JP5298688B2 - Polishing pad - Google Patents

Polishing pad Download PDF

Info

Publication number
JP5298688B2
JP5298688B2 JP2008195908A JP2008195908A JP5298688B2 JP 5298688 B2 JP5298688 B2 JP 5298688B2 JP 2008195908 A JP2008195908 A JP 2008195908A JP 2008195908 A JP2008195908 A JP 2008195908A JP 5298688 B2 JP5298688 B2 JP 5298688B2
Authority
JP
Japan
Prior art keywords
polishing
polishing pad
elastic modulus
layer
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008195908A
Other languages
Japanese (ja)
Other versions
JP2010029997A (en
Inventor
憲一 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008195908A priority Critical patent/JP5298688B2/en
Publication of JP2010029997A publication Critical patent/JP2010029997A/en
Application granted granted Critical
Publication of JP5298688B2 publication Critical patent/JP5298688B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing pad that strikes a balance between high polishing rate and high degree of flatness. <P>SOLUTION: The polishing pad has a polishing layer which is used by being attached to a surface of a surface plate. When a compression elastic coefficient at a compression load P gf/cm<SP>2</SP>of a compressive stress-displacement line figure which is measured from a polishing face side using an indenter with a diameter of Lmm is made to be k(P, L), a ratio value of k(100, 0.7)/k(100, 12.5) of the compression elastic coefficient measured using an indenter with a different diameter is &le;2.5. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、平板状の被加工物の研磨に使用される研磨パッドにかかり、特にシリコンウェハーなどの半導体基板やガラス基板の製造時において、高平坦性が要求される研磨工程に使用される研磨パッドに関する。   The present invention relates to a polishing pad used for polishing a flat workpiece, and particularly used for a polishing process that requires high flatness when manufacturing a semiconductor substrate such as a silicon wafer or a glass substrate. Related to pads.

ICやLSIなどの半導体集積回路を製造するためのシリコンウェハー、磁気ハードディスク基板、磁気ヘッド基板、ディスプレイ用ガラス基板、フォトマスク基板、光学レンズ、光導波路などの分野において、高度の表面平坦性が要求されている。特に、情報処理、情報記録を行う素子あるいはディスクは飛躍的に集積度の向上が求められており、これに伴って基板上に形成される回路などのパターンの微細化が進展し、そのためにより一層の高精度表面仕上げが強く求められている。   High surface flatness is required in fields such as silicon wafers, magnetic hard disk substrates, magnetic head substrates, display glass substrates, photomask substrates, optical lenses, and optical waveguides for manufacturing semiconductor integrated circuits such as ICs and LSIs. Has been. In particular, elements and disks for information processing and information recording are required to dramatically increase the degree of integration, and along with this, the miniaturization of patterns such as circuits formed on a substrate has progressed, and therefore, High precision surface finish is strongly demanded.

シリコンウェハー等の基板を平滑にし、鏡面仕上げするための研磨は、回転可能な定盤に研磨パッドを固定して回転させながら、定盤に対峙して設置したウェハーを自公転運動させて相対的に移動させるとともに、研磨パッドとウェハーの間隙に研磨スラリーを加えることによって、ウェハー表面が研磨され、平坦化、平滑化が行われている。   Polishing for smoothing and mirror-finishing a substrate such as a silicon wafer is performed by rotating and revolving the wafer placed against the surface plate while fixing the polishing pad to a rotatable surface plate and rotating it. In addition, the wafer surface is polished and flattened and smoothed by adding polishing slurry to the gap between the polishing pad and the wafer.

近年、シリコンウェハーのサイズが大型化するとともに、1枚のウェハーからのチップの収率を高めるため、ウェハー外周部のふちだれを極力抑制し、被研磨物の平坦度を向上させ、エッジエクスクルージョン(研磨後のウェハーの面内均一性などを評価する場合に、考慮範囲外とするウェハーの外周部の直径方向の幅のこと)を小さくすることが求められている。例えば、直径200mmあるいは300mmのシリコンウェハーではエッジエクスクルージョンを2mm以下に抑えることが求められている。   In recent years, the size of silicon wafers has increased, and in order to increase the yield of chips from a single wafer, fringing of the outer periphery of the wafer has been suppressed as much as possible, the flatness of the workpiece has been improved, and the edge exclusive has been improved. It is required to reduce John (the width in the diametrical direction of the outer peripheral portion of the wafer that is not considered when evaluating the in-plane uniformity of the wafer after polishing). For example, a silicon wafer having a diameter of 200 mm or 300 mm is required to suppress edge exclusion to 2 mm or less.

一方、研磨パッドの弾性係数に着目した研磨パッド設計としては、弾性係数の大きい表層と弾性係数の小さな下層の間に、下層よりも弾性係数の大きな中間層を設けた研磨パッドが開示されている(特許文献1)。研磨パッド全体の弾性係数を高くすることにより、パターンの粗密に依存しない平坦な研磨面が得られることが記載されている。   On the other hand, as a polishing pad design focusing on the elastic coefficient of the polishing pad, a polishing pad is disclosed in which an intermediate layer having a larger elastic coefficient than the lower layer is provided between a surface layer having a larger elastic coefficient and a lower layer having a smaller elastic coefficient. (Patent Document 1). It is described that by increasing the elastic coefficient of the entire polishing pad, a flat polishing surface that does not depend on the density of the pattern can be obtained.

また、研磨パッドの中心側と外周側で異なる材質を同心円状に配置し、中心側よりも外周側において弾性率(弾性係数)の大きな研磨パッドが開示されている(特許文献2)。粗研磨から仕上研磨までの各段階の研磨加工を同一の定盤上で同一の研磨パッドを使用して連続的に行うことができ、高い平面精度の加工面が得られることが記載されている。   Further, a polishing pad is disclosed in which different materials are arranged concentrically on the center side and the outer peripheral side of the polishing pad, and the elastic modulus (elastic coefficient) is larger on the outer peripheral side than on the central side (Patent Document 2). It is described that each stage of polishing from rough polishing to finish polishing can be continuously performed on the same surface plate using the same polishing pad, and a processed surface with high plane accuracy can be obtained. .

しかしながら、上記のような研磨パッドの厚さ方向の弾性係数の制御や研磨面内の比較的広い領域の硬軟を表す弾性係数の単純な制御では、ある程度の平坦性の向上は得られるものの、未だ不十分であり、平坦性、特にウェハー外周部のふちだれの顕著な改善には至らなかった。また、ウェハー全体にわたる平坦性の顕著な改善は未だ達成できていなかった。
特開平10−156724号公報 特開平11−226861号公報
However, the control of the elastic modulus in the thickness direction of the polishing pad as described above and the simple control of the elastic coefficient representing the softness of a relatively wide area in the polishing surface can improve the flatness to some extent, but still It was insufficient, and it did not lead to a significant improvement in the flatness, in particular the wobbling of the outer periphery of the wafer. In addition, a significant improvement in flatness over the entire wafer has not yet been achieved.
Japanese Patent Laid-Open No. 10-156724 JP 11-226861 A

本発明は、上記のような従来の研磨方法や研磨パッドにおける問題点に鑑みてなされたものであり、研磨レートと平坦性を高いレベルで両立できる研磨パッドを提供することにある。   The present invention has been made in view of the problems in the conventional polishing method and polishing pad as described above, and provides a polishing pad capable of achieving both a polishing rate and flatness at a high level.

上記課題を解決するために本発明の研磨パッドは、以下の(1)の構成からなる。
(1)定盤の表面に貼着して使用される研磨層を有する研磨パッドであって、直径Lmmの圧子を用いて研磨面側から測定した圧縮応力−変位線図の圧縮荷重Pgf/cmにおける圧縮弾性係数をk(P,L)とした時、異なる直径の圧子を用いて測定した圧縮弾性係数の比の値k(100,0.7)/k(100,12.5)が2.5以下であることを特徴とする研磨パッド。
In order to solve the above problems, the polishing pad of the present invention has the following constitution (1).
(1) A polishing pad having a polishing layer used by adhering to the surface of a surface plate, the compression load Pgf / cm of the compression stress-displacement diagram measured from the polishing surface side using an indenter having a diameter of Lmm When the compression elastic modulus in 2 is k (P, L), the ratio k (100, 0.7) / k (100, 12.5) of the compression elastic modulus measured using indenters with different diameters is A polishing pad, which is 2.5 or less.

本発明により、研磨レートが高く、平坦性に優れた研磨パッドが得られる。   According to the present invention, a polishing pad having a high polishing rate and excellent flatness can be obtained.

本発明の研磨パッドは、異なる直径の圧子を用いて測定した圧縮弾性係数の比の値k(100,0.7)/k(100,12.5)が2.5以下である研磨パッドである。ここで、圧縮弾性係数k(P,L)とは、直径Lmmの圧子を用いて研磨面側から測定した圧縮荷重−歪み曲線の圧縮荷重Pgf/cmにおける弾性係数を言う。 The polishing pad of the present invention is a polishing pad having a ratio k (100, 0.7) / k (100, 12.5) of a compression elastic modulus measured using indenters having different diameters of 2.5 or less. is there. Here, the compression elastic modulus k (P, L) refers to an elastic modulus at a compression load Pgf / cm 2 of a compression load-strain curve measured from the polishing surface side using an indenter having a diameter of Lmm.

研磨パッドを実際の研磨時と全く同様に、裏面テープを備えている場合には、その裏面テープで固定した状態において、直径Lmmの圧子を用いて研磨面側から研磨パッドを一定の速度で圧縮し、その時の圧縮応力と変位量の関係から圧縮応力Pgf/cmにおける弾性係数を算出する。圧縮応力Pgf/cmにおける弾性係数は、圧縮応力−変位線図の圧縮応力Pgf/cmにおける接線の傾きとして算出することができる。 If the polishing pad is equipped with a backside tape just as during actual polishing, the polishing pad is compressed from the polishing surface side at a constant speed using an indenter with a diameter of Lmm while being fixed with the backside tape. Then, the elastic modulus at the compressive stress Pgf / cm 2 is calculated from the relationship between the compressive stress and the displacement at that time. Modulus of compressive stress Pgf / cm 2, the compressive stress - can be calculated as the tangent of the slope of the compression stress Pgf / cm 2 of displacement diagram.

本発明の圧縮弾性係数の測定に使用する圧子は、円柱状の圧子を使用する。また、材質は圧子自身の圧縮時の変形量が小さいことから、ステンレス製の圧子を使用することが好ましい。その上で、圧子を含めた装置に由来するコンプライアンスの影響を除くために、装置コンプライアンス補正を行うものとする。具体的には、研磨パッド試料を装着しない状態で、すなわち装置系のみで圧縮試験を行い、圧縮応力−圧縮変位線図を作成し、各応力における変位量を、実際に研磨パッドなどの試料を圧縮した時の変位量の測定値から差し引いた値を、研磨パッド試料の圧縮応力−変位線図とした。圧子としては、直径LがL=0.7mmの圧子とL=12.5mmの圧子を使用した。試験速度は、0.1mm/分とした。   A cylindrical indenter is used as the indenter for measuring the compression elastic modulus of the present invention. Further, since the material is small in the amount of deformation of the indenter itself during compression, it is preferable to use a stainless indenter. In addition, in order to remove the influence of compliance derived from the apparatus including the indenter, apparatus compliance correction is performed. Specifically, with the polishing pad sample not attached, that is, a compression test is performed only with the apparatus system, a compression stress-compression displacement diagram is created, and the amount of displacement at each stress is actually measured using a sample such as a polishing pad. The value subtracted from the measured value of the displacement when compressed was used as the compression stress-displacement diagram of the polishing pad sample. As the indenter, an indenter having a diameter L of L = 0.7 mm and an indenter having L = 12.5 mm were used. The test speed was 0.1 mm / min.

本発明の研磨パッドは、異なる直径の圧子を用いて測定した圧縮弾性係数の比の値k(100,0.7)/k(100,12.5)が2.5以下である研磨パッドである。ウェハー外周部におけるふちだれ低減効果の点から、圧縮弾性係数の比の値k(100,0.7)/k(100,12.5)は、2.0以下が好ましく、1.5以下がさらに好ましい。圧縮弾性係数の比の値k(100,0.7)/k(100,12.5)が2.5を越えると、次の2つ理由のいずれか、または両方の理由から、ふちだれ低減効果が得られない。(1)直径0.7mmの圧子による研磨パッドの圧縮変形が生じにくく、直径1mm以下の微小領域の圧縮に対して硬いパッドの振る舞いが発現するため、ふちだれ低減効果が得られない。(2)直径12.5mmの圧子による研磨パッドの圧縮変形が容易に生じるため、直径12.5mm以上の大面積領域、すなわち半導体チップの大きさやウェハー全体の大きさの圧縮に対して柔軟なパッドの振る舞いが発現するため、圧縮に対する沈み込み量が大きくなり、ふちだれ低減効果が得られない。   The polishing pad of the present invention is a polishing pad having a ratio k (100, 0.7) / k (100, 12.5) of a compression elastic modulus measured using indenters having different diameters of 2.5 or less. is there. In view of the effect of reducing the fringing at the outer periphery of the wafer, the ratio k (100, 0.7) / k (100, 12.5) of the compression elastic modulus is preferably 2.0 or less, and 1.5 or less. Further preferred. If the ratio k (100,0.7) / k (100,12.5) of the compression elastic modulus exceeds 2.5, the squeeze is reduced for one or both of the following two reasons: The effect is not obtained. (1) Since the compressive deformation of the polishing pad by the indenter having a diameter of 0.7 mm hardly occurs and the behavior of the hard pad is expressed with respect to the compression of a minute region having a diameter of 1 mm or less, the fringing reduction effect cannot be obtained. (2) Since the polishing pad is easily compressed and deformed by an indenter having a diameter of 12.5 mm, the pad is flexible with respect to compression of a large area having a diameter of 12.5 mm or more, that is, the size of a semiconductor chip or the entire wafer. Therefore, the amount of subsidence with respect to compression becomes large, and the anti-friction effect cannot be obtained.

本発明の研磨パッドは、圧縮弾性係数k(100,0.7)の値が40kgf/cm以下であることが好ましい。圧縮弾性係数k(100,0.7)の値は30kgf/cm以下がさらに好ましく、20kgf/cmが特に好ましい。圧縮弾性係数k(100,0.7)の値が40kgf/cmを越えると、直径0.7mmの圧子による研磨パッドの圧縮変形が生じにくく、直径1mm以下の微小領域の圧縮に対して硬いパッドの振る舞いが発現するため、ふちだれ低減効果が小さくなる。 The polishing pad of the present invention preferably has a compression elastic modulus k (100, 0.7) of 40 kgf / cm 2 or less. The value of the compression elastic modulus k (100, 0.7) is more preferably 30 kgf / cm 2 or less, and particularly preferably 20 kgf / cm 2 . When the value of the compression elastic modulus k (100, 0.7) exceeds 40 kgf / cm 2 , the polishing pad is hardly compressed and deformed by an indenter having a diameter of 0.7 mm, and is hard against compression of a minute region having a diameter of 1 mm or less. Since the behavior of the pad is expressed, the effect of reducing dripping is reduced.

本発明の研磨パッドは、圧縮弾性係数k(100,12.5)の値が5kgf/cm以上であることが好ましい。圧縮弾性係数k(100,12.5)の値は、10kgf/cm以下がさらに好ましく、15kgf/cmが特に好ましい。圧縮弾性係数k(100,12.5)の値が5kgf/cm未満の場合、直径12.5mmの圧子による研磨パッドの圧縮変形が容易に生じるため、直径12.5mm以上の大面積領域、すなわち半導体チップの大きさやウェハー全体の大きさの圧縮に対して柔軟なパッドの振る舞いが発現するため、圧縮に対する沈み込み量が大きくなり、ふちだれ量が大きくなる。 The polishing pad of the present invention preferably has a compression elastic modulus k (100, 12.5) value of 5 kgf / cm 2 or more. The value of the compression elastic modulus k (100, 12.5) is more preferably 10 kgf / cm 2 or less, and particularly preferably 15 kgf / cm 2 . When the value of the compression elastic modulus k (100, 12.5) is less than 5 kgf / cm 2 , the polishing pad is easily compressed and deformed by an indenter having a diameter of 12.5 mm. Therefore, a large area region having a diameter of 12.5 mm or more, That is, since the behavior of the pad is flexible with respect to the compression of the size of the semiconductor chip or the entire wafer, the amount of sinking with respect to the compression is increased, and the amount of contact is increased.

本発明の研磨パッドは、湿潤状態における圧縮弾性係数の比の値k(100,0.7)/k(100,12.5)が3.0以下であることが好ましい。湿潤状態とは、研磨パッド試料をイオン交換水中に3時間放置した状態を言う。ウェハー外周部におけるふちだれ低減効果の点から、湿潤状態における圧縮弾性係数の比の値k(100,0.7)/k(100,12.5)は2.5以下がさらに好ましく、2.0以下が特に好ましい。湿潤状態における圧縮弾性係数の比の値k(100,0.7)/k(100,12.5)が3.0を越えると、ふちだれ低減の効果が得られないため、好ましくない。   The polishing pad of the present invention preferably has a ratio k (100, 0.7) / k (100, 12.5) of the compression elastic modulus in a wet state of 3.0 or less. The wet state means a state in which the polishing pad sample is left in ion exchange water for 3 hours. From the viewpoint of the effect of reducing wobbling at the outer periphery of the wafer, the ratio k (100, 0.7) / k (100, 12.5) of the compression elastic modulus in the wet state is more preferably 2.5 or less. 0 or less is particularly preferable. If the value k (100, 0.7) / k (100, 12.5) of the compression elastic modulus ratio in the wet state exceeds 3.0, the effect of reducing dripping cannot be obtained, which is not preferable.

本発明の研磨パッドは、圧縮弾性係数の比の値k(600,0.7)/k(600,12.5)が1.5以下であることが好ましい。圧縮弾性係数の比の値k(600,0.7)/k(600,12.5)が1.2以下がさらに好ましく、0.9以下が特に好ましい。圧縮弾性係数の比の値k(600,0.7)/k(600,12.5)が1.5を越えると、次の2つ理由のいずれか、または両方の理由から、ふちだれ低減効果が小さくなる。(1)直径0.7mmの圧子による研磨パッドの圧縮変形が生じにくく、直径1mm以下の微小領域の圧縮に対して硬いパッドの振る舞いが発現するため、ふちだれ低減効果が小さくなる。(2)直径12.5mmの圧子による研磨パッドの圧縮変形が容易に生じるため、直径12.5mm以上の大面積領域、すなわち半導体チップの大きさやウェハー全体の大きさの圧縮に対して柔軟なパッドの振る舞いが発現するため、圧縮に対する沈み込み量が大きくなり、ふちだれ低減効果が小さくなる。   In the polishing pad of the present invention, the ratio k (600, 0.7) / k (600, 12.5) of the compression elastic modulus is preferably 1.5 or less. The ratio k (600, 0.7) / k (600, 12.5) of the compression elastic modulus is more preferably 1.2 or less, and particularly preferably 0.9 or less. If the ratio k (600, 0.7) / k (600, 12.5) of the ratio of compressive elastic modulus exceeds 1.5, the squeeze is reduced for one or both of the following two reasons: The effect is reduced. (1) The polishing pad is hardly compressed and deformed by an indenter having a diameter of 0.7 mm, and the behavior of the hard pad is expressed with respect to compression of a minute region having a diameter of 1 mm or less. (2) Since the polishing pad is easily compressed and deformed by an indenter having a diameter of 12.5 mm, the pad is flexible with respect to compression of a large area having a diameter of 12.5 mm or more, that is, the size of a semiconductor chip or the entire wafer. Therefore, the amount of subsidence with respect to compression increases, and the effect of reducing dripping is reduced.

本発明の研磨パッドは、圧縮弾性係数の比の値k(600,0.7)/k(100,0.7)およびk(600,12.5)/k(100,12.5)がいずれも2.0〜5.5であることが好ましい。ふちだれ低減効果の点から、圧縮応力に対する弾性係数kの変化が小さい方が好ましく、また圧子径の変更に対する弾性係数の変化が小さい方が好ましい。このような観点から、異なる圧縮応力および異なる圧子径の影響による弾性係数kの好ましい範囲は、圧縮弾性係数の比の値k(600,0.7)/k(100,0.7)およびk(600,12.5)/k(100,12.5)がいずれも2.0〜5.5であることが好ましい。   The polishing pad of the present invention has the ratio values k (600, 0.7) / k (100, 0.7) and k (600, 12.5) / k (100, 12.5) of the compression elastic modulus. It is preferable that all are 2.0-5.5. From the standpoint of the reduction effect, it is preferable that the change in the elastic coefficient k with respect to the compressive stress is small, and it is preferable that the change in the elastic coefficient with respect to the change of the indenter diameter is small. From this point of view, the preferable range of the elastic modulus k due to the influence of different compressive stresses and different indenter diameters is the ratio k (600,0.7) / k (100,0.7) and k of the ratio of compressive elastic modulus. It is preferable that (600, 12.5) / k (100, 12.5) are all 2.0 to 5.5.

本発明の研磨パッドにおいて、研磨層は、ベアシリコンウェハーなどの半導体基板や光学ガラス板などの被加工物を研磨する際に、スラリーを介して研磨層と被加工物を加重下において相対運動させて、被加工物の表層を削り取り、平坦化、平滑化するために、研磨パッドの研磨面に配置される。   In the polishing pad of the present invention, when polishing a workpiece such as a semiconductor substrate such as a bare silicon wafer or an optical glass plate, the polishing layer moves the polishing layer and the workpiece relative to each other under a load through the slurry. Thus, the surface layer of the work piece is disposed on the polishing surface of the polishing pad in order to scrape, flatten and smooth the surface layer.

本発明の研磨層は、繊維からなる布帛であることが好ましい。布帛としては、織布、不織布、フェルトなどを挙げることができ、特に、織物または編物であることが格別に好ましい。
本発明の布帛は、繊維のみからなることが好ましい。布帛形成後に、ポリウレタンやポリエステルなどの樹脂成分を含浸させて、繊維間や布帛の隙間を樹脂成分で覆って改質しないことが好ましい。
The polishing layer of the present invention is preferably a fabric made of fibers. Examples of the fabric include a woven fabric, a non-woven fabric, and a felt, and a fabric or a knitted fabric is particularly preferable.
The fabric of the present invention is preferably composed only of fibers. It is preferable that after the formation of the fabric, a resin component such as polyurethane or polyester is impregnated and the inter-fiber or fabric gap is covered with the resin component and not modified.

一般に、繊維は、天然繊維(綿、麻、羊毛、獣毛、絹など)、化学繊維に分類され、さらに化学繊維は再生繊維(レーヨン、キュプラ、リヨセルなど)、半合成繊維(アセテート、トリアセテートなど)、合成繊維に分類される。本発明の繊維としては、特に限定されるものではないが、細径のものから太径のものまで一定の断面形状で、安定した特性の繊維が得られる点で、合成繊維が好ましく用いられる。合成繊維としては、ポリエステル、ナイロン、アクリル、ビニロン、ポリプロピレン、ポリウレタン、ポリフェニレンスルフィドなどを挙げることができるが、ポリエステル、ナイロンが好ましく用いられる。   Generally, fibers are classified into natural fibers (cotton, hemp, wool, animal hair, silk, etc.) and chemical fibers, and chemical fibers are regenerated fibers (rayon, cupra, lyocell, etc.), semi-synthetic fibers (acetate, triacetate, etc.) ) And synthetic fibers. The fibers of the present invention are not particularly limited, but synthetic fibers are preferably used in that fibers having a constant cross-sectional shape from a small diameter to a large diameter can be obtained. Examples of the synthetic fiber include polyester, nylon, acrylic, vinylon, polypropylene, polyurethane, polyphenylene sulfide, and the like, and polyester and nylon are preferably used.

本発明の繊維は、単糸繊度が10デシテックス以下が好ましく、3デシテックス以下がさらに好ましく、1デシテックス以下が特に好ましい。異なる単糸繊度の繊維を併用することも好ましい。後述のように、1デシテックス以下の極細繊維と1デシテックスを越える繊維を組み合わせて用いることも好ましい。0.5デシテックス以下の極細繊維と1デシテックスを越える繊維を組み合わせて用いることも好ましい。これら極細繊維と1デシテックスを越える繊維を組み合わせる場合、研磨層の表面に極細繊維を配置することが好ましい。ここで、1デシテックスとは、繊維10,000m当たりのグラム数をいう。   The fiber of the present invention preferably has a single yarn fineness of 10 dtex or less, more preferably 3 dtex or less, and particularly preferably 1 dtex or less. It is also preferable to use fibers having different single yarn fineness in combination. As described later, it is also preferable to use a combination of ultrafine fibers of 1 dtex or less and fibers exceeding 1 dtex. It is also preferable to use a combination of ultrafine fibers of 0.5 dtex or less and fibers exceeding 1 dtex. When combining these ultrafine fibers and fibers exceeding 1 dtex, it is preferable to dispose the ultrafine fibers on the surface of the polishing layer. Here, 1 dtex refers to the number of grams per 10,000 m of fibers.

本発明の研磨層は、極細繊維であることが好ましい。極細繊維とは、少なくとも単繊維繊度が1デシテックス以下であるものをいう。極細繊維は、単繊維繊度が0.001〜1デシテックスの範囲内であることが好ましく、0.01〜0.5デシテックスの範囲内であることがさらに好ましく、0.01〜0.1デシテックスであることが特に好ましい。極細繊維を用いることにより、微細な凹凸が研磨層の表面に形成され、スラリー保持性が高まり、研磨レートが向上するので好ましい。また、研磨対象であるガラス基板やシリコンウェハーなどの半導体基板の表面平滑性が向上するので好ましい。   The polishing layer of the present invention is preferably an ultrafine fiber. The ultrafine fiber refers to a fiber having a single fiber fineness of 1 dtex or less. The ultrafine fiber preferably has a single fiber fineness in the range of 0.001 to 1 dtex, more preferably in the range of 0.01 to 0.5 dtex, and 0.01 to 0.1 dtex. It is particularly preferred. The use of ultrafine fibers is preferable because fine irregularities are formed on the surface of the polishing layer, slurry retention is improved, and the polishing rate is improved. Further, it is preferable because the surface smoothness of a semiconductor substrate such as a glass substrate or a silicon wafer to be polished is improved.

本発明の研磨層の表面(研磨面)は、極細繊維が研磨層表面の70%以上を被覆していることが好ましく、90%以上がさらに好ましい。繊維径の細い繊維の方がより起伏に富んだ研磨層表面を形成するので、平坦性、研磨レート、研磨対象の表面平滑性の観点から好ましいものであり、研磨層表面における極細繊維の表面被覆率が70%〜100%の範囲内であることが好ましいものである。   The surface (polishing surface) of the polishing layer of the present invention is preferably such that ultrafine fibers cover 70% or more of the polishing layer surface, and more preferably 90% or more. Since the finer fiber diameter forms a more undulating polishing layer surface, it is preferable in terms of flatness, polishing rate, and surface smoothness of the object to be polished. The rate is preferably in the range of 70% to 100%.

本発明の研磨層の厚さは、150〜1000μmであることが好ましい。同じ素材であっても研磨層の厚さが厚くなると圧縮変形量が大きくなり、被加工物がパッドに押し付けられたときにパッドが大きく変形し、より深く沈み込む結果、ふちだれが大きくなるからである。   The thickness of the polishing layer of the present invention is preferably 150 to 1000 μm. Even if the same material is used, the thicker the polishing layer, the greater the amount of compressive deformation.When the workpiece is pressed against the pad, the pad deforms greatly and sinks deeper. It is.

本発明の研磨パッドは、少なくとも研磨層と研磨層を定盤に固定するための裏面テープ層を備えている。通常、研磨を行う前にプラスチックフイルムまたは剥離紙(セパレータと言う)を剥がし、研磨パッドを定盤に押し付けることにより、裏面テープ層は定盤にパッドを固定する役割を担う。セパレータを除いた裏面テープ層は、30〜300μmの厚さであることが好ましく、50〜150μmの厚さであることがさらに好ましい。裏面テープ層はアクリル系、ブタジエン系、イソプレン系、オレフィン系、スチレン系、イソシアネート系などの感圧タイプやホットメルトタイプの接着剤層からなり、基材としてポリエチレンテレフタレートフイルム、ポリプロピレンフイルム、不織布などを備えた裏面テープ層を用いてもよい。通常、基材の厚さは20〜200μmのものが使用される。   The polishing pad of the present invention includes at least a polishing layer and a back surface tape layer for fixing the polishing layer to a surface plate. Usually, the back tape layer plays a role of fixing the pad to the surface plate by peeling off the plastic film or release paper (referred to as a separator) before polishing and pressing the polishing pad against the surface plate. The back surface tape layer excluding the separator preferably has a thickness of 30 to 300 μm, more preferably 50 to 150 μm. The back tape layer is composed of pressure sensitive and hot melt type adhesive layers such as acrylic, butadiene, isoprene, olefin, styrene, isocyanate, etc. The base material is polyethylene terephthalate film, polypropylene film, nonwoven fabric, etc. You may use the provided back surface tape layer. Usually, the substrate has a thickness of 20 to 200 μm.

また、本発明の研磨パッドは、研磨層の定盤側に下地層を設けてもよい。下地層の材質としては、樹脂シートが好ましい。   Further, the polishing pad of the present invention may be provided with a base layer on the surface plate side of the polishing layer. As the material for the underlayer, a resin sheet is preferable.

本発明の樹脂シート層は、厚さが20〜2000μmであることが好ましい。樹脂シート層の厚さは、20〜1200μmが好ましく、150〜1200μmがさらに好ましく、150〜700μmが特に好ましい。樹脂シート層が薄すぎるとクッションの役割が十分にできず、好ましくない。一方、樹脂シート層が厚すぎると経済的に好ましくない。   The resin sheet layer of the present invention preferably has a thickness of 20 to 2000 μm. The thickness of the resin sheet layer is preferably 20 to 1200 μm, more preferably 150 to 1200 μm, and particularly preferably 150 to 700 μm. If the resin sheet layer is too thin, the role of the cushion cannot be sufficiently achieved, which is not preferable. On the other hand, if the resin sheet layer is too thick, it is not economically preferable.

本発明において、樹脂シート層の材質は特に限定されないが、ポリウレタン、ポリエステル、ポリアミド、ポリオレフィン、アクリル樹脂、ABS樹脂などの合成樹脂やエラストマーに加えて、天然ゴム、ブタジエン系ゴム、イソプレンゴム、ネオプレン(登録商標)ゴム、ニトリルゴム、スチレン系共重合体ゴム、オレフィン系共重合体ゴム、シリコンゴムなどを挙げることができる。これらポリマーの発泡シート、無発泡シートのいずれも使用することができるが、無発泡シートが好ましく用いられる。   In the present invention, the material of the resin sheet layer is not particularly limited, but in addition to synthetic resins and elastomers such as polyurethane, polyester, polyamide, polyolefin, acrylic resin, ABS resin, natural rubber, butadiene rubber, isoprene rubber, neoprene ( (Registered trademark) rubber, nitrile rubber, styrene copolymer rubber, olefin copolymer rubber, silicon rubber and the like. Either a foamed sheet or a non-foamed sheet of these polymers can be used, but a non-foamed sheet is preferably used.

樹脂シート層は実質的に非吸水性の樹脂層からなることが好ましい。具体的には、ポリエチレンテレフタレートおよび/またはポリウレタンを挙げることができる。樹脂シート層の吸水率としては、5%以下が好ましく、4%以下がさらに好ましく、3%以下が特に好ましく、2%以下が格段に好ましい。樹脂シート層は繊維を含有しないことが好ましい。繊維を含有させると、樹脂と繊維の界面にボイドと呼ばれる空洞ができ、吸水性を生じるからである。このうち、ポリウレタンが生産性、加工性、耐久性などの点から好ましい。   The resin sheet layer is preferably made of a substantially non-water-absorbing resin layer. Specific examples include polyethylene terephthalate and / or polyurethane. The water absorption rate of the resin sheet layer is preferably 5% or less, more preferably 4% or less, particularly preferably 3% or less, and particularly preferably 2% or less. The resin sheet layer preferably does not contain fibers. This is because when fibers are contained, voids called voids are formed at the interface between the resin and the fibers, resulting in water absorption. Among these, polyurethane is preferable from the viewpoints of productivity, processability, durability, and the like.

本発明の研磨パッドは、研磨層と下地層の間に該研磨層と該下地層を接着・固定させる中間層を設けてもよい。中間層は30〜300μmの厚さであることが好ましく、50〜150μmの厚さであることがさらに好ましい。中間層はアクリル系、ブタジエン系、イソプレン系、オレフィン系、スチレン系、イソシアネート系などの感圧タイプやホットメルトタイプの接着剤層からなり、基材としてポリエチレンテレフタレートフイルム、延伸ポリプロピレンフイルム、不織布などを備えた中間層を用いてもよい。通常、基材の厚さは20〜200μmのものが使用される。   In the polishing pad of the present invention, an intermediate layer for adhering and fixing the polishing layer and the base layer may be provided between the polishing layer and the base layer. The intermediate layer preferably has a thickness of 30 to 300 μm, and more preferably 50 to 150 μm. The intermediate layer consists of pressure-sensitive and hot-melt adhesive layers such as acrylic, butadiene, isoprene, olefin, styrene, and isocyanate, and the base material is polyethylene terephthalate film, stretched polypropylene film, nonwoven fabric, etc. The provided intermediate layer may be used. Usually, the substrate has a thickness of 20 to 200 μm.

本発明の研磨パッドは、研磨機の研磨定盤の表面に貼着して使用し、研磨を行う。   The polishing pad of the present invention is used by being attached to the surface of a polishing surface plate of a polishing machine for polishing.

本発明の研磨パッドが、ベアシリコンウェハーなどの半導体基板や光学ガラス板などの被加工物を研磨する際に、研磨レートが高く、かつ、ふちだれ(被加工物のエッジ部におけるだれ)を顕著に抑制し、ウェハー全体にわたって優れた平坦性を得ることができる理由は必ずしも明らかではないが、前述のような特性を有する研磨パッドとすることにより、被加工物の研磨加工面内の圧力分布をより均一化できるためにふちだれの発生を極小化することができるとともに、比較的柔軟な研磨層表面が高いスラリー保持性を発現できることから研磨レートも高く維持することが可能となり、平坦性と研磨レートの両立が達成できたものと推察される。   When the polishing pad of the present invention polishes a workpiece such as a semiconductor substrate such as a bare silicon wafer or an optical glass plate, the polishing pad has a high polishing rate and notices dripping (sagging at the edge of the workpiece). Although it is not always clear why the flatness is excellent over the entire wafer, the pressure distribution in the polishing surface of the workpiece can be reduced by using the polishing pad having the above-mentioned characteristics. Since it can be made more uniform, the occurrence of fringing can be minimized, and the relatively flexible polishing layer surface can exhibit high slurry retention, so that the polishing rate can be kept high, and flatness and polishing can be maintained. It is inferred that both rates were achieved.

研磨時に被加工物がパッドに押し付けられ、パッドが変形して沈み込む。このときの被加工物の研磨加工面内における圧力分布を考えると、被加工物のセンター部よりもエッジ部により大きな圧力が印加される。すなわち、被加工物のエッジ周辺部においては、研磨パッドが変形状態から変形開放状態に変わる遷移状態にあり、加工圧力が被加工面に垂直にかかると同時に、被加工物のエッジ部に対しては横方向の成分を持つ圧力がかかる。その結果、研磨初期には被加工物のエッジ部が集中的に研磨・除去され、ふちだれ現象が発生すると考えられる。引き続き研磨が進み、被加工物の研磨加工量が増加するにしたがって、ふちだれが大きくなり、最終的に被加工物の研磨加工面内における圧力分布が一定になるとふちだれ量も一定となる。ふちだれ発生のプロセスは以上のように考えられるから、特に研磨初期に生ずる横方向の成分を持つ圧力を極力緩和し、圧力分布の均一化を図ることができればふちだれは抑制され、ウェハー全体にわたって高い平坦性を得ることができる。   The workpiece is pressed against the pad during polishing, and the pad deforms and sinks. Considering the pressure distribution in the polished surface of the workpiece at this time, a larger pressure is applied to the edge portion than to the center portion of the workpiece. That is, at the edge periphery of the workpiece, the polishing pad is in a transition state where the deformed state changes from the deformed state to the deformed open state, and at the same time the processing pressure is applied perpendicularly to the workpiece surface, Pressure is applied with a lateral component. As a result, it is considered that the edge portion of the workpiece is intensively polished and removed at the initial stage of polishing, and a squeezing phenomenon occurs. As the polishing progresses and the amount of polishing of the work piece increases, the wrinkle increases. When the pressure distribution in the polishing surface of the work piece finally becomes constant, the wobbling amount becomes constant. The process of occurrence of dripping can be considered as described above. In particular, if the pressure with a lateral component that occurs in the initial stage of polishing can be alleviated as much as possible and the pressure distribution can be made uniform, the dripping can be suppressed and the entire wafer can be prevented. High flatness can be obtained.

本発明者は、上記の横方向の成分を持つ圧力の発生がパッドの構造に起因することを見出し、このような力を発生させにくい特性を有する研磨パッドを着想し、本発明に至ったものである。すなわち、直径1mm以下の微小領域における弾性係数が小さいので、ウエハーなどのエッジ部の微小領域に対して横方向の成分を生じさせないと同時に、直径1mmを越える広い領域に対してはウエハーなどの被加工物の沈み込み量が小さく、したがって弾性係数の大きな研磨パッドがふちだれの発生しにくい研磨パッドであると考え、広い領域における弾性係数に対する微小領域の弾性係数の比の値が、特定の応力において、特定の範囲にある研磨パッドが本発明の意図するところである。この時、広い領域において弾性係数の大きな、硬いパッドであることから、被加工物全体にわたる研磨レートの均一性が得られる点も重要である。   The present inventor has found that the generation of the pressure having the lateral component described above is caused by the structure of the pad, and has conceived a polishing pad having such a characteristic that it is difficult to generate such a force, and has reached the present invention. It is. That is, since the elastic coefficient is small in a minute region having a diameter of 1 mm or less, a lateral component is not generated in the minute region of the edge portion such as a wafer, and at the same time, a wide region exceeding 1 mm in diameter is covered with a wafer or the like. A polishing pad with a small amount of subsidence of the work piece, and therefore a polishing pad with a large elastic modulus is considered to be a polishing pad that is less likely to wander, and the value of the ratio of the elastic modulus of the micro area to the elastic coefficient in a wide area is the specific stress In this regard, a polishing pad within a specific range is intended by the present invention. At this time, since the pad is a hard pad having a large elastic coefficient in a wide region, it is also important that the uniformity of the polishing rate over the entire workpiece can be obtained.

また、比較的柔軟な研磨面を有する研磨パッドにおいて高い平坦性をが得られる点が本発明の特徴でもあるため、具体的な弾性係数の絶対値についてサブクレームに規定し、好ましい範囲であることを示した。また、弾性係数の比の値が特定の範囲にある研磨パッドの具体的な構成を提供するために、研磨層の構成材料および構成材料が備えるべき特性、樹脂シート層の構成材料および構成材料が備えるべき特性などについてサブクレームに規定し、好ましい範囲であることを示した。 以上のようにして、本発明の研磨パッドは、高い研磨レートと優れた平坦性が両立できると推察される。   In addition, since it is a feature of the present invention that a high flatness can be obtained in a polishing pad having a relatively soft polishing surface, the absolute value of a specific elastic modulus is specified in the subclaim and is within a preferable range. showed that. Further, in order to provide a specific configuration of the polishing pad having a value of the ratio of elastic modulus within a specific range, the constituent material and constituent material of the polishing layer, the constituent material and constituent material of the resin sheet layer are provided. The characteristics to be provided are defined in the subclaims and indicated that they are within the preferred range. As described above, it is speculated that the polishing pad of the present invention can achieve both a high polishing rate and excellent flatness.

本発明において、圧縮弾性係数の比の値k(100,0.7)/k(100,12.5)が2.5以下である研磨パッドは、特に製造方法が限定されるものではないが、代表的なものとして、研磨層を作製し、裏面に接着層を設けて研磨パッドとする方法、研磨層と下地層をそれぞれ作製し、接着層を介して両者を貼り合わせて研磨パッドとする方法が最も生産性、装置などの点で好ましい。ただし、例えば、接着層を設けず、研磨層と下地層を直接接合させる方法であってもよい。   In the present invention, the manufacturing method of the polishing pad having a ratio k (100, 0.7) / k (100, 12.5) of the compression elastic modulus ratio of 2.5 or less is not particularly limited. As a typical example, a polishing layer is prepared and an adhesive layer is provided on the back surface to form a polishing pad, and a polishing layer and an underlayer are prepared, and both are bonded together via the adhesive layer to form a polishing pad. The method is most preferable in terms of productivity and equipment. However, for example, a method of directly bonding the polishing layer and the base layer without providing an adhesive layer may be used.

研磨パッドの圧縮弾性係数の比の値k(100,0.7)/k(100,12.5)を2.5以下とする方法としては、表層の研磨層を、繊維からなる特定の布帛とする方法、研磨層厚さを薄くする方法、特定の樹脂シート層を設けて適正な厚さの樹脂シート層を配置する方法などを挙げることができる。特に研磨層として、繊維からなる布帛を用いる場合には、比較的可動性のよい繊維および/または布帛構造を選択し、その厚さを薄くすることにより、圧縮弾性係数の比の値k(100,0.7)/k(100,12.5)が2.5以下を達成できる。   As a method of setting the ratio k (100, 0.7) / k (100, 12.5) of the compression elastic modulus ratio of the polishing pad to 2.5 or less, the surface polishing layer is a specific cloth made of fibers. And a method of reducing the thickness of the polishing layer, a method of providing a specific resin sheet layer, and disposing a resin sheet layer having an appropriate thickness. In particular, when a fabric made of fibers is used as the polishing layer, a fiber and / or fabric structure having relatively good mobility is selected, and the thickness thereof is reduced to reduce the value k (100 , 0.7) / k (100, 12.5) can be 2.5 or less.

本発明の研磨パッドを用いて、ガラス基板やシリコンウェハーなどの半導体基板といった被加工物の研磨を行うに際して、一般に、研磨加工量をかせぐ粗研磨工程、とヘイズを抑え微小キズを除去する仕上げ研磨工程、の2つの工程により研磨されるが、本発明の研磨パッドはこのいずれの研磨工程に採用しても好ましい。その理由は、研磨加工量が大きい粗研磨工程ではふち形状の改善が可能であり、研磨加工量が小さい仕上げ研磨工程ではウェハー全体の平坦性は維持または向上させつつ、平滑性向上の効果が得られるからである。   When polishing a workpiece such as a semiconductor substrate such as a glass substrate or a silicon wafer using the polishing pad of the present invention, generally, a rough polishing step that increases the amount of polishing processing, and a finish polishing that suppresses haze and removes fine scratches. The polishing pad of the present invention is preferably employed in any of these polishing steps. The reason is that a rough polishing process with a large amount of polishing can improve the edge shape, and a finish polishing process with a small amount of polishing can maintain or improve the flatness of the entire wafer while improving the smoothness. Because it is.

本発明の研磨パッドは、シリコンウェハー、化合物半導体ウェハー、これらウェハー上に設けられた絶縁体膜やメタル膜、ハードディスク基板、磁気ヘッドなどの電子材料の研磨の用途に使用できる。また、化学機械的研磨(CMP;Chemical Mechanical Polishing)技術による半導体ウェハーの平坦化の目的で被研磨物である半導体ウェハーの研磨処理を行う研磨パッドとして使用できる。CMP工程において、研磨剤と薬液からなる研磨スラリーを用いて、半導体ウェハーと研磨パッドを相対運動させることにより、半導体ウェハー面を研磨して、半導体ウェハー面を平坦化、平滑化する目的で研磨パッドが使用される。この場合の研磨対象としては、絶縁膜(酸化膜、Low−k膜、BPSG膜など)、導電膜(タングステン、アルミニウム、銅など)などを挙げることができる。研磨スラリーとしては、シリカ、アルミナ、セリア、ダイヤモンドなどの無機粒子、アクリルなどの有機粒子、または無機粒子と有機粒子の混合物や複合粒子を含むものを用いることができる。   The polishing pad of the present invention can be used for polishing electronic materials such as silicon wafers, compound semiconductor wafers, insulator films and metal films, hard disk substrates, and magnetic heads provided on these wafers. Further, it can be used as a polishing pad for polishing a semiconductor wafer, which is an object to be polished, for the purpose of planarizing the semiconductor wafer by a chemical mechanical polishing (CMP) technique. In the CMP process, a polishing pad made of a polishing agent and a chemical solution is used to move the semiconductor wafer and the polishing pad relative to each other, thereby polishing the semiconductor wafer surface and polishing and polishing the semiconductor wafer surface. Is used. Examples of the polishing target in this case include an insulating film (oxide film, low-k film, BPSG film, etc.), a conductive film (tungsten, aluminum, copper, etc.), and the like. As the polishing slurry, inorganic particles such as silica, alumina, ceria and diamond, organic particles such as acrylic, or a mixture containing inorganic particles and organic particles or composite particles can be used.

本発明の研磨パッドは、液晶ディスプレイ用ガラス基板、光学レンズ、フォトマスク基板、光学プリズム、光学フィルタ、光導波路などの光学部材の研磨にも使用できる。研磨対象となる光学部材の素材としては、ガラス、石英、水晶、サファイア、透明樹脂、タンタル酸リチウム、ニオブ酸リチウムなどが挙げられる。   The polishing pad of the present invention can also be used for polishing optical members such as glass substrates for liquid crystal displays, optical lenses, photomask substrates, optical prisms, optical filters, and optical waveguides. Examples of the material of the optical member to be polished include glass, quartz, crystal, sapphire, transparent resin, lithium tantalate, and lithium niobate.

また、その他の用途として、フェライト、アルミナ、炭化珪素、窒化珪素、セラミックス、合金、樹脂などを研磨対象として研磨する用途に使用できる。   As other applications, ferrite, alumina, silicon carbide, silicon nitride, ceramics, alloys, resins and the like can be used for polishing.

以下、本発明を実施例によってさらに詳しく説明するが、これらは本発明を限定するものではない。なお、評価方法は以下のようにして行った。
(1)圧縮試験
インストロン社製超精密材料試験機モデル5848を使用し、クロスヘッド移動量法にて行った。圧子は直径0.7mmおよび直径12.5mmで、いずれもステンレス製のものを使用した。試験速度は、0.1mm/分で行い、データ取得間隔は0.1秒とした。データ処理には、Instron社製データ処理システム“Melrin”を使用した。また、コンプライアンス補正を行った。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, these do not limit this invention. The evaluation method was performed as follows.
(1) Compression test An ultra-precision material testing machine model 5848 manufactured by Instron was used and the crosshead displacement method was used. The indenter was 0.7 mm in diameter and 12.5 mm in diameter, both of which were made of stainless steel. The test speed was 0.1 mm / min, and the data acquisition interval was 0.1 seconds. Data processing system “Melrin” manufactured by Instron was used for data processing. In addition, compliance correction was performed.

研磨パッドの圧縮弾性係数の測定は、研磨パッドから30mm×30mmの大きさに打ち抜いた試料の裏面の離型紙または離型フイルムを剥がして、裏面テープを貼り付けた状態で測定した。布帛の圧縮弾性係数を測定する場合も当該研磨パッドを研磨定盤固定時に使用する接着用テープで予め固定してから測定を行う。測定は、温度23℃、湿度30〜50%RHの環境下で行い、試料は予め測定環境下において24時間以上なじませから行った。
(2)研磨評価A
タングステン用研磨スラリー(キャボット社製W−2000)に対して、所定量の30wt%過酸化水素水を使用直前に添加、混合してスラリーを調製した。
研磨パッドを研磨機の定盤に貼り付け、イオン交換水を研磨パッド上に30分間供給し、パッドを湿潤させた。なお、SUBA800については、ダイヤモンドコンディショナー#100を7lbfの圧力で押し付けて、15分間研磨パッドの立ち上げを行った。
The compression elastic modulus of the polishing pad was measured in a state where the release paper or release film on the back surface of the sample punched out from the polishing pad to a size of 30 mm × 30 mm was peeled off and the back surface tape was attached. When measuring the compressive elastic modulus of the fabric, the measurement is performed after the polishing pad is fixed in advance with an adhesive tape used when the polishing platen is fixed. The measurement was performed in an environment of a temperature of 23 ° C. and a humidity of 30 to 50% RH, and the sample was previously conditioned for 24 hours or more in the measurement environment.
(2) Polishing evaluation A
A predetermined amount of 30 wt% hydrogen peroxide solution was added to and mixed with a tungsten polishing slurry (Cabot W-2000) immediately before use to prepare a slurry.
The polishing pad was attached to a surface plate of a polishing machine, and ion exchange water was supplied onto the polishing pad for 30 minutes to wet the pad. For SUBA800, diamond conditioner # 100 was pressed with a pressure of 7 lbf and the polishing pad was started up for 15 minutes.

評価用8インチウエハーを研磨装置の研磨ヘッドに装着し、100rpmで回転させ、研磨パッドを研磨機のプラテンに固定して、102rpmで研磨ヘッドの回転方向と同方向に回転させて、調製済みのタングステン用研磨スラリーを150mL/分で供給しながら研磨圧力5psi、リテナーリング圧力6.5psiで1分間研磨を行い、その後イオン交換水でパッド面の洗浄を20秒間行った後、引き続いて次のウェハーの研磨を行った。ダミーウエハーを20枚目研磨加工後、モニター用ウエハーを用いて研磨レートおよび研磨レートの面内均一性の測定を行った。
(3)研磨評価B
リテナーリング圧力を7.2psiに変更したこと以外は、研磨評価Aと同様の方法で研磨加工、ウエハー評価を行った。
(4)研磨レート
研磨前後のウエハーを抵抗率測定器VR−120S(国際電気アルファ(株)製)で測定することにより、ウェハーの直径方向にエッジ1mmよりも内側において所定の49点の測定点において測定し、以下の式から算出される測定点49点の平均値を研磨レートとした。
An 8-inch wafer for evaluation is mounted on the polishing head of the polishing apparatus, rotated at 100 rpm, the polishing pad is fixed to the platen of the polishing machine, and rotated at 102 rpm in the same direction as the rotation direction of the polishing head. Polishing is performed for 1 minute at a polishing pressure of 5 psi and a retainer ring pressure of 6.5 psi while supplying a polishing slurry for tungsten at 150 mL / min, and then the pad surface is washed with ion-exchanged water for 20 seconds, followed by the next wafer. Was polished. After polishing the 20th dummy wafer, the polishing rate and the in-plane uniformity of the polishing rate were measured using the monitor wafer.
(3) Polishing evaluation B
Polishing and wafer evaluation were performed in the same manner as polishing evaluation A, except that the retainer ring pressure was changed to 7.2 psi.
(4) Polishing rate By measuring the wafer before and after polishing with a resistivity measuring device VR-120S (manufactured by Kokusai Denki Alpha Co., Ltd.), predetermined 49 measurement points inside the edge of 1 mm in the diameter direction of the wafer. The average value of 49 measurement points calculated from the following equation was used as the polishing rate.

研磨速度=研磨前後のタングステン膜の厚さの変化量/研磨時間
により、研磨レート(単位時間当たりの研磨量)を算出した。8インチのシリコンウエハー上に10000オングストロームのタングステン膜を製膜したウエハーを使用した。
(5)研磨レートのウエハー面内均一性
研磨レートのウエハー面内均一性は、以下の式にしたがって算出した。
The polishing rate (polishing amount per unit time) was calculated from polishing rate = change in thickness of tungsten film before and after polishing / polishing time. A wafer in which a 10000 angstrom tungsten film was formed on an 8-inch silicon wafer was used.
(5) Wafer surface uniformity of polishing rate The wafer surface uniformity of polishing rate was calculated according to the following equation.

面内均一性(%)=(研磨レートの最大値−研磨レートの最小値)/(研磨レートの最大値+研磨レートの最小値)×100
(6)研磨レートのウエハー外周部での落ち込み量
直径200mmウエハー上で測定した研磨レート49点の測定値を用いて、
(研磨レートのウエハー外周部での落ち込み量)=(中心から直径140mmの範囲内の研磨レート測定値の平均値)−(直径140〜199mmの範囲内の研磨レート測定値の最小値)
として算出した。
In-plane uniformity (%) = (maximum value of polishing rate−minimum value of polishing rate) / (maximum value of polishing rate + minimum value of polishing rate) × 100
(6) Amount of sagging of the polishing rate on the outer periphery of the wafer Using the measured values of 49 polishing rates measured on a wafer having a diameter of 200 mm,
(Drop amount of polishing rate on wafer outer peripheral portion) = (Average value of measured polishing rate within the range of 140 mm in diameter from the center) − (Minimum value of measured polishing rate within the range of 140 to 199 mm in diameter)
Calculated as

実施例1
タテ糸としてポリエステル長繊維(単繊維繊度:2.0デシテックス)、ヨコ糸として仮撚り加工されたポリエステル/ポリアミドの海島型複合繊維糸(海成分溶出後の単糸繊度:0.07デシテックス)を用いて、1/3のツイルを製織し生機とした。この生機をアルカリの存在下で熱処理し、海成分を完全に除去することで、ヨコ糸を極細繊維とした。さらに130℃の熱水で処理することにより、糸の収縮による高密度化と洗浄を同時に実施した。次に、仕上げ加工として、180℃で熱処理することにより織物を得た。
Example 1
Polyester long fiber (single fiber fineness: 2.0 decitex) as warp yarn, polyester / polyamide sea-island type composite fiber yarn (single fineness after elution of sea components: 0.07 decitex) as false yarn 1/3 twill was woven into a green machine. This raw machine was heat-treated in the presence of alkali to completely remove sea components, whereby the weft yarn was made into ultrafine fibers. Further, by treating with hot water at 130 ° C., densification by yarn shrinkage and washing were performed simultaneously. Next, a woven fabric was obtained by heat treatment at 180 ° C. as a finishing process.

樹脂シート層として、厚さ0.3mmの熱硬化性ポリウレタンシートを使用した。研磨層と下地層は厚さ約70μmの接着層を介して貼り合わせた。次に、下地層の裏面に離型フイルム付き両面テープ(厚さ23μmのポリエチレンテレフタレート製フイルムの両面に接着層を設けた両面テープで、厚さ約110μm)を貼り合わせた後、直径510mmの円形に打ち抜き、離型フイルムを剥がして研磨定盤に貼着し、研磨評価A、研磨評価Bを行った。結果は表3、表4の通りであった。   A thermosetting polyurethane sheet having a thickness of 0.3 mm was used as the resin sheet layer. The polishing layer and the underlayer were bonded together through an adhesive layer having a thickness of about 70 μm. Next, a double-sided tape with a release film (a double-sided tape with an adhesive layer on both sides of a 23 μm thick polyethylene terephthalate film, about 110 μm thick) is bonded to the back surface of the underlayer, and then a circular shape having a diameter of 510 mm. Then, the release film was peeled off and adhered to a polishing surface plate, and polishing evaluation A and polishing evaluation B were performed. The results are as shown in Tables 3 and 4.

また、研磨パッドを作製した同じ貼り合せシートから30mm×30mmの試験片を打ち抜き、圧縮試験を行った。結果は表1、表2の通りであった。   Further, a 30 mm × 30 mm test piece was punched out from the same bonded sheet on which the polishing pad was produced, and a compression test was performed. The results are shown in Tables 1 and 2.

Figure 0005298688
Figure 0005298688

Figure 0005298688
Figure 0005298688

Figure 0005298688
Figure 0005298688

Figure 0005298688
Figure 0005298688

実施例2
極細繊維として、海島型ポリエステルで島成分がポリエチレンテレフタレートで海成分がポリエステルの酸成分としてテレフタル酸と5ナトリウムスルホイソフタル酸の共重合体からなるアルカリ熱水可溶型ポリエステルからなる繊維(海島の比率は15/85)を用いた。太繊度繊維として、ポリエステル糸を用いた。極細繊維は脱海することなく仮撚り加工し、太繊度繊維と引き揃えてエアー交絡し、複合糸を得た。さらに丸編機32G、38インチを用いてインターロック方式で編成し生機とした。この生機を一旦130℃で熱処理後、さらに80℃で水酸化ナトリウム存在下に処理することにより完全に海成分を除去した。次に、表面から高圧水で加工した。その後、135℃でヒートセットして、編物を得た。
Example 2
As ultra-fine fibers, a fiber made of an alkali hot water-soluble polyester made of a copolymer of terephthalic acid and 5-sodium sulfoisophthalic acid as a sea-island polyester, the island component is polyethylene terephthalate, and the sea component is a polyester acid component (ratio of sea-island) 15/85) was used. Polyester yarn was used as the thick fiber. The ultrafine fiber was false twisted without sea removal, and was entangled with thick fine fiber and air entangled to obtain a composite yarn. Further, a circular knitting machine 32G, 38 inches were used to form a living machine by knitting using the interlock method. This raw machine was once heat-treated at 130 ° C. and then further treated at 80 ° C. in the presence of sodium hydroxide to completely remove sea components. Next, it processed with the high pressure water from the surface. Thereafter, heat setting was performed at 135 ° C. to obtain a knitted fabric.

樹脂シート層として、厚さ1.0mmの熱可塑性ポリウレタンシートを使用した。研磨層と下地層は厚さ約130μmの接着層を介して貼り合わせた。次に、下地層の裏面に離型フイルム付き両面テープ(厚さ23μmのポリエチレンテレフタレート製フイルムの両面に接着層を設けた両面テープで、厚さ約110μm)を貼り合わせた後、直径510mmの円形に打ち抜き、離型フイルムを剥がして研磨定盤に貼着し、研磨評価A、研磨評価Bを行った。結果は表3、表4の通りであった。   A thermoplastic polyurethane sheet having a thickness of 1.0 mm was used as the resin sheet layer. The polishing layer and the base layer were bonded together through an adhesive layer having a thickness of about 130 μm. Next, a double-sided tape with a release film (a double-sided tape with an adhesive layer on both sides of a 23 μm thick polyethylene terephthalate film, about 110 μm thick) is bonded to the back surface of the underlayer, and then a circular shape having a diameter of 510 mm. Then, the release film was peeled off and adhered to a polishing surface plate, and polishing evaluation A and polishing evaluation B were performed. The results are as shown in Tables 3 and 4.

また、研磨パッドを作製した同じ貼り合せシートから30mm×30mmの試験片を打ち抜き、圧縮試験を行った。結果は表1、表2の通りであった。   Further, a 30 mm × 30 mm test piece was punched out from the same bonded sheet on which the polishing pad was produced, and a compression test was performed. The results are shown in Tables 1 and 2.

樹脂シート層に裏面テープを貼り合わせ、圧縮弾性係数の測定を行ったところ、樹脂シート層の圧縮弾性係数k(100,12.5)の値は、55.3kgf/cmであった。 When the back surface tape was bonded to the resin sheet layer and the compression elastic modulus was measured, the value of the compression elastic modulus k (100, 12.5) of the resin sheet layer was 55.3 kgf / cm 2 .

比較例1
不織布にポリウレタン樹脂を含浸させたSuba800(ニッタ・ハース社製)を直径510mmの円形に打ち抜き、離型フイルムを剥がして研磨パッドを定盤に貼着し、研磨評価A、研磨評価Bを行った。結果は表3、表4の通りであった。
Comparative Example 1
Suba800 (made by Nitta Haas) impregnated with polyurethane resin in a non-woven fabric was punched into a circle with a diameter of 510 mm, the release film was peeled off and the polishing pad was attached to a surface plate, and polishing evaluation A and polishing evaluation B were performed. . The results are as shown in Tables 3 and 4.

また、30mm×30mmの試験片を打ち抜き、圧縮試験を行った。結果は表1、表2の通りであった。   Further, a 30 mm × 30 mm test piece was punched out and a compression test was performed. The results are shown in Tables 1 and 2.

実施例3
実施例2で作製した編物の裏面に離型フイルム付き両面テープ(厚さ23μmのポリエチレンテレフタレート製フイルムの両面に接着層を設けた両面テープで、厚さ約110μm)を貼り合わせた後、直径510mmの円形に打ち抜き、離型フイルムを剥がして研磨定盤に貼着し、研磨評価A、研磨評価Bを行った。結果は表3、表4の通りであった。
Example 3
A double-sided tape with a release film (a double-sided tape with an adhesive layer on both sides of a 23 μm thick polyethylene terephthalate film, about 110 μm thick) was bonded to the back of the knitted fabric produced in Example 2 and then the diameter was 510 mm. The film was punched into a circular shape, the release film was peeled off and adhered to a polishing surface plate, and polishing evaluation A and polishing evaluation B were performed. The results are as shown in Tables 3 and 4.

また、研磨パッドを作製した同じ貼り合せシートから30mm×30mmの試験片を打ち抜き、圧縮試験を行った。結果は表1、表2の通りであった。   Further, a 30 mm × 30 mm test piece was punched out from the same bonded sheet on which the polishing pad was produced, and a compression test was performed. The results are shown in Tables 1 and 2.

以上から、圧縮弾性係数の比の値k(100,0.7)/k(100,12.5)が2.5以下である研磨パッドは、研磨加工時にウエハー全体を均一に研磨することができるため、面内均一性に優れ、特にウエハー外周部における落ち込みの発生を抑制することが可能であることが分かる。   From the above, a polishing pad having a ratio k (100, 0.7) / k (100, 12.5) of the compression elastic modulus ratio of 2.5 or less can uniformly polish the entire wafer during polishing. Therefore, it can be seen that the in-plane uniformity is excellent, and it is possible to suppress the occurrence of sagging particularly at the outer peripheral portion of the wafer.

また、リテナーリング圧力を高めても、ウエハーの面内均一性に及ぼす影響は小さく、ウエハー外周部の落ち込み量を変化させずに研磨加工が可能であった。   Further, even if the retainer ring pressure was increased, the influence on the in-plane uniformity of the wafer was small, and polishing could be performed without changing the amount of sagging on the outer periphery of the wafer.

このように圧縮弾性係数の圧子径に対する依存性が小さく、直径1mm以下の微小領域での弾性係数が小さい、柔らかい表面を有する研磨パッドが優れた平坦性を発現することが分かる。   Thus, it can be seen that the polishing pad having a soft surface with a small dependence of the compression elastic modulus on the indenter diameter and a small elastic coefficient in a minute region having a diameter of 1 mm or less exhibits excellent flatness.

Claims (10)

定盤の表面に貼着して使用される研磨層を有する研磨パッドであって、直径Lmmの圧子を用いて研磨面側から測定した圧縮応力−変位線図の圧縮荷重Pgf/cmにおける圧縮弾性係数をk(P,L)とした時、異なる直径の圧子を用いて測定した圧縮弾性係数の比の値k(100,0.7)/k(100,12.5)が2.5以下であることを特徴とする研磨パッド。 A polishing pad having a polishing layer used by being attached to the surface of a surface plate, and compression at a compression load Pgf / cm 2 in a compression stress-displacement diagram measured from the polishing surface side using an indenter having a diameter of Lmm When the elastic modulus is k (P, L), the ratio k (100, 0.7) / k (100, 12.5) of the compression elastic modulus measured using indenters with different diameters is 2.5. A polishing pad characterized by: 圧縮弾性係数k(100,0.7)の値が40kgf/cm以下である請求項1に記載の研磨パッド。 The polishing pad according to claim 1, wherein the value of the compression elastic modulus k (100, 0.7) is 40 kgf / cm 2 or less. 圧縮弾性係数k(100,12.5)の値が5kgf/cm以上である請求項1また2に記載の研磨パッド。 The polishing pad according to claim 1 or 2, wherein the value of the compression elastic modulus k (100, 12.5) is 5 kgf / cm 2 or more. 湿潤状態における圧縮弾性係数の比の値k(100,0.7)/k(100,12.5)が3.0以下である請求項1〜3のいずれかに記載の研磨パッド。 The polishing pad according to any one of claims 1 to 3, wherein a ratio k (100, 0.7) / k (100, 12.5) of a compression elastic modulus in a wet state is 3.0 or less. 圧縮弾性係数の比の値k(600,0.7)/k(600,12.5)が1.5以下である請求項1〜4のいずれかに記載の研磨パッド。 The polishing pad according to any one of claims 1 to 4, wherein the ratio k (600, 0.7) / k (600, 12.5) of the ratio of compression elastic modulus is 1.5 or less. 圧縮弾性係数の比の値k(600,0.7)/k(100,0.7)およびk(600,12.5)/k(100,12.5)がいずれも2.0〜5.5である請求項1〜5のいずれかに記載の研磨パッド。 The values of the compression elastic modulus ratios k (600, 0.7) / k (100, 0.7) and k (600, 12.5) / k (100, 12.5) are both 2.0 to 5 The polishing pad according to claim 1, which is .5. 研磨層の厚さが150〜1000μmである請求項1〜6のいずれかに記載の研磨パッド。 The polishing pad according to claim 1, wherein the polishing layer has a thickness of 150 to 1000 μm. 研磨層が単糸繊度10デシテックス以下の繊維からなる布帛であって、該布帛の圧縮弾性係数k(100,12.5)の値が5kgf/cm以下である請求項1〜7のいずれかに記載の研磨パッド。 The polishing layer is a fabric composed of fibers having a single yarn fineness of 10 dtex or less, and the value of the compression elastic modulus k (100, 12.5) of the fabric is 5 kgf / cm 2 or less. The polishing pad described in 1. 研磨層の下層に厚さ20〜2000μmの樹脂シート層が設けられ、該樹脂シート層の圧縮弾性係数k(100,12.5)の値が20kgf/cm以上である請求項1〜8のいずれかに記載の研磨パッド。 The resin sheet layer having a thickness of 20 to 2000 μm is provided under the polishing layer, and the value of the compression elastic modulus k (100, 12.5) of the resin sheet layer is 20 kgf / cm 2 or more. The polishing pad in any one. 樹脂シート層がポリエチレンテレフタレートおよび/またはポリウレタンである請求項1〜9のいずれかに記載の研磨パッド。 The polishing pad according to claim 1, wherein the resin sheet layer is polyethylene terephthalate and / or polyurethane.
JP2008195908A 2008-07-30 2008-07-30 Polishing pad Expired - Fee Related JP5298688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008195908A JP5298688B2 (en) 2008-07-30 2008-07-30 Polishing pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008195908A JP5298688B2 (en) 2008-07-30 2008-07-30 Polishing pad

Publications (2)

Publication Number Publication Date
JP2010029997A JP2010029997A (en) 2010-02-12
JP5298688B2 true JP5298688B2 (en) 2013-09-25

Family

ID=41735116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008195908A Expired - Fee Related JP5298688B2 (en) 2008-07-30 2008-07-30 Polishing pad

Country Status (1)

Country Link
JP (1) JP5298688B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9502318B2 (en) 2014-06-17 2016-11-22 Kabushiki Kaisha Toshiba Polish apparatus, polish method, and method of manufacturing semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY168980A (en) * 2013-03-30 2019-01-29 Hoya Corp Method for manufacturing magnetic-disk glass substrate, method for manufacturing magnetic disk, and polishing pad
EP3542957B1 (en) * 2016-11-16 2021-04-28 Teijin Frontier Co., Ltd. Polishing pad and method for manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69430762D1 (en) * 1994-05-10 2002-07-11 Asahi Chemical Ind Production process of a fluororesin foam
US8636609B2 (en) * 2006-11-30 2014-01-28 Taylor Made Golf Company, Inc. Golf club head having dent resistant thin crown

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9502318B2 (en) 2014-06-17 2016-11-22 Kabushiki Kaisha Toshiba Polish apparatus, polish method, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2010029997A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP5371251B2 (en) Polishing pad
KR100640141B1 (en) Chemical mechanical polishing pad, manufacturing process thereof and chemical mechanical polishing method
JP5234916B2 (en) Laminated polishing pad
JPH11277408A (en) Cloth, method and device for polishing mirror finished surface of semi-conductor wafer
JPWO2002005337A1 (en) Mirror chamfering wafer, polishing cloth for mirror chamfering, mirror chamfering polishing apparatus and method
JP5298688B2 (en) Polishing pad
KR20030020658A (en) Polishing pad conditioning disk of a chemical mechanical polishing apparatus
JP2020015142A (en) Polishing pad
JP5033238B2 (en) Polishing pad and manufacturing method thereof
JP2001300843A (en) Abrasive, method of manufacture and polishing method
JP4778130B2 (en) Edge polishing apparatus and edge polishing method
JP4384136B2 (en) Polishing pad
KR200497189Y1 (en) Two-layer polishing pad made of nonwoven fabric
JP4455161B2 (en) Nonwoven fabric for polishing pad and polishing pad
JP2002361564A (en) Polishing sheet and method of manufacturing the polishing sheet
JP2010157619A (en) Polishing pad
JP3239793U (en) polishing pad
JP5478956B2 (en) Polishing pad for notch polishing
TWM652961U (en) Polishing pad
JP2017213660A (en) Abrasive pad, manufacturing method of the same, and manufacturing method of abrasive article
JP2009226578A (en) Laminated polishing pad and method of manufacturing the same
JP2004311732A (en) Polishing pad and method for manufacturing polished article
JP5033356B2 (en) Polishing pad
KR20080114117A (en) Abradant pad for magnetic recording media and method of manufacturing the same
JP2004306195A (en) Polishing pad for chemical mechanical polishing (cmp), and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R151 Written notification of patent or utility model registration

Ref document number: 5298688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees