JP5294729B2 - Expansion turbine - Google Patents

Expansion turbine Download PDF

Info

Publication number
JP5294729B2
JP5294729B2 JP2008169817A JP2008169817A JP5294729B2 JP 5294729 B2 JP5294729 B2 JP 5294729B2 JP 2008169817 A JP2008169817 A JP 2008169817A JP 2008169817 A JP2008169817 A JP 2008169817A JP 5294729 B2 JP5294729 B2 JP 5294729B2
Authority
JP
Japan
Prior art keywords
bearing
thrust
turbine
working surface
thrust bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008169817A
Other languages
Japanese (ja)
Other versions
JP2009008090A (en
Inventor
ペーター ブルーノ
デッカー ルッツ
ビショッフ ステファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of JP2009008090A publication Critical patent/JP2009008090A/en
Application granted granted Critical
Publication of JP5294729B2 publication Critical patent/JP5294729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C15/00Construction of rotary bodies to resist centrifugal force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Support Of The Bearing (AREA)
  • Pulleys (AREA)

Description

本発明は、スラスト軸受によって支持された少なくとも1つのタービンロータを有する膨張タービンに関する。   The present invention relates to an expansion turbine having at least one turbine rotor supported by a thrust bearing.

膨張タービンは、例えば特許文献1に開示されているように、水素、ヘリウム、窒素等の気体プロセス技術において極低温を発生するのに以前から利用されている。この場合、プロセスガスにはタービン内における気体膨張で損失が生じ、またガスの流体力がタービンロータの回転運動に変換されることによってプロセスガスから熱出力が奪われる。従ってこの過程でプロセスガスはタービン段内で冷却されることになる。
特開2000−120402号公報
Expansion turbines have been used for a long time to generate cryogenic temperatures in gas process technologies such as hydrogen, helium and nitrogen, as disclosed in, for example, US Pat. In this case, the process gas loses due to gas expansion in the turbine, and the fluid power of the gas is converted into the rotational motion of the turbine rotor, thereby depriving the process gas of heat output. Therefore, in this process, the process gas is cooled in the turbine stage.
JP 2000-120402 A

膨張タービンの軸受機構にはさまざまな構造形式がある。動圧ガス軸受式膨張タービンに装備されるガス軸受は、タービンが作動中は外部からの軸受ガスの供給を必要としないが、起動及び停止時には一時的に軸受ガスを供給する必要がある。動圧ガス軸受式膨張タービンでは、タービン軸の軸受機構にラジアル軸受とスラスト軸受が組み込まれている。この場合、スラスト軸受機構の主な機能要素は、タービン軸に作用するスラスト力をタービン流の方向でも逆方向でも吸収するスラスト円板である。   There are various structural types of expansion turbine bearing mechanisms. The gas bearing installed in the dynamic pressure gas bearing type expansion turbine does not require the supply of bearing gas from the outside while the turbine is operating, but it is necessary to supply the bearing gas temporarily when starting and stopping. In a dynamic pressure gas bearing type expansion turbine, a radial bearing and a thrust bearing are incorporated in a turbine shaft bearing mechanism. In this case, the main functional element of the thrust bearing mechanism is a thrust disk that absorbs the thrust force acting on the turbine shaft both in the turbine flow direction and in the reverse direction.

従来の膨張タービンに用いられているスラスト軸受機構の要部の構造例を図2と共に詳述すれば以下の通りである。   A structural example of a main part of a thrust bearing mechanism used in a conventional expansion turbine will be described in detail with reference to FIG.

図2において、タービン軸1は縦向きに配置されており、タービン流は上から下へと流れる。タービン軸1に結合されているスラスト円板2は、上側スラスト軸受3と下側スラスト軸受4の間に配置されている。スラスト円板2は上面側にスラスト軸受3との軸受作用面を形成し、また下面側にスラスト軸受4との軸受作用面を形成している。これら一対の軸受作用面は、タービン軸1の回転軸線に沿った両方向に関してタービン軸1に作用するスラスト力を吸収するための作用面である。   In FIG. 2, the turbine shaft 1 is arranged vertically, and the turbine flow flows from top to bottom. A thrust disc 2 coupled to the turbine shaft 1 is disposed between the upper thrust bearing 3 and the lower thrust bearing 4. The thrust disc 2 forms a bearing working surface with the thrust bearing 3 on the upper surface side, and forms a bearing working surface with the thrust bearing 4 on the lower surface side. The pair of bearing action surfaces are action surfaces for absorbing the thrust force acting on the turbine shaft 1 in both directions along the rotation axis of the turbine shaft 1.

軸受作用面として本来の機能を果たす主領域は、スラスト円板2の軸受作用面のうちタービン軸1の近傍に偏った内側領域にある。軸受作用面の外側領域は、まず第一に軸受ガスを外側から内側へ向かって軸受作用面上の主領域に運び込む機能を果たす。図2(a)中の円で囲んだ部分5は、スラスト軸受として負荷荷重が最も高くなる主領域を示している。   The main region that performs the original function as the bearing working surface is an inner region that is biased to the vicinity of the turbine shaft 1 in the bearing working surface of the thrust disc 2. The outer region of the bearing working surface first serves to carry the bearing gas from the outside to the main region on the bearing working surface from the outside to the inside. A portion 5 surrounded by a circle in FIG. 2A shows a main region where the load load is the highest as a thrust bearing.

タービンが高速回転してスラスト円板2に高い周速が生じると、図2(b)に誇張して示すようにスラスト円板2の軸受作用面が絶対長さにおいて数マイクロメートルだけ凹面状に弾性変形する。この凹面状の弾性変形は望ましくないものであり、それは、以下に述べる理由でスラスト軸受機構の軸受負荷容量を低下させるからである。   When the turbine rotates at a high speed and a high peripheral speed is generated in the thrust disk 2, the bearing working surface of the thrust disk 2 becomes concave by a few micrometers in absolute length as shown exaggeratedly in FIG. Elastically deforms. This concave elastic deformation is undesirable because it reduces the bearing load capacity of the thrust bearing mechanism for the reasons described below.

スラスト軸受機構の軸受負荷容量力は、タービンロータ側の軸受作用面(スラスト円板2)とステータ側の軸受作用面(スラスト軸受3又はスラスト軸受4)との対向間隙の大きさによって実質的に決まる。タービンロータ側の軸受作用面とステータ側の軸受作用面との対向間隙は作動状態で数マイクロメートルにすぎない。基本的な原理として、軸受作用面の対向間隙が狭くなればなるほどスラスト軸受機構の軸受負荷容量は大きくなる。タービンロータ側の軸受作用面が高速回転によって凹面状に弾性変形すると、軸受作用面の対向間隙が必然的に狭くなる。このような高速回転によるタービンロータ側の軸受作用面の弾性変形は特にスラスト円板2の外縁寄りで大きく現れ、これによってステータ側の軸受作用面(スラスト軸受3又はスラスト軸受4)に対する最小許容間隙の値を大きめにせざるを得ない結果となっている。その理由は、高速回転時において軸受作用面の対向間隙が過度に狭くなるとタービンロータ側とステータ側の軸受作用面同士が機械的に干渉して破損を生じる虞があるからである。この場合、当然のことながら、スラスト軸受機構の軸受負荷容量は、タービンロータ側とステータ側の軸受作用面間の対向間隙を大きくすればするほど低下することになる。   The bearing load capacity force of the thrust bearing mechanism substantially depends on the size of the facing gap between the bearing acting surface on the turbine rotor side (thrust disk 2) and the bearing acting surface on the stator side (thrust bearing 3 or thrust bearing 4). Determined. The facing gap between the bearing working surface on the turbine rotor side and the bearing working surface on the stator side is only a few micrometers in the operating state. As a basic principle, the bearing load capacity of the thrust bearing mechanism increases as the opposing gap on the bearing acting surface becomes narrower. When the bearing working surface on the turbine rotor side is elastically deformed into a concave shape by high speed rotation, the facing gap of the bearing working surface is inevitably narrowed. The elastic deformation of the bearing working surface on the turbine rotor side due to such high-speed rotation appears particularly near the outer edge of the thrust disc 2, and thereby the minimum allowable clearance with respect to the bearing working surface (thrust bearing 3 or thrust bearing 4) on the stator side. As a result, the value of must be increased. The reason for this is that if the facing gap between the bearing working surfaces becomes too narrow during high-speed rotation, the bearing working surfaces on the turbine rotor side and the stator side may mechanically interfere with each other, causing damage. In this case, as a matter of course, the bearing load capacity of the thrust bearing mechanism decreases as the facing gap between the bearing working surfaces on the turbine rotor side and the stator side increases.

また、タービンの回転数が増加するとタービン軸1の潜在的な非平衡(芯振れ等)の影響でスラスト円板2の揺動が大きくなる。この揺動が大きくなると、スラスト円板外縁部で特に顕著に現れる凹面状の弾性変形によって軸受作用面同士の機械的干渉の虞が高まることになり、場合によってはスラスト円板2の軸受作用面が損傷を受けることにもなる。   Further, when the rotational speed of the turbine is increased, the oscillation of the thrust disk 2 is increased due to the potential non-equilibrium (core runout or the like) of the turbine shaft 1. When this oscillation increases, the risk of mechanical interference between the bearing working surfaces increases due to the concave elastic deformation that appears particularly conspicuously at the outer peripheral edge of the thrust disc, and in some cases, the bearing working surface of the thrust disc 2 Will be damaged.

更に、スラスト円板2が凹面状に弾性変形すると、その両側のスラスト軸受の重要な機能、即ち、スラスト円板との間で狭い流路断面積による増圧で減速された軸受ガスの流れを生じて外側から内側へと軸受ガスをポンピングする幾何学ユニットの機能が阻害される結果となる。   Further, when the thrust disc 2 is elastically deformed into a concave shape, an important function of the thrust bearings on both sides thereof, that is, the flow of the bearing gas decelerated by the pressure increase due to the narrow cross-sectional area between the thrust discs. This results in an impediment to the ability of the geometric unit to pump the bearing gas from outside to inside.

従って従来の膨張タービンにおいては、上述のようなスラスト軸受機構の特性によってタービンが比較的高い回転数のときにはスラスト軸受機構の軸受作用面が本来発揮すべき軸受負荷容量と機能を充分に活用することができないという問題がある。   Therefore, in the conventional expansion turbine, due to the characteristics of the thrust bearing mechanism as described above, the bearing load capacity and the function that the bearing working surface of the thrust bearing mechanism should exhibit should be fully utilized when the turbine has a relatively high rotational speed. There is a problem that can not be.

本発明の主な課題は、スラスト軸受によって支承された少なくとも1つのタービンロータを有する膨張タービンにおいて、前述の諸問題点を解消し、高速回転時においてもスラスト軸受機構の本来の軸受負荷容量と機能を安定して発揮することのできる膨張タービンを提供することである。   The main object of the present invention is to solve the above-mentioned problems in an expansion turbine having at least one turbine rotor supported by a thrust bearing, and to realize the original bearing load capacity and function of the thrust bearing mechanism even during high-speed rotation. It is providing the expansion turbine which can exhibit stably.

この課題を解決するため、本発明による膨張タービンは、タービンロータを支持するスラスト軸受機構を構成するスラスト円板が紡錘形態、即ち同形の二つの裁頭円錐体を裁頭頂面同士で同心状に重ね合わせた紡錘(スピンドル)の形態に形成されていることを特徴とするものである。   In order to solve this problem, in the expansion turbine according to the present invention, the thrust disk constituting the thrust bearing mechanism for supporting the turbine rotor is spindle-shaped, that is, two conical cones having the same shape are concentrically between the top surfaces of the heads. It is formed in the form of an overlapped spindle.

本発明に係る膨張タービンの好適な一実施形態によれば、前記スラスト円板はタービン軸、従ってタービンロータの全長のほぼ中央位置に配置されている。   According to a preferred embodiment of the expansion turbine according to the invention, the thrust disc is arranged at approximately the center position of the turbine shaft and thus the entire length of the turbine rotor.

本発明による膨張タービンによれば、特に高速回転時におけるスラスト軸受機構の本来の軸受負荷容量と機能を安定して発揮することができる。   According to the expansion turbine of the present invention, the original bearing load capacity and function of the thrust bearing mechanism can be stably exhibited, particularly during high-speed rotation.

本発明に係る膨張タービンの特徴と利点を図1に示す実施形態と共に詳述すれば以下の通りである。   The features and advantages of the expansion turbine according to the present invention will be described in detail with reference to the embodiment shown in FIG.

図1(a)に示すように、本実施形態による膨張タービンにおいてもタービン軸1は縦向きに配置されており、タービン流は上から下へと流れる。タービン軸1に結合されているスラスト円板2’は、上側スラスト軸受3と下側スラスト軸受4の間に配置され、スラスト円板2は上面側にスラスト軸受3との軸受作用面を形成し、また下面側にスラスト軸受4との軸受作用面を形成している。これら一対の軸受作用面は、タービン軸1の回転軸線に沿った両方向に関してタービン軸1に作用するスラスト力を吸収するための作用面である。このスラスト円板2’は、本発明に従って紡錘形態、即ち同形の二つの裁頭円錐体を裁頭頂面同士で同心状に重ね合わせた紡錘(スピンドル)の形態に形成されている。ここで、図1(a)中の円で囲んだ部分5は、スラスト軸受として負荷荷重が最も高くなる主領域を示している。   As shown in FIG. 1A, in the expansion turbine according to the present embodiment, the turbine shaft 1 is arranged in the vertical direction, and the turbine flow flows from top to bottom. A thrust disc 2 ′ coupled to the turbine shaft 1 is disposed between the upper thrust bearing 3 and the lower thrust bearing 4, and the thrust disc 2 forms a bearing working surface with the thrust bearing 3 on the upper surface side. Further, a bearing working surface with the thrust bearing 4 is formed on the lower surface side. The pair of bearing action surfaces are action surfaces for absorbing the thrust force acting on the turbine shaft 1 in both directions along the rotation axis of the turbine shaft 1. The thrust disk 2 'is formed in a spindle shape according to the present invention, that is, in the shape of a spindle (conical shape) in which two truncated cones having the same shape are concentrically overlapped with each other at the top surfaces of the truncated surfaces. Here, a portion 5 surrounded by a circle in FIG. 1A indicates a main region where the load load becomes the highest as a thrust bearing.

タービンが高速回転してスラスト円板2’に高い周速が生じると、図1(b)に誇張して示すように紡錘形態のスラスト円板2’の軸受作用面は絶対長さにおいて数マイクロメートルだけ凸面状に、即ちタービン軸1から遠くなる外縁側ほど軸受作用面がスラスト円板の厚さ中心へ向かって曲がるように弾性変形する。但し、いまやこの凸面状の弾性変形は以下に述べる理由からスラスト軸受機構の軸受負荷容量を高めるように作用する。   When the turbine rotates at a high speed and a high peripheral speed is generated in the thrust disk 2 ′, the bearing working surface of the spindle-shaped thrust disk 2 ′ is several micrometers in absolute length as shown in an exaggerated manner in FIG. The bearing acting surface is elastically deformed so as to be convex toward the center of the thickness of the thrust disk as the outer surface is farther from the turbine shaft 1 in a convex shape by a meter. However, this convex elastic deformation now acts to increase the bearing load capacity of the thrust bearing mechanism for the reasons described below.

紡錘形態のスラスト円板2’に凸面状の弾性変形が現れると、この弾性変形は、タービンロータ側の軸受作用面(紡錘形態のスラスト円板2’)とステータ側の軸受作用面(スラスト軸受3又はスラスト軸受4)との対向間隙に対して肯定的な影響を与える。即ち、タービンロータ側の軸受作用面が高速回転によってタービン軸1から遠い外縁側ほどスラスト円板の厚さ中心へ向かって曲がるように凸面状に弾性変形すると、軸受作用面の対向間隙が特にスラスト円板2’の外縁寄り領域において拡がることになる。これによってステータ側の軸受作用面(スラスト軸受3又はスラスト軸受4)に対する最小許容間隙の値を小さく設定しておくことが可能となり、スラスト軸受機構の軸受負荷容量を高めることができると共に、高速回転時において軸受作用面の対向間隙が狭くなることによるタービンロータ側とステータ側の軸受作用面同士の機械的干渉の発生も回避することができる。   When a convex elastic deformation appears in the spindle-shaped thrust disc 2 ′, the elastic deformation is caused by the bearing acting surface on the turbine rotor side (spindle-shaped thrust disc 2 ′) and the bearing acting surface on the stator side (thrust bearing). 3 or the thrust bearing 4) is positively affected. That is, when the bearing working surface on the turbine rotor side is elastically deformed into a convex shape so that the outer edge side farther from the turbine shaft 1 is bent toward the center of the thickness of the thrust disk by high-speed rotation, the opposing gap of the bearing working surface is particularly thrust. It expands in the region near the outer edge of the disk 2 ′. As a result, the value of the minimum allowable clearance with respect to the bearing working surface (thrust bearing 3 or thrust bearing 4) on the stator side can be set small, the bearing load capacity of the thrust bearing mechanism can be increased, and high-speed rotation can be achieved. Occurrence of mechanical interference between the bearing surfaces on the turbine rotor side and the stator side due to the narrowing of the gap between the bearing surfaces at the time can also be avoided.

紡錘形態のスラスト円板2’は、タービン軸1、従ってタービンロータの全長のほぼ中央位置に配置されていることが好ましい。それにより、幾何学的に紡錘形態に形成されているスラスト円板2’が高速回転することで生じるジャイロ効果は、タービン軸1に潜在的に存在する非平衡により誘発される芯振れの揺動運動に対し、それを抑制する対抗モーメントとして効果的に作用することになり、同時にタービンロータ側の軸受作用面が凸面状に弾性変形するので、スラスト円板2’の外縁部とステータ側の軸受作用面との機械的干渉を起こす可能性は更に少なくなる。   The spindle-shaped thrust disc 2 'is preferably arranged at approximately the center of the turbine shaft 1 and thus the entire length of the turbine rotor. As a result, the gyro effect caused by the high-speed rotation of the thrust disk 2 ′ geometrically formed in the spindle shape is the fluctuation of the core runout induced by the non-equilibrium potentially existing in the turbine shaft 1. This effectively acts as a counter-moment to suppress the movement, and at the same time, the bearing acting surface on the turbine rotor side is elastically deformed into a convex shape, so that the outer edge portion of the thrust disc 2 ′ and the bearing on the stator side The possibility of causing mechanical interference with the working surface is further reduced.

更に、高速回転時に紡錘形態のスラスト円板2’が凸面状に弾性変形することは軸受ガスに対する軸受作用面の機能面からも有益である。即ち、高速回転時においてはスラスト円板2’の外縁から内側へ向かってタービン軸1に近づくほど軸受作用面間の対向間隙で形成される軸受ガスの流路断面積が減少し、その結果、内側へ向かうに従って狭くなる流路断面積による増圧で効果的に減速された軸受ガスの流れを生じて外側から内側へと軸受ガスをポンピングする機能が促進されることになる。   Furthermore, it is also beneficial from the functional aspect of the bearing working surface for the bearing gas that the spindle-shaped thrust disc 2 'is elastically deformed into a convex shape during high-speed rotation. That is, at the time of high speed rotation, the flow path cross-sectional area of the bearing gas formed by the facing gap between the bearing working surfaces decreases as it approaches the turbine shaft 1 from the outer edge of the thrust disk 2 ′ toward the inside. The function of pumping the bearing gas from the outside to the inside is promoted by generating a flow of the bearing gas that is effectively decelerated by the pressure increase due to the cross-sectional area of the channel that becomes narrower toward the inside.

本発明に一実施形態による膨張タービンにおけるスラスト軸受機構の要部構造例を示す模式側面図であり、(a)は基本配置状態、(b)は高速回転時を示す。It is a model side view which shows the principal part structural example of the thrust bearing mechanism in the expansion turbine by one Embodiment to this invention, (a) is a basic arrangement state, (b) shows the time of high speed rotation. 従来の膨張タービンにおけるスラスト軸受機構の要部構造例を示す模式側面図であり、(a)は基本配置状態、(b)は高速回転時を示す。It is a model side view which shows the principal part structural example of the thrust bearing mechanism in the conventional expansion turbine, (a) is a basic arrangement state, (b) shows the time of high speed rotation.

符号の説明Explanation of symbols

1:タービン軸、2:スラスト円板、2’:紡錘形態のスラスト円板、3:スラスト軸受、4:スラスト軸受、5:スラスト軸受の主領域   1: turbine shaft, 2: thrust disk, 2 ': spindle-shaped thrust disk, 3: thrust bearing, 4: thrust bearing, 5: main area of thrust bearing

Claims (1)

スラスト軸受によって支承された少なくとも1つのタービンロータを有する膨張タービンにおいて、スラスト軸受機構を構成するスラスト円板(2’)が、同形の二つの裁頭円錐体を裁頭頂面同士で同心状に重ね合わせた形態に形成されており前記タービンロータ側の軸受作用面を構成するスラスト円板(2’)が回転によって前記タービンロータの軸から遠い外縁側スラスト円板(2’)の厚さ中心へ向かって曲がるように弾性変形し、
スラスト円板(2’)がタービン軸(1)の全長のほぼ中央位置に配置されていることを特徴とする膨張タービン。
In an expansion turbine having at least one turbine rotor supported by a thrust bearing, a thrust disk (2 ') constituting a thrust bearing mechanism is formed by concentrically stacking two truncated cones having the same shape between the top surfaces of the truncated surfaces. the thickness of which is formed in the combined form, said turbine rotor side thrust disc constituting the bearing working surface (2 ') a thrust disc distant outer edge from the axis of the turbine rotor by the rotation (2') Elastically deformed to bend toward the center ,
An expansion turbine characterized in that the thrust disk (2 ') is arranged at a substantially central position along the entire length of the turbine shaft (1).
JP2008169817A 2007-06-28 2008-06-30 Expansion turbine Active JP5294729B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007029881.3A DE102007029881B4 (en) 2007-06-28 2007-06-28 expansion turbine
DE102007029881.3 2007-06-28

Publications (2)

Publication Number Publication Date
JP2009008090A JP2009008090A (en) 2009-01-15
JP5294729B2 true JP5294729B2 (en) 2013-09-18

Family

ID=40075938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008169817A Active JP5294729B2 (en) 2007-06-28 2008-06-30 Expansion turbine

Country Status (7)

Country Link
US (1) US20090092489A1 (en)
JP (1) JP5294729B2 (en)
KR (1) KR101556502B1 (en)
CN (1) CN101333944A (en)
DE (1) DE102007029881B4 (en)
FR (1) FR2918110A1 (en)
RU (1) RU2468310C2 (en)

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191005035A (en) * 1910-02-28 1911-02-23 Sebastian Ziani De Ferranti Improvements in and relating to Thrust Bearings and the like.
US1898659A (en) * 1929-03-20 1933-02-21 Automotive Fan & Bearing Compa Pump
US3951573A (en) * 1946-07-16 1976-04-20 The United States Of America As Represented By The United States Energy Research And Development Administration Fluid lubricated bearing construction
US3778123A (en) 1971-11-17 1973-12-11 Singer Co Liquid bearing unit and seal
SU1721332A1 (en) * 1986-11-28 1992-03-23 Всесоюзный научно-исследовательский и конструкторско-технологический институт компрессорного машиностроения Sliding bearing assembly
JPH0510818U (en) * 1991-07-24 1993-02-12 三菱重工業株式会社 Thrust bearing device
JPH0575519U (en) * 1992-03-16 1993-10-15 三菱重工業株式会社 Thrust color of rotating shaft
US5741116A (en) * 1996-12-18 1998-04-21 Delaware Capital Formation Inc. Compressor thrust bearings
JPH10299765A (en) * 1997-04-22 1998-11-10 Mitsubishi Heavy Ind Ltd Thrust bearing
JP2000087960A (en) 1998-09-11 2000-03-28 Matsushita Electric Ind Co Ltd Fluid bearing device
JP2000120402A (en) * 1998-10-15 2000-04-25 Nippon Sanso Corp Hybrid bearing type expansion turbine
JP2000120664A (en) * 1998-10-16 2000-04-25 Ngk Spark Plug Co Ltd Dynamic pressure bearing of ceramic
JP2000291647A (en) * 1999-04-12 2000-10-20 Koyo Seiko Co Ltd Dynamic bearing
JP2001012457A (en) * 1999-06-28 2001-01-16 Seiko Instruments Inc Dynamical pressure-type bearing and spindle motor
US6702463B1 (en) * 2000-11-15 2004-03-09 Capstone Turbine Corporation Compliant foil thrust bearing
JP2002266850A (en) * 2001-03-08 2002-09-18 Ngk Spark Plug Co Ltd Hard disk device
RU2206755C1 (en) * 2001-11-12 2003-06-20 Закрытое акционерное общество НПО "Турбодетандеры" High-speed turbomachine
US6655910B2 (en) 2002-01-16 2003-12-02 G. Fonda-Bonardi Turbocompressor with specially configured thrust washer
JP2003336630A (en) * 2002-05-20 2003-11-28 Toyota Motor Corp Thrust bearing structure
JP2006077871A (en) 2004-09-09 2006-03-23 Mitsubishi Heavy Ind Ltd Bearing structure
RU59756U1 (en) * 2006-06-13 2006-12-27 Колси Энджиниринг, Инк. HYDRODYNAMIC THRUST BEARING ASSEMBLY (OPTIONS)

Also Published As

Publication number Publication date
RU2008125976A (en) 2010-01-10
DE102007029881A1 (en) 2009-01-02
JP2009008090A (en) 2009-01-15
RU2468310C2 (en) 2012-11-27
DE102007029881B4 (en) 2019-09-05
US20090092489A1 (en) 2009-04-09
CN101333944A (en) 2008-12-31
KR101556502B1 (en) 2015-10-02
FR2918110A1 (en) 2009-01-02
KR20090004484A (en) 2009-01-12

Similar Documents

Publication Publication Date Title
US20100177997A1 (en) Radial foil bearing with sealing function
US20070183697A1 (en) Radial foil bearing
US10487871B2 (en) Air foil journal bearing
JP5276414B2 (en) Followable hybrid gas journal bearings using an integral wire mesh damper
JP4665689B2 (en) Shaft seal device for generator
KR101808008B1 (en) Air foil bearing
JP5094833B2 (en) Tilting pad journal bearing device
JP2014119080A (en) Slide bearing device
KR101653358B1 (en) Thrust air bearing
WO2016194677A1 (en) Sealing device and rotating machine
JP5294729B2 (en) Expansion turbine
JP2006300245A (en) Dynamic fluid bearing device
KR20220094815A (en) Gas foil thrust bearing
KR100749828B1 (en) Radial foil bearing with seal function
JP2019158033A (en) Thrust magnetic bearing mechanism and rotary machine using the same
KR20080034005A (en) Turbomachine
US20140321785A1 (en) Auxiliary bearing centering device
JP5812973B2 (en) Journal bearing and steam turbine
KR101187898B1 (en) Damping system of air foil bearing
JP7224631B2 (en) foil bearing
JP5498999B2 (en) Spindle motor
JP7319520B2 (en) bearing structure
JP2002005159A (en) Foil bearing
JP2014085006A (en) Thrust bearing
KR20220120382A (en) Thrust airfoil bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110602

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120412

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R150 Certificate of patent or registration of utility model

Ref document number: 5294729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250