JP5300408B2 - Thermally conductive silicone grease composition - Google Patents

Thermally conductive silicone grease composition Download PDF

Info

Publication number
JP5300408B2
JP5300408B2 JP2008270462A JP2008270462A JP5300408B2 JP 5300408 B2 JP5300408 B2 JP 5300408B2 JP 2008270462 A JP2008270462 A JP 2008270462A JP 2008270462 A JP2008270462 A JP 2008270462A JP 5300408 B2 JP5300408 B2 JP 5300408B2
Authority
JP
Japan
Prior art keywords
powder
average particle
aluminum hydroxide
group
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008270462A
Other languages
Japanese (ja)
Other versions
JP2010100665A (en
Inventor
邦弘 山田
展明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008270462A priority Critical patent/JP5300408B2/en
Publication of JP2010100665A publication Critical patent/JP2010100665A/en
Application granted granted Critical
Publication of JP5300408B2 publication Critical patent/JP5300408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-conductive silicone grease composition being excellent in shift resistance. <P>SOLUTION: The heat-conductive silicone grease composition contains the following component (A)-(C): (A) an aluminum hydroxide powder mixture in which an aluminum hydroxide powder &alpha; having an average particle diameter of 0.5-5 &mu;m and an aluminum hydroxide powder &beta; having an average particle diameter of 6-20 &mu;m are mixed at a ratio of &alpha;/(&alpha;+&beta;)=0.1-0.9 and the average particle diameter after mixed becomes 1-15 &mu;m: 20-95 mass%, (B) organopolysiloxane represented by R<SP>1</SP><SB>a</SB>SiO<SB>(4-a)/2</SB>(1) [wherein R<SP>1</SP>represents a 1-18C saturated or unsaturated monovalent hydrocarbon group, 1.8&le;a&le;2.2] and having kinematic viscosity at 25&deg;C of 10-500,000 mm<SP>2</SP>/s: 5-30 mass%, and (C) an inorganic compound powder selected from an aluminum powder having an average particle diameter of 0.5-100 &mu;m, a zinc oxide powder, an alumina powder, a boron nitride powder and an aluminum nitride powder: 0-60 mass%. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、耐ズレ性に優れた熱伝導性シリコーングリース組成物に関する。   The present invention relates to a heat conductive silicone grease composition having excellent misalignment resistance.

一般に電気・電子部品は使用中に熱が発生するので、電気部品を適切に動作させるため除熱が必要であり、除熱用の種々の熱伝導性材料が提案されている。この熱伝導性材料は大別して、1)取り扱いが容易なシート状のもの、2)一般に放熱用グリースと称されるペースト状のもの、の2種類の形態がある。   Generally, since heat is generated during use of electric / electronic parts, heat removal is necessary to properly operate the electric parts, and various heat conductive materials for heat removal have been proposed. These heat conductive materials are roughly classified into two types: 1) a sheet-like material that is easy to handle, and 2) a paste-like material that is generally referred to as heat radiation grease.

シート状のものは、取り扱いが容易であり、且つ安定性に優れるメリットがあるが、接触熱抵抗が性質上大きくなるため放熱性能は放熱用グリースに劣ってしまう。またシート状を保たせるためにある程度の強度/硬さが必要となり、素子と筐体の間に生じる公差を吸収できず、それら応力によって素子を破壊してしまうこともある。   The sheet-like material is easy to handle and has the advantage of being excellent in stability. However, since the contact thermal resistance increases in nature, the heat radiation performance is inferior to that of the heat radiation grease. Further, in order to maintain the sheet shape, a certain degree of strength / hardness is required, the tolerance generated between the element and the housing cannot be absorbed, and the element may be destroyed by the stress.

一方、放熱用グリースは、塗布装置などを用いれば、大量生産にも適応できるし、接触熱抵抗が低いことから放熱性能は優れる。但し、スクリーン印刷などで大量生産する場合、放熱用グリースの粘度は低い方がよいが、その場合、素子の冷熱衝撃などで放熱グリースがズレてしまい(ポンプアウト現象)徐熱が十分できないため、結果素子が誤作動を起こしてしまうようなことがあった。   On the other hand, the heat radiation grease can be applied to mass production by using a coating device or the like, and the heat radiation performance is excellent because the contact thermal resistance is low. However, when mass-produced by screen printing, etc., the viscosity of the heat dissipation grease should be low, but in that case, the heat dissipation grease will be displaced due to the thermal shock of the element (pump-out phenomenon), so slow heating is not sufficient. As a result, the device sometimes malfunctions.

また、過去の技術として以下のようなものが提案されているが、いずれも十分な性能が得られなかった。
特許第3948642号公報 特許第3195277号公報 特開2000−169873号公報 特開2006−143978号公報 特開2004−210856号公報 特開2005−162975号公報
In addition, the following technologies have been proposed as past technologies, but none of them has achieved sufficient performance.
Japanese Patent No. 3948642 Japanese Patent No. 3195277 JP 2000-169873 A JP 2006-143978 A JP 2004-210856 A JP 2005-162975 A

本発明は、上記事情に鑑みなされたもので、耐ズレ性に優れた熱伝導性シリコーングリース組成物を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the heat conductive silicone grease composition excellent in shift | offset | difference resistance.

本発明者らは、上記目的を達成するために鋭意検討した結果、水酸化アルミニウムが熱伝導性シリコーングリース組成物中に、ある一定割合以上混合されていると、耐ズレ性が飛躍的に向上することを見出した。しかしながら、水酸化アルミニウムを単純に混合していくと、グリース組成物の粘度が上昇してしまうか、あるいはグリース組成物が不均一な状態となるため、伸展性もなく、スクリーン印刷などができなくなってしまうし、粘度を低く抑えようとすると、水酸化アルミニウム粉末の混合比率が上がらないことから耐ズレ性が向上しない。そこで、平均粒径の異なる2種類の水酸化アルミニウム粉末をグリース組成物中に特定割合で混合することで、低粘度で、且つ熱伝導率も高い耐ズレ性に優れた熱伝導性シリコーングリース組成物が得られることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the inventors of the present invention drastically improved misalignment resistance when aluminum hydroxide is mixed in a thermally conductive silicone grease composition in a certain ratio or more. I found out. However, if aluminum hydroxide is simply mixed, the viscosity of the grease composition will increase, or the grease composition will be in a non-uniform state, so there will be no extensibility and screen printing will not be possible. If the viscosity is to be kept low, the mixing resistance of the aluminum hydroxide powder does not increase, and the shift resistance is not improved. Therefore, by mixing two types of aluminum hydroxide powders with different average particle diameters in the grease composition at a specific ratio, a thermally conductive silicone grease composition with low viscosity and high thermal conductivity and excellent slip resistance. As a result, it was found that a product was obtained, and the present invention was made.

従って、本発明は、下記熱伝導性シリコーングリース組成物を提供する。
下記成分(A)〜()を含有してなる熱伝導性シリコーングリース組成物。
(A)平均粒径が0.5〜5μmの水酸化アルミニウム粉末αと、平均粒径が6〜20μmの水酸化アルミニウム粉末βの2種類の水酸化アルミニウム粉末を、α/(α+β)=0.1〜0.9の割合で混合し、且つ混合後の平均粒径が1〜15μmとなる水酸化アルミニウム粉末混合物: 20〜45質量%、
(B)下記一般式(1)
1 aSiO(4-a)/2 (1)
〔式中、R1は炭素数1〜18の飽和又は不飽和の一価炭化水素基の群の中から選択される1種もしくは2種以上の基、aは1.8≦a≦2.2である。〕
で表される25℃における動粘度が10〜500,000mm2/sのオルガノポリシロキサン: 5〜30質量%、
(C)平均粒径0.5〜100μmの、アルミニウム粉末、酸化亜鉛粉末、アルミナ粉末、窒化ホウ素粉末、窒化アルミニウム粉末の中から選択される1種以上の無機化合物粉末: 20〜60質量%、
(D)下記一般式(2)

Figure 0005300408
(式中、R 2 は炭素数1〜6のアルキル基、R 3 は炭素数1〜18の飽和又は不飽和の一価炭化水素基の群の中から選択される1種もしくは2種以上の基、bは5〜120の整数である。)
で表される片末端3官能の加水分解性オルガノポリシロキサン 1〜15質量%。 Accordingly, the present invention provides the following thermally conductive silicone grease composition.
A thermally conductive silicone grease composition comprising the following components (A) to ( D ).
(A) Two types of aluminum hydroxide powders, an aluminum hydroxide powder α having an average particle diameter of 0.5 to 5 μm and an aluminum hydroxide powder β having an average particle diameter of 6 to 20 μm, are represented by α / (α + β) = 0. Mixing at a ratio of 1 to 0.9 and an aluminum hydroxide powder mixture having an average particle diameter of 1 to 15 μm after mixing: 20 to 45 % by mass,
(B) The following general formula (1)
R 1 a SiO (4-a) / 2 (1)
[Wherein, R 1 is one or more groups selected from the group of saturated or unsaturated monovalent hydrocarbon groups having 1 to 18 carbon atoms, and a is 1.8 ≦ a ≦ 2. 2. ]
An organopolysiloxane having a kinematic viscosity at 25 ° C. represented by: 10 to 500,000 mm 2 / s: 5 to 30% by mass,
(C) One or more inorganic compound powders selected from aluminum powder, zinc oxide powder, alumina powder, boron nitride powder, and aluminum nitride powder having an average particle size of 0.5 to 100 μm: 20 to 60% by mass,
(D) The following general formula (2)
Figure 0005300408
Wherein R 2 is an alkyl group having 1 to 6 carbon atoms, R 3 is one or more selected from the group of saturated or unsaturated monovalent hydrocarbon groups having 1 to 18 carbon atoms. Group b is an integer from 5 to 120.)
1 to 15% by mass of a trifunctional hydrolyzable organopolysiloxane represented by the formula:

本発明の熱伝導性シリコーングリース組成物は、低粘度で且つ高熱伝導率でありながら、大幅に耐ズレ性の向上が認められる。   The heat conductive silicone grease composition of the present invention has a significant improvement in misalignment resistance while having low viscosity and high heat conductivity.

以下詳述する。
本発明の成分(A)における水酸化アルミニウム粉末は、平均粒径が0.5〜5μmの水酸化アルミニウム粉末αと、平均粒径が6〜20μmの水酸化アルミニウム粉末βの異なる平均粒径を持つ2種類の水酸化アルミニウム粉末を混合することにより得られる。どちらか一方の充填剤のみを使用するよりも、これらを組合せることにより熱伝導性シリコーングリース組成物を低粘度化でき、また該組成物への水酸化アルミニウム粉末の混合比率も上げることができるため、耐ズレ性の向上も図ることができる。
This will be described in detail below.
The aluminum hydroxide powder in component (A) of the present invention has different average particle sizes of aluminum hydroxide powder α having an average particle size of 0.5 to 5 μm and aluminum hydroxide powder β having an average particle size of 6 to 20 μm. It can be obtained by mixing two types of aluminum hydroxide powder. Rather than using only one of the fillers, combining them can lower the viscosity of the thermally conductive silicone grease composition and can also increase the mixing ratio of the aluminum hydroxide powder to the composition. Therefore, the shift resistance can be improved.

水酸化アルミニウム粉末αは、平均粒径が0.5μmより小さくても5μmより大きくても、得られる熱伝導性シリコーングリース組成物中の水酸化アルミニウム粉末の混合比率を高められないため、0.5〜5μmの範囲であり、好ましくは1〜3μmの範囲がよく、水酸化アルミニウム粉末βは、6μmより小さくても20μmより大きくても、得られる熱伝導性シリコーングリース組成物中の混合比率を高められないため、6〜20μmの範囲であり、好ましくは7〜15μmの範囲がよい。なお、本発明において、平均粒径は体積平均粒子径であって、レーザー回折・散乱式粒度分布測定機マイクロトラックMT3300EX等により測定できる(以下、同じ)。
また、水酸化アルミニウム粉末α及び水酸化アルミニウム粉末βの形状は、不定形、球形どちらでもよい。
Since the aluminum hydroxide powder α cannot increase the mixing ratio of the aluminum hydroxide powder in the heat conductive silicone grease composition obtained even if the average particle size is smaller than 0.5 μm or larger than 5 μm, it is preferable that The range is 5 to 5 μm, preferably 1 to 3 μm, and the aluminum hydroxide powder β has a mixing ratio in the resulting thermally conductive silicone grease composition of less than 6 μm or greater than 20 μm. Since it cannot be raised, it is in the range of 6 to 20 μm, preferably in the range of 7 to 15 μm. In the present invention, the average particle diameter is a volume average particle diameter, and can be measured with a laser diffraction / scattering particle size distribution measuring instrument Microtrac MT3300EX (hereinafter the same).
The shapes of the aluminum hydroxide powder α and the aluminum hydroxide powder β may be either indefinite or spherical.

水酸化アルミニウム粉末αと水酸化アルミニウム粉末βの混合割合は、α/(α+β)が0.1より小さくても0.9より大きくても、得られる熱伝導性シリコーングリース組成物中の水酸化アルミニウム粉末の混合比率を高められないため、α/(α+β)=0.1〜0.9の範囲であり、好ましくは0.3〜0.7の範囲がよい。
なお、上記水酸化アルミニウム粉末αと水酸化アルミニウム粉末βの混合は、公知の方法を用いることができる。
The mixing ratio of the aluminum hydroxide powder α and the aluminum hydroxide powder β is such that α / (α + β) is less than 0.1 or greater than 0.9, and the hydroxylation in the heat conductive silicone grease composition to be obtained is Since the mixing ratio of the aluminum powder cannot be increased, α / (α + β) = 0.1 to 0.9, and preferably 0.3 to 0.7.
A known method can be used for mixing the aluminum hydroxide powder α and the aluminum hydroxide powder β.

また、水酸化アルミニウム粉末αと水酸化アルミニウム粉末βとを混合した後の水酸化アルミニウム粉末混合物の平均粒径は、1μmより小さくても15μmより大きくても、均一な熱伝導性シリコーングリース組成物にならないため、1〜15μmの範囲であり、好ましくは2〜12μmの範囲がよい。   Moreover, even if the average particle diameter of the aluminum hydroxide powder mixture after mixing the aluminum hydroxide powder α and the aluminum hydroxide powder β is smaller than 1 μm or larger than 15 μm, the uniform thermally conductive silicone grease composition Therefore, it is in the range of 1 to 15 μm, preferably in the range of 2 to 12 μm.

成分(A)である水酸化アルミニウム粉末混合物(水酸化アルミニウム粉末αと水酸化アルミニウム粉末βの合計)の配合量は、熱伝導性シリコーングリース組成物中20質量%より少ないとグリース組成物にしたとき耐ズレ性が悪くなるし、95質量%より多くなると硬くなり、伸展性に乏しくなるので、20〜95質量%の範囲であり、好ましくは30〜90質量%の範囲がよい。   When the blending amount of the aluminum hydroxide powder mixture (the total of aluminum hydroxide powder α and aluminum hydroxide powder β) as component (A) is less than 20% by mass in the thermally conductive silicone grease composition, the grease composition was obtained. In some cases, the resistance to misalignment is deteriorated, and when it exceeds 95% by mass, it becomes hard and poor in extensibility, so it is in the range of 20 to 95% by mass, preferably in the range of 30 to 90% by mass.

また、本発明に用いられる水酸化アルミニウム粉末は、必要ならばオルガノシラン、オルガノシラザン、オルガノポリシロキサン、特には後述する成分(D)のオルガノポリシロキサン、有機フッ素化合物等で疎水化処理を施してもよい。疎水化処理法としては、一般公知の方法でよく、例えば水酸化アルミニウム粉末とオルガノシランあるいはその部分加水分解物をトリミックス、ツウィンミックス、プラネタリミキサー(いずれも井上製作所(株)製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機にて混合する。必要ならば50〜150℃に加熱してもよい。なお、混合にはトルエン、キシレン、石油エーテル、ミネラルスピリット、イソパラフィン、イソプロピルアルコール、エタノール等の溶剤を用いてもよく、その場合は混合後溶剤を真空装置など用いて除去することが好ましい。   Further, the aluminum hydroxide powder used in the present invention is subjected to a hydrophobic treatment with an organosilane, an organosilazane, an organopolysiloxane, particularly an organopolysiloxane of the component (D) described later, an organic fluorine compound, etc. if necessary. Also good. As the hydrophobizing method, a generally known method may be used. For example, aluminum hydroxide powder and organosilane or a partial hydrolyzate thereof are mixed into a trimix, twin mix, planetary mixer (all registered with a mixer manufactured by Inoue Mfg. Co., Ltd.). Trademark), Ultramixer (registered trademark of Mizuho Kogyo Co., Ltd. mixer), Hibis Dispermix (registered trademark of Special Kikai Kogyo Co., Ltd. mixer) and the like. If necessary, you may heat to 50-150 degreeC. For mixing, a solvent such as toluene, xylene, petroleum ether, mineral spirit, isoparaffin, isopropyl alcohol, ethanol or the like may be used. In that case, it is preferable to remove the solvent using a vacuum apparatus or the like after mixing.

また、希釈溶剤として、後述する本発明の液体成分である成分(B)のオルガノポリシロキサンを使用することも可能である。この場合、予め処理剤であるオルガノシランあるいはその部分加水分解物をオルガノポリシロキサンと混合し、そこに水酸化アルミニウム粉末を加えて処理と混合を同時に行うことができる。
この方法で製造された組成物もまた本発明の範囲内である。
Moreover, it is also possible to use the organopolysiloxane of the component (B) which is the liquid component of this invention mentioned later as a dilution solvent. In this case, an organosilane or a partial hydrolyzate thereof, which is a treating agent, can be mixed with an organopolysiloxane in advance, and aluminum hydroxide powder can be added thereto to perform treatment and mixing at the same time.
Compositions made by this method are also within the scope of the present invention.

成分(B)のオルガノポリシロキサンは、下記一般式(1)で表される25℃における動粘度が10〜500,000mm2/sのものである。
1 aSiO(4-a)/2 (1)
〔式中、R1は炭素数1〜18の飽和又は不飽和の一価炭化水素基の群の中から選択される1種もしくは2種以上の基、aは1.8≦a≦2.2である。〕
The organopolysiloxane of component (B) has a kinematic viscosity at 25 ° C. represented by the following general formula (1) of 10 to 500,000 mm 2 / s.
R 1 a SiO (4-a) / 2 (1)
[Wherein, R 1 is one or more groups selected from the group of saturated or unsaturated monovalent hydrocarbon groups having 1 to 18 carbon atoms, and a is 1.8 ≦ a ≦ 2. 2. ]

上記式(1)において、R1は炭素数1〜18の飽和又は不飽和の一価炭化水素基の群から選択される1種もしくは2種以上の基である。このような基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、2−フェニルエチル基、2−メチル−2−フェニルエチル基等のアラルキル基、3,3,3−トリフロロプロピル基、2−(パーフロロブチル)エチル基、2−(パーフロロオクチル)エチル基、p−クロロフェニル基等のハロゲン化炭化水素基が挙げられる。aはシリコーングリース組成物として要求される稠度の観点から1.8〜2.2の範囲がよく、特に1.9〜2.1が好ましい。 In the above formula (1), R 1 is one or more groups selected from the group of saturated or unsaturated monovalent hydrocarbon groups having 1 to 18 carbon atoms. Such groups include, for example, methyl groups, ethyl groups, propyl groups, hexyl groups, octyl groups, decyl groups, alkyl groups such as dodecyl groups, tetradecyl groups, hexadecyl groups, octadecyl groups, cyclopentyl groups, cyclohexyl groups, etc. An alkenyl group such as a cycloalkyl group, a vinyl group and an allyl group; an aryl group such as a phenyl group and a tolyl group; an aralkyl group such as a 2-phenylethyl group and a 2-methyl-2-phenylethyl group; Examples thereof include halogenated hydrocarbon groups such as trifluoropropyl group, 2- (perfluorobutyl) ethyl group, 2- (perfluorooctyl) ethyl group, and p-chlorophenyl group. From the viewpoint of the consistency required for the silicone grease composition, a is preferably in the range of 1.8 to 2.2, and particularly preferably 1.9 to 2.1.

また、本発明で使用するオルガノポリシロキサンの25℃における動粘度は、10mm2/sより低いとグリース組成物にした時にオイルブリードが出やすくなるし、500,000mm2/sより大きくなるとグリース組成物にしたときの伸展性が乏しくなることから、25℃で10〜500,000mm2/sであることが必要であり、特に30〜10,000mm2/sであることが好ましい。なお、オルガノポリシロキサンの動粘度はオストワルド粘度計で測定した25℃の値である。 Moreover, kinematic viscosity at 25 ° C. of the organopolysiloxane used in the present invention, oil bleeding to easily appear when the lower grease composition than 10 mm 2 / s, greater than 500,000 2 / s when grease Since extensibility when made into a product becomes poor, it is necessary to be 10 to 500,000 mm 2 / s at 25 ° C., particularly preferably 30 to 10,000 mm 2 / s. The kinematic viscosity of the organopolysiloxane is a value of 25 ° C. measured with an Ostwald viscometer.

成分(B)であるオルガノポリシロキサンの配合量は、熱伝導性シリコーングリース組成物中、5質量%より小さいとグリース組成物にしたとき硬くなり、伸展性に乏しくなるし、30質量%より大きいと熱伝導率が悪くなるので、5〜30質量%の範囲であり、好ましくは5〜20質量%の範囲がよい。   If the amount of the organopolysiloxane component (B) is less than 5% by mass in the thermally conductive silicone grease composition, it becomes hard when made into a grease composition, the extensibility becomes poor, and it exceeds 30% by mass. And the thermal conductivity is deteriorated, the range is 5 to 30% by mass, preferably 5 to 20% by mass.

本発明においては、成分(C)無機化合物粉末を配合することができる。成分(C)で使用する無機化合物粉末は、熱伝導率の高いものが必要であり、アルミニウム粉末、酸化亜鉛粉末、アルミナ粉末、窒化ホウ素粉末、窒化アルミニウム粉末の中から選択される1種又は2種以上を使用することができる。これら無機化合物粉末の表面は、必要に応じてオルガノシラン、オルガノシラザン、オルガノポリシロキサン、特には後述する成分(D)のオルガノポリシロキサン、有機フッ素化合物等で疎水化処理を施したものを使用してもよい。   In this invention, a component (C) inorganic compound powder can be mix | blended. The inorganic compound powder used in component (C) must have high thermal conductivity, and one or two selected from aluminum powder, zinc oxide powder, alumina powder, boron nitride powder, and aluminum nitride powder. More than seeds can be used. The surface of these inorganic compound powders is subjected to hydrophobization treatment with organosilane, organosilazane, organopolysiloxane, especially organopolysiloxane of component (D) described later, organic fluorine compound, etc. as necessary. May be.

成分(C)の無機化合物粉末の平均粒径は、0.5μmより小さくても100μmより大きくても得られるグリース組成物の充填率が上がらなくなるため、0.5〜100μmの範囲であり、好ましくは1〜50μmの範囲がよい。   The average particle size of the inorganic compound powder of component (C) is in the range of 0.5 to 100 μm because the filling rate of the obtained grease composition will not increase even if it is smaller than 0.5 μm or larger than 100 μm, preferably Is preferably in the range of 1 to 50 μm.

成分(C)である無機化合物粉末の配合量は、熱伝導性シリコーングリース組成物中、60質量%より大きいとグリース組成物にしたとき耐ズレ性が悪くなるので、0〜60質量%の範囲であり、好ましくは0〜50質量%の範囲がよい。なお、配合する場合は20質量%以上とすることが好ましい。   If the amount of the inorganic compound powder component (C) is greater than 60% by mass in the thermally conductive silicone grease composition, the resistance to misalignment becomes poor when the grease composition is used, so the range is from 0 to 60% by mass. Preferably, the range of 0-50 mass% is good. In addition, when mix | blending, it is preferable to set it as 20 mass% or more.

また、本発明においては、成分(D)として、下記一般式(2)で表される片末端3官能の加水分解性オルガノポリシロキサンを用いてもよい。

Figure 0005300408
(式中、R2は炭素数1〜6のアルキル基、R3は炭素数1〜18の飽和又は不飽和の一価炭化水素基の群の中から選択される1種もしくは2種以上の基、bは5〜120の整数である。) In the present invention, a one-terminal trifunctional hydrolyzable organopolysiloxane represented by the following general formula (2) may be used as the component (D).
Figure 0005300408
Wherein R 2 is an alkyl group having 1 to 6 carbon atoms, R 3 is one or more selected from the group of saturated or unsaturated monovalent hydrocarbon groups having 1 to 18 carbon atoms. Group b is an integer from 5 to 120.)

一般式(2)のオルガノポリシロキサンは、成分(A)、更には成分(C)の熱伝導性無機充填剤の表面を処理するために用いるものであるが、粉末の高充填化を補助するばかりでなく、粉末表面を覆うことにより粉末同士の凝集を起こりにくくし、高温下でもその効果は持続するため、本熱伝導性シリコーングリース組成物の耐熱性を向上させる働きがある。   The organopolysiloxane of the general formula (2) is used for treating the surface of the thermally conductive inorganic filler of the component (A) and further the component (C), but assists in increasing the powder filling. In addition to covering the powder surface, it is difficult for the powders to agglomerate and the effect is maintained even at high temperatures, so that the heat resistance of the thermally conductive silicone grease composition is improved.

上記式(2)中、R2は、例えばメチル基、エチル基、プロピル基などの炭素数1〜6のアルキル基等が挙げられるが、特にメチル基、エチル基が好ましい。R3は、炭素数1〜18よりなる飽和又は不飽和の一価炭化水素基の群から選択される1種もしくは2種以上の基であり、このような基としては、例えばメチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、2−フェニルエチル基、2−メチル−2−フェニルエチル基等のアラルキル基、3,3,3−トリフロロプロピル基、2−(パーフロロブチル)エチル基、2−(パーフロロオクチル)エチル基、p−クロロフェニル基等のハロゲン化炭化水素基が挙げられるが、特にメチル基が好ましい。一般式(2)のbは5〜120の整数であり、好ましくは10〜90の整数である。 In the above formula (2), examples of R 2 include alkyl groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group, and a methyl group and an ethyl group are particularly preferable. R 3 is one or more groups selected from the group of saturated or unsaturated monovalent hydrocarbon groups having 1 to 18 carbon atoms. Examples of such groups include methyl groups, ethyl groups, and the like. Group, propyl group, hexyl group, octyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group and other alkyl groups, cyclopentyl group, cyclohexyl group and other cycloalkyl groups, vinyl group, allyl group and other alkenyl groups Aryl groups such as phenyl group and tolyl group, aralkyl groups such as 2-phenylethyl group and 2-methyl-2-phenylethyl group, 3,3,3-trifluoropropyl group, 2- (perfluorobutyl) ethyl Group, a halogenated hydrocarbon group such as 2- (perfluorooctyl) ethyl group, p-chlorophenyl group, and the like, and a methyl group is particularly preferable. B of General formula (2) is an integer of 5-120, Preferably it is an integer of 10-90.

この一般式(2)のオルガノポリシロキサンを配合する場合の添加量は、熱伝導性シリコーングリース組成物中、多すぎるとオイルブリードしやすくなる場合があるので、1〜15質量%の範囲であることが好ましく、より好ましくは5〜10質量%の範囲である。なお、成分(D)を配合する場合、成分(B)は、成分(D)との合計配合量が熱伝導性シリコーングリース組成物中30質量%以下となるように用いることが好ましい。   When the organopolysiloxane of the general formula (2) is blended, the amount added is in the range of 1 to 15% by mass because if the amount is too large in the thermally conductive silicone grease composition, oil bleeding may occur. It is preferable that the range is 5 to 10% by mass. In addition, when mix | blending a component (D), it is preferable to use a component (B) so that the total compounding quantity with a component (D) may be 30 mass% or less in a heat conductive silicone grease composition.

本発明の熱伝導性シリコーングリース組成物を製造するには、上記各成分をトリミックス、ツウィンミックス、プラネタリミキサー(いずれも井上製作所(株)製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機にて30分〜4時間混合する。必要ならば50〜150℃に加熱してもよい。   In order to produce the thermally conductive silicone grease composition of the present invention, each of the above components is mixed with Trimix, Twin Mix, Planetary Mixer (all registered trademarks of a mixer manufactured by Inoue Seisakusho Co., Ltd.), Ultra Mixer (Mizuho Industry ( Mixing is performed for 30 minutes to 4 hours in a mixing machine such as a registered trademark of a mixer manufactured by Kogyo Co., Ltd., Hibis Disper Mix (registered trademark of a mixer manufactured by Tokushu Kika Kogyo Co., Ltd.). If necessary, you may heat to 50-150 degreeC.

以下、本発明を調製例、実施例及び比較例によって更に詳述するが、本発明はこれによって限定されるものではない。本発明の優位性をより明確にする目的で、具体的な実施例を示して証明する。   EXAMPLES Hereinafter, although this invention is further explained in full detail according to a preparation example, an Example, and a comparative example, this invention is not limited by this. In order to clarify the superiority of the present invention, specific examples will be shown and proved.

本発明に関する試験は、次のように行った。熱伝導性シリコーングリース組成物の絶対粘度の測定は、株式会社マルコム社製の型番PC−1TL(10rpm)にて行い、また熱伝導率は、京都電子工業株式会社製のTPA−501により、いずれも25℃において測定した。また、粒径測定は、日機装株式会社製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均径である。   The test relating to the present invention was performed as follows. The absolute viscosity of the thermally conductive silicone grease composition is measured by a model number PC-1TL (10 rpm) manufactured by Malcolm Co., Ltd., and the thermal conductivity is determined by TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd. Was also measured at 25 ° C. The particle size measurement is a volume-based cumulative average diameter measured by Microtrack MT3300EX, which is a particle size analyzer manufactured by Nikkiso Co., Ltd.

なお、熱伝導性シリコーングリース組成物の伸展性、ズレ性は以下のように評価した。
〔伸展性評価〕
アルミニウム板に熱伝導性シリコーングリース組成物を0.2g載せ、それを指にて伸展させその伸展状態を次のように評価した。
○:滑らかな伸展性を示す
△:やや伸展性に乏しく、また異物感あり
×:伸展性に乏しい
The extensibility and misalignment of the thermally conductive silicone grease composition were evaluated as follows.
[Evaluation of extensibility]
0.2 g of the thermally conductive silicone grease composition was placed on an aluminum plate and extended with a finger, and the extended state was evaluated as follows.
○: Shows smooth extensibility △: Slightly poor extensibility and some foreign body feeling ×: Poor extensibility

〔ズレ性〕
0.5mmのスペーサーを設け、アルミニウム板とスライドガラスの間に、直径1.5cmの円状になるように熱伝導性シリコーングリース組成物を挟みこみ、この試験片を地面に対し30℃傾くように、0℃と100℃(各30分)を交互に繰り返すようにセットされたエスペック株式会社製の熱衝撃試験機(型番:TSE−11−A)の中に配置し、1,000サイクル試験を行った。1,000サイクル後、熱伝導性シリコーングリース組成物が元の場所からどのくらいズレたかを測定した。
[Displacement]
A 0.5 mm spacer is provided, and a thermally conductive silicone grease composition is sandwiched between an aluminum plate and a glass slide so as to form a circle having a diameter of 1.5 cm, and this test piece is inclined at 30 ° C. with respect to the ground. Placed in a thermal shock tester (model number: TSE-11-A) manufactured by Espec Co., Ltd., which is set to repeat 0 ° C. and 100 ° C. (30 minutes each) alternately, 1,000 cycle test Went. After 1,000 cycles, it was measured how much the thermally conductive silicone grease composition shifted from its original location.

〔調製例1〕
平均粒径1.0μmの水酸化アルミニウム粉末(A−1)700gと平均粒径8.0μmの水酸化アルミニウム粉末(A−3)300gを容量5リットルプラネタリーミキサー(井上製作所(株)製混合機の登録商標)に投入し、室温にて30分間撹拌して水酸化アルミニウム粉末混合物E−1を得た。この水酸化アルミニウム粉末混合物E−1の平均粒径を測定したところ2.4μmであった。
[Preparation Example 1]
700 g of aluminum hydroxide powder (A-1) having an average particle diameter of 1.0 μm and 300 g of aluminum hydroxide powder (A-3) having an average particle diameter of 8.0 μm are mixed in a 5 liter planetary mixer (Inoue Seisakusho Co., Ltd.) The mixture was stirred at room temperature for 30 minutes to obtain an aluminum hydroxide powder mixture E-1. It was 2.4 micrometers when the average particle diameter of this aluminum hydroxide powder mixture E-1 was measured.

〔調製例2〜7〕
混合する2種類の水酸化アルミニウム粉末を下記表1のように組み合わせ、計量した以外は、全て調製例1と同じにして水酸化アルミニウム粉末混合物E−2〜7を得た。これら水酸化アルミニウム粉末混合物E−2〜7の平均粒径を測定したところ、それぞれ表1に示す値であった。
[Preparation Examples 2 to 7]
Aluminum hydroxide powder mixtures E-2 to 7 were obtained in the same manner as in Preparation Example 1 except that the two types of aluminum hydroxide powders to be mixed were combined and weighed as shown in Table 1 below. When the average particle diameter of these aluminum hydroxide powder mixtures E-2 to 7 was measured, the values shown in Table 1 were obtained.

Figure 0005300408

水酸化アルミニウム粉末
(A−1)平均粒径1.0μm、不定形
(A−2)平均粒径2.5μm、不定形
(A−3)平均粒径8.0μm、不定形
(A−4)平均粒径14.5μm、不定形
(A−5)平均粒径0.4μm、不定形
(A−6)平均粒径25μm、不定形
Figure 0005300408

Aluminum hydroxide powder (A-1) average particle size 1.0 μm, amorphous (A-2) average particle size 2.5 μm, amorphous (A-3) average particle size 8.0 μm, amorphous (A-4) ) Average particle size 14.5 μm, irregular (A-5) average particle size 0.4 μm, irregular (A-6) average particle size 25 μm, irregular

〔実施例1〜5、参考例1〜5及び比較例1〜10〕
表2、3に示す成分の表2、3に示す量を容量5リットルプラネタリーミキサー(井上製作所(株)製混合機の登録商標)に投入し、150℃にて1時間撹拌して実施例1〜5、参考例1〜5及び比較例1〜10の熱伝導性シリコーングリース組成物を製造した。得られた熱伝導性シリコーングリース組成物の特性を表2、3に併記する。
[Examples 1 to 5, Reference Examples 1 to 5 and Comparative Examples 1 to 10]
The amount shown in Tables 2 and 3 of the components shown in Tables 2 and 3 was put into a 5 liter planetary mixer (registered trademark of a mixer manufactured by Inoue Seisakusho Co., Ltd.) and stirred at 150 ° C. for 1 hour. 1 to 5, thermal conductive silicone grease compositions of Reference Examples 1 to 5 and Comparative Examples 1 to 10 were produced. The characteristics of the obtained heat conductive silicone grease composition are also shown in Tables 2 and 3.

Figure 0005300408
Figure 0005300408


Figure 0005300408
Figure 0005300408

成分(A)
(E−1)調製例1の水酸化アルミニウム粉末混合物(平均粒径:2.4μm)
(E−2)調製例2の水酸化アルミニウム粉末混合物(平均粒径:4.4μm)
(E−3)調製例3の水酸化アルミニウム粉末混合物(平均粒径:3.9μm)
(E−4)調製例4の水酸化アルミニウム粉末混合物(平均粒径:3.6μm)
(E−5)調製例5の水酸化アルミニウム粉末混合物(平均粒径:3.8μm)
(E−6)調製例6の水酸化アルミニウム粉末混合物(平均粒径:2.9μm)
(E−7)調製例7の水酸化アルミニウム粉末混合物(平均粒径:4.6μm)
(A−1)水酸化アルミニウム粉末(平均粒径:1.0μm、不定形)
(A−2)水酸化アルミニウム粉末(平均粒径:2.5μm、不定形)
(A−3)水酸化アルミニウム粉末(平均粒径:8.0μm、不定形)
(A−4)水酸化アルミニウム粉末(平均粒径:14.5μm、不定形)
(A−5)水酸化アルミニウム粉末(平均粒径:0.4μm、不定形)
(A−6)水酸化アルミニウム粉末(平均粒径:25μm、不定形)
Ingredient (A)
(E-1) Aluminum hydroxide powder mixture of Preparation Example 1 (average particle size: 2.4 μm)
(E-2) Aluminum hydroxide powder mixture of Preparation Example 2 (average particle size: 4.4 μm)
(E-3) Aluminum hydroxide powder mixture of Preparation Example 3 (average particle size: 3.9 μm)
(E-4) Aluminum hydroxide powder mixture of Preparation Example 4 (average particle size: 3.6 μm)
(E-5) Aluminum hydroxide powder mixture of Preparation Example 5 (average particle size: 3.8 μm)
(E-6) Aluminum hydroxide powder mixture of Preparation Example 6 (average particle size: 2.9 μm)
(E-7) Aluminum hydroxide powder mixture of Preparation Example 7 (average particle size: 4.6 μm)
(A-1) Aluminum hydroxide powder (average particle size: 1.0 μm, irregular shape)
(A-2) Aluminum hydroxide powder (average particle size: 2.5 μm, irregular shape)
(A-3) Aluminum hydroxide powder (average particle size: 8.0 μm, irregular shape)
(A-4) Aluminum hydroxide powder (average particle size: 14.5 μm, irregular shape)
(A-5) Aluminum hydroxide powder (average particle size: 0.4 μm, irregular shape)
(A-6) Aluminum hydroxide powder (average particle size: 25 μm, irregular shape)

成分(B)
(B−1)

Figure 0005300408
(B−2)
Figure 0005300408
Ingredient (B)
(B-1)
Figure 0005300408
(B-2)
Figure 0005300408

成分(D)
(D−1)

Figure 0005300408
Ingredient (D)
(D-1)
Figure 0005300408

成分(C)
(C−1)アルミニウム粉末(平均粒径:30μm)
(C−2)酸化亜鉛粉末(平均粒径:1.0μm)
(C−3)アルミナ粉末(平均粒径:8.9μm)
(C−4)窒化ホウ素粉末(平均粒径:2.0μm)
(C−5)窒化アルミニウム粉末(平均粒径:6.8μm)
Ingredient (C)
(C-1) Aluminum powder (average particle size: 30 μm)
(C-2) Zinc oxide powder (average particle size: 1.0 μm)
(C-3) Alumina powder (average particle size: 8.9 μm)
(C-4) Boron nitride powder (average particle size: 2.0 μm)
(C-5) Aluminum nitride powder (average particle size: 6.8 μm)

Claims (1)

下記成分(A)〜()を含有してなる熱伝導性シリコーングリース組成物。
(A)平均粒径が0.5〜5μmの水酸化アルミニウム粉末αと、平均粒径が6〜20μmの水酸化アルミニウム粉末βの2種類の水酸化アルミニウム粉末を、α/(α+β)=0.1〜0.9の割合で混合し、且つ混合後の平均粒径が1〜15μmとなる水酸化アルミニウム粉末混合物: 20〜45質量%、
(B)下記一般式(1)
1 aSiO(4-a)/2 (1)
〔式中、R1は炭素数1〜18の飽和又は不飽和の一価炭化水素基の群の中から選択される1種もしくは2種以上の基、aは1.8≦a≦2.2である。〕
で表される25℃における動粘度が10〜500,000mm2/sのオルガノポリシロキサン: 5〜30質量%、
(C)平均粒径0.5〜100μmの、アルミニウム粉末、酸化亜鉛粉末、アルミナ粉末、窒化ホウ素粉末、窒化アルミニウム粉末の中から選択される1種以上の無機化合物粉末: 20〜60質量%、
(D)下記一般式(2)
Figure 0005300408
(式中、R 2 は炭素数1〜6のアルキル基、R 3 は炭素数1〜18の飽和又は不飽和の一価炭化水素基の群の中から選択される1種もしくは2種以上の基、bは5〜120の整数である。)
で表される片末端3官能の加水分解性オルガノポリシロキサン 1〜15質量%。
A thermally conductive silicone grease composition comprising the following components (A) to ( D ).
(A) Two types of aluminum hydroxide powders, an aluminum hydroxide powder α having an average particle diameter of 0.5 to 5 μm and an aluminum hydroxide powder β having an average particle diameter of 6 to 20 μm, are represented by α / (α + β) = 0. Mixing at a ratio of 0.1 to 0.9 and an aluminum hydroxide powder mixture having an average particle diameter of 1 to 15 μm after mixing: 20 to 45 % by mass,
(B) The following general formula (1)
R 1 a SiO (4-a) / 2 (1)
[Wherein, R 1 is one or more groups selected from the group of saturated or unsaturated monovalent hydrocarbon groups having 1 to 18 carbon atoms, and a is 1.8 ≦ a ≦ 2. 2. ]
An organopolysiloxane having a kinematic viscosity at 25 ° C. represented by: 10 to 500,000 mm 2 / s: 5 to 30% by mass,
(C) One or more inorganic compound powders selected from aluminum powder, zinc oxide powder, alumina powder, boron nitride powder, and aluminum nitride powder having an average particle size of 0.5 to 100 μm: 20 to 60% by mass,
(D) The following general formula (2)
Figure 0005300408
Wherein R 2 is an alkyl group having 1 to 6 carbon atoms, R 3 is one or more selected from the group of saturated or unsaturated monovalent hydrocarbon groups having 1 to 18 carbon atoms. Group b is an integer from 5 to 120.)
1 to 15% by mass of a trifunctional hydrolyzable organopolysiloxane represented by the formula:
JP2008270462A 2008-10-21 2008-10-21 Thermally conductive silicone grease composition Active JP5300408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008270462A JP5300408B2 (en) 2008-10-21 2008-10-21 Thermally conductive silicone grease composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008270462A JP5300408B2 (en) 2008-10-21 2008-10-21 Thermally conductive silicone grease composition

Publications (2)

Publication Number Publication Date
JP2010100665A JP2010100665A (en) 2010-05-06
JP5300408B2 true JP5300408B2 (en) 2013-09-25

Family

ID=42291599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270462A Active JP5300408B2 (en) 2008-10-21 2008-10-21 Thermally conductive silicone grease composition

Country Status (1)

Country Link
JP (1) JP5300408B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075307A1 (en) 2020-10-05 2022-04-14 デンカ株式会社 Heat-conductive resin composition and electronic apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5418298B2 (en) * 2010-02-26 2014-02-19 信越化学工業株式会社 Thermally conductive silicone composition and cured product thereof
JP5940325B2 (en) 2012-03-12 2016-06-29 東レ・ダウコーニング株式会社 Thermally conductive silicone composition
JP5729882B2 (en) * 2012-10-23 2015-06-03 信越化学工業株式会社 Thermally conductive silicone grease composition
WO2016175001A1 (en) * 2015-04-30 2016-11-03 信越化学工業株式会社 Heat-conductive silicone grease composition
JP5897184B1 (en) * 2015-05-12 2016-03-30 サンユレック株式会社 Polyurethane resin composition
JP6323398B2 (en) * 2015-06-10 2018-05-16 信越化学工業株式会社 Thermally conductive silicone putty composition
EP3404060B1 (en) * 2017-05-19 2022-08-03 Hitachi Energy Switzerland AG Silicone rubber with ath filler
CN107964380B (en) * 2017-12-28 2020-05-12 石家庄惠得科技有限公司 Non-normal distribution aluminum hydroxide powder and preparation method and application thereof
JP2022542537A (en) 2019-06-21 2022-10-05 ダウ シリコーンズ コーポレーション Method for producing thixotropic curable silicone composition
KR20220024580A (en) 2019-06-21 2022-03-03 다우 실리콘즈 코포레이션 Thermally Conductive Silicone Composition
CN112625659A (en) * 2020-12-22 2021-04-09 广东鼎泰新材料科技有限公司 High-thermal-conductivity heat-conducting silicone grease and preparation process thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169873A (en) * 1998-12-02 2000-06-20 Shin Etsu Chem Co Ltd Silicone grease composition
JP3922367B2 (en) * 2002-12-27 2007-05-30 信越化学工業株式会社 Thermally conductive silicone grease composition
JP4646496B2 (en) * 2003-02-13 2011-03-09 東レ・ダウコーニング株式会社 Thermally conductive silicone composition
JP2006137807A (en) * 2004-11-10 2006-06-01 Nitto Shinko Kk Epoxy resin molded article and its production method
JP2006143978A (en) * 2004-11-25 2006-06-08 Ge Toshiba Silicones Co Ltd Heat conductive silicone composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075307A1 (en) 2020-10-05 2022-04-14 デンカ株式会社 Heat-conductive resin composition and electronic apparatus

Also Published As

Publication number Publication date
JP2010100665A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5300408B2 (en) Thermally conductive silicone grease composition
JP6323398B2 (en) Thermally conductive silicone putty composition
JP4933094B2 (en) Thermally conductive silicone grease composition
KR101073164B1 (en) Heat Dissipating Silicone Grease Composition
JP6866877B2 (en) Low heat resistance silicone composition
JP6919716B2 (en) Thermally conductive silicone grease composition
JP6708005B2 (en) Thermally conductive silicone putty composition
JP5729882B2 (en) Thermally conductive silicone grease composition
JP2015140395A (en) Thermal conductive silicone grease composition
JP2009096961A (en) Heat-conductive silicone grease composition excellent in reworkability
JP2008274036A (en) Silicone grease composition for heat radiation
JP5373545B2 (en) Thermally conductive silicone grease composition for heat dissipation and method of using the same
WO2018221637A1 (en) Thermally conductive polysiloxane composition
JP2008222776A (en) Heat-conductive silicone grease composition
JP2005330426A (en) Heat-dissipating silicone grease composition
JP2004210856A (en) Thermally conductive silicone grease composition
JP2009221310A (en) Heat-conductive silicone grease composition
WO2022158029A1 (en) Thermally conductive silicone grease composition and production method for same
WO2006043334A1 (en) Silicone composition for heat dissipation
JP2012052137A (en) Heat conductive silicone grease composition
JP7237884B2 (en) Thermally conductive silicone composition
KR101775288B1 (en) Silicone composition having excellent long-term storage stability and heat-radiating function
KR20160150290A (en) Silicone polymer composition having an excellent heat-radiating function
JP2009221311A (en) Heat conductive grease composition
JP2010013563A (en) Thermally conductive silicone grease

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Ref document number: 5300408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150