JP5302824B2 - Solid electrolytic capacitor and manufacturing method thereof - Google Patents

Solid electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP5302824B2
JP5302824B2 JP2009195271A JP2009195271A JP5302824B2 JP 5302824 B2 JP5302824 B2 JP 5302824B2 JP 2009195271 A JP2009195271 A JP 2009195271A JP 2009195271 A JP2009195271 A JP 2009195271A JP 5302824 B2 JP5302824 B2 JP 5302824B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
capacitor
anode body
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009195271A
Other languages
Japanese (ja)
Other versions
JP2011049276A (en
Inventor
清文 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVX Tantalum Asia Corp
Original Assignee
AVX Tantalum Asia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVX Tantalum Asia Corp filed Critical AVX Tantalum Asia Corp
Priority to JP2009195271A priority Critical patent/JP5302824B2/en
Publication of JP2011049276A publication Critical patent/JP2011049276A/en
Application granted granted Critical
Publication of JP5302824B2 publication Critical patent/JP5302824B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、固体電解コンデンサとその製造方法に関するものである。   The present invention relates to a solid electrolytic capacitor and a manufacturing method thereof.

従来の固体電解コンデンサは、タンタル、ニオブ、またはアルミニウム等の弁作用金属素子に陽極酸化により誘電体酸化皮膜を形成した後、固体電解質層、陰極引出層を形成する陰極形成工程、樹脂で外装する外装工程を経て製造されるが、誘電体酸化皮膜は非常に薄く、陰極形成工程や外装工程における応力や機械的ストレスにより損傷しやすく、それが原因で漏れ電流特性が悪化することがある。   In a conventional solid electrolytic capacitor, a dielectric oxide film is formed by anodic oxidation on a valve action metal element such as tantalum, niobium, or aluminum, and then a cathode forming step for forming a solid electrolyte layer and a cathode lead layer, which is covered with a resin. Although manufactured through an exterior process, the dielectric oxide film is very thin and easily damaged by stress or mechanical stress in the cathode formation process or the exterior process, which may deteriorate the leakage current characteristics.

そこで、その対策として様々な手法が提案されている。誘電体酸化皮膜を厚く形成することで、陰極形成工程や外装工程における応力や機械的ストレスが加わっても、酸化皮膜の損傷による漏れ電流特性の低下を防止する方法が提案されている(例えば、特許文献1参照)。但し、本手法を用いた場合、静電容量が減少する問題があるため、誘電体酸化皮膜の形成は数十〜数百μm程度となり、漏れ電流悪化の対策には充分ではなかった。   Therefore, various methods have been proposed as countermeasures. A method of preventing a decrease in leakage current characteristics due to damage to an oxide film has been proposed by forming a thick dielectric oxide film even when stress or mechanical stress is applied in a cathode forming process or an exterior process (for example, Patent Document 1). However, when this method is used, there is a problem that the electrostatic capacity is reduced. Therefore, the formation of the dielectric oxide film is about several tens to several hundreds μm, which is not sufficient as a countermeasure against the deterioration of the leakage current.

また、過去から固体電解質層を形成する二酸化マンガン形成用溶液や、導電性高分子形成用重合液の反応条件をコントロールすることにより、特に機械的ストレスに最も弱いコンデンサ陽極体エッジ部に固体電解質層をより厚く形成することが検討されてきたが、依然として充分とは言えず継続的な課題であった。例えば、固体電解質層に繊維や粘剤を含有させる方法により上記を実現することが検討されているが、固体電解質を厚く形成するため繊維や粘剤を含有させると固体電解質層の導電性が低下し、ESRが悪化する短所があった。また同手法を用いても固体電解質形成材料が基本的に液体であるため、形成時に表面張力が働き、特にコンデンサ陽極体のエッジ部は他の部位と比較し、必ず固体電解質層が薄くなるため、やはり機械的ストレスによる漏れ電流悪化の対策には充分ではなかった(例えば、特許文献2、3参照)。   In addition, by controlling the reaction conditions of the manganese dioxide forming solution that forms the solid electrolyte layer and the polymerization solution for forming the conductive polymer from the past, the solid electrolyte layer is formed at the edge of the capacitor anode body, which is particularly vulnerable to mechanical stress. Although it has been studied to form a thicker film, it has not been sufficient yet and has been an ongoing problem. For example, it has been studied to realize the above by a method in which a solid electrolyte layer is made to contain fibers or a sticking agent. However, if a fiber or a sticking agent is contained to make the solid electrolyte thick, the conductivity of the solid electrolyte layer is lowered. However, there is a disadvantage that ESR deteriorates. Even if this method is used, since the solid electrolyte forming material is basically liquid, surface tension works during formation, and the edge of the capacitor anode body is always thinner than other parts, so the solid electrolyte layer is always thinner. Also, it was not sufficient for countermeasures against leakage current deterioration due to mechanical stress (see, for example, Patent Documents 2 and 3).

また、固体電解コンデンサ陽極体に誘電体酸化皮膜を形成した後、エッジ部全周に渡り、保護用のレジスト層を形成することで、陰極形成工程や外装工程における応力や機械的ストレスに対応する技術も提案されているが、単純に全周に渡りレジスト層を形成すると、レジスト層で被覆された誘電体酸化皮膜層上への固体電解質層の形成が不十分となるため、当然静電容量が大幅に低下してしまう問題があった。さらに、同特許文献に示されているエポキシ樹脂等の材料を使用すると絶縁性は確保できるが、応力や機械的ストレスを緩衝する効果はなく、やはり漏れ電流悪化の対策には充分ではなかった(例えば、特許文献4参照)。   In addition, after forming a dielectric oxide film on the solid electrolytic capacitor anode body, a protective resist layer is formed over the entire periphery of the edge portion to cope with stress and mechanical stress in the cathode forming process and the exterior process. Technology has also been proposed, but if a resist layer is simply formed over the entire circumference, the formation of a solid electrolyte layer on the dielectric oxide film layer covered with the resist layer becomes insufficient, so naturally the capacitance There was a problem that would be significantly reduced. Furthermore, insulation can be ensured by using a material such as an epoxy resin shown in the same patent document, but there is no effect of buffering stress and mechanical stress, and it is still not sufficient for measures against leakage current deterioration ( For example, see Patent Document 4).

さらに近年、電子機器のデジタル化にともない、固体電解コンデンサには優れた高周波特性が求められており、固体電解コンデンサに用いられる固体電解質には、低ESR化を目的として二酸化マンガンからより導電率の高い導電性高分子へのシフトが進んでいる。   In recent years, with the digitization of electronic equipment, solid electrolytic capacitors have been required to have excellent high-frequency characteristics, and solid electrolytes used in solid electrolytic capacitors are more conductive than manganese dioxide for the purpose of lowering ESR. The shift to highly conductive polymers is progressing.

一般に、固体電解コンデンサに使用される導電性高分子としては、ポリチオフェン、ポリピロール、ポリアニリンまたはそれらの誘導体等があり、その形成方法としては、電解重合および化学酸化重合が用いられている。しかし導電性高分子は二酸化マンガンに対し、導電率が飛躍的に向上する長所を持つ一方で、硬度、機械的強度が低いという短所も併せ持つ。この短所のため、上述した陰極形成工程や外装工程における応力や機械的ストレスに起因する漏れ電流特性の悪化はより顕著なものとなり、さらなる改善が必要とされてきた。   In general, examples of the conductive polymer used in the solid electrolytic capacitor include polythiophene, polypyrrole, polyaniline, and derivatives thereof, and electrolytic polymerization and chemical oxidation polymerization are used as the formation method. However, the conductive polymer has the advantage that the conductivity is dramatically improved over manganese dioxide, but also has the disadvantage that the hardness and mechanical strength are low. Due to this disadvantage, the deterioration of leakage current characteristics due to the stress and mechanical stress in the cathode forming process and the exterior process described above becomes more remarkable, and further improvement has been required.

特開昭58−190016号公報Japanese Patent Laid-Open No. 58-190016 特開2001−126963号公報JP 2001-126963 A 特開2001−250743号公報JP 2001-250743 A 特開平5−304058号公報JP-A-5-304058

本発明は、上記の継続的課題である漏れ電流特性を改善する方法を提供するものであり、特に、静電容量の低下を少なくしつつ、漏れ電流特性を改善した導電性高分子型固体電解コンデンサを提供することを目的とする。   The present invention provides a method for improving the leakage current characteristics, which is the above-mentioned continuous problem, and in particular, a conductive polymer solid electrolyte having improved leakage current characteristics while reducing a decrease in capacitance. The object is to provide a capacitor.

上記課題を解決するために、本発明に係る固体電解コンデンサは、弁作用金属粉末からなる成形体を焼結させてなる焼結体、または、粗面化された弁作用金属箔の表面に、誘電体酸化皮膜が形成されたコンデンサ陽極体の、当該誘電体酸化皮膜の表面に、固体電解質層及び陰極引出層が順次形成されてなるものであって、
上記コンデンサ陽極体における三辺の稜が交わる頂点(エッジの頂点部分)の一ヶ所以上に、絶縁性樹脂からなる凸部が、上記コンデンサ陽極体の各陵線の長さの5〜30%にわたって形成されていることを特徴とする。
この構成によれば、素子において、強度が最も弱いエッジの頂点部分が、絶縁性樹脂で保護されているため、外部からの応力や機械的ストレスが緩衝され、かつエッジ部に固体電解質層が十分形成されているため、漏れ電流の悪化が少なく、静電容量の低下が少ない固体電解コンデンサ、特に導電性高分子型固体電解コンデンサを提供することができる。本発明の固体電解コンデンサにおける凸部は、実質的に小球状や小楕円球状のものが一般的であるが、これに限定されるものではない。
In order to solve the above problems, the solid electrolytic capacitor according to the present invention is a sintered body obtained by sintering a molded body made of a valve action metal powder, or a roughened valve action metal foil on the surface. A capacitor anode body on which a dielectric oxide film is formed, and a solid electrolyte layer and a cathode lead layer are sequentially formed on the surface of the dielectric oxide film,
A convex portion made of an insulating resin extends over 5 to 30% of the length of each line of the capacitor anode body at one or more of the apexes (edge apex portions) where the ridges of the three sides of the capacitor anode body intersect. It is formed.
According to this structure, since the apex portion of the edge having the weakest strength is protected by the insulating resin in the element, external stress and mechanical stress are buffered, and the solid electrolyte layer is sufficiently provided at the edge portion. Since it is formed, it is possible to provide a solid electrolytic capacitor, in particular, a conductive polymer solid electrolytic capacitor, in which the leakage current is hardly deteriorated and the capacitance is hardly lowered. The convex portions in the solid electrolytic capacitor of the present invention are generally substantially spherical or small elliptical, but are not limited thereto.

また、本発明は、上記の特徴を有した固体電解コンデンサにおいて、上記凸部が弾性を備えていることを特徴とするものでもある。
また、本発明は、上記の特徴を有した固体電解コンデンサにおいて、上記の全ての頂点に上記凸部が形成されていることを特徴とするものでもある。
また、本発明は、上記の特徴を有した固体電解コンデンサにおいて、上記固体電解質層が導電性高分子からなることを特徴とするものでもある。
In the solid electrolytic capacitor having the above characteristics, the present invention is characterized in that the convex portion has elasticity.
The present invention is also characterized in that, in the solid electrolytic capacitor having the above characteristics, the convex portions are formed at all the vertices.
The present invention is also a solid electrolytic capacitor having the above characteristics, wherein the solid electrolyte layer is made of a conductive polymer.

さらに、本発明は、弁作用金属粉末からなる成形体を焼結させてなる焼結体、または、粗面化された弁作用金属箔の表面に、誘電体酸化皮膜を形成して、コンデンサ陽極体を形成後、該誘電体酸化皮膜の表面に固体電解質層、陰極引出層を形成する固体電解コンデンサの製造方法であって、
上記誘電体酸化皮膜の形成前、もしくは形成後に上記コンデンサ陽極体における三辺の稜が交わる頂点の一ヶ所以上に、凸部を当該コンデンサ陽極体の各稜線の長さの5〜30%にわたって絶縁性樹脂にて形成することを特徴とするものである。
また、本発明は、上記の特徴を有した固体電解コンデンサの製造方法において、上記凸部を形成する際、絶縁性樹脂として、弾性を備えた材料を使用することを特徴とするものでもある。
また、本発明は、上記の特徴を有した固体電解コンデンサの製造方法において、上記固体電解質層を形成する際、導電性高分子層形成用の重合液中に上記コンデンサ陽極体を浸漬し、その後、引き上げることを特徴とするものでもある。
Furthermore, the present invention provides a capacitor anode by forming a dielectric oxide film on the surface of a sintered body obtained by sintering a molded body made of a valve action metal powder or a roughened valve action metal foil. A solid electrolytic capacitor manufacturing method for forming a solid electrolyte layer and a cathode lead layer on the surface of the dielectric oxide film after forming a body,
Before or after the formation of the dielectric oxide film, the convex portion is insulated over 5 to 30% of the length of each ridge line of the capacitor anode body at one or more points where the ridges of the three sides of the capacitor anode body intersect. It is characterized in that it is made of a functional resin.
The present invention is also characterized in that, in the method of manufacturing a solid electrolytic capacitor having the above characteristics, a material having elasticity is used as the insulating resin when the convex portions are formed.
Further, the present invention provides a method for producing a solid electrolytic capacitor having the above characteristics, wherein when forming the solid electrolyte layer, the capacitor anode body is immersed in a polymerization solution for forming a conductive polymer layer, and thereafter It is also characterized by raising.

本発明によると、弾性を持つ絶縁性樹脂によって強度が最も弱いエッジの頂点部分が保護されているために、外部から加わる応力や機械的ストレスが緩衝され、かつエッジ部に固体電解質層が十分形成されているため、静電容量の低下が少なく、かつ漏れ電流特性が改善された固体電解コンデンサ、特に導電性高分子型固体電解コンデンサが実現できる。
さらに、エッジ部の頂点部分だけに、絶縁性樹脂からなる凸部を形成するため、トランスファーモールド等で外装樹脂を形成する際に、樹脂の流れを妨げることがない。よって、組立不良の悪化を起こすこともない。
According to the present invention, since the apex portion of the edge having the weakest strength is protected by the insulating resin having elasticity, the externally applied stress and mechanical stress are buffered, and the solid electrolyte layer is sufficiently formed at the edge portion. Therefore, it is possible to realize a solid electrolytic capacitor, particularly a conductive polymer type solid electrolytic capacitor, in which the decrease in capacitance is small and the leakage current characteristic is improved.
Furthermore, since the convex portion made of the insulating resin is formed only at the apex portion of the edge portion, the flow of the resin is not hindered when the exterior resin is formed by transfer molding or the like. Therefore, the assembly failure does not deteriorate.

実施例における弁作用金属素子の三辺の稜が交わる頂点すべて(計8個の頂点)に絶縁性樹脂による凸部を形成したコンデンサ陽極体の模式図である。It is a schematic diagram of the capacitor | condenser anode body which formed the convex part by insulating resin in all the vertices (a total of eight vertices) where the ridges of the three sides of the valve action metal element in an Example cross. 従来例1、2、3におけるコンデンサ陽極体の模式図である。It is a schematic diagram of the capacitor anode body in Conventional Examples 1, 2, and 3. 従来例4における弁作用金属素子の稜周辺部分すべてにエポキシ樹脂(絶縁性)を塗布したコンデンサ陽極体の模式図である。It is a schematic diagram of the capacitor | condenser anode body which apply | coated the epoxy resin (insulating property) to all the ridge periphery parts of the valve action metal element in the prior art example 4. FIG. 実施例におけるコンデンサ陽極体を導電性高分子層形成用重合液に浸漬後、引き上げた際の稜部分の液持ち上げ状態を示す模式図である。It is a schematic diagram which shows the liquid lifting state of the edge part at the time of pulling up after the capacitor | condenser anode body in an Example is immersed in the polymerization liquid for conductive polymer layer formation.

以下に、本発明の具体的な実施例について添付図面に基づき詳細に説明する。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[実施例1]
実施例1に係る詳細な内容について説明する。まず、タンタル粉末に陽極リードを埋設し、所定の形状にプレス成形後、焼結して4.7mm×3.6mm×1.8mmの直方体状の多孔質な弁作用金属素子を作製した。
[Example 1]
Detailed contents according to the first embodiment will be described. First, an anode lead was embedded in tantalum powder, press-molded into a predetermined shape, and sintered to prepare a rectangular valve-shaped porous valve metal element of 4.7 mm × 3.6 mm × 1.8 mm.

次に前記弁作用金属素子の三辺の稜が交わる頂点すべて(計8個の頂点)に粘度3000mPa・sのフッ素ゴム系絶縁性樹脂を吐出口Φ0.2mmのシリンジで、素子の各稜線の長さの約5%の長さに相当する大きさの凸部が形成されるようにして塗布した後、乾燥した(図1)。なお、粘度の測定条件は、液温20℃において回転式粘度計により1分間ローター回転後に測定した。尚、上記フッ素ゴム系絶縁性樹脂により形成された小楕円球状の凸部の大きさは約240μm×180μm×90μmであった。   Next, fluororubber-based insulating resin with a viscosity of 3000 mPa · s is applied to all the vertices where the ridges of the three sides of the valve action metal element intersect (total of eight vertices) with a syringe with a discharge port of Φ0.2 mm. After applying so that the convex part of the magnitude | size corresponding to the length of about 5% of length was formed, it dried (FIG. 1). The viscosity measurement conditions were measured after rotating the rotor for 1 minute with a rotary viscometer at a liquid temperature of 20 ° C. Incidentally, the size of the small elliptical convex portion formed of the fluororubber-based insulating resin was about 240 μm × 180 μm × 90 μm.

次に0.1wt%リン酸水溶液中において、印加電圧8Vで120分間陽極酸化を行い、弁作用金属素子全体に誘電体酸化皮膜を形成し、コンデンサ陽極体を得た。上記の陽極酸化により形成された誘電体酸化皮膜の厚さは約14μmであった。   Next, anodization was performed for 120 minutes at an applied voltage of 8 V in a 0.1 wt% phosphoric acid aqueous solution, a dielectric oxide film was formed on the entire valve action metal element, and a capacitor anode body was obtained. The thickness of the dielectric oxide film formed by the above anodic oxidation was about 14 μm.

その後、導電性高分子からなる固体電解質層を形成する工程として、3,4−エチレンジオキシチオフェンを含むモノマー溶液とドデシルベンゼンスルホン酸第二鉄を含む酸化剤溶液とを混合し、−5℃に保持した混合溶液に上記コンデンサ陽極体を1秒浸漬した後、引き上げ、25℃で化学酸化重合し導電性高分子層を形成した。その後、形成された導電性高分子の重合残渣を有機溶剤中で洗浄除去後、105℃、30分で乾燥した。   Thereafter, as a step of forming a solid electrolyte layer made of a conductive polymer, a monomer solution containing 3,4-ethylenedioxythiophene and an oxidizing agent solution containing ferric dodecylbenzenesulfonate are mixed, and the temperature is -5 ° C. The capacitor anode body was immersed in a mixed solution held in 1 second for 1 second, then pulled up and chemically oxidized and polymerized at 25 ° C. to form a conductive polymer layer. Thereafter, the polymerization residue of the formed conductive polymer was removed by washing in an organic solvent, and then dried at 105 ° C. for 30 minutes.

上記導電性高分子からなる固体電解質層の形成工程を計10回繰り返すことで導電性高分子からなる固体電解質層を形成した。   The solid electrolyte layer made of the conductive polymer was formed by repeating the process of forming the solid electrolyte layer made of the conductive polymer 10 times in total.

上記の導電性高分子層の上に、カーボンペースト、銀ペーストを塗布後、乾燥して、カーボン層および銀層を順次形成し、この銀層の上に陰極引き出し端子を、上記陽極体から引き出した陽極リードに陽極端子をそれぞれ接続した後、トランスファーモールドにより外装樹脂を施し、定格2.5V−680μFの固体電解コンデンサを作製した。   A carbon paste and a silver paste are applied on the conductive polymer layer, and then dried to sequentially form a carbon layer and a silver layer. A cathode lead terminal is drawn from the anode body on the silver layer. After connecting the anode terminal to each anode lead, an exterior resin was applied by transfer molding to produce a solid electrolytic capacitor rated at 2.5V-680 μF.

[実施例2]
実施例2では、実施例1と同様に作製した弁作用金属素子の三辺の稜が交わる頂点すべて(計8個の頂点)に粘度3000mPa・sのフッ素ゴム系絶縁性樹脂を吐出口Φ0.2mmのシリンジで、素子の稜線の長さの10%の量を塗布した後、乾燥し凸部を形成し、次に、0.1wt%リン酸水溶液中において、印加電圧8Vで120分間陽極酸化を行い、弁作用金属素子全体に誘電体酸化皮膜を形成してコンデンサ陽極体を得た。それ以外は実施例1と同様に固体電解コンデンサを作製した。
[Example 2]
In Example 2, fluororubber-based insulating resin having a viscosity of 3000 mPa · s is applied to all of the vertices (three vertices in total) where the ridges of the three sides of the valve-acting metal element manufactured in the same manner as in Example 1 intersect with the discharge ports Φ0. After applying an amount of 10% of the length of the ridge line of the element with a 2 mm syringe, it is dried to form a convex part, and then anodized in a 0.1 wt% phosphoric acid aqueous solution at an applied voltage of 8 V for 120 minutes. Then, a dielectric oxide film was formed on the entire valve metal element to obtain a capacitor anode body. Otherwise, a solid electrolytic capacitor was produced in the same manner as in Example 1.

[実施例3]
実施例3では、実施例1と同様に作製した弁作用金属素子の三辺の稜が交わる頂点すべて(計8個の頂点)に粘度3000mPa・sのフッ素ゴム系絶縁性樹脂を吐出口Φ0.2mmのシリンジで、素子の稜線の長さの20%の量を塗布した後、乾燥し凸部を形成し、次に、0.1wt%リン酸水溶液中において、印加電圧8Vで120分間陽極酸化を行い、弁作用金属素子全体に誘電体酸化皮膜を形成してコンデンサ陽極体を得た。それ以外は実施例1と同様に固体電解コンデンサを作製した。
[Example 3]
In Example 3, fluororubber-based insulating resin having a viscosity of 3000 mPa · s is applied to all the vertices (three vertices in total) at which the ridges of the three sides of the valve-acting metal element manufactured in the same manner as in Example 1 intersect with the discharge ports Φ0. After applying an amount of 20% of the length of the ridge line of the element with a 2 mm syringe, it was dried to form a convex part, and then anodized in a 0.1 wt% phosphoric acid aqueous solution at an applied voltage of 8 V for 120 minutes. Then, a dielectric oxide film was formed on the entire valve metal element to obtain a capacitor anode body. Otherwise, a solid electrolytic capacitor was produced in the same manner as in Example 1.

[実施例4]
実施例4では、実施例1と同様に作製した弁作用金属素子の三辺の稜が交わる頂点すべて(計8個の頂点)に粘度3000mPa・sのフッ素ゴム系絶縁性樹脂を吐出口Φ0.2mmのシリンジで、素子の稜線の長さの30%の量を塗布した後、乾燥し凸部を形成し、次に、0.1wt%リン酸水溶液中において、印加電圧8Vで120分間陽極酸化を行い、弁作用金属素子全体に誘電体酸化皮膜を形成してコンデンサ陽極体を得た。それ以外は実施例1と同様に固体電解コンデンサを作製した。
[Example 4]
In Example 4, fluororubber-based insulating resin having a viscosity of 3000 mPa · s is applied to all of the vertices (three vertices in total) where the ridges of the three sides of the valve-acting metal element manufactured in the same manner as in Example 1 intersect with the discharge ports Φ0. After applying an amount of 30% of the length of the ridge line of the element with a 2 mm syringe, it was dried to form a convex part, and then anodized in a 0.1 wt% phosphoric acid aqueous solution at an applied voltage of 8 V for 120 minutes. Then, a dielectric oxide film was formed on the entire valve metal element to obtain a capacitor anode body. Otherwise, a solid electrolytic capacitor was produced in the same manner as in Example 1.

[比較例1]
比較例1では、実施例1と同様に作製した弁作用金属素子の三辺の稜が交わる頂点すべて(計8個の頂点)に粘度3000mPa・sのフッ素ゴム系絶縁性樹脂を吐出口Φ0.2mmのシリンジで、素子の稜線の長さの3%の量を塗布した後、乾燥し凸部を形成し、次に、0.1wt%リン酸水溶液中において、印加電圧8Vで120分間陽極酸化を行い、弁作用金属素子全体に誘電体酸化皮膜を形成してコンデンサ陽極体を得た。それ以外は実施例1と同様に固体電解コンデンサを作製した。
[Comparative Example 1]
In Comparative Example 1, fluororubber-based insulating resin having a viscosity of 3000 mPa · s was discharged at the outlets Φ0... At all vertices (total of 8 vertices) where the ridges of the three sides of the valve metal element manufactured in the same manner as in Example 1 intersect. After applying an amount of 3% of the length of the ridge line of the element with a 2 mm syringe, it was dried to form a convex part, and then anodized in a 0.1 wt% phosphoric acid aqueous solution at an applied voltage of 8 V for 120 minutes. Then, a dielectric oxide film was formed on the entire valve metal element to obtain a capacitor anode body. Otherwise, a solid electrolytic capacitor was produced in the same manner as in Example 1.

[比較例2]
比較例2では、実施例1と同様に作製した弁作用金属素子の三辺の稜が交わる頂点すべて(計8個の頂点)に粘度3000mPa・sのフッ素ゴム系絶縁性樹脂を吐出口Φ0.2mmのシリンジで、素子の稜線の長さの35%の量を塗布した後、乾燥し凸部を形成し、次に、0.1wt%リン酸水溶液中において、印加電圧8Vで120分間陽極酸化を行い、弁作用金属素子全体に誘電体酸化皮膜を形成してコンデンサ陽極体を得た。それ以外は実施例1と同様に固体電解コンデンサを作製した。
[Comparative Example 2]
In Comparative Example 2, a fluororubber-based insulating resin having a viscosity of 3000 mPa · s is applied to all the vertices (three vertices in total) where the ridges of the three sides of the valve metal element manufactured in the same manner as in Example 1 intersect with the discharge ports Φ0. After applying an amount of 35% of the length of the ridge line of the element with a 2 mm syringe, it is dried to form a convex part, and then anodized in a 0.1 wt% phosphoric acid aqueous solution at an applied voltage of 8 V for 120 minutes. Then, a dielectric oxide film was formed on the entire valve metal element to obtain a capacitor anode body. Otherwise, a solid electrolytic capacitor was produced in the same manner as in Example 1.

[実施例5]
実施例5では、実施例1と同様に作製した弁作用金属素子を0.1wt%リン酸水溶液中において、印加電圧8Vで120分間陽極酸化を行い、弁作用金属素子全体に誘電体酸化皮膜を形成した後、弁作用金属素子の三辺の稜が交わる頂点すべて(計8個の頂点)に粘度3000mPa・sのフッ素ゴム系絶縁性樹脂を吐出口Φ0.2mmのシリンジで、素子の稜線の長さの20%の量を塗布した後、乾燥し凸部を形成してコンデンサ陽極体を得た。それ以外は実施例1と同様に固体電解コンデンサを作製した。
[Example 5]
In Example 5, a valve action metal element produced in the same manner as in Example 1 was anodized in a 0.1 wt% phosphoric acid aqueous solution at an applied voltage of 8 V for 120 minutes, and a dielectric oxide film was formed on the entire valve action metal element. After forming, the fluororubber-based insulating resin with a viscosity of 3000 mPa · s is applied to all the vertices where the ridges of the three sides of the valve action metal element intersect (total of eight vertices) with a syringe with a discharge port of Φ0.2 mm, After applying an amount of 20% of the length, it was dried to form a convex portion to obtain a capacitor anode body. Otherwise, a solid electrolytic capacitor was produced in the same manner as in Example 1.

[従来例1]
従来例1では、弁作用金属素子の頂点にフッ素ゴム系絶縁性樹脂を塗布しないこと(図2)以外は実施例1と同様に固体電解コンデンサを作製した。
[Conventional example 1]
In Conventional Example 1, a solid electrolytic capacitor was produced in the same manner as in Example 1 except that the fluororubber insulating resin was not applied to the apex of the valve metal element (FIG. 2).

[従来例2]
従来例2では、弁作用金属素子の頂点にフッ素ゴム系絶縁性樹脂を塗布しないこと、またリン酸水溶液中において陽極酸化を行う前に1.0wt%ホウ酸アンモニウム水溶液中において陽極酸化を行いコンデンサ陽極体の外周部周辺の誘電体酸化皮膜を厚く形成した、以外は実施例1と同様に固体電解コンデンサを作製した。上記の陽極酸化により形成された誘電体酸化皮膜の厚さは約90μmであった。
[Conventional example 2]
In the conventional example 2, the fluororubber insulating resin is not applied to the apex of the valve action metal element, and the capacitor is anodized in a 1.0 wt% ammonium borate aqueous solution before anodizing in the phosphoric acid aqueous solution. A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the dielectric oxide film around the outer periphery of the anode body was formed thick. The thickness of the dielectric oxide film formed by the above anodic oxidation was about 90 μm.

[従来例3]
従来例3では、弁作用金属素子の頂点にフッ素ゴム系絶縁性樹脂を塗布しないこと、また導電性高分子層形成工程の途中にコンデンサ陽極体をパルプ2wt%、合成糊0.05wt%の懸濁液に浸漬することでパルプ繊維を付着させたこと、以外は実施例1と同様に固体電解コンデンサを作製した。
[Conventional example 3]
In Conventional Example 3, no fluororubber insulating resin is applied to the apex of the valve metal element, and the capacitor anode body is suspended by 2 wt% pulp and 0.05 wt% synthetic glue during the process of forming the conductive polymer layer. A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the pulp fiber was adhered by being immersed in the turbid liquid.

[従来例4]
従来例4では、弁作用金属素子を0.1wt%リン酸水溶液中において、印加電圧8Vで120分間陽極酸化を行い、弁作用金属素子全体に誘電体酸化皮膜を形成した後、弁作用金属素子の稜周辺部分すべてに粘度300mPa・sのエポキシ樹脂(絶縁性)を吐出口Φ0.2mmのシリンジで塗布した後、乾燥し図3のようなコンデンサ陽極体を得た。それ以外は実施例1と同様に固体電解コンデンサを作製した。
[Conventional example 4]
In Conventional Example 4, the valve action metal element is anodized in a 0.1 wt% phosphoric acid aqueous solution at an applied voltage of 8 V for 120 minutes to form a dielectric oxide film on the entire valve action metal element. An epoxy resin (insulating property) having a viscosity of 300 mPa · s was applied to all the peripheral portions of the ridge with a syringe having a discharge port of Φ0.2 mm and dried to obtain a capacitor anode body as shown in FIG. Otherwise, a solid electrolytic capacitor was produced in the same manner as in Example 1.

上記の実施例1〜5、比較例1,2、従来例1〜4で作製した固体電解コンデンサ各100個における静電容量(120Hz)、ESR(100kHz)、漏れ電流(定格電圧印加時の1分値)を測定した平均値を表1に示す。また、形成された導電性高分子層の厚さ(平面の中心部、及び稜の中心部)についても電子顕微鏡で測定した20箇所の平均値を示す。   Capacitance (120 Hz), ESR (100 kHz), leakage current (1 at the time of applying the rated voltage) in each of 100 solid electrolytic capacitors produced in Examples 1 to 5, Comparative Examples 1 and 2 and Conventional Examples 1 to 4 Table 1 shows the average value of the measured (min) values. Moreover, about the thickness (center part of a plane, and center part of a ridge) of the formed conductive polymer layer, the average value of 20 places measured with the electron microscope is shown.

Figure 0005302824
Figure 0005302824

表1より明らかなように、実施例は従来例1と比較して、静電容量の低下が少なく、かつ漏れ電流が良好な値を示した。   As can be seen from Table 1, the example showed a lower value of the capacitance and a good leakage current as compared with the conventional example 1.

これは、従来例1では外部からのストレスに弱いコンデンサ素子の稜周辺部の導電性高分子層厚さが充分でないことにより、トランスファーモールド等の後工程における外部機械ストレスで誘電体酸化皮膜が損傷を受け漏れ電流が悪化したのに対し、実施例では外部機械ストレスを最も受けやすい三辺の稜が交わる頂点に弾性を持つ絶縁性樹脂で凸部を形成したことにより外部機械ストレスから保護でき、漏れ電流悪化を防止できたものである。また、エッジ部に形成した絶縁樹脂部が凸状であることから、導電性高分子層形成用重合液に浸漬後持ち上げた重合液が表面張力により稜部に厚く保持され(図4)、導電性高分子層が厚く形成されたため、外部機械ストレスから保護でき、より一層漏れ電流悪化を防止できたものである。   This is because, in Conventional Example 1, the thickness of the conductive polymer layer at the edge of the capacitor element that is vulnerable to external stress is not sufficient, so that the dielectric oxide film is damaged by external mechanical stress in the subsequent process such as transfer molding. In contrast to the deterioration of the leakage current, the working example can protect against external mechanical stress by forming a convex portion with an insulating resin having elasticity at the apex where the ridges of the three sides that are most susceptible to external mechanical stress intersect, This prevents the leakage current from deteriorating. In addition, since the insulating resin portion formed on the edge portion is convex, the polymer solution lifted after being immersed in the polymer solution for forming the conductive polymer layer is held thick at the ridge portion by the surface tension (FIG. 4). Since the conductive polymer layer is formed thick, it can be protected from external mechanical stress, and deterioration of leakage current can be further prevented.

ここで、コンデンサ素子における三辺の稜が交わる頂点の一ヶ所以上に絶縁性樹脂にて形成される凸部は、頂点を構成する三つの稜線それぞれの長さの5〜30%にわたって形成することが好ましく、特に5〜20%とすることがより好ましい。
また、表1より明らかなように、実施例は従来例2と比較して、漏れ電流が良好で静電容量も高いことがわかる。
Here, the convex portion formed of the insulating resin at one or more vertexes where the ridges of the three sides of the capacitor element intersect is formed over 5 to 30% of the length of each of the three ridge lines constituting the vertex. In particular, more preferably 5 to 20%.
Further, as is apparent from Table 1, it can be seen that the example has better leakage current and higher capacitance than the conventional example 2.

これは、従来例2による誘電体酸化皮膜の厚みアップだけでは、特にエッジ部が外部からのストレスに充分対応できておらず、実施例の方が漏れ電流が良好になったものである。また外周部周辺の誘電体酸化皮膜を厚く形成したため、その分静電容量が大きく減少するデメリットも表われている。   This is because the edge portion does not sufficiently cope with external stress only by increasing the thickness of the dielectric oxide film according to Conventional Example 2, and the leakage current is better in the embodiment. Further, since the dielectric oxide film around the outer peripheral portion is formed thick, there is a demerit that the capacitance is greatly reduced.

また、表1より明らかなように、実施例は従来例3と比較して、漏れ電流が良好でESRも低いことがわかる。   Further, as is clear from Table 1, it can be seen that the example has better leakage current and lower ESR than the conventional example 3.

これは、従来例3の場合、繊維や粘剤を添加すると固体電解質層の導電性が低下しESRが悪化したものである。また同手法を用いても固体電解質形成材料が基本的に液体であるため、形成時に表面張力の影響でコンデンサ陽極体のエッジ部は他の部位と比較し、必ず固体電解質層が薄くなるため、やはり機械的ストレスによる漏れ電流悪化の対策には充分ではなかったものである。   In the case of Conventional Example 3, the addition of fibers or adhesives decreases the conductivity of the solid electrolyte layer and deteriorates the ESR. Even if this method is used, since the solid electrolyte forming material is basically liquid, the edge portion of the capacitor anode body is always thinner than other parts due to the effect of surface tension at the time of formation. After all, it was not sufficient as a countermeasure for the deterioration of leakage current due to mechanical stress.

また、表1より明らかなように、実施例は従来例4と比較して、漏れ電流が良好で静電容量が高く、ESRも低減されたことがわかる。   Further, as is clear from Table 1, it can be seen that the example had better leakage current, higher capacitance, and reduced ESR, as compared with the conventional example 4.

これは、従来例4の場合、コンデンサ陽極体のエッジ部全周に渡り、エポキシ樹脂等で保護用のレジスト層を形成することで、機械的ストレスにある程度対応できるが、単純に全周に渡りレジスト層を形成すると、レジスト層で被覆された誘電体酸化皮膜層上への固体電解質層の形成が不十分となるため、当然静電容量が大幅に低下し、さらにはESRも悪化してしまうことを示している。またエポキシ樹脂等の材料を使用すると絶縁性は確保できるが、応力や機械的ストレスを緩衝する効果はなく、やはり漏れ電流悪化の対策には充分でないことがわかる。   In the case of Conventional Example 4, it is possible to cope with mechanical stress to some extent by forming a protective resist layer with an epoxy resin or the like over the entire periphery of the edge portion of the capacitor anode body, but simply over the entire periphery. When the resist layer is formed, the formation of the solid electrolyte layer on the dielectric oxide film layer coated with the resist layer becomes insufficient, so that the electrostatic capacity is naturally greatly reduced and the ESR is also deteriorated. It is shown that. It can also be seen that the use of a material such as an epoxy resin can ensure insulation, but there is no effect of buffering stress and mechanical stress, and it is not sufficient for countermeasures against deterioration of leakage current.

なお、本発明は上記実施例に限定されるものではない。   In addition, this invention is not limited to the said Example.

(1)上記実施例では、作用金属素子の三辺の稜が交わる頂点すべて(計8個の頂点)に粘度3000mPa・sのフッ素ゴム系絶縁性樹脂をシリンジにより塗布した後、乾燥し凸部を形成したが、頂点すべてが必ず必要ではなく、改善効果は小さくなるが少なくとも一ヶ所以上に絶縁性樹脂による凸部を形成すれば効果が得られる。また粘度もこれに限定するものではなく、乾燥後に凸部が形成できれば同様の効果が得られ、この凸部の大きさは、特に限定されるものではなく、コンデンサ陽極体の大きさや、加わる機械的ストレスの大きさに応じて適宜選択することができるが、一般的には陽極体の体積の1000分の1〜50分の1程度の小球状や小楕円球状の凸部が好ましい。また絶縁性樹脂はフッ素ゴム系に限るものではなく、弾性を備える材料ならば同様の効果が得られる。また塗布方法もシリンジに限るものではなく、粘度の高い材料を塗布できる方法であれば良い。また塗布以外の方法であっても、作用金属素子の三辺の稜が交わる頂点に絶縁性樹脂による凸部を形成できれば同様の効果が得られる。   (1) In the above embodiment, a fluoro rubber insulating resin having a viscosity of 3000 mPa · s is applied to all the vertices (total of 8 vertices) where the ridges of the three sides of the working metal element intersect with a syringe, and then dried and protruded. However, all of the vertices are not necessarily required, and the improvement effect is small, but the effect can be obtained by forming convex portions made of an insulating resin in at least one place. In addition, the viscosity is not limited to this, and the same effect can be obtained if a convex portion can be formed after drying. The size of the convex portion is not particularly limited, and the size of the capacitor anode body and the added machine Depending on the magnitude of the mechanical stress, it can be appropriately selected, but in general, a small spherical or small elliptical convex part having a volume of about 1/1000 to 1/50 of the anode body volume is preferable. Further, the insulating resin is not limited to the fluororubber system, and the same effect can be obtained if it is a material having elasticity. Also, the application method is not limited to a syringe, and any method that can apply a material with high viscosity may be used. Even if it is a method other than coating, the same effect can be obtained if a convex portion made of an insulating resin can be formed at the apex where the ridges of the three sides of the working metal element intersect.

(2)上記実施例では、コンデンサ陽極体をモノマーと酸化剤を混合した溶液に浸漬し、化学酸化重合する方法で導電性高分子層を形成したが、導電性高分子層の形成条件についてはこれに限るものではなく、公知の導電性高分子層形成方法であれば同様の効果が得られる。また、上記実施例では、固体電解質層を形成させるための導電性高分子として、3,4−エチレンジオキシチオフェンを使用したが、これに限定されるものではなく、固体電解コンデンサに使用される導電性高分子として一般に知られているポリチオフェン、ポリピロール、ポリアニリンまたはそれらの誘導体等がいずれも使用できる。   (2) In the above embodiment, the conductive polymer layer was formed by a method in which the capacitor anode body was immersed in a solution in which a monomer and an oxidant were mixed and subjected to chemical oxidative polymerization. However, the present invention is not limited to this, and the same effect can be obtained by any known conductive polymer layer forming method. In the above embodiment, 3,4-ethylenedioxythiophene is used as the conductive polymer for forming the solid electrolyte layer. However, the conductive polymer is not limited to this and is used for the solid electrolytic capacitor. Any of polythiophene, polypyrrole, polyaniline or their derivatives generally known as conductive polymers can be used.

(3)コンデンサ陽極材料としてタンタル焼結体を用いたが、ニオブやアルミニウムのような弁作用金属焼結体や粗面化された箔状弁作用金属を用いても同様の効果が得られる。粗面化された箔状弁作用金属を用いる場合、厚さ0.1mmのアルミニウム箔の表面を電気化学的にエッチングしたものがより望ましい。   (3) Although a tantalum sintered body is used as the capacitor anode material, the same effect can be obtained by using a valve action metal sintered body such as niobium or aluminum or a roughened foil-like valve action metal. In the case of using a roughened foil-like valve action metal, it is more preferable to electrochemically etch the surface of an aluminum foil having a thickness of 0.1 mm.

その他、本明細書に添付の特許請求の範囲内での種々の設計変更および修正を加え得ることは勿論可能である。   In addition, it is of course possible to make various design changes and modifications within the scope of the claims attached to this specification.

1 陽極リード
2 弁作用金属素子(コンデンサ陽極体)
3 三辺の稜が交わる頂点に形成した凸状の絶縁性樹脂
4 稜周辺部分すべてに形成したエポキシ樹脂(絶縁性)
5 導電性高分子層形成用の重合液
1 Anode lead 2 Valve metal element (capacitor anode)
3 Convex insulation resin formed at the apex where the ridges of the three sides intersect 4 Epoxy resin formed on the entire edge area (insulation)
5 Polymerization liquid for forming conductive polymer layer

Claims (4)

弁作用金属粉末からなる成形体を焼結させてなる焼結体、または、粗面化された弁作用金属箔の表面に、誘電体酸化皮膜が形成されたコンデンサ陽極体の、当該誘電体酸化皮膜の表面に、固体電解質層及び陰極引出層が順次形成されてなる固体電解コンデンサであって、
上記コンデンサ陽極体における三辺の稜が交わる全ての頂点に、絶縁性樹脂からなる弾性を有する凸部が、上記コンデンサ陽極体の各稜線の長さの5〜30%にわたって形成されていることを特徴とする固体電解コンデンサ。
Dielectric oxidation of a sintered body obtained by sintering a molded body made of a valve action metal powder or a capacitor anode body in which a dielectric oxide film is formed on the surface of a roughened valve action metal foil. A solid electrolytic capacitor in which a solid electrolyte layer and a cathode lead layer are sequentially formed on the surface of the film,
The convex part which has the elasticity which consists of insulating resin is formed over 5-30% of the length of each ridgeline of the said capacitor anode body in all the vertices where the ridge of three sides in the said capacitor anode body crosses. A solid electrolytic capacitor.
上記固体電解質層が導電性高分子からなることを特徴とする請求項1に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the solid electrolyte layer is made of a conductive polymer. 弁作用金属粉末からなる成形体を焼結させてなる焼結体、または、粗面化された弁作用金属箔の表面に、誘電体酸化皮膜を形成して、コンデンサ陽極体を形成後、該誘電体酸化皮膜の表面に固体電解質層、陰極引出層を形成する固体電解コンデンサの製造方法において、
上記誘電体酸化皮膜の形成前、もしくは形成後に上記コンデンサ陽極体における三辺の稜が交わる全ての頂点に、凸部を当該コンデンサ陽極体の各稜線の長さの5〜30%にわたって絶縁性樹脂にて形成し、上記凸部を形成する際、絶縁性樹脂として、弾性を有する材料を使用することを特徴とする固体電解コンデンサの製造方法。
After forming a capacitor anode body by forming a dielectric oxide film on the surface of a sintered body obtained by sintering a molded body made of valve-acting metal powder or a roughened valve-acting metal foil, In the method of manufacturing a solid electrolytic capacitor in which a solid electrolyte layer and a cathode lead layer are formed on the surface of the dielectric oxide film,
Insulating resin covering all vertices where the ridges of the three sides of the capacitor anode body intersect before or after the formation of the dielectric oxide film over 5-30% of the length of each ridge line of the capacitor anode body The method for manufacturing a solid electrolytic capacitor is characterized in that an elastic material is used as the insulating resin when the protrusion is formed .
上記固体電解質層を形成する際、導電性高分子層形成用の重合液中に上記コンデンサ陽極体を浸漬し、その後、引き上げることを特徴とする請求項3に記載の固体電解コンデンサの製造方法。   4. The method for producing a solid electrolytic capacitor according to claim 3, wherein when the solid electrolyte layer is formed, the capacitor anode body is immersed in a polymerization solution for forming a conductive polymer layer and then pulled up.
JP2009195271A 2009-08-26 2009-08-26 Solid electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP5302824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009195271A JP5302824B2 (en) 2009-08-26 2009-08-26 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195271A JP5302824B2 (en) 2009-08-26 2009-08-26 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011049276A JP2011049276A (en) 2011-03-10
JP5302824B2 true JP5302824B2 (en) 2013-10-02

Family

ID=43835348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195271A Expired - Fee Related JP5302824B2 (en) 2009-08-26 2009-08-26 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5302824B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111319A1 (en) * 2011-02-18 2012-08-23 パナソニック株式会社 Electrolytic capacitor and method for manufacturing same
JP5816792B2 (en) * 2011-11-24 2015-11-18 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP5810262B2 (en) * 2011-08-30 2015-11-11 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor and manufacturing method thereof
CN108780705B (en) 2016-03-25 2020-08-25 松下知识产权经营株式会社 Solid electrolytic capacitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128510A (en) * 1984-11-28 1986-06-16 日本電気株式会社 Manufacture of anode body for electrolytic capacitor
JPH05304058A (en) * 1992-04-27 1993-11-16 Elna Co Ltd Manufacture of solid-state electrolytic capacitor
JP3801660B2 (en) * 1994-05-30 2006-07-26 ローム株式会社 Method for manufacturing capacitor element for tantalum solid electrolytic capacitor
JP2814989B2 (en) * 1996-05-13 1998-10-27 日本電気株式会社 Method for manufacturing solid electrolytic capacitor
JP4803741B2 (en) * 2007-02-06 2011-10-26 Necトーキン株式会社 Manufacturing method of solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2011049276A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP4931778B2 (en) Solid electrolytic capacitor
JP6010772B2 (en) Manufacturing method of solid electrolytic capacitor
JPWO2011121995A1 (en) Solid electrolytic capacitor
JP5933397B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP4868601B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5340708B2 (en) Solid electrolytic capacitor
JP2006140443A (en) Solid electrolytic capacitor and method of manufacturing the same
JP5302824B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5788282B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH10149954A (en) Manufacture of solid-state electrolytic capacitor
JP5623214B2 (en) Solid electrolytic capacitor
JP4915875B2 (en) Manufacturing method of solid electrolytic capacitor
JP4398794B2 (en) Manufacturing method of solid electrolytic capacitor
JP2012129293A (en) Solid electrolytic capacitor, and method of manufacturing the same
JP2007281268A (en) Solid electrolytic capacitor and its manufacturing method
JP5289016B2 (en) Manufacturing method of solid electrolytic capacitor
JP4891140B2 (en) Manufacturing method of solid electrolytic capacitor
JP2010177498A (en) Wound type solid electrolyte capacitor
JP6952921B1 (en) Solid Electrolytic Capacitors and Manufacturing Methods for Solid Electrolytic Capacitors
JP2010267778A (en) Niobium solid electrolytic capacitor and method of manufacturing the same
JP5164325B2 (en) Manufacturing method of solid electrolytic capacitor
CN102651283A (en) Solid electrolytic capacitor and production method thereof
JP3851294B2 (en) Electrolytic capacitor
JP2004319646A (en) Electrolytic capacitor and method of manufacturing thereof
JP3831752B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130227

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees