JP5300180B2 - Method of forming hardfacing layer - Google Patents

Method of forming hardfacing layer Download PDF

Info

Publication number
JP5300180B2
JP5300180B2 JP2006170227A JP2006170227A JP5300180B2 JP 5300180 B2 JP5300180 B2 JP 5300180B2 JP 2006170227 A JP2006170227 A JP 2006170227A JP 2006170227 A JP2006170227 A JP 2006170227A JP 5300180 B2 JP5300180 B2 JP 5300180B2
Authority
JP
Japan
Prior art keywords
particles
hard particles
molten pool
layer
hardfacing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006170227A
Other languages
Japanese (ja)
Other versions
JP2008000762A (en
Inventor
昌春 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2006170227A priority Critical patent/JP5300180B2/en
Publication of JP2008000762A publication Critical patent/JP2008000762A/en
Application granted granted Critical
Publication of JP5300180B2 publication Critical patent/JP5300180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a hardfaced layer, which suppresses occurrence of cracks in the hardfaced layer. <P>SOLUTION: The method for forming a hardfaced layer comprises: a step of forming a molten pool 8 on a base material 4 by melting a welding wire 7 as a filler material; a step of feeding hard particles 2, which contain first particles consisting of materials having specific gravity smaller than that of the filler material, to the molten pool 8; and a step of obtaining a hardfaced layer 3, which is formed on the base material 4 by solidifying the molten pool 8 and contains the hard particles 2 in an unmolten state. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、硬化肉盛層形成方法に関する。   The present invention relates to a method for forming a hardfacing layer.

従来、耐摩耗性を必要とする部材(母材)上に肉盛溶接を行うことにより硬化肉盛層を形成して、母材の耐摩耗性を向上させることが行われている。この硬化肉盛層の形成においては、溶接によって溶加材を溶融させて母材上に溶融池を生成すると共に、溶融池に硬質粒子を散布する(特許文献1参照)。これにより、硬質粒子が未溶融状態で混入された硬化肉盛層を得ることができ、耐摩耗性を向上させることができる。
特開平8−47774号公報
Conventionally, it has been practiced to improve the wear resistance of a base material by forming a hardened overlay layer by performing overlay welding on a member (base material) that requires wear resistance. In the formation of the hardfacing layer, the filler metal is melted by welding to generate a molten pool on the base material, and hard particles are dispersed in the molten pool (see Patent Document 1). Thereby, a hardfacing layer in which hard particles are mixed in an unmelted state can be obtained, and wear resistance can be improved.
JP-A-8-47774

上記のように硬化肉盛層が形成される場合、冷却過程では、母材の収縮量に対して硬化肉盛層の収縮量が大きいため、この収縮量の差によって硬化肉盛層に応力が作用する。そして、硬化肉盛層は伸びや靱性が低いため、このような応力を受けると硬化肉盛層の表面に亀裂が発生する恐れがある。このような亀裂の発生を防止するために、予熱や後熱が行われることも多いが、生産性を低下させる一因となっている。   When the hardfacing layer is formed as described above, in the cooling process, the shrinkage amount of the hardfacing layer is large relative to the shrinkage amount of the base material. Works. And since a hardfacing layer has low elongation and toughness, when it receives such a stress, there exists a possibility that the crack may generate | occur | produce on the surface of a hardfacing layer. In order to prevent the occurrence of such cracks, preheating and post-heating are often performed, but this is one factor that reduces productivity.

本発明の課題は、硬化肉盛層における亀裂の発生を抑えることができる硬化肉盛層形成方法を提供することにある。   An object of the present invention is to provide a method of forming a hardened layer that can suppress the occurrence of cracks in the hardened layer.

第1発明の硬化肉盛層形成方法は、溶加材を溶融させて母材上に溶融池を生成する工程と、溶加材より比重の小さい材料からなる第1粒子を含む硬質粒子を溶融池に供給する工程と、硬質粒子が溶融池の上部に集中した状態で溶融池が凝固することにより母材上に形成され硬質粒子を未溶融状態で含有し、硬質粒子が表面に多く分布した硬化肉盛層を得る工程とを備える。硬質粒子は、溶加材よりも熱膨張係数の小さい材料からなる。そして、硬質粒子を溶融池に供給する前記工程において、硬質粒子を鉛直下向きに溶融池のアーク直下に落下させる。 The method of forming a hardfacing layer according to the first aspect of the present invention includes a step of melting a filler material to form a molten pool on a base material, and melting hard particles including first particles made of a material having a specific gravity smaller than that of the filler material. The process of supplying to the pond, and the hard pool is solidified in the state where the hard particles are concentrated on the upper part of the molten pool. And a step of obtaining a build-up layer. The hard particles are made of a material having a smaller coefficient of thermal expansion than the filler material. Then, in the step of supplying the hard particles to the molten pool, the hard particles are dropped vertically below the arc of the molten pool.

この硬化肉盛層形成方法では、溶融池に供給される硬質粒子に含まれる第1粒子は、溶融池を構成する溶加材より比重が小さい材料からなる。このため、溶融池が凝固して得られた硬化肉盛層の表面近傍に未溶融状態の第1粒子を多く分布させることができる。亀裂は硬化肉盛層の表面から発生することが多いため、多数の第1粒子を硬化肉盛層の表面近傍に分布させることにより、硬化肉盛層の表面からの亀裂の発生を抑えることができる。これにより、この硬化肉盛層形成方法では、硬化肉盛層における亀裂の発生を抑えることができる。   In this cured overlay layer forming method, the first particles contained in the hard particles supplied to the molten pool are made of a material having a specific gravity smaller than that of the filler material constituting the molten pool. For this reason, many unmelted first particles can be distributed in the vicinity of the surface of the hardfacing layer obtained by solidifying the molten pool. Since cracks often occur from the surface of the hardfacing layer, it is possible to suppress the occurrence of cracks from the surface of the hardfacing layer by distributing a large number of first particles near the surface of the hardfacing layer. it can. Thereby, in this hardening build-up layer formation method, generation | occurrence | production of the crack in a hardening build-up layer can be suppressed.

また、この硬化肉盛層形成方法では、硬質粒子は、溶加材よりも熱膨張係数の小さい材料からなるため、熱膨張係数の複合側により硬化肉盛層全体としての熱膨張係数を低減させることができる。このため、硬化肉盛層の冷却時の収縮量を低減させることができ、亀裂の発生をより抑えることができる。  Further, in this cured overlay layer forming method, the hard particles are made of a material having a smaller thermal expansion coefficient than that of the filler material, so that the thermal expansion coefficient of the entire cured overlay layer is reduced by the composite side of the thermal expansion coefficient. be able to. For this reason, the shrinkage | contraction amount at the time of cooling of a hardfacing layer can be reduced, and generation | occurrence | production of a crack can be suppressed more.

第2発明の硬化肉盛層形成方法は、第1発明の硬化肉盛層形成方法であって、硬質粒子は、溶加材の比重以上の比重を有する材料からなる第2粒子をさらに含む。   The hardened layer forming method of the second invention is the hardened layer forming method of the first invention, wherein the hard particles further include second particles made of a material having a specific gravity equal to or higher than the specific gravity of the filler material.

この硬化肉盛層形成方法では、溶加材の比重以上の比重を有する材料からなる第2粒子が溶融池に供給される。このため、多数の第1粒子を硬化肉盛層の表面近傍に分布させると共に、第1粒子が分布している層よりも低い部分に多数の第2粒子を分布させることができる。   In this cured build-up layer forming method, second particles made of a material having a specific gravity equal to or higher than the specific gravity of the filler material are supplied to the molten pool. For this reason, many first particles can be distributed in the vicinity of the surface of the hardfacing layer, and many second particles can be distributed in a portion lower than the layer in which the first particles are distributed.

発明の硬化肉盛層形成方法は、第1発明又は第2発明のいずれかの硬化肉盛層形成方法であって、溶加材は、軟鋼、Ni系、またはCu系の金属を主成分とする。 The method for forming a hardfacing layer according to the third invention is the method for forming a hardfacing layer according to the first or second invention , wherein the filler material is mainly a mild steel, Ni-based or Cu-based metal. Ingredients.

この硬化肉盛層形成方法では、溶加材は、軟鋼、Ni系、またはCu系の金属を主成分とするため延性が高い。このため、硬化肉盛層での亀裂の発生をより抑えることができる。   In this hardfacing layer forming method, the filler material has a high ductility because it contains mild steel, Ni-based, or Cu-based metal as a main component. For this reason, generation | occurrence | production of the crack in a hardfacing layer can be suppressed more.

発明の硬化肉盛層形成方法は、第1発明から第発明のいずれかの硬化肉盛層形成方法であって、硬質粒子は、炭化物または炭窒化物を含む。 The hardened layer forming method according to a fourth aspect of the present invention is the hardened layer forming method according to any one of the first to third aspects, wherein the hard particles include carbide or carbonitride.

炭化物や炭窒化物は、溶融した溶加材との濡れ性が良好であるため、この硬化肉盛層形成方法では、硬質粒子と溶加材とが強固に結合した硬化肉盛層を形成することができる。   Since carbides and carbonitrides have good wettability with the melted filler material, this cured overlay layer forming method forms a cured overlay layer in which hard particles and the filler material are firmly bonded. be able to.

発明の硬化肉盛層形成方法は、第1発明から第発明のいずれかの硬化肉盛層形成方法であって、硬質粒子は、炭化物、炭窒化物、または、これらの1種類以上をFe系、Co系、Ni系の金属で結合した粒子からなる。 The hardened layer forming method of the fifth invention is the hardened layer forming method of any one of the first to fourth inventions, wherein the hard particles are carbide, carbonitride, or one or more of these. Are made of particles obtained by binding Fe, Co, and Ni metals.

炭化物や炭窒化物は、溶融した溶加材との濡れ性が良好であるため、この硬化肉盛層形成方法では、硬質粒子と溶加材とが強固に結合した硬化肉盛層を形成することができる。   Since carbides and carbonitrides have good wettability with the melted filler material, this cured overlay layer forming method forms a cured overlay layer in which hard particles and the filler material are firmly bonded. be able to.

本発明に係る硬化肉盛層形成方法では、溶融池に供給される硬質粒子に含まれる第1粒子は、溶融池を構成する溶加材より比重が小さい材料からなる。このため、溶融池が凝固して得られた硬化肉盛層の表面近傍に未溶融状態の多数の第1粒子を分布させることができる。亀裂は硬化肉盛層の表面から発生することが多いため、第1粒子を硬化肉盛層の表面近傍に多く分布させることにより、硬化肉盛層の表面からの亀裂の発生を抑えることができる。これにより、この硬化肉盛層形成方法では、硬化肉盛層における亀裂の発生を抑えることができる。   In the hardfacing layer forming method according to the present invention, the first particles included in the hard particles supplied to the molten pool are made of a material having a specific gravity smaller than that of the filler material constituting the molten pool. For this reason, many 1st particle | grains of a non-molten state can be distributed in the surface vicinity of the hardfacing layer obtained by solidifying a molten pool. Since cracks often occur from the surface of the hardfacing layer, the occurrence of cracks from the surface of the hardfacing layer can be suppressed by distributing a large amount of the first particles near the surface of the hardfacing layer. . Thereby, in this hardening build-up layer formation method, generation | occurrence | production of the crack in a hardening build-up layer can be suppressed.

<第1実施形態>
本発明に係る硬化肉盛層形成方法において用いられる溶接システム1を図1に示す。溶接システム1は、硬質粒子2を未溶融状態で含有する硬化肉盛層3をアーク溶接によって母材4上に形成するものである。母材4は、例えば、耐摩耗性が必要とされるバケットツースなどの建設機械の構成部品であり、炭素鋼、NiCrMo鋼やCrMo鋼などの低合金鋼、高マンガン鋳鋼などの金属からなるものである。また、インコネルやハステロイなどのNi基合金、黄銅や青銅などのCu基合金などからなるもの母材4として利用可能である。この溶接システム1は、トーチ5と、硬質粒子供給ノズル6とを備えている。
<First Embodiment>
A welding system 1 used in the method of forming a hardfacing layer according to the present invention is shown in FIG. The welding system 1 forms a hardfacing layer 3 containing hard particles 2 in an unmelted state on a base material 4 by arc welding. The base material 4 is, for example, a component of a construction machine such as bucket tooth that requires wear resistance, and is made of a metal such as carbon steel, low alloy steel such as NiCrMo steel or CrMo steel, or high manganese cast steel. It is. Further, it can be used as a base material 4 made of a Ni-based alloy such as Inconel or Hastelloy, or a Cu-based alloy such as brass or bronze. The welding system 1 includes a torch 5 and a hard particle supply nozzle 6.

トーチ5には、溶加材として溶接ワイヤ7が供給される。この溶接ワイヤ7は、軟鋼、Ni系、またはCu系の金属を主成分とするものである。溶接ワイヤ7は、図示しないコイルから繰り出されてトーチ5へ供給され、トーチ5の先端から所定の長さL1(突出長さ)だけ突出している。この溶接ワイヤ7がアークによって溶融して溶加材として供給されることによって、母材4上に溶融池8が生成される。トーチ5は、母材4の表面に対して角度θ(トーチ角)で傾斜しており、母材4の表面に沿って所定速度で移動する(図1の矢印A1参照)。   A welding wire 7 is supplied to the torch 5 as a filler material. The welding wire 7 is mainly composed of mild steel, Ni-based, or Cu-based metal. The welding wire 7 is fed out from a coil (not shown) and supplied to the torch 5, and protrudes from the tip of the torch 5 by a predetermined length L1 (projection length). The welding wire 7 is melted by an arc and supplied as a filler material, whereby a molten pool 8 is generated on the base material 4. The torch 5 is inclined at an angle θ (torch angle) with respect to the surface of the base material 4 and moves at a predetermined speed along the surface of the base material 4 (see arrow A1 in FIG. 1).

硬質粒子供給ノズル6は、トーチ5の外部においてトーチ5に近接して配置されており、溶接ワイヤ7が溶融して形成される溶融池8の上方に配置される。硬質粒子供給ノズル6は、トーチ5の進行方向(図1の矢印A1参照)に沿って前後に所定幅でウィービングしながらトーチ5と共に移動する(図1の矢印A2,A3参照)。硬質粒子2は、移動する硬質粒子供給ノズル6から重力落下することにより溶融池8のアーク直下に供給される。なお、硬質粒子供給ノズル6と溶融池8のアーク発生部分までの距離はL2である。また、硬質粒子供給ノズル6の外周には水冷パイプ9が配設されており、硬質粒子供給ノズル6を冷却している。   The hard particle supply nozzle 6 is disposed in the vicinity of the torch 5 outside the torch 5 and is disposed above the molten pool 8 formed by melting the welding wire 7. The hard particle supply nozzle 6 moves with the torch 5 while weaving with a predetermined width back and forth along the traveling direction of the torch 5 (see arrow A1 in FIG. 1) (see arrows A2 and A3 in FIG. 1). The hard particles 2 are supplied directly under the arc of the molten pool 8 by dropping by gravity from the moving hard particle supply nozzle 6. The distance from the hard particle supply nozzle 6 to the arc generation portion of the molten pool 8 is L2. Further, a water cooling pipe 9 is disposed on the outer periphery of the hard particle supply nozzle 6 to cool the hard particle supply nozzle 6.

硬質粒子供給ノズル6から供給される硬質粒子2は、溶接ワイヤ7を構成する溶加材より比重が小さく且つ溶加材よりも熱膨張係数が小さい材料からなる第1粒子から構成されている。この第1粒子は、例えば、溶加材として鋼を用いる場合には、TiC、TiCN、ZrC、Cr3C2などの炭化物、炭窒化物、または、これらの1種類以上をFe系、Co系、Ni系の金属で結合した粒子からなるものである。第1粒子は、硬化肉盛層3の添加成分として必要な硬度、例えば、500〜2000Hv、好ましくは1000〜1800Hvの硬度を有する。また、第1粒子の粒径は、0.5〜5mm、好ましくは0.5〜2.5mmであり、第1粒子の添加量は、硬化肉盛層3に対して5〜55容量%、好ましくは15〜45容量%である。   The hard particles 2 supplied from the hard particle supply nozzle 6 are composed of first particles made of a material having a specific gravity smaller than that of the filler material constituting the welding wire 7 and a coefficient of thermal expansion smaller than that of the filler material. For example, when steel is used as the filler material, the first particles include carbides such as TiC, TiCN, ZrC, and Cr3C2, carbonitrides, or at least one of these Fe-based, Co-based, and Ni-based materials. It consists of particles bonded with a metal. The first particles have a hardness necessary as an additive component of the hardfacing layer 3, for example, a hardness of 500 to 2000 Hv, preferably 1000 to 1800 Hv. Moreover, the particle size of the first particles is 0.5 to 5 mm, preferably 0.5 to 2.5 mm, and the addition amount of the first particles is 5 to 55% by volume with respect to the hardfacing layer 3, Preferably it is 15-45 volume%.

次に、この溶接システム1を用いた硬化肉盛層形成方法のフローを図2に示す。   Next, FIG. 2 shows a flow of a method for forming a hardfacing layer using the welding system 1.

まず、第1工程S1では、アーク溶接が行われる。ここでは、アークを発生させることによって溶接ワイヤ7が溶融して溶加材として供給され、母材4上に溶融池8が生成される。なお、本発明に係る硬化肉盛層形成方法では、硬化肉盛層の形成前に軟鋼等による下盛層を形成する下盛溶接は行われない。   First, in the first step S1, arc welding is performed. Here, by generating an arc, the welding wire 7 is melted and supplied as a filler material, and a molten pool 8 is generated on the base material 4. In the hardfacing layer forming method according to the present invention, the overlay welding for forming the surfacing layer of mild steel or the like before the formation of the hardfacing layer is not performed.

次に、第2工程S2では、硬質粒子2が硬質粒子供給ノズル6から落下して溶融池8に供給される。第2工程S2は第1工程S1と並行して行われ、凝固する前の液体状態の溶融池8に硬質粒子2が供給される。   Next, in the second step S <b> 2, the hard particles 2 fall from the hard particle supply nozzle 6 and are supplied to the molten pool 8. The second step S2 is performed in parallel with the first step S1, and the hard particles 2 are supplied to the liquid molten pool 8 before solidification.

第3工程S3では、溶融池8が凝固することにより、母材4上に形成され硬質粒子2を未溶融状態で含有する硬化肉盛層3が得られる。ここでは、トーチ5と硬質粒子供給ノズル6とが移動した後の部分において、溶融池8が自然に凝固して硬化肉盛層3が形成される。第2工程において溶融池8に供給された硬質粒子2は溶加材よりも比重が小さいため、形成された硬化肉盛層3では、硬質粒子2が表面近傍に集中して分布している。   In the third step S3, the molten pool 8 is solidified to obtain the hardfacing layer 3 formed on the base material 4 and containing the hard particles 2 in an unmelted state. Here, in the part after the torch 5 and the hard particle supply nozzle 6 move, the molten pool 8 naturally solidifies to form the hardfacing layer 3. Since the hard particles 2 supplied to the molten pool 8 in the second step have a specific gravity smaller than that of the filler material, the hard particles 2 are concentrated and distributed near the surface in the formed hardfacing layer 3.

トーチ5と硬質粒子供給ノズル6とが移動しながら、これらの第1工程から第3工程が繰り返し行われることにより、母材4の所定領域を覆うように硬化肉盛層3が形成される。   While the torch 5 and the hard particle supply nozzle 6 are moved, the hardened layer 3 is formed so as to cover a predetermined region of the base material 4 by repeatedly performing these first to third steps.

このような硬化肉盛層形成方法によって硬化肉盛層3が形成されると、溶加材よりも比重の小さい硬質粒子2が溶融池8の上部に集中した状態で溶融池8が凝固する。これにより、表面近傍に硬質粒子2が多く分布した硬化肉盛層3を得ることができ、冷却時において硬化肉盛層3の表面に亀裂が生じることを抑えることができる。また、溶加材として上述したような延性のある材料が用いられることによっても、硬化肉盛層3の表面に亀裂が生じることを抑えることができる。   When the hardfacing layer 3 is formed by such a method of forming the hardfacing layer, the molten pool 8 is solidified in a state where the hard particles 2 having a specific gravity smaller than that of the filler material are concentrated on the upper portion of the molten pool 8. Thereby, the hardfacing layer 3 with many hard particles 2 distributed near the surface can be obtained, and it can suppress that the surface of the hardfacing layer 3 cracks at the time of cooling. Moreover, it can suppress that a crack arises on the surface of the hardfacing layer 3 also by using the ductile material as mentioned above as a filler material.

以下、第1実施形態に係る硬化肉盛層形成方法の具体的実施例について説明する。なお、各実施例における条件を比較した表を図3に示す。   Hereinafter, specific examples of the method for forming the hardfacing layer according to the first embodiment will be described. In addition, the table | surface which compared the conditions in each Example is shown in FIG.

上述した溶接システム1および硬化肉盛層形成方法において、以下の条件で硬化肉盛層3を形成する。
〔母材4および溶接ワイヤ7の種類〕
母材4:SH30製(NiCrMo鋼)
溶接ワイヤ7:JFE溶接棒株式会社製(50kg級軟鋼、比重7.8)、φ1.2mm
なお、溶接ワイヤ7の突出長さL1は25mmであり、トーチ角θは60°である。
〔溶接条件〕
溶接電流:350A
溶接電圧:33V
溶接入熱:15.4kJ/cm
溶接速度(トーチ5の移動速度):45cm/min
なお、シールドガスとして、CO2を毎分30リットル供給する。
〔硬質粒子2の種類〕
硬質粒子2:TiC−Ni(比重7.5g/cm3)
硬質粒子2の粒径:0.71〜2.36mm
硬質粒子2の供給量:158.5g/min
粒子供給総体積:21.1cm3/min
硬質粒子2の含有率:38.5%
なお、硬質粒子2の含有率は、硬化肉盛層3の総断面積における硬質粒子2の断面積の割合を示すものであり、硬質粒子2の硬化肉盛層3への溶け混みを考慮しない見かけの含有率である。
〔硬質粒子供給ノズル6の移動条件〕
ウィービング波形:sin波
ウィービング周波数:3.0Hz
ウィービング幅:9.4mm
硬質粒子供給ノズル6とアーク発生部分までの距離L2:25mm
上記のような条件で硬化肉盛層3が形成されることにより、表面近傍に硬質粒子2が多く分布した硬化肉盛層3を得ることができ、冷却時において硬化肉盛層3の表面に亀裂が生じることを抑えることができる。
In the welding system 1 and the cured overlay layer forming method described above, the cured overlay layer 3 is formed under the following conditions.
[Types of base material 4 and welding wire 7]
Base material 4: SH30 (NiCrMo steel)
Welding wire 7: JFE Welding Rod Co., Ltd. (50 kg class mild steel, specific gravity 7.8), φ1.2 mm
The protruding length L1 of the welding wire 7 is 25 mm, and the torch angle θ is 60 °.
[Welding conditions]
Welding current: 350A
Welding voltage: 33V
Weld heat input: 15.4 kJ / cm
Welding speed (moving speed of torch 5): 45 cm / min
In addition, 30 liters of CO2 is supplied as shielding gas per minute.
[Types of hard particles 2]
Hard particles 2: TiC-Ni (specific gravity 7.5 g / cm3)
Hard particle 2 particle size: 0.71 to 2.36 mm
Supply amount of hard particles 2: 158.5 g / min
Total particle supply volume: 21.1 cm3 / min
Hard particle 2 content: 38.5%
In addition, the content rate of the hard particle | grains 2 shows the ratio of the cross-sectional area of the hard particle 2 in the total cross-sectional area of the hardfacing layer 3, and does not consider the melt-mixing to the hardfacing layer 3 of the hard particle 2. Apparent content.
[Movement condition of hard particle supply nozzle 6]
Weaving waveform: sin wave Weaving frequency: 3.0 Hz
Weaving width: 9.4mm
Distance between hard particle supply nozzle 6 and arc generation part L2: 25 mm
By forming the hardfacing layer 3 under the above-described conditions, it is possible to obtain the hardfacing layer 3 in which the hard particles 2 are distributed in the vicinity of the surface, and on the surface of the hardfacing layer 3 during cooling. It can suppress that a crack arises.

母材4として、SCMnH11(高Mn鋼)製のものを用い、他の条件については実施例1と同様にして硬化肉盛層3を形成する。この場合も実施例1と同様に、表面近傍に硬質粒子2が多く分布した硬化肉盛層3を得ることができる。   A material made of SCMnH11 (high Mn steel) is used as the base material 4, and the hardfacing layer 3 is formed in the same manner as in Example 1 for other conditions. Also in this case, similarly to Example 1, the hardfacing layer 3 in which the hard particles 2 are distributed in the vicinity of the surface can be obtained.

<第2実施形態>
上記の第1実施形態における第2工程において、硬質粒子2を供給するタイミングを溶融池8が半凝固状態となったときとしてもよい。この場合、硬質粒子2は、溶加材の比重以上の比重を有する材料からなる粒子を含むものであってもよい。例えば、鋼を溶加材として用いる場合、概ね同じ比重を有するものとしては、NbCがある。また、大きな比重を有するものとしては、Mo2C、TaC、WC、W2C、または、これらの1種類以上をFe系、Co系、Ni系の金属で結合した粒子からなるものがある。
Second Embodiment
In the second step in the first embodiment, the timing for supplying the hard particles 2 may be when the molten pool 8 is in a semi-solidified state. In this case, the hard particles 2 may include particles made of a material having a specific gravity equal to or higher than that of the filler material. For example, when steel is used as the filler material, NbC is a material having substantially the same specific gravity. Moreover, as what has a big specific gravity, there exists a thing which consists of a particle | grain which couple | bonded Mo2C, TaC, WC, W2C, or one or more of these with Fe type, Co type, and Ni type metals.

溶接システム1の構成や他の工程については第1実施形態と同様である。   The configuration of the welding system 1 and other processes are the same as in the first embodiment.

以下、第2実施形態に係る硬化肉盛層形成方法の具体的実施例について説明する。   Hereinafter, specific examples of the method for forming the hardfacing layer according to the second embodiment will be described.

硬質粒子2:WC−Co(比重14.5g/cm3)
硬質粒子2の粒径:0.71〜2.36mm
硬質粒子2の供給量:306.5g/min
粒子供給総体積:21.1cm3/min
硬質粒子2の含有率:38.5%
なお、硬質粒子供給ノズル6の移動条件は実施例1と概ね同じであるが、ウィービング幅は9.8mmである。また、他の条件については実施例1と同様であるが、溶融池8が半凝固状態となったときに硬質粒子2が硬質粒子供給ノズル6から供給される。
Hard particles 2: WC-Co (specific gravity 14.5 g / cm3)
Hard particle 2 particle size: 0.71 to 2.36 mm
Supply amount of hard particles 2: 306.5 g / min
Total particle supply volume: 21.1 cm3 / min
Hard particle 2 content: 38.5%
The moving condition of the hard particle supply nozzle 6 is substantially the same as that of the first embodiment, but the weaving width is 9.8 mm. Other conditions are the same as those in the first embodiment, but the hard particles 2 are supplied from the hard particle supply nozzle 6 when the molten pool 8 is in a semi-solid state.

この場合、半凝固状態の溶融池8に硬質粒子2が供給されるため、溶加材よりも比重の大きい硬質粒子2であっても沈降し難い。このため、硬質粒子2が溶融池8の上部に集中した状態で溶融池8が凝固する。これにより、表面近傍に硬質粒子2が多く分布した硬化肉盛層3を得ることができ、冷却時において硬化肉盛層3の表面に亀裂が生じることを抑えることができる。   In this case, since the hard particles 2 are supplied to the semi-solidified molten pool 8, even the hard particles 2 having a specific gravity larger than that of the filler metal are difficult to settle. For this reason, the molten pool 8 is solidified in a state where the hard particles 2 are concentrated on the upper portion of the molten pool 8. Thereby, the hardfacing layer 3 with many hard particles 2 distributed near the surface can be obtained, and it can suppress that the surface of the hardfacing layer 3 cracks at the time of cooling.

母材4としてSCMnH11(高Mn鋼)製のものを用いる。他の条件については実施例3と同様である。   The base material 4 is made of SCMnH11 (high Mn steel). Other conditions are the same as in the third embodiment.

この場合も、実施例3と同様に、表面近傍に硬質粒子2が多く分布した硬化肉盛層3を得ることができ、冷却時において硬化肉盛層3の表面に亀裂が生じることを抑えることができる。   Also in this case, similarly to Example 3, it is possible to obtain the hardfacing layer 3 in which the hard particles 2 are distributed in the vicinity of the surface, and to suppress the surface of the hardfacing layer 3 from being cracked during cooling. Can do.

<第3実施形態>
上記の第1実施形態における第2工程において、溶加材の比重より小さい第1粒子だけではなく、溶加材の比重以上の比重を有する材料からなる第2粒子をさらに含む硬質粒子2を硬質粒子供給ノズル6から供給してもよい。ここでいう第2粒子とは、第2実施形態において硬質粒子として例示したものと同様のものである。第2粒子は第1粒子とは別体の粉体として第1粒子と混合された状態で供給されるが、第1粒子として例示した材料と第2粒子として例示した材料とがFe系、Co系、Ni系の金属で結合された粒子が硬質粒子として供給されてもよい。
<Third Embodiment>
In the second step in the first embodiment, not only the first particles smaller than the specific gravity of the filler material but also hard particles 2 further including second particles made of a material having a specific gravity equal to or higher than the specific gravity of the filler material are hardened. You may supply from the particle supply nozzle 6. FIG. Here, the second particles are the same as those exemplified as the hard particles in the second embodiment. The second particles are supplied in a state of being mixed with the first particles as a powder separate from the first particles. The material exemplified as the first particles and the material exemplified as the second particles are Fe-based, Co Particles bonded with a system or Ni-based metal may be supplied as hard particles.

溶接システム1の構成や他の工程については第1実施形態と同様である。   The configuration of the welding system 1 and other processes are the same as in the first embodiment.

以下、第3実施形態に係る硬化肉盛層形成方法の具体的実施例について説明する。   Hereinafter, specific examples of the method of forming the hardfacing layer according to the third embodiment will be described.

硬質粒子2:TiC−NiとWC−Coとの混合(TiC:38容積%(24重量%)、WC−Co:62容積%(76重量%))
硬質粒子2の粒径:0.71〜2.36mm
第1粒子(TiC−Ni)の供給量:49.5g/min
第2粒子(WC−Co)の供給量:163.0g/min
粒子供給総体積:17.8cm3/min
硬質粒子2の含有率:37.1%
なお、溶接条件および硬質粒子供給ノズル6の移動条件は実施例1と概ね同じであるが、溶接速度は42cm/min、溶接入熱は15.6kJ/cm、ウィービング幅は8.0mmである。他の条件については実施例1と同様であり、第1粒子と第2粒子とのどちらも液体状態の溶融池8に供給される。
Hard particle 2: Mixing of TiC-Ni and WC-Co (TiC: 38 vol% (24 wt%), WC-Co: 62 vol% (76 wt%))
Hard particle 2 particle size: 0.71 to 2.36 mm
Supply amount of first particles (TiC-Ni): 49.5 g / min
Supply amount of second particles (WC-Co): 163.0 g / min
Total particle supply volume: 17.8 cm 3 / min
Hard particle 2 content: 37.1%
The welding conditions and the moving conditions of the hard particle supply nozzle 6 are substantially the same as in Example 1, but the welding speed is 42 cm / min, the welding heat input is 15.6 kJ / cm, and the weaving width is 8.0 mm. About other conditions, it is the same as that of Example 1, and both 1st particle | grains and 2nd particle | grains are supplied to the molten pool 8 of a liquid state.

上記のような条件で硬化肉盛層3が形成されると、溶加材よりも比重の小さい第1粒子が溶融池8の上部に集中し、且つ、溶加材よりも比重の大きい第2粒子が溶融池8の下部に集中した状態で溶融池8が凝固する。これにより、表面近傍に第1粒子が多く分布した硬化肉盛層3を得ることができ、冷却時において硬化肉盛層3の表面に亀裂が生じることを抑えることができる。また、第2粒子によって、硬化肉盛層3の表面だけではなく下部にも硬質粒子2を分布させることができるため、硬質粒子2を硬化肉盛層3中に分散させることができ、安定した耐摩耗性を得ることができる。   When the hardfacing layer 3 is formed under the above-described conditions, the first particles having a specific gravity smaller than that of the filler material are concentrated on the upper portion of the molten pool 8, and the second particle having a specific gravity larger than that of the filler material. The molten pool 8 is solidified with the particles concentrated in the lower part of the molten pool 8. Thereby, the hardfacing layer 3 with many 1st particles distributed near the surface can be obtained, and it can suppress that a crack arises on the surface of the hardening layer 3 at the time of cooling. Moreover, since the hard particles 2 can be distributed not only on the surface of the hardfacing layer 3 but also on the lower portion by the second particles, the hard particles 2 can be dispersed in the hardfacing layer 3 and stable. Abrasion resistance can be obtained.

母材4としてSCMnH11(高Mn鋼)製のものを用いる。他の条件については実施例5と同様である。   The base material 4 is made of SCMnH11 (high Mn steel). Other conditions are the same as in the fifth embodiment.

この場合も、実施例5と同様に、表面近傍に第1粒子が多く分布し、下部に第2粒子が多く分布した硬化肉盛層3を得ることができる。   Also in this case, similarly to Example 5, it is possible to obtain the hardfacing layer 3 in which many first particles are distributed near the surface and many second particles are distributed in the lower part.

本発明は、硬化肉盛層における亀裂の発生を抑えることができる効果を有し、硬化肉盛層形成方法として有用である。   INDUSTRIAL APPLICATION This invention has the effect which can suppress generation | occurrence | production of the crack in a hardening buildup layer, and is useful as a hardening buildup layer formation method.

本発明に係る硬化肉盛層形成方法で用いられる溶接システムの構成を示す図。The figure which shows the structure of the welding system used with the hardfacing layer forming method which concerns on this invention. 本発明に係る硬化肉盛層形成方法のフローを示す図。The figure which shows the flow of the hardfacing layer forming method which concerns on this invention. 各実施例の条件を比較した表を示す図。The figure which shows the table | surface which compared the conditions of each Example.

Claims (5)

溶加材を溶融させて母材上に溶融池を生成する工程と、
前記溶加材より比重の小さい材料からなる第1粒子を含む硬質粒子を前記溶融池に供給する工程と、
前記硬質粒子が前記溶融池の上部に集中した状態で前記溶融池が凝固することにより、前記母材上に形成され前記硬質粒子を未溶融状態で含有し、前記硬質粒子が表面に多く分布した硬化肉盛層を得る工程と、
を備え、
前記硬質粒子は、前記溶加材よりも熱膨張係数の小さい材料からなり、
前記硬質粒子を前記溶融池に供給する前記工程において、前記硬質粒子を鉛直下向きに前記溶融池のアーク直下に落下させる、
硬化肉盛層形成方法。
Melting the filler material to generate a molten pool on the base material;
Supplying hard particles containing first particles made of a material having a specific gravity smaller than that of the filler material to the molten pool;
When the molten pool is solidified in a state where the hard particles are concentrated on the upper part of the molten pool, the hard particles are formed on the base material and contain the hard particles in an unmelted state, and the hard particles are distributed in a large amount on the surface. Obtaining an overlay layer;
With
The hard particles are made of a material having a smaller coefficient of thermal expansion than the filler material,
In the step of supplying the hard particles to the molten pool, the hard particles are dropped vertically downward directly under the arc of the molten pool.
A method for forming a hardfacing layer.
前記硬質粒子は、前記溶加材の比重以上の比重を有する材料からなる第2粒子をさらに含む、
請求項1に記載の硬化肉盛層形成方法。
The hard particles further include second particles made of a material having a specific gravity equal to or higher than the specific gravity of the filler material.
The cured built-up layer forming method according to claim 1.
前記溶加材は、軟鋼、Ni系、またはCu系の金属を主成分とする、
請求項1又は2のいずれかに記載の硬化肉盛層形成方法。
The filler material is mainly composed of mild steel, Ni-based, or Cu-based metal,
The method for forming a hardfacing layer according to claim 1 .
前記硬質粒子は、炭化物または炭窒化物を含む、
請求項1からのいずれかに記載の硬化肉盛層形成方法。
The hard particles include carbide or carbonitride,
The method for forming a hardfacing layer according to any one of claims 1 to 3 .
前記硬質粒子は、炭化物、炭窒化物、または、これらの1種類以上をFe系、Co系、Ni系の金属で結合した粒子からなる、
請求項1からのいずれかに記載の硬化肉盛層形成方法。
The hard particles are composed of carbides, carbonitrides, or particles obtained by bonding one or more of these with Fe-based, Co-based, or Ni-based metals.
The method for forming a hardfacing layer according to any one of claims 1 to 4 .
JP2006170227A 2006-06-20 2006-06-20 Method of forming hardfacing layer Active JP5300180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006170227A JP5300180B2 (en) 2006-06-20 2006-06-20 Method of forming hardfacing layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006170227A JP5300180B2 (en) 2006-06-20 2006-06-20 Method of forming hardfacing layer

Publications (2)

Publication Number Publication Date
JP2008000762A JP2008000762A (en) 2008-01-10
JP5300180B2 true JP5300180B2 (en) 2013-09-25

Family

ID=39005554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006170227A Active JP5300180B2 (en) 2006-06-20 2006-06-20 Method of forming hardfacing layer

Country Status (1)

Country Link
JP (1) JP5300180B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007024789B3 (en) 2007-05-26 2008-10-23 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method for detecting defects in a weld during a laser welding process
JP6804143B2 (en) 2016-09-30 2020-12-23 株式会社小松製作所 Earth and sand wear resistant parts and their manufacturing methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3382730B2 (en) * 1994-08-02 2003-03-04 株式会社小松製作所 Method of forming wear-resistant overlay and wear-resistant composite material using the method
JPH0921276A (en) * 1995-07-06 1997-01-21 Daido Steel Co Ltd Protective panel
JP2000141037A (en) * 1998-11-12 2000-05-23 Hirose Kogyo Kk Welding method for cladding by welding

Also Published As

Publication number Publication date
JP2008000762A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP4901324B2 (en) Method of forming hardfacing layer
US6861612B2 (en) Methods for using a laser beam to apply wear-reducing material to tool joints
Davis Hardfacing, weld cladding, and dissimilar metal joining
CN100553855C (en) A kind of sandwiched alloy powder block used for built-up welding and preparation method thereof and application
US6888088B2 (en) Hardfacing materials &amp; methods
US9358629B1 (en) Tungsten submerged arc welding using powdered flux
JP2007268552A (en) Wear-resistant particle and wear-resistant structural member
Garbade et al. Overview on hardfacing processes, materials and applications
US20100112374A1 (en) Material and method for coating a surface
WO2014070006A1 (en) Enhanced hardfacing alloy and a method for the deposition of such an alloy
CN101310913B (en) Flux-cored steel belt containing steel wire for surfacing and preparation method thereof
JP5300180B2 (en) Method of forming hardfacing layer
US8399793B2 (en) Methods and materials for hard-facing
JP2005297051A (en) Copper alloy powder for build up excellent in cladding performance and wear resistance, and valve seat using the same
JP6663310B2 (en) Method of forming hardfacing, hardfacing member and method of producing hardfacing plate
Fisher et al. Wear of Hardfacing Alloys
Fauchais et al. Plasma-transferred arc
Dwivedi et al. Surface modification by developing coating and cladding
CN113195759A (en) Corrosion and wear resistant nickel base alloy
Nefedov et al. Development of plasma welding and surfacing abroad
Fisher et al. Wear of Hardfacing Alloys
US7459219B2 (en) Items made of wear resistant materials
Badisch et al. Hardfacing for Wear, Erosion and Abrasion
Hu Metal and Alloy Powders for Welding, Hardfacing, Brazing, and Soldering
JPS63165074A (en) Build-up welding method for wear resistant metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120727

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Ref document number: 5300180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150