is displaced in a decreasing direction. At this time, by not generating the additional reaction force TH3, it is possible to prevent the driver from being given an extra operation burden.

(9)第3電子コントロールユニット14cは、転舵角偏差が増加していない場合には車両の状態、運転者の操舵状態及び転舵角偏差に基づいた操舵反力を算出し、転舵角偏差が増加している場合には、操舵反力に付加反力TH3を加算するようにした。
転舵角偏差が増加していない場合には、操舵感を良好にすることが可能となり、転舵角偏差が増加しているときには、運転者による操作部の操舵速度を抑えることが可能となるため、運転者へ与える違和感を抑制することができる。
(9) When the turning angle deviation does not increase, the third electronic control unit 14c calculates a steering reaction force based on the vehicle state, the driver's steering state, and the turning angle deviation, and turns the turning angle. When the deviation increases, the additional reaction force TH3 is added to the steering reaction force.
When the turning angle deviation does not increase, the steering feeling can be improved, and when the turning angle deviation increases, the steering speed of the operation unit by the driver can be suppressed. Therefore, the uncomfortable feeling given to the driver can be suppressed.

(10)車両の状態はタイヤ横力F1、転舵モータトルクF2、車両ヨーレートF3、車両横加速度F4であって、運転者の操舵状態は操舵角θs、操舵角速度、操舵角加速度とした。
よって、ステアリングと前輪とを機械的に連結した車両においてステアリングに作用する反力を模して操舵反力を求めることが可能となるため、操作感を良好にすることができる。
(10) The vehicle state is a tire lateral force F1, a steering motor torque F2, a vehicle yaw rate F3, and a vehicle lateral acceleration F4, and the driver's steering state is a steering angle θs, a steering angular velocity, and a steering angular acceleration.
Therefore, it is possible to obtain the steering reaction force by simulating the reaction force acting on the steering in a vehicle in which the steering and the front wheels are mechanically connected, so that the operational feeling can be improved.

(11)車両1において運転者が操舵操作するステアリング13と機械的に分離した操向輪である前輪2を転舵する転舵モータ9と、前輪2の実際の転舵角である実転舵角θaを検出する転舵モータ回転角センサ10と、ステアリング13の操舵角θsに応じて前輪2の目標転舵角θtを演算し、前輪2の転舵角が目標転舵角θtとなるように転舵モータ9を制御する第1、第2電子コントロールユニット14a,14bと、ステアリング13に付与する操舵反力を算出する第3電子コントロールユニット14cと、第3電子コントロールユニット14cで算出された操舵反力に基づいてステアリング13に操舵反力を付与する操舵軸モータ8とを備え、第3電子コントロールユニット14cは、目標転舵角θtに対する転舵角の応答遅れに基づいて前輪2の転舵角の推定値である推定転舵角θeを算出し、算出した推定転舵角θeと転舵モータ回転角センサ10によって検出された実転舵角θaとの偏差である転舵角偏差が増加している場合には、転舵角偏差が増加していない場合よりも大きな操舵反力を算出するようにした。   (11) Steering motor 9 that steers front wheel 2 that is a steered wheel mechanically separated from steering 13 that is steered by the driver in vehicle 1, and actual steering that is the actual steering angle of front wheel 2 The target turning angle θt of the front wheels 2 is calculated according to the steering motor rotation angle sensor 10 that detects the angle θa and the steering angle θs of the steering 13 so that the turning angle of the front wheels 2 becomes the target turning angle θt. Calculated by the first and second electronic control units 14a and 14b for controlling the steering motor 9, the third electronic control unit 14c for calculating the steering reaction force applied to the steering 13, and the third electronic control unit 14c. The third electronic control unit 14c includes a steering shaft motor 8 that applies a steering reaction force to the steering wheel 13 based on the steering reaction force, and the third electronic control unit 14c performs a front operation based on a response delay of the turning angle with respect to the target turning angle θt. An estimated turning angle θe that is an estimated value of the turning angle 2 is calculated, and the turning is a deviation between the calculated estimated turning angle θe and the actual turning angle θa detected by the turning motor rotation angle sensor 10. When the angle deviation increases, a larger steering reaction force is calculated than when the turning angle deviation does not increase.

よって、目標転舵角θtの変異速度が、転舵モータ9による前輪2の転舵速度を超えると操舵反力に加えて付加反力TH3がステアリングシャフト18に作用するため、運転者によるステアリング13の操舵速度を抑えることが可能となる。これにより、推定転舵角θeと実転舵角θaとの偏差が拡大する前に、ステアリング13の操舵角に応じて設定する推定転舵角θeの変化速度を小さくすることができ、転舵モータ9による前輪2の転舵角が推定転舵角θeに追いつくため、推定転舵角θeと実転舵角θaとの偏差の拡大を抑制することができる。したがって、推定転舵角θeと実転舵角θaとの偏差に応じて演算している第2操舵反力TH2が増大することを抑制することができ、結果的に運転者に付与する操舵反力を減少し、操舵量や操舵反力の増加に応じて転舵量が増加するようになるため、運転者へ与える違和感を抑制することができる。   Therefore, if the variation speed of the target turning angle θt exceeds the turning speed of the front wheels 2 by the turning motor 9, the additional reaction force TH3 acts on the steering shaft 18 in addition to the steering reaction force, so that the steering 13 by the driver is performed. It is possible to reduce the steering speed. Thereby, before the deviation between the estimated turning angle θe and the actual turning angle θa increases, the change speed of the estimated turning angle θe set according to the steering angle of the steering wheel 13 can be reduced, and the turning can be performed. Since the turning angle of the front wheel 2 by the motor 9 catches up with the estimated turning angle θe, it is possible to suppress an increase in deviation between the estimated turning angle θe and the actual turning angle θa. Therefore, an increase in the second steering reaction force TH2 calculated according to the deviation between the estimated turning angle θe and the actual turning angle θa can be suppressed, and as a result, the steering reaction applied to the driver is suppressed. Since the force is decreased and the turning amount increases according to the increase of the steering amount and the steering reaction force, it is possible to suppress the uncomfortable feeling given to the driver.

(12)運転者が操舵操作するステアリング13と機械的に分離した操向輪である前輪2を転舵する転舵モータ9と、前輪2の実際の転舵角である実転舵角θaを検出する転舵モータ回転角センサ10と、ステアリング13の操舵角θsに応じて前輪2の目標転舵角θtを演算し、前輪2の転舵角が目標転舵角θtとなるように転舵モータ9を制御する第1、第2電子コントロールユニット14a,14bとを有し、ステアリング13の操舵角θsに応じて前輪2の目標転舵角θtを演算し、前輪2の転舵角が目標転舵角θtとなるように転舵モータ9を制御し、ステアリング13に付与する操舵反力を算出し、目標転舵角θtに対する転舵角の応答遅れに基づいて前輪2の転舵角の推定値である推定転舵角θeを算出し、算出した推定転舵角θeと転舵モータ回転角センサ10によって検出された実転舵角θaとの偏差である転舵角偏差が増加している場合には、転舵角偏差が増加していない場合よりも大きな操舵反力を算出するようにした。   (12) A steering motor 9 that steers the front wheel 2 that is a steered wheel mechanically separated from the steering wheel 13 that is steered by the driver, and an actual steering angle θa that is an actual steering angle of the front wheel 2 The target turning angle θt of the front wheels 2 is calculated according to the detected steering motor rotation angle sensor 10 and the steering angle θs of the steering 13, and the turning is performed so that the turning angle of the front wheels 2 becomes the target turning angle θt. The first and second electronic control units 14a and 14b that control the motor 9 are provided, the target turning angle θt of the front wheels 2 is calculated according to the steering angle θs of the steering 13, and the turning angle of the front wheels 2 is set as the target. The steering motor 9 is controlled so that the turning angle θt is obtained, the steering reaction force applied to the steering 13 is calculated, and the turning angle of the front wheels 2 is determined based on the response delay of the turning angle with respect to the target turning angle θt. The estimated turning angle θe, which is an estimated value, is calculated, and the calculated estimated turning angle θe and the turning motor speed When the turning angle deviation, which is a deviation from the actual turning angle θa detected by the angle sensor 10, is increased, a larger steering reaction force is calculated than when the turning angle deviation is not increased. I made it.

よって、目標転舵角θtの変位速度が、転舵モータ9による前輪2の転舵速度を超えると操舵反力に加えて付加反力TH3がステアリングシャフト18に作用するため、運転者によるステアリング13の操舵速度を抑えることが可能となる。これにより、推定転舵角θeと実転舵角θaとの偏差が拡大する前に、ステアリング13の操舵角に応じて設定する推定転舵角θeの変化速度を小さくすることができ、転舵モータ9による前輪2の転舵角が推定転舵角θeに追いつくため、推定転舵角θeと実転舵角θaとの偏差の拡大を抑制することができる。したがって、推定転舵角θeと実転舵角θaとの偏差に応じて演算している第2操舵反力TH2が増大することを抑制することができ、結果的に運転者に付与する操舵反力を減少し、操舵量や操舵反力の増加に応じて転舵量が増加するようになるため、運転者へ与える違和感を抑制することができる。   Therefore, if the displacement speed of the target turning angle θt exceeds the turning speed of the front wheels 2 by the turning motor 9, the additional reaction force TH3 acts on the steering shaft 18 in addition to the steering reaction force, so that the steering by the driver 13 It is possible to reduce the steering speed. Thereby, before the deviation between the estimated turning angle θe and the actual turning angle θa increases, the change speed of the estimated turning angle θe set according to the steering angle of the steering wheel 13 can be reduced, and the turning can be performed. Since the turning angle of the front wheel 2 by the motor 9 catches up with the estimated turning angle θe, it is possible to suppress an increase in deviation between the estimated turning angle θe and the actual turning angle θa. Therefore, an increase in the second steering reaction force TH2 calculated according to the deviation between the estimated turning angle θe and the actual turning angle θa can be suppressed, and as a result, the steering reaction applied to the driver is suppressed. Since the force is decreased and the turning amount increases according to the increase of the steering amount and the steering reaction force, it is possible to suppress the uncomfortable feeling given to the driver.

[他の実施例]
以上、本発明を実施するための最良の形態を、実施例1に基づいて説明したが、本発明の具体的な構成は、実施例1に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
[Other examples]
The best mode for carrying out the present invention has been described based on the first embodiment. However, the specific configuration of the present invention is not limited to the first embodiment and does not depart from the gist of the present invention. Any change in the design of the range is included in the present invention.

また実施例1では、付加反力TH3を推定転舵角θeと実転舵角θaとの偏差の微分に基づいて演算するようにした。しかしながら、転舵モータ9に応答遅れが無い、若しくは無視できる程度の応答遅れである場合は、この付加反力TH3の演算を、目標転舵角θtと実転舵角θaとの偏差の微分に基づいて演算するようにしても良い。   In Example 1, the additional reaction force TH3 is calculated based on the differential of the deviation between the estimated turning angle θe and the actual turning angle θa. However, when there is no response delay in the steering motor 9 or a response delay that can be ignored, the calculation of the additional reaction force TH3 is performed to differentiate the deviation between the target turning angle θt and the actual turning angle θa. You may make it calculate based on.

なお、ステアリング13は本発明の操舵部に相当し、前輪2は本発明の操向輪に相当し、転舵モータ9は本発明の転舵アクチュエータに相当し、操舵軸モータ8は本発明の反力アクチュエータに相当し、転舵モータ回転角センサ10は本発明の転舵角検出手段に相当し、第1電子コントロールユニット14a、第2電子コントロールユニット14bは本発明の目標転舵角演算手段、転舵角制御手段に相当し、第3電子コントロールユニット14cは本発明の操舵反力算出手段に相当する。   The steering wheel 13 corresponds to the steering section of the present invention, the front wheel 2 corresponds to the steered wheel of the present invention, the steering motor 9 corresponds to the steering actuator of the present invention, and the steering shaft motor 8 corresponds to the steering wheel of the present invention. The turning motor rotation angle sensor 10 corresponds to a reaction angle actuator, the turning angle detection means of the present invention, and the first electronic control unit 14a and the second electronic control unit 14b are target turning angle calculation means of the invention. The third electronic control unit 14c corresponds to the steering reaction force calculation means of the present invention.

実施例1の車両用操舵装置を適用した車両の全体構成図である。1 is an overall configuration diagram of a vehicle to which a vehicle steering apparatus according to a first embodiment is applied. 実施例1の操舵軸モータの制御処理の流れを示すフローチャートである。3 is a flowchart illustrating a flow of control processing of the steering shaft motor according to the first embodiment. 実施例1のラック軸力の立ち上がりを示すグラフである。3 is a graph showing the rise of rack axial force in Example 1. 実施例1の推定転舵角と実転舵角との偏差の立ち上がりを示すグラフである。It is a graph which shows the standup of the deviation of the presumed turning angle and the actual turning angle of Example 1. 実施例1の重み係数K,Cのマップである。3 is a map of weighting factors K and C according to the first embodiment. 実施例1の作用を示すタイムチャートである。3 is a time chart illustrating the operation of the first embodiment. 実施例1の作用を示すタイムチャートである。3 is a time chart illustrating the operation of the first embodiment.

符号の説明Explanation of symbols

2 前輪(操向輪)
9a,9b 転舵モータ(転舵アクチュエータ)
8 操舵軸モータ(操舵軸アクチュエータ)
10a,10b 転舵モータ回転角センサ(転舵角検出手段)
13 ステアリング(操作部)
14a 第1電子コントロールユニット(目標転舵角演算手段、転舵角制御手段)
14b 第2電子コントロールユニット(目標転舵角演算手段、転舵角制御手段)
14c 第3電子コントロールユニット(操舵反力演算手段)
18 ステアリングシャフト
2 Front wheels (steering wheels)
9a, 9b Steering motor (steering actuator)
8 Steering shaft motor (steering shaft actuator)
10a, 10b Steering motor rotation angle sensor (steering angle detection means)
13 Steering (operation part)
14a First electronic control unit (target turning angle calculation means, turning angle control means)
14b Second electronic control unit (target turning angle calculation means, turning angle control means)
14c Third electronic control unit (steering reaction force calculation means)
18 Steering shaft

Claims (9)

運転者が操舵操作する操舵部と、
該操舵部とは機械的に分離した操向輪を転舵する転舵アクチュエータと、
前記操向輪の実際の転舵角である実転舵角を検出する転舵角検出手段と、
前記操舵部の操舵角に応じて前記操向輪の目標転舵角を演算する目標転舵角演算手段と、
前記操向輪の転舵角が前記目標転舵角となるように前記転舵アクチュエータを制御する転舵角制御手段と、
前記操舵部に付与する操舵反力を算出する操舵反力算出手段と、
前記操舵反力算出手段で算出された操舵反力に基づいて前記操舵部に操舵反力を付与する反力アクチュエータと、
を備え、
前記操舵反力算出手段は、
前記目標転舵角に対する転舵角の応答遅れに基づいて前記操向輪の転舵角の推定値である推定転舵角を算出し、
算出した前記推定転舵角と前記転舵角検出手段によって検出された前記実転舵角との偏差である転舵角偏差を算出し、
前記転舵角偏差を微分して前記転舵角偏差の変化速度を算出し、
前記転舵角偏差の正負の符号と前記転舵角偏差の変化速度の正負の符号とが一致するときに、前記転舵角偏差が増加していると判定し、
前記転舵角偏差が増加している場合には、前記転舵角偏差が増加していない場合の操舵反力に対して、前記転舵角偏差の変化速度が大きくなるほど増大する付加反力を加算する事により、前記転舵角偏差が増加していない場合よりも大きな操舵反力を算出することを特徴とする車両用操舵装置。
A steering unit that the driver steers,
A steering actuator for steering steered wheels mechanically separated from the steering unit;
A turning angle detection means for detecting an actual turning angle that is an actual turning angle of the steered wheel;
Target turning angle calculating means for calculating a target turning angle of the steered wheel according to a steering angle of the steering unit;
Turning angle control means for controlling the turning actuator so that the turning angle of the steered wheel becomes the target turning angle;
Steering reaction force calculating means for calculating a steering reaction force applied to the steering unit;
A reaction force actuator for applying a steering reaction force to the steering unit based on the steering reaction force calculated by the steering reaction force calculation means;
With
The steering reaction force calculating means includes:
Calculating an estimated turning angle that is an estimated value of the turning angle of the steered wheel based on a response delay of the turning angle with respect to the target turning angle;
Calculating a turning angle deviation which is a deviation between the calculated estimated turning angle and the actual turning angle detected by the turning angle detection means ;
Differentiating the steering angle deviation to calculate the change speed of the steering angle deviation,
When the sign of the turning angle deviation matches the sign of the change speed of the turning angle deviation, it is determined that the turning angle deviation is increased,
When the turning angle deviation increases, an additional reaction force that increases as the change speed of the turning angle deviation increases with respect to the steering reaction force when the turning angle deviation does not increase. A vehicle steering apparatus characterized by calculating a steering reaction force larger than that when the turning angle deviation is not increased by adding .
請求項1に記載の車両用操舵装置において、
前記操舵反力算出手段は、前記目標転舵角と前記転舵アクチュエータの応答遅れとに基づいて前記操向輪の前記推定転舵角を算出することを特徴とする車両用操舵装置。
In the vehicle steering device according to claim 1,
The vehicle steering apparatus, wherein the steering reaction force calculating means calculates the estimated turning angle of the steered wheel based on the target turning angle and a response delay of the turning actuator .
請求項1または請求項2に記載の車両用操舵装置において、
前記操舵反力算出手段は、前記付加反力の変化速度を算出し、該算出した変化速度が予め定められた所定の変化速度より大きい場合に、前記付加反力の変化速度を抑制することを特徴とする車両用操舵装置。
The vehicle steering apparatus according to claim 1 or 2,
The steering reaction force calculating means calculates a change speed of the additional reaction force, and suppresses the change speed of the additional reaction force when the calculated change speed is larger than a predetermined change speed. A vehicle steering apparatus.
請求項1ないし請求項3のいずれか1項に記載の車両用操舵装置において、
前記操舵反力算出手段は、前記付加反力を予め定められた所定の値以下に制限することを特徴とする車両用操舵装置。
An apparatus as claimed in any one of claims 1 to claim 3,
The vehicle steering apparatus according to claim 1, wherein the steering reaction force calculation means limits the additional reaction force to a predetermined value or less .
請求項1ないし請求項4のいずれか1項に記載の車両用操舵装置において、
前記操舵反力算出手段は、前記目標転舵角と前記実転舵角との偏差の正負の符号と、前記転舵角偏差の符号が同一でない場合には、前記付加反力をゼロとすることを特徴とする車両用操舵装置。
The vehicle steering apparatus according to any one of claims 1 to 4, wherein:
The steering reaction force calculation means sets the additional reaction force to zero when the sign of the deviation between the target turning angle and the actual turning angle is not the same as the sign of the turning angle deviation. A vehicle steering apparatus characterized by the above.
請求項ないし請求項5に記載した車両用操舵装置において、
前記操舵反力算出手段は、前記転舵角偏差が増加していない場合には車両の状態、運転者の操舵状態及び前記転舵角偏差に基づいた操舵反力を算出し、前記転舵角偏差が増加している場合には、前記操舵反力に前記付加反力を加算することを特徴とする車両用操舵装置。
In the vehicle steering apparatus according to any one of claims 1 to 5,
The steering reaction force calculation means calculates a steering reaction force based on a vehicle state, a driver's steering state, and the turning angle deviation when the turning angle deviation does not increase, and the turning angle When the deviation increases , the vehicle steering apparatus is characterized in that the additional reaction force is added to the steering reaction force .
求項6に記載に記載した車両用操舵装置において、
前記車両の状態はタイヤ横力、転舵モータトルク、車両ヨーレート、車両横加速度であって、運転者の操舵状態は操舵角、操舵角速度、操舵角加速度であることを特徴とする車両用操舵装置。
The vehicular steering apparatus according to according to Motomeko 6,
The vehicle state is a tire lateral force, a steering motor torque, a vehicle yaw rate, and a vehicle lateral acceleration, and a driver's steering state is a steering angle, a steering angular velocity, and a steering angular acceleration. .
運転者が操舵操作する操舵部と、
該操舵部とは機械的に分離した操向輪を転舵する転舵アクチュエータと、
前記操向輪の実際の転舵角である実転舵角を検出する転舵角検出手段と、
前記操舵部の操舵角に応じて前記操向輪の目標転舵角を演算する目標転舵角演算手段と、
前記操向輪の転舵角が前記目標転舵角となるように前記転舵アクチュエータを制御する転舵角制御手段と、
前記操舵部に付与する操舵反力を算出する操舵反力算出手段と、
前記操舵反力算出手段で算出された操舵反力に基づいて前記操舵部に操舵反力を付与する反力アクチュエータと、
を備え、
前記操舵反力算出手段は、
前記目標転舵角に対する転舵角の応答遅れに基づいて前記操向輪の転舵角の推定値である推定転舵角を算出し、
算出した前記推定転舵角を算出し、
前記転舵角偏差を微分して前記転舵角偏差の変化速度を算出し、
前記転舵角偏差の正負の符号と前記転舵角偏差の変化速度の正負の符号とが一致するときに、前記転舵角偏差が増加していると判定し、
前記転舵角偏差が増加している場合には、前記転舵角偏差が増加していない場合の操舵反力に対して、前記転舵角偏差の変化速度が大きくなるほど増大する付加反力を加算する事により、前記転舵角偏差が増加していない場合よりも大きな操舵反力を算出することを特徴とする車両用操舵装置付き車両。
A steering unit that the driver steers,
A steering actuator for steering steered wheels mechanically separated from the steering unit;
A turning angle detection means for detecting an actual turning angle that is an actual turning angle of the steered wheel;
Target turning angle calculating means for calculating a target turning angle of the steered wheel according to a steering angle of the steering unit;
Turning angle control means for controlling the turning actuator so that the turning angle of the steered wheel becomes the target turning angle;
Steering reaction force calculating means for calculating a steering reaction force applied to the steering unit;
A reaction force actuator for applying a steering reaction force to the steering unit based on the steering reaction force calculated by the steering reaction force calculation means;
With
The steering reaction force calculating means includes:
Calculating an estimated turning angle that is an estimated value of the turning angle of the steered wheel based on a response delay of the turning angle with respect to the target turning angle;
Calculate the calculated estimated turning angle,
Differentiating the steering angle deviation to calculate the change speed of the steering angle deviation,
When the sign of the turning angle deviation matches the sign of the change speed of the turning angle deviation, it is determined that the turning angle deviation is increased,
When the turning angle deviation increases, an additional reaction force that increases as the change speed of the turning angle deviation increases with respect to the steering reaction force when the turning angle deviation does not increase. A vehicle with a steering device for a vehicle , wherein a steering reaction force larger than that when the turning angle deviation is not increased is calculated by addition .
運転者が操作する操舵部と機械的に分離した操向輪を転舵する転舵アクチュエータと、
前記操向輪の実際の転舵角である実転舵角を検出する転舵角検出手段と、
前記操舵反力算出手段で算出された操舵反力に基づいて前記操舵部に操舵反力を付与する反力アクチュエータと、
を有し、
前記操舵部の操舵角に応じて前記操向輪の目標転舵角を演算し、
前記操向輪の転舵角が前記目標転舵角となるように前記転舵アクチュエータを制御し、
前記操舵部に付与する操舵反力を算出し、
前記目標転舵角に対する転舵角の応答遅れに基づいて前記操向輪の転舵角の推定値である推定転舵角を算出し、
算出した前記推定転舵角と前記転舵角検出手段によって検出された前記実転舵角との偏差である転舵角偏差を算出し、
前記転舵角偏差を微分して前記転舵角偏差の変化速度を算出し、
前記転舵角偏差の正負の符号と前記転舵角偏差の変化速度の正負の符号とが一致するときに、前記転舵角偏差が増加していると判定し、
前記転舵角偏差が増加している場合には、前記転舵角偏差が増加していない場合の操舵反力に対して、前記転舵角偏差の変化速度が大きくなるほど増大する付加反力を加算する事により、前記転舵角偏差が増加していない場合よりも大きな操舵反力を算出することを特徴とする車両用操舵方法。
A steering actuator for steering steered wheels mechanically separated from a steering unit operated by a driver;
A turning angle detection means for detecting an actual turning angle that is an actual turning angle of the steered wheel;
A reaction force actuator for applying a steering reaction force to the steering unit based on the steering reaction force calculated by the steering reaction force calculation means;
Have
A target turning angle of the steered wheel is calculated according to a steering angle of the steering unit,
Controlling the steering actuator so that the steering angle of the steered wheel becomes the target steering angle;
A steering reaction force applied to the steering unit is calculated;
Calculating an estimated turning angle that is an estimated value of the turning angle of the steered wheel based on a response delay of the turning angle with respect to the target turning angle;
Calculating a turning angle deviation which is a deviation between the calculated estimated turning angle and the actual turning angle detected by the turning angle detection means;
Differentiating the steering angle deviation to calculate the change speed of the steering angle deviation,
When the sign of the turning angle deviation matches the sign of the change speed of the turning angle deviation, it is determined that the turning angle deviation is increased,
When the turning angle deviation increases, an additional reaction force that increases as the change speed of the turning angle deviation increases with respect to the steering reaction force when the turning angle deviation does not increase. A vehicle steering method characterized by calculating a steering reaction force larger than that when the turning angle deviation is not increased by adding .
JP2008328910A 2008-12-25 2008-12-25 Vehicle steering device, vehicle with vehicle steering device, and vehicle steering method Active JP5304223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328910A JP5304223B2 (en) 2008-12-25 2008-12-25 Vehicle steering device, vehicle with vehicle steering device, and vehicle steering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008328910A JP5304223B2 (en) 2008-12-25 2008-12-25 Vehicle steering device, vehicle with vehicle steering device, and vehicle steering method

Publications (2)

Publication Number Publication Date
JP2010149650A JP2010149650A (en) 2010-07-08
JP5304223B2 true JP5304223B2 (en) 2013-10-02

Family

ID=42569243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328910A Active JP5304223B2 (en) 2008-12-25 2008-12-25 Vehicle steering device, vehicle with vehicle steering device, and vehicle steering method

Country Status (1)

Country Link
JP (1) JP5304223B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5521874B2 (en) * 2010-08-05 2014-06-18 日産自動車株式会社 Steering control device
JP5817936B2 (en) * 2012-09-28 2015-11-18 日産自動車株式会社 Vehicle steering control device
WO2014049936A1 (en) * 2012-09-28 2014-04-03 日産自動車株式会社 Steering control device for vehicle
KR102216190B1 (en) * 2015-01-05 2021-02-17 현대모비스 주식회사 Motor driven power steering system and control method thereof
US11603132B2 (en) * 2019-05-15 2023-03-14 Nissan Motor Co., Ltd. Steering control method and steering control device
KR102646187B1 (en) 2019-06-11 2024-03-11 현대모비스 주식회사 Apparatus for steering by wire of vehicle and control method thereof
JP7243828B2 (en) * 2019-06-28 2023-03-22 日産自動車株式会社 Steering control method and steering control device
WO2021124822A1 (en) * 2019-12-18 2021-06-24 日本精工株式会社 Vehicular steering device
CN116209613A (en) * 2020-09-17 2023-06-02 日立安斯泰莫株式会社 Steering-by-wire steering device
CN116096617A (en) 2020-10-09 2023-05-09 日产自动车株式会社 Steering method and steering device
WO2023281990A1 (en) * 2021-07-09 2023-01-12 日立Astemo株式会社 Electric power steering device, control method for electric power steering device, and steering control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957022B2 (en) * 2006-03-09 2012-06-20 日産自動車株式会社 Vehicle steering control device
JP4899541B2 (en) * 2006-03-09 2012-03-21 日産自動車株式会社 Vehicle steering control device

Also Published As

Publication number Publication date
JP2010149650A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5304223B2 (en) Vehicle steering device, vehicle with vehicle steering device, and vehicle steering method
JP4779495B2 (en) Vehicle steering system
JP4329859B2 (en) Steering control device
EP1935757B1 (en) Vehicle steering apparatus
WO2014128818A1 (en) Vehicular steering control device, and vehicular steering control method
JP4380697B2 (en) Vehicle steering control device
JP5338491B2 (en) Vehicle steering apparatus and vehicle steering method
JP5272712B2 (en) Vehicle steering system
JP3676543B2 (en) Electric power steering device
JP2005343315A (en) Vehicular steering device
JP4997478B2 (en) Vehicle steering system
US20180086372A1 (en) Steering control device
JP2001213340A (en) Steering device for vehicle
JP4517810B2 (en) Vehicle steering control device
JP2003081119A (en) Motor-driven power steering device for automobile
JP2006282067A (en) Steering control device for vehicle
JP4604840B2 (en) Vehicle steering system
JP5347499B2 (en) Vehicle control apparatus and vehicle control method
JP2008201205A (en) Steering device for vehicle
JP4696719B2 (en) Vehicle steering apparatus and vehicle steering control method
WO2013132807A1 (en) Vehicle steering controller and vehicle steering control method
JP5407298B2 (en) Vehicle steering apparatus and control method thereof
JP4661342B2 (en) Vehicle steering system
JP4692087B2 (en) Vehicle steering system
JP2016107764A (en) Power steering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5304223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150