JP5299992B2 - Metal nanoparticle catalyst and oxygen oxidation method - Google Patents

Metal nanoparticle catalyst and oxygen oxidation method Download PDF

Info

Publication number
JP5299992B2
JP5299992B2 JP2008183269A JP2008183269A JP5299992B2 JP 5299992 B2 JP5299992 B2 JP 5299992B2 JP 2008183269 A JP2008183269 A JP 2008183269A JP 2008183269 A JP2008183269 A JP 2008183269A JP 5299992 B2 JP5299992 B2 JP 5299992B2
Authority
JP
Japan
Prior art keywords
oxidation
catalyst
oxidation reaction
reaction
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008183269A
Other languages
Japanese (ja)
Other versions
JP2010017696A (en
Inventor
肇 川波
敏郎 横山
敏重 鈴木
孝之 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008183269A priority Critical patent/JP5299992B2/en
Publication of JP2010017696A publication Critical patent/JP2010017696A/en
Application granted granted Critical
Publication of JP5299992B2 publication Critical patent/JP5299992B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、金属ナノ粒子を触媒とする、酸素を酸化剤に用いた酸化反応方法に関するものであり、更に詳しくは、金のナノ粒子を、両親媒性高分子を水に溶解させた水溶液に分散させた触媒、及び該触媒を用いて、酸素を酸化剤に用いることで、選択的に有機化合物を酸化させ、その酸化生成物を製造する方法に関するものである。 Aqueous solution The invention, metal nanoparticles as a catalyst, relates oxidation reaction method using the oxygen in the oxidizing agent, more particularly, the gold nanoparticles, where the amphiphilic polymer is dissolved in water And a method for producing an oxidized product by selectively oxidizing an organic compound by using oxygen as an oxidizing agent using the catalyst.

本発明は、例えば、アルコールを酸化させ、対応するアルデヒド、ケトン、及びカルボン酸を合成する際に、安価で、空気中に含まれる酸素を酸化剤にして、温和な条件で、これらの生成物を、高収率、高選択的に得ることを可能とする、金属ナノ粒子の水分散液からなる高活性の触媒で、かつ媒体の役目を果たす酸化反応用触媒、及び金属ナノ粒子の分散液を用いて、金属が溶解することがなく、リサイクルが可能で、かつ有機媒体を用いない、省エネルギーで環境調和型の酸化反応に関する新技術を提供するものである。   In the present invention, for example, when an alcohol is oxidized to synthesize corresponding aldehydes, ketones, and carboxylic acids, these products are produced under mild conditions using oxygen contained in the air as an oxidizing agent. Is a highly active catalyst comprising an aqueous dispersion of metal nanoparticles and capable of serving as a medium, and a dispersion of metal nanoparticles. Is used to provide a new technology related to energy-saving and environment-friendly oxidation reactions that do not dissolve metals, can be recycled, and do not use organic media.

金属ナノ粒子、特に、金ナノ粒子は、高い活性を持つ触媒の一つとして、化学工業では、例えば、一酸化炭素の酸化反応(非特許文献1〜4)、α,β−不飽和アルデヒドの酸化反応(非特許文献5〜)、アルケンの酸化反応(非特許文献7〜)、アルコールの酸化反応(非特許文献9〜)、及び過酸化水素水の合成(非特許文献11,12)等で、非常に重要な役割を担っている。   Metal nanoparticles, particularly gold nanoparticles, are one of highly active catalysts. In the chemical industry, for example, oxidation reaction of carbon monoxide (Non-Patent Documents 1 to 4), α, β-unsaturated aldehyde Oxidation reaction (Non-patent documents 5), Alkene oxidation reaction (Non-patent documents 7 to), Alcohol oxidation reaction (Non-patent documents 9 to), Hydrogen peroxide solution synthesis (Non-patent documents 11 and 12), etc. And it plays a very important role.

金のナノ粒子を用いたアルコールの酸化反応は、これまでも、数多くの研究開発が盛んに行われているが、ナノ粒子には、容易に凝集し、触媒となり得る表面積が著しく小さくなり、その活性が低下し易いという問題がある。そのため、アルミナ、シリカ、チタニア等の金属酸化物を担体にした、金ナノ粒子触媒が開発されている。しかし、これらの触媒も、不均一性触媒であることから、均一系触媒と比較して、基質と触媒との接触機会が少なく、反応効率も低い。   Alcohol oxidation reactions using gold nanoparticles have been extensively researched and developed so far, but nanoparticles easily aggregate and have a significantly reduced surface area that can be used as a catalyst. There exists a problem that activity falls easily. Therefore, gold nanoparticle catalysts using metal oxides such as alumina, silica, and titania as a support have been developed. However, since these catalysts are also heterogeneous catalysts, there are fewer opportunities for contact between the substrate and the catalyst and the reaction efficiency is low as compared with homogeneous catalysts.

一方、担体として、高分子を用いる方法も報告されている(特許文献1)。この方法は、スチレンポリマーに金クラスターを担持させた触媒を用いるものであり、不均一触媒として、有機媒体中で酸化反応を行うことを目的に触媒が調製されている。   On the other hand, a method using a polymer as a carrier has also been reported (Patent Document 1). This method uses a catalyst in which a gold cluster is supported on a styrene polymer, and a catalyst is prepared for the purpose of performing an oxidation reaction in an organic medium as a heterogeneous catalyst.

一方、近年の環境問題の高まりから、脱有機溶媒を目指した有機合成方法の研究開発が盛んであり、例えば、超臨界二酸化炭素を用いたアルコールの酸化、水中で金担持金属酸化物触媒を用いた反応等が研究されている。   On the other hand, due to the recent increase in environmental problems, research and development of organic synthesis methods aiming at de-organic solvent has been actively carried out, for example, oxidation of alcohol using supercritical carbon dioxide, use of gold-supported metal oxide catalyst in water. The reactions that have occurred have been studied.

従来、工業的な酸化反応としては、金属触媒を用いる脱水素反応で、メタノールからアセトアルデヒドを合成する方法(Carbide & Carbon Corp.)や、酸素存在下において、金属触媒で、酸化脱水素反応を行う方法等がある。これらは、反応温度が270℃〜300℃で、転化率も、副生成物を抑えるために、30%〜50%に留めている。また、酸素存在下では、450℃〜550℃の範囲で、酸素との燃焼を継続させながら行う触媒反応により、アセトアルデヒドが合成されているが、いずれも、高エネルギー負荷を要する反応方法であった。   Conventionally, as an industrial oxidation reaction, a method of synthesizing acetaldehyde from methanol by a dehydrogenation reaction using a metal catalyst (Carbide & Carbon Corp.), or an oxidative dehydrogenation reaction using a metal catalyst in the presence of oxygen. There are methods. These have a reaction temperature of 270 ° C. to 300 ° C., and the conversion rate is also limited to 30% to 50% in order to suppress by-products. In the presence of oxygen, acetaldehyde is synthesized by a catalytic reaction performed in the range of 450 ° C. to 550 ° C. while continuing to burn with oxygen. .

特開2007−237116号公報JP 2007-237116 A M.Haruta,N.Yamada,T.Kobayashi,S.Iijima,J.Catal.1989,115,301−309M.M. Haruta, N .; Yamada, T .; Kobayashi, S .; Iijima, J .; Catal. 1989, 115, 301-309 F.Moreau,G.C.Bond,A.O.Taylor,J.Catal.2005,231,105−114F. Moreau, G .; C. Bond, A.M. O. Taylor, J. et al. Catal. 2005, 231, 105-114 J.Guzman,S.Carrettin,J.C.Fierro−Gonzalez,Y.Hao,B.C.Gates,A.Corma,Angew.Chem.Int.Ed.2005,44,4778−4781J. et al. Guzman, S.M. Carrettin, J. et al. C. Fierro-Gonzalez, Y.M. Hao, B .; C. Gates, A.M. Corma, Angew. Chem. Int. Ed. 2005, 44, 4778-4781 C.M.Yang,M.Kalwei,F.Schuth,K.J.Chao,Appl.Catal.A 2003,254,289−296C. M.M. Yang, M .; Kalwei, F .; Schuth, K.M. J. et al. Chao, Appl. Catal. A 2003, 254, 289-296 J.E.Bailie,G.J.Hutchings,Chem.Commun.1999,2151−2152J. et al. E. Bailie, G.M. J. et al. Hutchings, Chem. Commun. 1999, 2151-2152 J.E.Bailie,H.A.Abdullah,J.A.Anderson,C.H.Rochester,N.V.Richardson,N.Hodge,J.G.Zhang,A.Burrows,C.J.Kiely,G.J.Hutchings,Phys.Chem.Chem.Phys.2001,3,4113−4121J. et al. E. Bailie, H.C. A. Abdullah, J. et al. A. Anderson, C.I. H. Rochester, N.M. V. Richardson, N.A. Hodge, J .; G. Zhang, A .; Burrows, C.I. J. et al. Kiely, G.M. J. et al. Hutchings, Phys. Chem. Chem. Phys. 2001, 3, 4113-4121 B.Chowdhury,J.J.Bravo−Suarez,M.Date,S.Tsubota,M.Haruta,Angew.Chem.Int.Ed.2006,45,412−415B. Chowdhury, J .; J. et al. Bravo-Suarez, M.M. Date, S.M. Tsubota, M .; Haruta, Angew. Chem. Int. Ed. 2006, 45, 412-415 M.D.Hughes,Y.J.Xu,P.Jenkins,P.McMorn,P.Landon,D.I.Enache,A.F.Carley,G.A.Attard,G.J.Hutchings,F.King,E.H.Stitt,P.Johnston,K.Griffin,C.J.Kiely,Nature 2005,437,1132−1135M.M. D. Hughes, Y. et al. J. et al. Xu, P .; Jenkins, P.M. McMorn, P.M. Landon, D.C. I. Enache, A .; F. Carley, G.C. A. Attard, G.M. J. et al. Hutchings, F.M. King, E .; H. Stitt, P.M. Johnston, K.M. Griffin, C.I. J. et al. Kiely, Nature 2005, 437, 1132-1135 F.Porta,L.Prati,J.Catal.2004,224,397−403F. Porta, L .; Prati, J .; Catal. 2004, 224, 397-403 A.Abad,P.Concepcion,A.Corma,H.Garcia,Angew.Chem.Int.Ed.2005,44,4066−4069A. Abad, P .; Conception, A.M. Corma, H .; Garcia, Angew. Chem. Int. Ed. 2005, 44, 4066-4069 P.Landon,P.J.Collier,A.F.Carley,D.Chadwick,A.J.Papworth,A.Burrows,C.J.Kiely,G.J.Hutchings,Phys.Chem.Chem.Phys.2003,5,1917−1923P. Landon, P.M. J. et al. Collier, A.M. F. Carley, D.C. Chadwick, A.M. J. et al. Papworth, A.M. Burrows, C.I. J. et al. Kiely, G.M. J. et al. Hutchings, Phys. Chem. Chem. Phys. 2003, 5, 1917-1923 J.K.Edwards,B.E.Solsona,P.Landon,A.F.Carley,A.Herzing,C.J.Kiely,G.J.Hutchings,J.Catal.2005,236,69−79J. et al. K. Edwards, B.M. E. Solsona, P.M. Landon, A.M. F. Carley, A.M. Herzing, C.I. J. et al. Kiely, G.M. J. et al. Hutchings, J. et al. Catal. 2005, 236, 69-79

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術における問題点を解決し得ると共に、省エネルギーで環境低負荷型の、水中で、酸素を酸化剤としながらも、温和な条件で、アルコール類を効率的に酸化させるための触媒を開発することを目標として鋭意研究を積み重ねた。   Under such circumstances, the present inventors can solve the problems in the above-mentioned conventional technology in view of the above-mentioned conventional technology, and are energy-saving and environmentally low-load, while using oxygen as an oxidizing agent in water. However, earnest research was conducted with the goal of developing a catalyst for the efficient oxidation of alcohols under mild conditions.

その結果、本発明者らは、金属ナノ粒子を、両親媒性高分子の水溶液に分散させることで、金属ナノ粒子との不均一触媒反応であるのにも関わらず、均一触媒反応の様に、酸化反応を起こすことができ、しかも、その水溶液中の金属ナノ粒子は、何回、反応に使っても、また、加熱しても、安定であり、再利用することができることを見出し、更に研究を重ねて、本発明を完成するに至った。   As a result, the present inventors disperse the metal nanoparticles in an aqueous solution of an amphiphilic polymer, so that the heterogeneous catalytic reaction with the metal nanoparticles is performed as in the homogeneous catalytic reaction. It has been found that the metal nanoparticles in the aqueous solution can cause an oxidation reaction and are stable even when used in the reaction or heated, and can be reused. Through repeated research, the present invention has been completed.

本発明は、通常、不安定な金属ナノ粒子を、両親媒性高分子の水溶液に分散させることで、安定で、しかも、活性の高い触媒として、また、媒体としても利用可能な酸化反応用触媒を提供すること、を目的とするものであり、また、例えば、アルコールの酸素酸化反応では、温和な条件で、特に加圧することなく、酸素をバブリングさせる程度の簡便な方法で、効率の良い反応を行うことを可能とし、従来のエネルギー負荷型の酸化反応に代替し得る省エネルギーの産業生産技術として実用化可能な酸化反応方法を提供することを目的とするものである。   The present invention generally provides an oxidation reaction catalyst that can be used as a stable and highly active catalyst or as a medium by dispersing unstable metal nanoparticles in an aqueous solution of an amphiphilic polymer. In addition, for example, in an oxygen oxidation reaction of alcohol, an efficient reaction is performed by a simple method of bubbling oxygen under mild conditions and without particularly applying pressure. It is an object of the present invention to provide an oxidation reaction method that can be put to practical use as an energy-saving industrial production technology that can be used in place of a conventional energy-loaded oxidation reaction.

更に、本発明は、有機媒体を用いず、水を媒体とし、酸素を酸化剤とする、温和で、省エネルギーで、環境に優しく、しかも、廃棄物を限りなく排出しない、新しい酸化反応方法を提供することを目的とするものである。   Furthermore, the present invention provides a new oxidation reaction method that does not use an organic medium, uses water as a medium, uses oxygen as an oxidizing agent, is mild, energy-saving, environmentally friendly, and does not discharge waste as much as possible. It is intended to do.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)金属ナノ粒子を、両親媒性高分子の水溶液に分散させて、ナノ粒子を安定化させた触媒であり、酸素を酸化剤とする酸化反応に用いるための触媒であって、上記金属ナノ粒子が、金のナノ粒子であり、該金のナノ粒子の大きさが2ナノメートル〜20ナノメートルの範囲であり、上記両親媒性高分子が、ポリエチレンオキシド−ポリプロピレンオキシド−ポリエチレンオキシド型ブロック共重合体で、分子量が1000から10000であり、上記酸化反応が、アルコールの酸化により、ケトン、カルボン酸、又はエステル体を製造する反応であることを特徴とする有機化合物の酸素酸化反応用触媒。
)上記触媒に、炭酸ナトリウムを含有する、前記(1)に記載の酸化反応用触媒。
)前記(1)に記載の酸化反応用触媒を用いて、酸素を酸化剤とする酸化反応により有機化合物を酸素酸化する酸化反応方法であって、
上記酸化反応が、アルコールの酸化により、ケトン、カルボン酸、又はエステル体を製造する酸化反応であることを特徴とする酸化反応方法。
)前記(1)又は(2)に記載の酸化反応用触媒を用いて、酸素を酸化剤として、アルコールの酸化により、対応するケトン、カルボン酸又はエステル体を製造することを特徴とするアルコール酸化生成物の製造方法。
The present invention for solving the above-described problems comprises the following technical means.
The (1) metallic nanoparticles, are dispersed in an aqueous solution of the amphiphilic polymer, a catalyst to stabilize the nanoparticles, a catalyst for use in the oxidation reaction using oxygen as oxidizing agent, the metal The nanoparticles are gold nanoparticles, the gold nanoparticles have a size ranging from 2 nanometers to 20 nanometers, and the amphiphilic polymer is a polyethylene oxide-polypropylene oxide-polyethylene oxide block A catalyst for oxygen oxidation reaction of an organic compound, characterized in that it is a copolymer and has a molecular weight of 1000 to 10,000, and the oxidation reaction is a reaction for producing a ketone, carboxylic acid or ester by oxidation of an alcohol .
( 2 ) The catalyst for oxidation reaction according to (1 ) , wherein the catalyst contains sodium carbonate.
( 3 ) An oxidation reaction method for oxidizing an organic compound by oxygen using an oxidation reaction using oxygen as an oxidizing agent, using the oxidation reaction catalyst according to (1),
An oxidation reaction method, wherein the oxidation reaction is an oxidation reaction for producing a ketone, a carboxylic acid, or an ester by oxidation of an alcohol.
( 4 ) A corresponding ketone, carboxylic acid or ester is produced by oxidation of an alcohol using oxygen as an oxidizing agent using the oxidation reaction catalyst according to (1) or (2). A method for producing an alcohol oxidation product.

次に、本発明について更に詳細に説明する。
本発明は、金属ナノ粒子を、両親媒性高分子の水溶液に分散させて、ナノ粒子を安定化させた触媒であり、酸素を酸化剤とする酸化反応に用いるための触媒であって、上記両親媒性高分子が、ポリアルキレンオキシド型ブロック共重合体であることを特徴とする有機化合物の酸素酸化反応用触媒、である。
Next, the present invention will be described in more detail.
The present invention is a catalyst in which metal nanoparticles are dispersed in an aqueous solution of an amphiphilic polymer to stabilize the nanoparticles, and is a catalyst for use in an oxidation reaction using oxygen as an oxidant. An amphiphilic polymer is a catalyst for oxygen oxidation reaction of an organic compound, characterized in that the amphiphilic polymer is a polyalkylene oxide block copolymer.

また、本発明は、上記の酸化反応用触媒を用いて、酸素を酸化剤とする酸化反応により有機化合物を酸素酸化することを特徴とする酸化反応方法、である。更に、本発明は、上記の酸化反応用触媒を用いて、酸素を酸化剤として、アルコールの酸化により、対応するケトン、カルボン酸又はエステル体を製造することを特徴とするアルコール酸化生成物の製造方法、である。   In addition, the present invention is an oxidation reaction method characterized in that an organic compound is oxidized with oxygen by an oxidation reaction using oxygen as an oxidizing agent, using the oxidation reaction catalyst. Furthermore, the present invention provides the production of an alcohol oxidation product characterized by producing a corresponding ketone, carboxylic acid or ester form by oxidation of an alcohol using oxygen as an oxidant using the above-mentioned oxidation reaction catalyst. Method.

本発明では、両親媒性高分子が、ポリエチレンオキシド−ポリプロピレンオキシド−ポリエチレンオキシド型ブロック共重合体で、分子量が1000から10000であること、酸化反応が、アルコールの酸化により、ケトン、カルボン酸、又はエステル体を製造する反応であることが重要である。そして、本願発明では、金属ナノ粒子が、金のナノ粒子であり、その粒子の大きさが、2ナノメートル20ナノメートルの範囲であることを実施の態様とし、上記触媒に、炭酸ナトリウムを含有すること、を好ましい実施の態様としている。 In the present invention, the amphiphilic polymer is a polyethylene oxide-polypropylene oxide-polyethylene oxide type block copolymer having a molecular weight of 1000 to 10,000, an oxidation reaction is caused by oxidation of alcohol, ketone, carboxylic acid, or It is important that the reaction be an ester product. Then, in the present invention, the metal nanoparticles are gold nanoparticles, the size of the particles to be in the range of 2 nm to 20 nm and aspect of implementation, the catalyst, the sodium carbonate Containing is a preferred embodiment.

本発明は、両親媒性高分子の水溶液に安定に分散させた金属ナノ粒子からなる触媒を、酸素を用いる酸化反応に適応することで、非常に高活性な触媒能を発揮させて、温和な条件でありながら、特に加圧することなく、酸素をバブリングさせる程度で、効率の良い反応を行うことを可能とし、従来の酸化反応に代替し得る省エネルギーの産業生産技術として、実用化可能な方法を提供するものである。   The present invention adapts a catalyst made of metal nanoparticles stably dispersed in an aqueous solution of an amphiphilic polymer to an oxidation reaction using oxygen, thereby exhibiting an extremely high catalytic activity and is mild. Although it is a condition, a method that can be put into practical use as an energy-saving industrial production technology that enables an efficient reaction by bubbling oxygen without applying pressure, and that can replace the conventional oxidation reaction. It is to provide.

本発明は、基本的には、上記安定化されたナノ粒子を触媒にして、反応を実施することで、種々の金属ナノ粒子が利用でき、また、あらゆる種類の有機反応にも適用可能であることから、金属の種類そして、反応の種類については、特に制限されるものではない。   The present invention is basically applicable to various kinds of organic reactions by using various kinds of metal nanoparticles by carrying out the reaction using the stabilized nanoparticles as a catalyst. Therefore, the type of metal and the type of reaction are not particularly limited.

本発明の有効性を実証するために、本発明者らは、金ナノ粒子等の金属ナノ粒子を、両親媒性高分子の水溶液に分散させ、ベンジルアルコールの酸素酸化反応をモデル反応にして、反応収率や、反応選択性について、種々研究を重ねた。その結果、温和な条件でありながら、8時間で、99%の転化率を得ることができ、しかも、ベンズアルデヒド、安息香酸、ベンジルベンゾエートを、高選択的に得ることができ、他の副生成物の生成は、見られず、しかも、媒体が水であるため、生成物の分離が容易にできることを確認した。   In order to demonstrate the effectiveness of the present invention, the present inventors dispersed metal nanoparticles such as gold nanoparticles in an aqueous solution of an amphiphilic polymer, using oxygen oxidation reaction of benzyl alcohol as a model reaction, Various studies were repeated on reaction yield and reaction selectivity. As a result, 99% conversion can be obtained in 8 hours under mild conditions, and benzaldehyde, benzoic acid and benzyl benzoate can be obtained with high selectivity, and other by-products can be obtained. It was confirmed that the product was easily separated because the medium was water.

本発明では、金属ナノ粒子として、金のナノ粒子使用される。 In the present invention, as the metal nanoparticles child, gold nanoparticles are used.

して、酸素を酸化剤に用いる酸化反応には、例えば、サイズの揃った金のナノ粒子が用いられる Their to, the oxidation reaction using oxygen oxidant, for example, nanoparticles of gold having uniform size are used.

本発明において、金属ナノ粒子の大きさは、小さければ小さいほど表面積が大きくなり、活性が上がるが、本発明においては、2nm20nmの範囲である。金属ナノ粒子のサイズが揃っていれば、反応選択性の向上に繋がるが、本発明では、これらの大きさの金属ナノ粒子が、安定に存在すればよいIn the present invention, the smaller the size of the metal nanoparticles, the larger the surface area and the higher the activity. In the present invention, the size is in the range of 2 nm to 20 nm. If the size of the metal nanoparticles is uniform, the reaction selectivity will be improved. However, in the present invention, metal nanoparticles of these sizes may be present stably.

本発明では、金属ナノ粒子を安定化させるために、両親媒性高分子の水溶液に分散させる必要がある。本発明で使用される両親媒性高分子は、特に水に溶解する高分子の多くは、金属ナノ粒子を安定化する効果があり、水に溶解するあらゆる高分子を用いることができる。好ましくは、ポリアルキレンオキシド型ブロック共重合体で、分子量が1000以上10000以下であり、更には、ポリエチレンオキシド−ポリプロピレンオキシド−ポリエチレンオキシド型ブロック共重合体で、分子量が1000以上10000以下の高分子であることが最も好ましい。   In the present invention, it is necessary to disperse the metal nanoparticles in an aqueous solution of an amphiphilic polymer in order to stabilize the metal nanoparticles. As the amphiphilic polymer used in the present invention, many of the polymers that are particularly soluble in water have an effect of stabilizing metal nanoparticles, and any polymer that is soluble in water can be used. Preferably, it is a polyalkylene oxide type block copolymer having a molecular weight of 1,000 or more and 10,000 or less, and further a polyethylene oxide-polypropylene oxide-polyethylene oxide type block copolymer having a molecular weight of 1,000 or more and 10,000 or less. Most preferably it is.

本発明では、金属ナノ粒子を安定化させるために、両親媒性の高分子の水溶液を用いるが、金属ナノ粒子とその高分子の混合比は、金属ナノ粒子(金のナノ粒子)/高分子(単位構造によるモル換算)値は、好適には0.01以上1.00以下、更に好適には0.05以上0.5以下、最も好適には、0.1以上0.2以下であることが望ましい。
In the present invention, an aqueous solution of an amphiphilic polymer is used to stabilize the metal nanoparticles, but the mixing ratio between the metal nanoparticles and the polymer is metal nanoparticles (gold nanoparticles ) / polymer. values (molar basis in units structure) 1 on 0.01 or more is a prime suitable. 00 or less, more preferably over 0.05 or more 0. 5 or less, and most preferably 0.1 or more and 0.2 or less.

本発明では、例えば、アルコールの酸素酸化を行うことで、カルボン酸が生成する。そのため、両親媒性高分子水溶液に分散させた金属ナノ粒子は、その液の酸性度によって、その触媒能も変化する。従って、本発明における触媒分散液には、液の酸性度を、好ましくはpH4〜14に設定することで、反応を進行させることができ、更に好ましくは、pH7〜14に設定することで反応を進行させることができる。   In the present invention, for example, carboxylic acid is generated by oxygen oxidation of alcohol. Therefore, the catalytic activity of the metal nanoparticles dispersed in the aqueous amphiphilic polymer solution varies depending on the acidity of the liquid. Therefore, in the catalyst dispersion in the present invention, the reaction can be allowed to proceed by setting the acidity of the solution to preferably pH 4 to 14, and more preferably the pH is set to 7 to 14. Can be advanced.

また、水溶液のpHを調整する際に、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、ナトリウムメトキシド、カリウムメトキシド等のアルカリ金属やアルカリ土類金属の水酸化物、ないしは炭酸塩、あるいはアルコキシド、そして、アンモニア、エチルアミン、メチルアミン、ジエチルアミン、ジメチルアミン、トリエチルアミン、トリメチルアミン等の有機アミン、その塩でpHを調整することが好ましく、更に好ましくは、アルカリ金属の炭酸塩で、例えば、炭酸ナトリウムでpHを調整することが好ましい。   When adjusting the pH of the aqueous solution, alkali metal or alkaline earth metal such as sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, sodium methoxide, potassium methoxide, etc. The pH is preferably adjusted with hydroxide, carbonate or alkoxide, and organic amines such as ammonia, ethylamine, methylamine, diethylamine, dimethylamine, triethylamine, and trimethylamine, and salts thereof, more preferably alkali metals. It is preferable to adjust the pH with, for example, sodium carbonate.

本発明における酸化反応とは、酸素、又は酸素を含む気体又は空気を酸化剤に用いて、アルコールの酸化により、対応するケトン、アルデヒド、カルボン酸、そして、エステル体を製造する方法を意味するものである。その時、それぞれ、アルコールの種類により、酸素の濃度を設定することができるが、酸化に用いる酸素の濃度は、空気に含まれる酸素(20.9Vol%)以上100%の酸素以下で行うことが適当である。   The oxidation reaction in the present invention means a method for producing a corresponding ketone, aldehyde, carboxylic acid, and ester body by oxidation of alcohol using oxygen or a gas or air containing oxygen as an oxidizing agent. It is. At that time, depending on the type of alcohol, the concentration of oxygen can be set. However, the concentration of oxygen used for oxidation is preferably not less than oxygen (20.9 Vol%) and not more than 100% oxygen contained in air. It is.

本発明における酸化反応で用いるアルコールとしては、芳香族と脂肪族アルコールがあり、以下の化1の化合物群を、酸化させることができる。   The alcohol used in the oxidation reaction in the present invention includes aromatic and aliphatic alcohols, and the following compound group of Chemical Formula 1 can be oxidized.

(式中、R及びRは、それぞれ同一であるか、あるいは異なり、水素、又は置換基を有していてもよい、アルキル基、アルケニル基、アルキニル基、シクロアルキル基又はアリール基であるか、あるいは互いに結合して環を形成する構成員となるものである。ここで、置換基は、アリール基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、ホルミル基、カルボニル基、カルボキシル基、アルコキシカルボニル基、水酸基、メルカプト基、ハロゲン、スルホニル基又はアミノ基である。) (In the formula, R 1 and R 2 are the same or different, and are hydrogen, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, or an aryl group, which may have a substituent. Or a member that is bonded to each other to form a ring, wherein the substituent is an aryl group, alkyl group, alkenyl group, alkynyl group, alkoxy group, formyl group, carbonyl group, carboxyl group, An alkoxycarbonyl group, a hydroxyl group, a mercapto group, a halogen, a sulfonyl group or an amino group.)

また、得られる化合物としては、以下に記載する化合物群を得ることができる。得られる化合物群として、以下の化2のケトン、アルデヒドの化合物群、   Moreover, as a compound obtained, the compound group described below can be obtained. As a compound group to be obtained, the following chemical group 2 ketone, aldehyde compound group,

(式中、R及びRは、それぞれ同一であるか、あるいは異なり、水素、又は置換基を有していてもよい、アルキル基、アルケニル基、アルキニル基、シクロアルキル基又はアリール基であるか、あるいは互いに結合して環を形成する構成員となるものである。ここで、置換基は、アリール基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、ホルミル基、カルボニル基、カルボキシル基、アルコキシカルボニル基、水酸基、メルカプト基、ハロゲン、スルホニル基又はアミノ基である。) (In the formula, R 1 and R 2 are the same or different, and are hydrogen, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, or an aryl group, which may have a substituent. Or a member that is bonded to each other to form a ring, wherein the substituent is an aryl group, alkyl group, alkenyl group, alkynyl group, alkoxy group, formyl group, carbonyl group, carboxyl group, An alkoxycarbonyl group, a hydroxyl group, a mercapto group, a halogen, a sulfonyl group or an amino group.)

また、以下の化3のカルボン酸の化合物群、   In addition, a compound group of carboxylic acid of the following chemical formula 3,

(式中、Rは、水素、又は置換基を有していてもよい、アルキル基、アルケニル基、アルキニル基、シクロアルキル基又はアリール基を形成する構成員となるものである。ここで、置換基は、アリール基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、ホルミル基、カルボニル基、カルボキシル基、アルコキシカルボニル基、水酸基、メルカプト基、ハロゲン、スルホニル基又はアミノ基である。) (In the formula, R 1 is a member that forms hydrogen or an alkyl group, alkenyl group, alkynyl group, cycloalkyl group, or aryl group, which may have a substituent. The substituent is an aryl group, alkyl group, alkenyl group, alkynyl group, alkoxy group, formyl group, carbonyl group, carboxyl group, alkoxycarbonyl group, hydroxyl group, mercapto group, halogen, sulfonyl group or amino group.

更に、以下の化4のエステル体の化合物群、を挙げることができる。   Furthermore, the compound group of the ester body of the following Chemical formula 4 can be mentioned.

(式中、Rは、水素、又は置換基を有していてもよい、アルキル基、アルケニル基、アルキニル基、シクロアルキル基又はアリール基を形成する構成員となるものである。ここで、置換基は、アリール基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、ホルミル基、カルボニル基、カルボキシル基、アルコキシカルボニル基、水酸基、メルカプト基、ハロゲン、スルホニル基又はアミノ基である。) (In the formula, R 1 is a member that forms hydrogen or an alkyl group, alkenyl group, alkynyl group, cycloalkyl group, or aryl group, which may have a substituent. The substituent is an aryl group, alkyl group, alkenyl group, alkynyl group, alkoxy group, formyl group, carbonyl group, carboxyl group, alkoxycarbonyl group, hydroxyl group, mercapto group, halogen, sulfonyl group or amino group.

本発明において、酸化反応を行い、各種ケトン、アルデヒド、カルボン酸、エステル等を得る場合、媒体として、水を用いるため、反応温度は、通常、0℃以上100℃以下である。しかし、これについては、適宜反応基質、目的化合物の種類や、転化率、収率、選択率等に応じて、任意に設定することができる。また、反応時間は、通常、1分以上、48時間以内であるが、これについても、基質、反応の種類、触媒、目的化合物の種類等に応じて、適宜適応可能である。   In the present invention, when an oxidation reaction is performed to obtain various ketones, aldehydes, carboxylic acids, esters and the like, water is used as a medium, and therefore the reaction temperature is usually 0 ° C. or higher and 100 ° C. or lower. However, this can be arbitrarily set according to the type of reaction substrate, target compound, conversion rate, yield, selectivity, and the like. In addition, the reaction time is usually 1 minute or longer and 48 hours or less, and this can be appropriately applied according to the substrate, the type of reaction, the catalyst, the type of the target compound, and the like.

本発明では、これらについては、特に限定範囲は無く、任意に設定することができる。代表的な例としては、例えば、ベンジルアルコールの酸化反応を行う場合、反応温度30℃、反応時間8時間で、転化率がほぼ100%に達し、ベンズアルデヒド、安息香酸、ベンジルベンゾエートを得ることができる。   In the present invention, these are not particularly limited and can be arbitrarily set. As a typical example, for example, when an oxidation reaction of benzyl alcohol is performed, the conversion rate reaches almost 100% at a reaction temperature of 30 ° C. and a reaction time of 8 hours, and benzaldehyde, benzoic acid, and benzyl benzoate can be obtained. .

本発明では、好適には、回分式反応装置が使用されるが、連続式反応装置でも使用することが適宜可能である。更に、有機溶媒を使用しない反応系で、水を媒体とするため、水と基質、あるいは水と生成物の分離がきわめて容易である場合が多く、生成物の相が、水媒体の表面に形成されるので、多くの有機化合物について、反応後の生成物の特別の分離精製工程を省略でき、生成物の分離工程が簡便になるという利点がある。   In the present invention, a batch reactor is preferably used, but a continuous reactor can be used as appropriate. Furthermore, in a reaction system that does not use an organic solvent, since water is used as a medium, separation of water and a substrate or water and a product is often very easy, and a product phase is formed on the surface of an aqueous medium. Therefore, for many organic compounds, there is an advantage that a special separation and purification process of the product after the reaction can be omitted, and the product separation process becomes simple.

本発明により、以下のような効果が奏される。
(1)従来、金属ナノ粒子は、数ナノメートルの微粒子であり、界面活性剤や無機酸化物等の担体が無いと、凝集し易く、不安定であったが、両親媒性高分子の水溶液を用いることで、安定性が飛躍的に向上したことから、リサイクル可能で、しかも活性の高い触媒を提供することができる。
(2)この触媒は、主に過酸化水素水や、その他の過酸化物等の、高価な、あるいは危険性の高い酸化剤を用いず、酸素あるいは酸素を含む気体ないしは空気の様な安価で、取り扱いも簡便な物質を用いながら、水を反応媒体として用いることができ、非常に温和な条件であっても、効率よくアルコール等の酸化反応を行うことができ、対応するケトン、アルデヒド、カルボン酸、エステル体等を得ることができる酸化反応方法を提供することができる。
(3)更に、本発明の方法は、有機溶媒を一切使用せず、水を媒体に用いた反応であるため、反応基質及び/又は生成物の分離、回収が容易であり、しかも、不純物の排出が殆ど無く、水も触媒も再利用可能である。しかも、従来の酸化方法と比べても、圧倒的に反応温度が低く、必要な投入エネルギーを小さくできることから、本発明は、環境低負荷型の、新しい一般化学的酸化方法を提供するものとして有用である。
The following effects are exhibited by the present invention.
(1) Conventionally, metal nanoparticles are fine particles of several nanometers, and if there is no carrier such as a surfactant or an inorganic oxide, they are easy to aggregate and unstable, but an aqueous solution of an amphiphilic polymer Since the stability has been dramatically improved, it is possible to provide a recyclable and highly active catalyst.
(2) This catalyst does not use expensive or highly dangerous oxidizers such as hydrogen peroxide or other peroxides, and is inexpensive such as oxygen or oxygen-containing gas or air. Water can be used as a reaction medium while using a substance that is easy to handle, and even under mild conditions, an oxidation reaction of alcohol or the like can be carried out efficiently, and the corresponding ketone, aldehyde, carbon An oxidation reaction method capable of obtaining an acid, an ester or the like can be provided.
(3) Further, since the method of the present invention is a reaction using water as a medium without using any organic solvent, the reaction substrate and / or product can be easily separated and recovered, and the impurities can be removed. There is little discharge and both water and catalyst can be reused. Moreover, since the reaction temperature is overwhelmingly lower than that of the conventional oxidation method and the required input energy can be reduced, the present invention is useful as providing a new general chemical oxidation method with a low environmental load. It is.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、これらの例によって何ら限定されるものではない。   Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.

本実施例でが、金ナノ粒子を、次の方法で合成した。P123(両親媒性ポリエチレンオキサイド−ポリプロピレンオキサイド−ポリエチレンオキサイド(PEO−PPO−PEO)ブロック共重合体(平均分子量:5800)の水溶液、を35℃で30分撹拌後、HAuCl水溶液(0.05M,4mL)を加え、即座に激しく撹拌した。 In this example, gold nanoparticles were synthesized by the following method. An aqueous solution of P123 (amphiphilic polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) block copolymer (average molecular weight: 5800)) was stirred at 35 ° C. for 30 minutes, and then an HAuCl 4 aqueous solution (0.05 M, 4 mL) was added and immediately stirred vigorously.

次に、その中に、NaBH水溶液(0.1%,6mL)を、15分間かけて、ゆっくり加えた。加えた直後から、薄い黄色い溶液に変化し、5分間の撹拌後は、ワイン色の赤い溶液へと変わった。金ナノ粒子分散液は、同様の手法で、金とP123のモル分率が1〜7までの分散液を調製した。 Next, NaBH 4 aqueous solution (0.1%, 6 mL) was slowly added thereto over 15 minutes. Immediately after the addition, it turned into a pale yellow solution, and after 5 minutes of stirring, it turned into a wine red solution. The gold nanoparticle dispersion was prepared in the same manner as the gold and P123 molar fractions of 1 to 7.

得られた分散液の可視吸収スペクトルを測定したところ、520nmのところに、表面プラズモン吸収に由来する吸収が見られ、金ナノ粒子が生成していることを確認した。更に、80℃で8時間加熱した耐熱実験後と、反応実験に使用後の分散液の可視吸収スペクトルも測定した。その結果、何れも、520nmに吸収が見られ、ポリマーに分散したナノ粒子は、非常に安定であることが分かった。なお、分散液の可視吸収スペクトルを図1に示す。   When the visible absorption spectrum of the obtained dispersion was measured, absorption derived from surface plasmon absorption was observed at 520 nm, and it was confirmed that gold nanoparticles were generated. Furthermore, the visible absorption spectrum of the dispersion after the heat resistance experiment heated at 80 ° C. for 8 hours and after use in the reaction experiment was also measured. As a result, absorption was observed at 520 nm, and the nanoparticles dispersed in the polymer were found to be very stable. The visible absorption spectrum of the dispersion is shown in FIG.

金ナノ粒子を、透過型電子顕微鏡(TEM)を用いて観測した。サンプルは、金ナノ粒子合成直後の分散液と、80℃で、8時間加熱した耐熱性実験後の分散液と、反応に使用した後の分散液、の3種類を用い、各水溶液を、銅のグリッドに1滴垂らした後、乾燥させて作製した。その映像を図2〜図4に示す。   Gold nanoparticles were observed using a transmission electron microscope (TEM). Three types of samples were used: a dispersion immediately after gold nanoparticle synthesis, a dispersion after a heat resistance experiment heated at 80 ° C. for 8 hours, and a dispersion after use in the reaction. One drop was dropped on the grid and then dried. The images are shown in FIGS.

また、それぞれのサンプルにおける金ナノ粒子の分散を図5〜図7に示す。これより、金ナノ粒子合成直後は、平均粒径は7.3nmで、4nm〜12nmの分散を示すことが分かった。一方、耐熱性実験後は、その粒子の平均粒径は7.3nmで、4nm〜12nmと、ほぼ同一の分散を示すが、多少広くなることが分かった。また、反応後のナノ粒子は、凝集等の現象から、若干分散が広がり、平均粒径も、8.8nmと大きくなることが分かった。   Moreover, dispersion | distribution of the gold nanoparticle in each sample is shown in FIGS. From this, it was found that immediately after the synthesis of the gold nanoparticles, the average particle size was 7.3 nm and the dispersion was 4 nm to 12 nm. On the other hand, after the heat resistance experiment, it was found that the average particle diameter of the particles was 7.3 nm, showing almost the same dispersion as 4 nm to 12 nm, but a little wider. Further, it was found that the nanoparticles after the reaction were slightly dispersed due to a phenomenon such as aggregation, and the average particle size was increased to 8.8 nm.

得られた金ナノ粒子のX線回折(XRD)を測定した。金の(111)、(200)、そして、(311)の面の回折に相当するピークが得られ、結晶性の金のナノ粒子が生成していることが確認された。XRDの図を図8に示す。   X-ray diffraction (XRD) of the obtained gold nanoparticles was measured. Peaks corresponding to diffraction on the (111), (200), and (311) planes of gold were obtained, confirming the formation of crystalline gold nanoparticles. A diagram of XRD is shown in FIG.

本実施例では、上記のP123水溶液に分散した金ナノ粒子を、触媒に用い、酸素を酸化剤とするアルコールの酸化反応を行った。15mLのNaCO水溶液(0.25M)と、15mLの金ナノ粒子分散液を、還流管をつけた50mLの二口フラスコに加え、マグネチックスターラーで撹拌しながら、オイルバスで所定の温度まで加熱した。撹拌しながら、酸素をバブリングしながら30分間溶解させた。 In this example, the gold nanoparticles dispersed in the above P123 aqueous solution were used as a catalyst, and an oxidation reaction of alcohol using oxygen as an oxidizing agent was performed. 15 mL of Na 2 CO 3 aqueous solution (0.25 M) and 15 mL of gold nanoparticle dispersion are added to a 50 mL two-necked flask equipped with a reflux tube, and stirred at a predetermined temperature with an oil bath while stirring with a magnetic stirrer. Until heated. While stirring, oxygen was bubbled and dissolved for 30 minutes.

その後、0.75mLのアルコールを加え、酸素をバブリングしながら、また、激しく撹拌しながら、所定の時間反応させた。反応過程では、所定時間毎に、1mLの溶液をサンプリングしながら測定を行った。反応終了後、1mLの希塩酸(2M)を加え、ジエチルエーテルで3回抽出を行った。生成物を、ガスクロマトグラフィーで分析し、収率、選択率等を求めた。   Thereafter, 0.75 mL of alcohol was added and reacted for a predetermined time while bubbling oxygen and stirring vigorously. In the reaction process, measurement was performed while sampling 1 mL of solution at predetermined time intervals. After completion of the reaction, 1 mL of diluted hydrochloric acid (2M) was added, and extraction was performed 3 times with diethyl ether. The product was analyzed by gas chromatography to determine yield, selectivity and the like.

ベンジルアルコールを原料として、反応温度は30℃、NaCOの存在下の条件で、時間に伴う反応追跡を行った。その結果を図9に示す。図中、■は、ベンジルアルコールの転化率、□は、生成物の一つであるベンズアルデヒドの選択率、△は、安息香酸の選択率、▽は、ベンジルベンゾエートの選択率、を表す。8時間で、転化率が、ほぼ100%に達成した。これ以上の反応を行ったが、転化率、その他、化合物の選択率の変化は、見られなかった。 Using benzyl alcohol as a raw material, the reaction temperature was traced under the conditions of a reaction temperature of 30 ° C. and the presence of Na 2 CO 3 . The result is shown in FIG. In the figure, ■ represents the conversion rate of benzyl alcohol, □ represents the selectivity of benzaldehyde which is one of the products, Δ represents the selectivity of benzoic acid, and ▽ represents the selectivity of benzyl benzoate. In 8 hours, the conversion was almost 100%. Although more reactions were carried out, no change in conversion rate or other compound selectivity was observed.

ベンズアルデヒドが、反応開始後30分で、選択率が最大(49%)となるが、反応が進むにつれ、酸化反応が進行し、安息香酸の選択率が増大した。一方、ベンジルベンゾエートは、ベンジルアルコールと安息香酸との縮合(エステル化)により生成することが分かった。なお、ベンジルベンゾエートの選択率は、1時間以降は、殆ど変化は無かった。また、その他の副生物は得られず、金ナノ粒子を触媒に用いることで、選択的に、酸化反応が進行することが分かった。   The selectivity of benzaldehyde reached a maximum (49%) 30 minutes after the start of the reaction, but as the reaction proceeded, the oxidation reaction progressed and the selectivity of benzoic acid increased. On the other hand, it was found that benzyl benzoate is produced by condensation (esterification) of benzyl alcohol and benzoic acid. The selectivity for benzyl benzoate remained almost unchanged after 1 hour. Moreover, other by-products were not obtained, and it was found that the oxidation reaction proceeds selectively by using gold nanoparticles as a catalyst.

次に、各種アルコールの酸化反応を行った。触媒として、金ナノ粒子を、分子換算で0.015mmol、Au:P123=1:7(モル比)、アルコールを0.75mmol、NaCOを3.75mmolを加え、30mLの水溶液に、酸素をバブリングしながら、温度30℃で反応を行った。その結果、ベンジルアルコール系は、全て94%以上の転化率で反応することが分かった。 Next, oxidation reactions of various alcohols were performed. As a catalyst, gold nanoparticles were added in an amount of 0.015 mmol in terms of molecule, Au: P123 = 1: 7 (molar ratio), 0.75 mmol of alcohol, and 3.75 mmol of Na 2 CO 3 were added. The reaction was carried out at a temperature of 30 ° C. while bubbling. As a result, it was found that all benzyl alcohol systems react at a conversion rate of 94% or more.

一方、アルキルアルコール(1−ヘプタノール)は、酸化され難く、転化率は27%程度に留まっていた。しかし、ケトン体ではなく、カルボン酸まで酸化されることが分かった。また、シクロオクタノールの様に、反応温度を20℃〜40℃の範囲で検討した場合、温度を上げることで、24時間で58%の転化率(30℃の場合)が、9時間で92%まで上昇した。しかも、シクロオクタノンのケトン体で反応が止まり、カルボン酸等は得られなかった。   On the other hand, alkyl alcohol (1-heptanol) was hardly oxidized and the conversion rate remained at about 27%. However, it was found that the carboxylic acid was oxidized instead of the ketone body. Further, when the reaction temperature is examined in the range of 20 ° C. to 40 ° C. like cyclooctanol, the conversion rate of 58% in 24 hours (in the case of 30 ° C.) is increased to 92% in 9 hours by increasing the temperature. Rose to. In addition, the reaction stopped with the ketone body of cyclooctanone, and carboxylic acid or the like was not obtained.

一方、金ナノ粒子あるいはパラジウム又は金/パラジウムナノ粒子を、アルミナ担体に担持させた触媒を用いた場合、殆ど反応せず、転化率も9%以下であった。したがって、金ナノ粒子をP123で安定化させた水分散液は、水溶液の様に取り扱うことができ、更に、酸化反応に対して、良好な触媒能を発揮し、しかも、通常、不安定なナノ粒子であるが、非常に安定であることが分かった。   On the other hand, when a catalyst in which gold nanoparticles or palladium or gold / palladium nanoparticles were supported on an alumina support was used, there was almost no reaction, and the conversion rate was 9% or less. Therefore, the aqueous dispersion in which the gold nanoparticles are stabilized with P123 can be handled like an aqueous solution, and further exhibits a good catalytic ability for the oxidation reaction. Although it was a particle, it was found to be very stable.

以上詳述したように、本発明は、金属ナノ粒子触媒及び酸素酸化方法に係るものであり、本発明により、金属ナノ粒子を両親媒性高分子水溶液に分散させることで安定化することができ、高活性でリサイクル可能で、酸素を酸化剤としてアルコールを酸化させることができる触媒を提供することができる。この触媒を用いることで、種々の酸化反応から、ケトン、アルデヒド、カルボン酸、エステル体を効率良く合成することが可能となる。   As described above in detail, the present invention relates to a metal nanoparticle catalyst and an oxygen oxidation method. According to the present invention, metal nanoparticles can be stabilized by dispersing them in an amphiphilic polymer aqueous solution. It is possible to provide a highly active and recyclable catalyst capable of oxidizing alcohol using oxygen as an oxidizing agent. By using this catalyst, it is possible to efficiently synthesize ketones, aldehydes, carboxylic acids, and esters from various oxidation reactions.

また、本発明は、有機媒体を用いず、温和な条件で合成することができ、廃棄物も極力出さないことから、省エネルギーの環境低負荷型の有機化合物の酸化反応方法を提供するものとして有用である。   In addition, the present invention can be synthesized under mild conditions without using an organic medium, and generates no waste as much as possible. Therefore, the present invention is useful for providing an energy-saving environmentally low load type organic compound oxidation reaction method. It is.

P123(両親媒性ポリエチレンオキサイド−ポリプロピレンオキサイド−ポリエチレンオキサイド(PEO−PPO−PEO)ブロック共重合体(平均分子量:5800)の水溶液に、金ナノ粒子を分散させた分散液の紫外可視吸収スペクトル、及びその写真を示す。図中の(a)は、分散液を80℃で8時間加熱した後の分散液、(b)は、加熱する前の分散液、(c)は、酸化反応に用いた後の分散液、である。UV-visible absorption spectrum of a dispersion of gold nanoparticles dispersed in an aqueous solution of P123 (amphiphilic polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) block copolymer (average molecular weight: 5800)), and In the figure, (a) is the dispersion after heating the dispersion at 80 ° C. for 8 hours, (b) is the dispersion before heating, and (c) is used for the oxidation reaction. A later dispersion. 分散液を80℃で8時間加熱した後の分散液の透過型電子顕微鏡(TEM)写真を示す。The transmission electron microscope (TEM) photograph of the dispersion liquid after heating a dispersion liquid at 80 degreeC for 8 hours is shown. 調整直後の分散液の透過型電子顕微鏡写真を示す。The transmission electron micrograph of the dispersion liquid just after adjustment is shown. 酸化反応に用いた後の分散液の電子顕微鏡写真を示す。The electron micrograph of the dispersion liquid after using for an oxidation reaction is shown. 分散液を80℃で8時間加熱した後の分散液中の粒度分布を示す。The particle size distribution in a dispersion liquid after heating a dispersion liquid at 80 degreeC for 8 hours is shown. 調整直後の分散液の粒度分布を示す。The particle size distribution of the dispersion immediately after adjustment is shown. 酸化反応に用いた後の分散液の粒度分布を示す。The particle size distribution of the dispersion liquid after being used for the oxidation reaction is shown. P123水溶液に分散した金ナノ粒子の粉末X線回折を示す。The powder X-ray diffraction of the gold nanoparticle disperse | distributed to P123 aqueous solution is shown. P123水溶液に分散させた金ナノ粒子触媒によるベンジルアルコールの酸化反応を示す。The oxidation reaction of benzyl alcohol by the gold nanoparticle catalyst disperse | distributed to P123 aqueous solution is shown.

Claims (4)

金属ナノ粒子を、両親媒性高分子の水溶液に分散させて、ナノ粒子を安定化させた触媒であり、酸素を酸化剤とする酸化反応に用いるための触媒であって、上記金属ナノ粒子が、金のナノ粒子であり、該金のナノ粒子の大きさが2ナノメートル〜20ナノメートルの範囲であり、上記両親媒性高分子が、ポリエチレンオキシド−ポリプロピレンオキシド−ポリエチレンオキシド型ブロック共重合体で、分子量が1000から10000であり、上記酸化反応が、アルコールの酸化により、ケトン、カルボン酸、又はエステル体を製造する反応であることを特徴とする有機化合物の酸素酸化反応用触媒。 The metal nanoparticles are dispersed in an aqueous solution of the amphiphilic polymer, a catalyst to stabilize the nanoparticles, oxygen A catalyst for use in oxidation reactions with the oxidant, the metal nanoparticles Gold nanoparticles, the gold nanoparticles having a size in the range of 2 to 20 nanometers, and the amphiphilic polymer is a polyethylene oxide-polypropylene oxide-polyethylene oxide block copolymer A catalyst for oxygen oxidation reaction of an organic compound, wherein the molecular weight is 1000 to 10,000, and the oxidation reaction is a reaction for producing a ketone, a carboxylic acid, or an ester by oxidation of an alcohol. 上記触媒に、炭酸ナトリウムを含有する、請求項1に記載の酸化反応用触媒。 The oxidation catalyst according to claim 1, wherein the catalyst contains sodium carbonate. 請求項1に記載の酸化反応用触媒を用いて、酸素を酸化剤とする酸化反応により有機化合物を酸素酸化する酸化反応方法であって、
上記酸化反応が、アルコールの酸化により、ケトン、カルボン酸、又はエステル体を製造する酸化反応であることを特徴とする酸化反応方法。
An oxidation reaction method for oxidizing an organic compound by oxygen using an oxidation reaction using oxygen as an oxidant using the oxidation reaction catalyst according to claim 1,
An oxidation reaction method, wherein the oxidation reaction is an oxidation reaction for producing a ketone, a carboxylic acid, or an ester by oxidation of an alcohol.
請求項1又は2に記載の酸化反応用触媒を用いて、酸素を酸化剤として、アルコールの酸化により、対応するケトン、カルボン酸又はエステル体を製造することを特徴とするアルコール酸化生成物の製造方法。 3. Production of an alcohol oxidation product, wherein the corresponding ketone, carboxylic acid or ester is produced by oxidation of an alcohol using oxygen as an oxidizing agent using the catalyst for oxidation reaction according to claim 1 or 2. Method.
JP2008183269A 2008-07-14 2008-07-14 Metal nanoparticle catalyst and oxygen oxidation method Expired - Fee Related JP5299992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008183269A JP5299992B2 (en) 2008-07-14 2008-07-14 Metal nanoparticle catalyst and oxygen oxidation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008183269A JP5299992B2 (en) 2008-07-14 2008-07-14 Metal nanoparticle catalyst and oxygen oxidation method

Publications (2)

Publication Number Publication Date
JP2010017696A JP2010017696A (en) 2010-01-28
JP5299992B2 true JP5299992B2 (en) 2013-09-25

Family

ID=41703095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008183269A Expired - Fee Related JP5299992B2 (en) 2008-07-14 2008-07-14 Metal nanoparticle catalyst and oxygen oxidation method

Country Status (1)

Country Link
JP (1) JP5299992B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105618054A (en) * 2016-03-01 2016-06-01 重庆工商大学 Preparation method of mesoporous Co3O4 catalyst and product and application thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5776066B2 (en) * 2010-03-10 2015-09-09 国立大学法人 東京大学 Method for producing carboxylic acid ester, catalyst and method for producing the same
JP5590299B2 (en) * 2010-03-10 2014-09-17 国立大学法人 東京大学 Method for producing aldehyde, catalyst and method for producing the same
CN109575915B (en) * 2018-12-17 2021-08-24 鲁东大学 Method for colorimetric detection of organic mercury by using amphiphilic polymer modified AuNPs
WO2020197026A1 (en) * 2019-03-22 2020-10-01 주식회사 퀀텀캣 Metal nanoparticle catalysts embedded in mesoporous silica, which show high catalytic activity at low temperatures

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232018A (en) * 2002-02-08 2003-08-19 Hitachi Chem Co Ltd Material and execution method for photocatalytic road marking object, and photocatalytic road making object
JP2006070094A (en) * 2004-08-31 2006-03-16 Osaka Univ Polymer blend and material for shifting substance in liquid by using the same
WO2006095477A1 (en) * 2005-03-09 2006-09-14 Inter-University Research Institute Corporation National Institutes Of Natural Sciences Resin-platinum complex and resin-supported platinum cluster catalyst
JP4925086B2 (en) * 2005-10-21 2012-04-25 独立行政法人産業技術総合研究所 Thin or fibrous organic / inorganic porous silica particles and method for producing the same
JP4792559B2 (en) * 2006-03-10 2011-10-12 独立行政法人科学技術振興機構 Polymer-supported gold cluster catalyst for oxidation reaction
WO2008056431A1 (en) * 2006-11-10 2008-05-15 Osaka University Gold-supporting fine particle having catalytic activity, process for producing the same, and method of oxidation with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105618054A (en) * 2016-03-01 2016-06-01 重庆工商大学 Preparation method of mesoporous Co3O4 catalyst and product and application thereof

Also Published As

Publication number Publication date
JP2010017696A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
Dimitratos et al. Solvent-free oxidation of benzyl alcohol using Au–Pd catalysts prepared by sol immobilisation
Zhao et al. Hydrogenation of nitrobenzene with supported platinum catalysts in supercritical carbon dioxide: effects of pressure, solvent, and metal particle size
Vinod et al. Recent advances in the heterogeneously catalysed aerobic selective oxidation of alcohols
Li et al. Silica-supported Au–Cu alloy nanoparticles as an efficient catalyst for selective oxidation of alcohols
Abad et al. Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts
Rautiainen et al. Solvent controlled catalysis: Synthesis of aldehyde, acid or ester by selective oxidation of benzyl alcohol with gold nanoparticles on alumina
Comotti et al. Is the biochemical route always advantageous? The case of glucose oxidation
Deng et al. Carbon nanotube-supported Au–Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines
JP5299992B2 (en) Metal nanoparticle catalyst and oxygen oxidation method
Dumbre et al. Calcium oxide supported gold nanoparticles as catalysts for the selective epoxidation of styrene by t-butyl hydroperoxide
Della Pina et al. Gold-catalyzed oxidation in organic synthesis: a promise kept
Jawale et al. Size effect of gold nanoparticles supported on carbon nanotube as catalysts in selected organic reactions
Wang et al. Selective oxidation of alcohols to aldehydes and ketones over TiO2-supported gold nanoparticles in supercritical carbon dioxide with molecular oxygen
Kapkowski et al. SiO2-, Cu-, and Ni-supported Au nanoparticles for selective glycerol oxidation in the liquid phase
Alabbad et al. Gold & silver nanoparticles supported on manganese oxide: Synthesis, characterization and catalytic studies for selective oxidation of benzyl alcohol
Lignier et al. Swift and efficient sono-hydrolysis of nitriles to carboxylic acids under basic condition: Role of the oxide anion radical in the hydrolysis mechanism
Ma et al. A water-soluble dilacunary silicotungstate as an effective catalyst for oxidation alcohols in water with hydrogen peroxide
Rostamnia et al. Exfoliation effect of PEG-type surfactant on Pd supported GO (SE-Pd (nanoparticle)/GO) in cascade synthesis of amides: a comparison with Pd (nanoparticle)/rGO
Sun et al. Gold-catalyzed selectivity-switchable oxidation of benzyl alcohol in the presence of molecular oxygen
Makgwane et al. Hydroxylation of benzene to phenol over magnetic recyclable nanostructured CuFe mixed-oxide catalyst
Qi et al. Solvent-free aerobic oxidation of alcohols over palladium supported on MCM-41
Sha et al. Selective oxidation of fatty alcohol ethoxylates with H2O2 over Au catalysts for the synthesis of alkyl ether carboxylic acids in alkaline solution
Dhital et al. Gold–and gold–palladium/poly (1-vinylpyrrolidin-2-one) nanoclusters as quasi-homogeneous catalyst for aerobic oxidation of glycerol
Su et al. Aerobic oxidation of alcohols catalyzed by gold nanoparticles supported on gallia polymorphs
Grirrane et al. Gold nanoparticles supported on ceria promote the selective oxidation of oximes into the corresponding carbonylic compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130503

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees