JP5303168B2 - Small wind power system interconnection device - Google Patents

Small wind power system interconnection device Download PDF

Info

Publication number
JP5303168B2
JP5303168B2 JP2008078623A JP2008078623A JP5303168B2 JP 5303168 B2 JP5303168 B2 JP 5303168B2 JP 2008078623 A JP2008078623 A JP 2008078623A JP 2008078623 A JP2008078623 A JP 2008078623A JP 5303168 B2 JP5303168 B2 JP 5303168B2
Authority
JP
Japan
Prior art keywords
power generation
wind power
generation system
switching
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008078623A
Other languages
Japanese (ja)
Other versions
JP2009232661A (en
Inventor
学 堤
彰訓 加藤
Original Assignee
河村電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河村電器産業株式会社 filed Critical 河村電器産業株式会社
Priority to JP2008078623A priority Critical patent/JP5303168B2/en
Publication of JP2009232661A publication Critical patent/JP2009232661A/en
Application granted granted Critical
Publication of JP5303168B2 publication Critical patent/JP5303168B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

本発明は、小型風力発電系統を太陽光発電系統に連系させる小型風力発電系統連系装置に関する。   The present invention relates to a small wind power generation system interconnection device that links a small wind power generation system to a solar power generation system.

近年、太陽光発電に次いで風力発電の余剰電力も各電力会社が購入するようになり、小型風力発電の系統連系を促進する下地がようやく整備されてきた。しかし、小型風力発電電力は、発電電力が小さく、間欠的な発電であるため、設備の使用率が著しく低くなる等の理由により、小型風力発電用の系統連系インバータはいまだに市販されていない。このため、太陽光発電用の系統連系インバータを使った小型風力発電機用の系統連系技術が種々提案されてきたが、これらの技術にも問題が多く実用化には至っていない。特許文献1の技術では、風力発電用バッテリの電圧を太陽光電圧まで昇圧する装置が必要であった。この結果、装置が大型になり、昇圧の過程で、損失が発生するという問題があった。以上の背景より、実質、小型風力発電の系統連系を行うことができない状況だった。   In recent years, surplus power from wind power generation has been purchased by each electric power company after solar power generation, and the groundwork for promoting grid connection of small wind power generation has finally been established. However, since the small wind power generation power is small and the power generation is intermittent, the grid-connected inverter for small wind power generation is not yet commercially available for the reason that the usage rate of equipment is remarkably lowered. For this reason, various grid interconnection technologies for small wind power generators using grid interconnection inverters for photovoltaic power generation have been proposed, but these technologies have many problems and have not yet been put into practical use. In the technique of Patent Document 1, a device for boosting the voltage of the wind power generation battery to the solar voltage is required. As a result, there is a problem that the apparatus becomes large and loss occurs in the process of boosting. From the above background, it was actually impossible to connect the grid of small wind power generation.

特許3966998号公報Japanese Patent No. 3966998

そこで、本発明では上記課題を鑑み、簡単な構成で太陽光発電系統と系統連系できる小型風力発電系統連系装置の提供を課題とする。   In view of the above problems, an object of the present invention is to provide a small wind power generation system interconnection device that can be connected to a solar power generation system with a simple configuration.

上記課題を解決するため、請求項1の発明に係る小型風力発電系統連系装置は、小型風力発電系統を、他の直流電力発電系統によって発電された直流電力を所定周波数の交流電力に変換する系統連系インバータを介して、前記他の直流電力発電系統とともに、交流電力系統に連系させる小型風力発電系統連系装置であって、前記小型風力発電系統の正極に接続された入力端子と、前記小型風力発電系統の負極に接続された入力側接地端子と、前記他の直流電力発電系統の正極が前記系統連系インバータの正極入力端子に接続された場合、前記他の直流電力発電系統の負極に接続される一方、前記他の直流電力発電系統の正極が前記系統連系インバータの正極入力端子に接続されない場合、前記系統連系インバータの正極入力端子に接続される出力端子と、前記他の直流電力発電系統の負極が前記系統連系インバータの負極入力端子に接続された場合、前記他の直流電力発電系統の正極に接続される一方、前記他の直流電力発電系統の負極が前記系統連系インバータの負極入力端子に接続されない場合、前記系統連系インバータの負極入力端子に接続される出力側接地端子と、前記小型風力発電系統を前記他の直流電力発電系統とともに前記交流電力系統に連系させた風力発電連系状態、または、前記他の直流電力発電系統のみを前記交流電力系統に連系させた風力発電非連系状態のうち、一方の連系状態に切り替える切替手段と、前記切替手段の切替動作を制御する切替制御手段と、を備え、前記切替制御手段が、前記小型風力発電系統が備えた風力発電電力を蓄える蓄電手段の充放電状態を検知し、検知した充放電状態に基づき、風力発電連系状態、または、風力発電非連系状態のいずれか一方に切り替え可能であって前記切替制御手段は、前記蓄電手段の電圧を充放電状態情報として検知する電圧検出回路を備え、該電圧検出回路によって検知した前記電圧が予め設定した閾値電圧まで上昇または下降することを検出することで、前記充放電状態を判断するように構成される。 In order to solve the above-described problem, a small wind power generation system interconnection device according to the invention of claim 1 converts a small wind power generation system from DC power generated by another DC power generation system to AC power having a predetermined frequency. A small wind power generation system interconnection device linked to the AC power system, together with the other DC power generation system via a grid interconnection inverter, and an input terminal connected to the positive electrode of the small wind power generation system, When the input-side ground terminal connected to the negative electrode of the small wind power generation system and the positive electrode of the other DC power generation system are connected to the positive input terminal of the grid-connected inverter, the other DC power generation system While connected to the negative electrode, when the positive electrode of the other DC power generation system is not connected to the positive input terminal of the grid-connected inverter, it is connected to the positive input terminal of the grid-connected inverter When the negative terminal of the other DC power generation system is connected to the negative input terminal of the grid-connected inverter, the other DC power generation is connected to the positive terminal of the other DC power generation system. When the negative pole of the grid is not connected to the negative pole input terminal of the grid interconnection inverter, the output side ground terminal connected to the negative pole input terminal of the grid interconnection inverter, and the small wind power generation system is connected to the other DC power generation system And one of the connected states of the wind power generation connected to the AC power system or the wind power non-connected state connected to the AC power system only the other DC power generation system. Switching means for switching to the switching means, and switching control means for controlling the switching operation of the switching means, wherein the switching control means charges the power storage means for storing wind power generated by the small wind power generation system. Detecting the conducting state based on the charge-discharge state is detected, the wind power interconnection state, or be capable of switching to either one of the wind power non interconnection state, said switching control means, the voltage of the accumulator unit Is detected as charging / discharging state information, and the charging / discharging state is determined by detecting that the voltage detected by the voltage detecting circuit rises or falls to a preset threshold voltage. Composed.

請求項2の発明に係る小型風力発電系統連系装置は、
前記切替手段が、
前記出力端子と前記出力側接地端子との間に接続され、風力発電非連系状態時に導通する整流素子と、
前記入力端子と前記出力端子との間に接続したスイッチング素子と、を有し、前記切替制御手段が、風力発電連系状態の場合、前記スイッチング素子を閉状態に切り替える一方、風力発電非連系状態の場合、前記スイッチング素子を開状態に切り替えるように構成される。
A small wind power grid interconnection device according to the invention of claim 2
The switching means is
A rectifying element that is connected between the output terminal and the output-side ground terminal and that conducts when the wind power generation is not connected,
A switching element connected between the input terminal and the output terminal, and when the switching control means is in a wind power generation linked state, the switching element is switched to a closed state, while the wind power generation non-linked In the case of a state, the switching element is configured to be switched to an open state.

請求項3の発明に係る小型風力発電系統連系装置は、前記切替手段が、前記出力端子と前記出力側接地端子との間に接続した第1スイッチング素子と、前記入力端子と前記出力端子との間に接続した第2スイッチング素子と、を有し、前記切替制御手段が、風力発電連系状態の場合、前記第1スイッチング素子を開状態、及び、前記第2スイッチング素子を閉状態にそれぞれ切り替える一方、風力発電非連系状態の場合、前記第1スイッチング素子を閉状態、及び、前記第2スイッチング素子を開状態にそれぞれ切り替えるように構成される。   In the small wind power grid interconnection device according to the invention of claim 3, the switching means includes a first switching element connected between the output terminal and the output-side ground terminal, the input terminal, and the output terminal. A second switching element connected between the first switching element and the second switching element in a closed state when the switching control means is in a wind power generation interconnected state. On the other hand, when the wind power generation is not connected, the first switching element is switched to the closed state, and the second switching element is switched to the open state.

請求項1の発明によれば、構成を簡素化でき、小型、軽量、かつ低価格で小型風力発電系統を太陽光発電系統に系統連系できる。   According to the invention of claim 1, the configuration can be simplified, and the small wind power generation system can be connected to the solar power generation system at a small size, light weight and low cost.

請求項2の発明によれば、スイッチング素子のみ制御すればよいので制御電力を小さくできる。また、他の直流電力発電系統として太陽光発電系統を用いた場合には、太陽電池の電流の遮断が発生しない構成が可能となり、その場合には、系統連系インバータの運転状態に悪影響を与えることがない。   According to the second aspect of the present invention, only the switching element needs to be controlled, so that the control power can be reduced. In addition, when a photovoltaic power generation system is used as another DC power generation system, a configuration in which the current of the solar cell is not interrupted is possible, and in this case, the operation state of the grid interconnection inverter is adversely affected. There is nothing.

請求項3の発明によれば、連系する際の損失を小さくできる。また、風力発電電力の損失を抑えた系統連系が実現できる。さらに、他の直流電力発電系統として太陽光発電系統を用いた場合には、太陽電池の電流の遮断が発生しない構成が可能となり、その場合には、系統連系インバータの運転状態に悪影響を与えることがない。   According to invention of Claim 3, the loss at the time of connecting can be made small. Moreover, the grid connection which suppressed the loss of wind power generation power is realizable. In addition, when a photovoltaic power generation system is used as another DC power generation system, a configuration in which the current of the solar cell is not interrupted is possible, and in this case, the operation state of the grid interconnection inverter is adversely affected. There is nothing.

以下、本発明を具体化した実施の形態を、図面に基づいて詳細に説明する。
図1は、本発明の小型風力発電系統連系装置(以下連系装置)の基本構成と、外部接続状態を説明する回路図である。本連系装置1は、小型風力発電系統WGを、他の直流電力発電系統として太陽光発電系統を構成する太陽電池PVによって発電された直流電力を所定周波数の交流電力に変換する系統連系インバータINVを介して、太陽光発電系統とともに、商用電源系統ACに連系させるように構成されている。また負荷RLには、系統連系インバータINVと商用電源系統ACから電力が供給される。なお、小型風力発電系統WGは、小型風力発電機で生成された三相交流発電電力を全波整流回路等の整流回路によって所定の直流電力に変換して出力するように構成されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described in detail with reference to the drawings.
FIG. 1 is a circuit diagram for explaining a basic configuration and an external connection state of a small wind power generation system interconnection device (hereinafter, interconnection device) of the present invention. This interconnection device 1 is a grid interconnection inverter that converts a DC power generated by a solar cell PV that constitutes a photovoltaic power generation system using a small wind power generation system WG as another DC power generation system to AC power of a predetermined frequency. It is configured to be connected to the commercial power supply system AC together with the photovoltaic power generation system via the INV. The load RL is supplied with power from the grid interconnection inverter INV and the commercial power supply system AC. The small wind power generation system WG is configured to convert the three-phase AC generated power generated by the small wind power generator into predetermined DC power by a rectifier circuit such as a full-wave rectifier circuit and output the same.

連系装置1は、小型風力発電系統WGを太陽光発電系統とともに商用電源系統ACに連系させた風力発電連系状態、または、太陽光発電系統のみを商用電源系統ACに連系させた風力発電非連系状態のうち、一方の連系状態に切り替える切替手段2と、切替手段2の切替動作を制御する切替制御手段3とを備えるように構成されている。   The interconnection device 1 is a wind power generation state in which the small wind power generation system WG is connected to the commercial power supply system AC together with the solar power generation system, or wind power in which only the solar power generation system is connected to the commercial power supply system AC. Among the power generation non-linkage states, the switch unit 2 is switched to one link state, and the switch control unit 3 is configured to control the switching operation of the switch unit 2.

また連系装置1は、小型風力発電系統WGの正極に接続された入力端子T1と、小型風力発電系統WGの負極に接続された入力側接地端子T2と、太陽電池PVの正極が系統連系インバータINVの正極入力端子Pに接続された場合、太陽電池PVの負極に接続された出力端子T3と、系統連系インバータINVの負極入力端子Nに直接接続された出力側接地端子T4と、を備えている。   In addition, the interconnection device 1 includes an input terminal T1 connected to the positive electrode of the small wind power generation system WG, an input-side ground terminal T2 connected to the negative electrode of the small wind power generation system WG, and the positive electrode of the solar cell PV. When connected to the positive input terminal P of the inverter INV, the output terminal T3 connected to the negative electrode of the solar cell PV and the output side ground terminal T4 directly connected to the negative input terminal N of the grid interconnection inverter INV. I have.

切替手段2は、出力端子T3と出力側接地端子T4との間に接続した第1スイッチング素子としての有接点リレーS1と、入力端子T1と出力端子T3との間に接続した第2スイッチング素子としての有接点リレーS2を有して構成されている。また切替制御手段3は、風力発電連系状態の場合、有接点リレーS1を開状態、及び、有接点リレーS2を閉状態にそれぞれ切り替える一方、風力発電非連系状態の場合、有接点リレーS1を閉状態、及び、有接点リレーS2を開状態にそれぞれ切り替えるように構成されている。   The switching means 2 includes a contact relay S1 as a first switching element connected between the output terminal T3 and the output side ground terminal T4, and a second switching element connected between the input terminal T1 and the output terminal T3. The contact relay S2 is configured. Further, the switching control means 3 switches the contact relay S1 to the open state and the contact relay S2 to the closed state in the wind power generation interconnected state, while the contact relay S1 in the wind power generation unconnected state. Are closed and the contact relay S2 is switched to the open state.

図1において、小型風力発電機WGの出力を蓄電手段であるバッテリBTに接続し(充電用配線)、バッテリBTの正極及び負極出力を連系装置1の入力端子T1および入力側接地端子T2のそれぞれに接続する(放電用配線)。また太陽電池PVの負極を連系装置1の出力端子T3に接続し、系統連系インバータINVの負極入力端子Nを連系装置1の出力側接地端子T4に接続する。太陽電池PVの正極を系統連系インバータINVの正極入力端子Pに接続する。系統連系インバータINVの出力端子R,Tを交流負荷RL及び商用電源系統ACに接続する。   In FIG. 1, the output of the small wind power generator WG is connected to the battery BT which is a storage means (charging wiring), and the positive and negative outputs of the battery BT are connected to the input terminal T1 and the input-side ground terminal T2 of the interconnection device 1. Connect to each (wiring for discharge). Further, the negative electrode of the solar cell PV is connected to the output terminal T3 of the interconnection device 1, and the negative input terminal N of the grid interconnection inverter INV is connected to the output-side ground terminal T4 of the interconnection device 1. The positive electrode of the solar cell PV is connected to the positive input terminal P of the grid interconnection inverter INV. The output terminals R and T of the grid interconnection inverter INV are connected to the AC load RL and the commercial power supply system AC.

連系装置1の出力端子T3,出力側接地端子T4間に有接点リレーS1を接続し、入力端子T1と出力端子T3間に有接点リレーS2を接続し、入力側接地端子T2と出力側接地端子T4とが短絡されている。   The contact relay S1 is connected between the output terminal T3 and the output side ground terminal T4 of the interconnection device 1, the contact relay S2 is connected between the input terminal T1 and the output terminal T3, and the input side ground terminal T2 and the output side ground. Terminal T4 is short-circuited.

この連系装置1では、バッテリBTが充電不足の間(風力発電の非連系時)は、有接点リレーS1を閉、有接点リレーS2を開とし、太陽電池PVの発電電力のみを系統連系する。バッテリBTの充電が完了した場合(風力発電の連系開始時)、有接点リレーS1を開の後、有接点リレーS2を閉とし、太陽電池PVとバッテリBTとを直列接続する。バッテリBTは電圧が低いため(12Vまたは24V)、夜間は系統連系運転は行われず、太陽電池PVが発電する日中のみバッテリBTから放電され、風力発電電力が太陽光発電電力とともに系統連系される。太陽電池PVは定電流源とみなせるため、太陽電池PVの出力電流に等しい電流がバッテリBTから放電される。太陽電池PVのパワーを利用して系統連系インバータINVに風力発電電力を注入していることになる。バッテリBTの放電が完了した場合(風力発電の連系終了時)には、有接点リレーS2開の後、有接点リレーS1閉として太陽電池PVのみの系統連系に切り替える。   In this interconnection device 1, while the battery BT is insufficiently charged (when wind power generation is not connected), the contact relay S1 is closed and the contact relay S2 is opened, and only the generated power of the solar cell PV is connected to the grid. To go. When the charging of the battery BT is completed (at the start of wind power grid connection), the contact relay S1 is opened, the contact relay S2 is closed, and the solar cell PV and the battery BT are connected in series. Since the battery BT has a low voltage (12V or 24V), grid connection operation is not performed at night, and the battery BT is discharged only during the day when the solar cell PV generates power. Is done. Since the solar cell PV can be regarded as a constant current source, a current equal to the output current of the solar cell PV is discharged from the battery BT. This means that wind power is injected into the grid interconnection inverter INV using the power of the solar cell PV. When the discharge of the battery BT is completed (at the end of wind power grid connection), the contact relay S2 is opened and then the contact relay S1 is closed to switch to the grid interconnection of only the solar cells PV.

これらの切替動作は、切替制御手段3によって、太陽電池PVの発電状況や系統連系インバータINVの運転状態に関係なく、バッテリBTの充放電状態に基づいて何時でも行うことができる。充放電状態の判断は、バッテリBTの電圧を充放電状態情報として検知し、検知した電圧が予め設定した電圧(閾値)まで上昇または降下することを検出する電圧検出回路4を用いることによる。この電圧検出回路4や有接点リレー等の動作駆動の電源はバッテリBTから得ている。   These switching operations can be performed at any time by the switching control means 3 based on the charging / discharging state of the battery BT regardless of the power generation state of the solar cell PV and the operating state of the grid interconnection inverter INV. The determination of the charge / discharge state is based on using the voltage detection circuit 4 that detects the voltage of the battery BT as the charge / discharge state information and detects that the detected voltage rises or falls to a preset voltage (threshold). The power source for operation drive such as the voltage detection circuit 4 and the contact relay is obtained from the battery BT.

なお、図1では、S1,S2を有接点リレーとしているが、パワーMOSFETやIGBT等の他のスイッチング素子でも良い。有接点リレーは直流電流の開閉時に生ずるアークで接点の劣化や溶着が発生する虞があるため、信頼性という点ではスイッチング素子の方が適しているのは自明である。   In FIG. 1, S1 and S2 are contact relays, but other switching elements such as power MOSFETs and IGBTs may be used. Since the contact relay may cause contact deterioration or welding due to an arc generated when a DC current is opened and closed, it is obvious that a switching element is more suitable in terms of reliability.

一般家庭で太陽光発電および風力発電を行う場合、太陽光発電の発電量が、風力発電の発電量より相当大きいため、風力発電と太陽光発電のハイブリッド連系運転は短時間しか行われず、ほとんどが太陽光発電の単独運転となることが想定される。このため、本連系装置1は、太陽光発電の単独運転時の悪影響、すなわち、本連系装置1を介して太陽電池PVの電流が流れる際の損失を最小限にしなければならない。また、接続切り替え時に系統連系インバータINVの運転状態に影響を与えることも避けなければならない。図1の構成では、接続切り替え時電流が遮断されるため、系統連系インバータINVの運転停止やサージ電圧発生により系統連系インバータINVが誤動作する虞があり、その対策が必要になる。尚、接続切り替え後のハイブリッド連系運転状態では、太陽電池PVの電圧(100V〜350V)に比し、バッテリBTの電圧(12Vまたは24V)が低いため、最大電力点追随制御等の系統連系インバータINVの動作に影響を与えることはない。   When performing solar power generation and wind power generation in ordinary households, the power generation amount of solar power generation is considerably larger than the power generation amount of wind power generation. Is assumed to be an independent operation of photovoltaic power generation. For this reason, this interconnection device 1 must minimize the adverse effect of solar power generation during single operation, that is, loss when the current of the solar cell PV flows through this interconnection device 1. Also, it must be avoided to affect the operation state of the grid interconnection inverter INV at the time of connection switching. In the configuration of FIG. 1, since the current at the time of connection switching is cut off, there is a possibility that the grid interconnection inverter INV malfunctions due to operation stop of the grid interconnection inverter INV or generation of surge voltage, and countermeasures are necessary. In the hybrid interconnection operation state after connection switching, the voltage (12V or 24V) of the battery BT is lower than the voltage (100V to 350V) of the solar battery PV, so that the grid interconnection such as maximum power point tracking control is performed. The operation of the inverter INV is not affected.

次に、図2は、図1の有接点リレーS1を風力発電非連系状態時に導通する整流素子であるダイオードD1とし、有接点リレーS2をスイッチング素子であるパワーMOSFET(Q2)とした本発明の他の実施形態を示す回路図である。風力発電の非連系時にQ2をオフ(開状態)にする。このためダイオードD1がオンして導通し、太陽電池PVの電流はダイオードD1を経由して系統連系インバータINVに入力される。風力発電の連系開始時にQ2をオン(閉状態)にする。ダイオードD1にバッテリBTによる逆電圧が印加されるため、ダイオードD1がオフとなり、太陽電池PVの発電電流は、バッテリBT、Q2を経由して流れるようになり、風力発電電力が太陽光電力とともに系統連系インバータINVに入力される。風力発電の連系終了時にはQ2をオフし、太陽電池PVの電流はダイオードD1を経由して系統連系インバータINVに入力されるようになる。   Next, FIG. 2 shows the present invention in which the contact relay S1 of FIG. 1 is a diode D1 that is a rectifying element that conducts when the wind power generation is not connected, and the contact relay S2 is a power MOSFET (Q2) that is a switching element. It is a circuit diagram which shows other embodiment. Q2 is turned off (open state) when wind power generation is disconnected. For this reason, the diode D1 is turned on and becomes conductive, and the current of the solar battery PV is input to the grid interconnection inverter INV via the diode D1. Q2 is turned on (closed) at the start of wind power integration. Since the reverse voltage by the battery BT is applied to the diode D1, the diode D1 is turned off, and the generated current of the solar battery PV flows through the batteries BT and Q2, and the wind power generated along with the solar power is connected to the system. Input to the interconnected inverter INV. At the end of wind power interconnection, Q2 is turned off, and the current of the solar cell PV is input to the grid interconnection inverter INV via the diode D1.

この構成においては、切替駆動するはQ2のみであり構成がシンプルになる。またダイオードD1とバッテリBT間にQ2が接続されるので、Q2への印加電圧はバッテリBTの電圧となり、低定格電圧のパワーMOSFETが使用できる。低定格電圧のパワーMOSFETはオン抵抗が低いためQ2の損失を低くすることができる。また、太陽電池PVの電流の遮断が発生しないため、系統連系インバータINVの運転状態に影響を与えることはない。ただし、太陽電池PVのみのときダイオードD1を介して太陽電池PVの電流が流れるため、発電量が多いときにはダイオードD1での損失が大きくなる(4kWシステムで20W程度)。   In this configuration, only Q2 is switched and the configuration is simplified. Further, since Q2 is connected between the diode D1 and the battery BT, the voltage applied to Q2 becomes the voltage of the battery BT, and a power MOSFET having a low rated voltage can be used. Since the power MOSFET with a low rated voltage has a low on-resistance, the loss of Q2 can be reduced. Moreover, since the interruption | blocking of the electric current of the solar cell PV does not generate | occur | produce, it does not affect the driving | running state of the grid connection inverter INV. However, since the current of the solar cell PV flows through the diode D1 when only the solar cell PV is used, the loss at the diode D1 increases when the amount of power generation is large (about 20 W in the 4 kW system).

次に、図3は、図2のダイオードD1の損失をほぼ解消する本発明の他の実施形態を示す回路図である。図1のS1,S2をそれぞれパワーMOSFET(Q1,Q2)としている。風力発電の非連系時にQ1をオン、Q2をオフにする。このため、太陽電池PVの発電電流はQ1のチャンネル部を流れて系統連系インバータINVに入力される。Q1の印加電圧もバッテリBTの電圧となるので、低定格電圧のすなわちオン抵抗の小さいパワーMOSFETが使用できる。このため、この状態でのQ1の損失を図2の構成と比べて著しく低減できる(4kWシステムで最大1W程度)。なお、この構成においては、風力発電の連系開始時にはQ1をオフ(Q1のボディダイオードオン)の後、Q2オン(Q1のボディダイオードオフ)し、風力発電の連系終了時にはQ2オフ(Q1のボディダイオードオン)の後Q1オン(Q1のボディダイオードオフ)するので、太陽電池PVの電流の遮断は発生しないため、系統連系インバータINVの運転状態に影響を与えることはない。   Next, FIG. 3 is a circuit diagram showing another embodiment of the present invention that substantially eliminates the loss of the diode D1 of FIG. S1 and S2 in FIG. 1 are power MOSFETs (Q1 and Q2), respectively. When wind power is not connected, Q1 is turned on and Q2 is turned off. For this reason, the generated current of the solar cell PV flows through the channel portion of Q1 and is input to the grid interconnection inverter INV. Since the applied voltage of Q1 also becomes the voltage of the battery BT, a power MOSFET having a low rated voltage, that is, a low on-resistance can be used. For this reason, the loss of Q1 in this state can be remarkably reduced as compared with the configuration of FIG. In this configuration, Q1 is turned off (Q1 body diode is turned on) at the start of wind power interconnection, Q2 is turned on (Q1 body diode is turned off), and Q2 is turned off (Q1 is turned off) at the end of wind power interconnection. Since Q1 is turned on after the body diode is turned on (the body diode of Q1 is turned off), the current interruption of the solar cell PV does not occur, so that the operating state of the grid interconnection inverter INV is not affected.

図4は、図2のダイオードD1の損失を更に低減する本発明の他の実施形態を示す回路図である。図1のS1を有接点リレーX1とダイオードD1との並列接続したものから構成し、図1のS2をパワーMOSFET(Q2)としている。風力発電の非連系時、X1を閉、Q2をオフにする。このため太陽電池PVの発電電流はX1を流れて系統連系インバータINVに入力される。このため、この状態でのX1の損失がほぼ0になる。なお、この構成においては、風力発電の連系開始時にはX1開(D1オン)の後、Q2オン(D1オフ)し、風力発電の連系終了時にはQ2オフ(D1オン)の後、X1閉(D1オフ)するので、太陽電池PVの電流の遮断は発生しないため、系統連系インバータINVの運転状態に影響を与えることはない。また、X1と並列にD1が接続されて電流のバイパス回路が確保されているため、X1開閉時のアークの発生を抑止できるので、信頼性の高い装置とすることができる。更にX1をラッチングリレーとすることにより、X1を開閉する駆動電力のみでよくなり、制御電力を図2の構成と同程度まで低減できる。   FIG. 4 is a circuit diagram showing another embodiment of the present invention that further reduces the loss of the diode D1 of FIG. S1 in FIG. 1 is constituted by a parallel connection of a contact relay X1 and a diode D1, and S2 in FIG. 1 is a power MOSFET (Q2). When wind power generation is disconnected, X1 is closed and Q2 is turned off. For this reason, the generated current of the solar cell PV flows through X1 and is input to the grid interconnection inverter INV. For this reason, the loss of X1 in this state becomes almost zero. In this configuration, X1 is opened (D1 is on) at the start of wind power grid connection, Q2 is turned on (D1 off), and Q2 is off (D1 is on) at the end of wind power grid connection, X1 is closed ( D1 is off), so that the current interruption of the solar cell PV does not occur, and thus does not affect the operating state of the grid interconnection inverter INV. In addition, since D1 is connected in parallel with X1 and a current bypass circuit is secured, generation of an arc at the time of opening and closing X1 can be suppressed, so that a highly reliable device can be obtained. Further, by using X1 as a latching relay, only the driving power for opening and closing X1 is required, and the control power can be reduced to the same level as in the configuration of FIG.

尚、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で各部の形状並びに構成を適宜に変更して実施することも可能である。
(1)他の直流電力発電系統は、太陽光発電系統に限らず、直流電力を出力するものであれば、他の交流発電系統の出力段で直流変換したものや燃料電池発電系統等としても良い。
(2)切替制御手段は、バッテリの電圧に限らず、充放電状態に基づくものであれば、電流(蓄電量)を検出して充放電完了等、充放電状態の判断結果に応じて切り替えても良い。
(3)本連系装置1は、図1、2に相当する図5(a)の概略回路図のように、出力端子T3を太陽電池PV1の負極に接続し、出力側接地端子T4を系統連系インバータINVの負極入力端子Nに直接接続する構成に限らず、図5(b)のように、出力端子T3を系統連系インバータINVの正極入力端子に直接接続し、出力側接地端子T4を太陽電池PV2の正極に接続する構成や、図5(c)のように、出力端子T3を太陽電池PV1の負極に接続し、出力側接地端子T4を太陽電池PV2の正極に接続する構成とすることもできる。これらの場合も、図1〜図4の場合と同様の作用効果を得ることができる。
In addition, this invention is not limited to the said embodiment, It is also possible to change suitably the shape and structure of each part in the range which does not deviate from the meaning of this invention.
(1) The other DC power generation system is not limited to the solar power generation system, but may be any one that outputs DC power as long as it is DC-converted at the output stage of another AC power generation system or a fuel cell power generation system. good.
(2) The switching control means is not limited to the battery voltage, and if it is based on the charge / discharge state, it detects the current (charged amount) and switches according to the determination result of the charge / discharge state, such as completion of charge / discharge. Also good.
(3) As shown in the schematic circuit diagram of FIG. 5A corresponding to FIGS. 1 and 2, the interconnection device 1 connects the output terminal T3 to the negative electrode of the solar cell PV1, and connects the output-side ground terminal T4 to the system. As shown in FIG. 5B, the output terminal T3 is directly connected to the positive input terminal of the grid-connected inverter INV, and the output-side ground terminal T4 is not limited to the configuration directly connected to the negative input terminal N of the grid-connected inverter INV. And a configuration in which the output terminal T3 is connected to the negative electrode of the solar cell PV1 and the output-side ground terminal T4 is connected to the positive electrode of the solar cell PV2, as shown in FIG. You can also In these cases, the same effects as those in FIGS. 1 to 4 can be obtained.

本発明の一実施形態を示す回路図である。It is a circuit diagram showing one embodiment of the present invention. 本発明の他の実施形態を示す回路図である。It is a circuit diagram which shows other embodiment of this invention. 本発明の他の実施形態を示す回路図である。It is a circuit diagram which shows other embodiment of this invention. 本発明の他の実施形態を示す回路図である。It is a circuit diagram which shows other embodiment of this invention. 本発明の他の実施形態を示す(a)〜(c)は概略回路図である。(A)-(c) which shows other embodiment of this invention is a schematic circuit diagram.

符号の説明Explanation of symbols

1・・小型風力発電系統連系装置(連系装置)、2・・切替手段、3・・切替制御手段、4・・電圧検出回路、WG・・小型風力発電系統、BT・・バッテリ、PV、PV1、PV2・・太陽電池、INV・・系統連系インバータ、RL・・負荷、AC・・商用電源系統、D1・・整流素子、S1・・第1スイッチング素子、S2・・第2スイッチング素子、Q1,Q2・・パワーMOSFET、X1・・有接点リレー。   1 ・ ・ Small wind power generation system interconnection device (interconnection device) 2 ・ ・ Switching means 3 ・ ・ Switch control means 4 ・ ・ Voltage detection circuit, WG ・ ・ Small wind power generation system, BT ・ ・ Battery, PV , PV1, PV2 ... solar cells, INV ... grid-connected inverter, RL ... load, AC ... commercial power supply system, D1 / ... rectifier, S1 / ... first switching element, S2 / ... second switching element , Q1, Q2 ... Power MOSFET, X1 ... Contact relay.

Claims (3)

小型風力発電系統を、他の直流電力発電系統によって発電された直流電力を所定周波数の交流電力に変換する系統連系インバータを介して、前記他の直流電力発電系統とともに、交流電力系統に連系させる小型風力発電系統連系装置であって、
前記小型風力発電系統の正極に接続された入力端子と、
前記小型風力発電系統の負極に接続された入力側接地端子と、
前記他の直流電力発電系統の正極が前記系統連系インバータの正極入力端子に接続された場合、前記他の直流電力発電系統の負極に接続される一方、前記他の直流電力発電系統の正極が前記系統連系インバータの正極入力端子に接続されない場合、前記系統連系インバータの正極入力端子に接続される出力端子と、
前記他の直流電力発電系統の負極が前記系統連系インバータの負極入力端子に接続された場合、前記他の直流電力発電系統の正極に接続される一方、前記他の直流電力発電系統の負極が前記系統連系インバータの負極入力端子に接続されない場合、前記系統連系インバータの負極入力端子に接続される出力側接地端子と、
前記小型風力発電系統を前記他の直流電力発電系統とともに前記交流電力系統に連系させた風力発電連系状態、または、前記他の直流電力発電系統のみを前記交流電力系統に連系させた風力発電非連系状態のうち、一方の連系状態に切り替える切替手段と、
前記切替手段の切替動作を制御する切替制御手段と、を備え、
前記切替制御手段は、
前記小型風力発電系統が備えた風力発電電力を蓄える蓄電手段の充放電状態を検知し、検知した充放電状態に基づき、風力発電連系状態、または、風力発電非連系状態のいずれか一方に切り替え可能であって
前記切替制御手段は、前記蓄電手段の電圧を充放電状態情報として検知する電圧検出回路を備え、該電圧検出回路によって検知した前記電圧が予め設定した閾値電圧まで上昇または下降することを検出することで、前記充放電状態を判断する
ことを特徴とする小型風力発電系統連系装置。
A small wind power generation system is connected to an AC power system together with the other DC power generation system via a system-connected inverter that converts DC power generated by another DC power generation system into AC power of a predetermined frequency. A small wind power grid interconnection device,
An input terminal connected to a positive electrode of the small wind power generation system;
An input-side ground terminal connected to the negative electrode of the small wind power generation system;
When the positive electrode of the other DC power generation system is connected to the positive input terminal of the grid interconnection inverter, the positive electrode of the other DC power generation system is connected to the negative electrode of the other DC power generation system. When not connected to the positive input terminal of the grid interconnection inverter, the output terminal connected to the positive input terminal of the grid interconnection inverter;
When the negative electrode of the other DC power generation system is connected to the negative input terminal of the grid interconnection inverter, the negative electrode of the other DC power generation system is connected to the positive electrode of the other DC power generation system. When not connected to the negative input terminal of the grid interconnection inverter, the output side ground terminal connected to the negative input terminal of the grid interconnection inverter,
Wind power generation state in which the small wind power generation system is connected to the AC power system together with the other DC power generation system, or wind power in which only the other DC power generation system is connected to the AC power system Switching means for switching to one of the power generation non-connected states,
Switching control means for controlling the switching operation of the switching means,
The switching control means includes
The charge / discharge state of the power storage means for storing the wind power generated by the small wind power generation system is detected, and based on the detected charge / discharge state, either the wind power generation linked state or the wind power generation non-linked state is set. It is capable of switching,
The switching control means includes a voltage detection circuit that detects the voltage of the power storage means as charge / discharge state information, and detects that the voltage detected by the voltage detection circuit rises or falls to a preset threshold voltage. Then, the charge / discharge state is determined .
前記切替手段は、
前記出力端子と前記出力側接地端子との間に接続され、風力発電非連系状態時に導通する整流素子と、
前記入力端子と前記出力端子との間に接続したスイッチング素子と、を有し、
前記切替制御手段は、
風力発電連系状態の場合、前記スイッチング素子を閉状態に切り替える一方、
風力発電非連系状態の場合、前記スイッチング素子を開状態に切り替える、
請求項1に記載の小型風力発電系統連系装置。
The switching means is
A rectifying element that is connected between the output terminal and the output-side ground terminal and that conducts when the wind power generation is not connected,
A switching element connected between the input terminal and the output terminal,
The switching control means includes
In the case of wind power interconnection state, while switching the switching element to the closed state,
In the case of a wind power generation unconnected state, the switching element is switched to an open state.
The small wind power generation system interconnection device according to claim 1.
前記切替手段は、
前記出力端子と前記出力側接地端子との間に接続した第1スイッチング素子と、
前記入力端子と前記出力端子との間に接続した第2スイッチング素子と、を有し、
前記切替制御手段は、
風力発電連系状態の場合、前記第1スイッチング素子を開状態、及び、前記第2スイッチング素子を閉状態にそれぞれ切り替える一方、
風力発電非連系状態の場合、前記第1スイッチング素子を閉状態、及び、前記第2スイッチング素子を開状態にそれぞれ切り替える、
請求項1に記載の小型風力発電系統連系装置。
The switching means is
A first switching element connected between the output terminal and the output-side ground terminal;
A second switching element connected between the input terminal and the output terminal,
The switching control means includes
In the case of a wind power generation interconnection state, while switching the first switching element to an open state and the second switching element to a closed state,
In the case of a wind power generation unconnected state, the first switching element is switched to a closed state, and the second switching element is switched to an open state.
The small wind power generation system interconnection device according to claim 1.
JP2008078623A 2008-03-25 2008-03-25 Small wind power system interconnection device Expired - Fee Related JP5303168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008078623A JP5303168B2 (en) 2008-03-25 2008-03-25 Small wind power system interconnection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008078623A JP5303168B2 (en) 2008-03-25 2008-03-25 Small wind power system interconnection device

Publications (2)

Publication Number Publication Date
JP2009232661A JP2009232661A (en) 2009-10-08
JP5303168B2 true JP5303168B2 (en) 2013-10-02

Family

ID=41247429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008078623A Expired - Fee Related JP5303168B2 (en) 2008-03-25 2008-03-25 Small wind power system interconnection device

Country Status (1)

Country Link
JP (1) JP5303168B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5851342B2 (en) * 2012-05-21 2016-02-03 株式会社辰巳菱機 Hybrid solar water heater system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2745930B2 (en) * 1992-02-12 1998-04-28 日新電機株式会社 Solar power generation equipment
JPH08130837A (en) * 1994-10-31 1996-05-21 Kyocera Corp Solar battery power unit
JPH10271871A (en) * 1997-03-28 1998-10-09 Toshiba Lighting & Technol Corp Motor driving device
JP2000116007A (en) * 1998-09-29 2000-04-21 Nippon Electric Ind Co Ltd Hybrid wind turbine power generating system provided with solar battery
JP4218155B2 (en) * 1999-11-16 2009-02-04 株式会社明電舎 Combined power generation system
JP3101866U (en) * 2003-10-28 2004-06-24 坂井電機株式会社 Battery charging controller for power recovery in small wind area of small wind turbine generator
JP2006254682A (en) * 2005-02-09 2006-09-21 Kansai Electric Power Co Inc:The Power supply system including combination of solar cell and redox flow cell
JP2007116809A (en) * 2005-10-19 2007-05-10 Ebara Corp Wind turbine/photovoltaic hybrid power generation system

Also Published As

Publication number Publication date
JP2009232661A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
US8907522B2 (en) Grid-connected power storage system and method for controlling grid-connected power storage system
CN102630361A (en) Power conversion apparatus, power generating system, and charge/discharge control method
JP2011510483A (en) Interface device, system and method for inverter for photovoltaic cell
JP5660130B2 (en) Storage unit, method for correcting capacity value of storage battery, and storage system
WO2012144358A1 (en) Power supply device, control method for power supply device, and dc power supply system
US9083188B2 (en) Balance correcting apparatus and electricity storage system
JP5211772B2 (en) Power conditioner operation control device and photovoltaic power generation system
JP5799210B2 (en) Power storage system, charge / discharge circuit, and grid interconnection device
KR100844401B1 (en) Uninterrupted power supply apparatus with a solar generating apparatus
JP2017118598A (en) Power supply system
KR20170013670A (en) A control apparatus for precharging of high voltage battery for electric vehicle
JP5303168B2 (en) Small wind power system interconnection device
CN207124475U (en) Energy-storage system
KR101162221B1 (en) An apparatus of preventing over-charging/over-discharging for an energy storage and a method thereof
JP2009247185A (en) System-cooperative inverter and its self-sustaining operation method
JP6210952B2 (en) Power supply system
Bubovich et al. Initial Evaluation of a Multilevel Inverter with Unfolding Stage for BESS Applications
CN202651815U (en) Multiple-backup solar power supply system
JP4177710B2 (en) Inverter device
WO2013005804A1 (en) Switching device
US20180323615A1 (en) Power conversion apparatus and method
CN103378624B (en) Multi-backup solar electric power supply system
US20230208182A1 (en) Power supply system and method
JP2022012723A (en) Power supply
JP2017099183A (en) Switching unit, and charge discharge controller including it, and their switching control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees