JP5294608B2 - Inorganic fiber-filled bag body and its package - Google Patents

Inorganic fiber-filled bag body and its package Download PDF

Info

Publication number
JP5294608B2
JP5294608B2 JP2007291964A JP2007291964A JP5294608B2 JP 5294608 B2 JP5294608 B2 JP 5294608B2 JP 2007291964 A JP2007291964 A JP 2007291964A JP 2007291964 A JP2007291964 A JP 2007291964A JP 5294608 B2 JP5294608 B2 JP 5294608B2
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
layer
inorganic fiber
filled bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007291964A
Other languages
Japanese (ja)
Other versions
JP2009114600A (en
Inventor
岩崎  博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Fibers Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2007291964A priority Critical patent/JP5294608B2/en
Publication of JP2009114600A publication Critical patent/JP2009114600A/en
Application granted granted Critical
Publication of JP5294608B2 publication Critical patent/JP5294608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bag Frames (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、無機質繊維充填袋体に関する。更に詳しくは、袋形状とする製袋加工が熱シール等で容易にできる低融点繊維を含む不織布からなり、袋内に充填する無機質繊維が空気中に飛散すること、取り扱い時にチクチクすることなどを防止でき、取り扱い性などが改善された無機質繊維充填袋体に関する。   The present invention relates to an inorganic fiber-filled bag body. More specifically, it is made of a non-woven fabric containing low melting point fibers that can be easily formed into a bag shape by heat sealing, etc., and the inorganic fibers filled in the bag are scattered in the air and tingled when handled. The present invention relates to an inorganic fiber-filled bag body that can be prevented and whose handleability is improved.

従来から、石綿、ロックウール、ガラス繊維などは、不燃性、断熱性、価格面などの優れた特徴から、断熱材として多く利用されている。
しかし、スリット加工、穴あけ加工、裁断加工時などに、空気中に飛散することがあり、作業者がチクチクするなどの作業性、環境の面で問題があった。
その対策として、飛散防止用ポリエチレンフイルムなどが使用されている。
この飛散防止対策は、フイルムなどの通気性のない袋に入れることで防止しているが、その袋は通気性がないことから、嵩高い断熱材となり、輸送時などにコンパクトな梱包ができない問題があった。その対策として、周囲をシールしないで、フイルムで挟むことにより飛散を完全に防止することはできないものの、少なくすることで対応している状況である。
Conventionally, asbestos, rock wool, glass fiber, and the like have been widely used as heat insulating materials because of their excellent characteristics such as incombustibility, heat insulation, and price.
However, there is a problem in terms of workability and environment such as an operator's tingling that may be scattered in the air at the time of slitting, drilling, cutting and the like.
As a countermeasure, polyethylene film for preventing scattering is used.
This anti-scattering measure is prevented by putting it in a non-breathable bag such as a film, but the bag is not breathable, so it becomes a bulky heat insulating material and cannot be packed compactly during transportation. was there. As a countermeasure, although it is impossible to completely prevent scattering by sandwiching the film without sealing the periphery, the situation is addressed by reducing it.

特許文献1には、有機繊維不織布と無機繊維マットを重ね、有機繊維側からニードルパンチ加工して、無機繊維の飛散防止がなされている。緻密化できた断熱材で成形加工性等が向上できたが、飛散防止が改善できないことが問題として残っている。
次いで、ガラス繊維の飛散防止の表面材として、アスベスト紙やアスフアルト含浸紙などが使用されていたが、環境上および衛生上の問題で使用が限定されている。
特許文献2には、アルミナゾルを紙の生産時に昆抄することが提案されているが、アルミナの歩留まりに限界があること、難燃性の効果が不十分であることが懸念される。
In Patent Document 1, an organic fiber nonwoven fabric and an inorganic fiber mat are stacked and needle punched from the organic fiber side to prevent inorganic fibers from scattering. Although the heat-insulating material that has been densified can improve the moldability and the like, the problem remains that the prevention of scattering cannot be improved.
Next, asbestos paper, asphalt-impregnated paper, and the like have been used as surface materials for preventing glass fiber scattering, but their use is limited due to environmental and sanitary problems.
Patent Document 2 proposes to squeeze the alumina sol at the time of paper production, but there is a concern that the yield of alumina is limited and the effect of flame retardancy is insufficient.

特許文献3には、シリコーン樹脂を用いることが提案されているが難燃性を充分得るためには、配合量を多くしなければならないことなどが問題である。
特許文献4は、難燃性の無機粉体とバインダーの併用が提案されている。難燃性を充分にするためには、付着量が多くなり、風合いが硬くなるなどの問題がある。更に、難燃性を得る目的で、熱可塑性合成繊維不織布に難燃剤を付与することが考えられるが、銅製、アルミ製、鉄製などの鋼管の断熱材に使用した場合、腐食するなどの問題が生じている。
Patent Document 3 proposes to use a silicone resin, but there is a problem that the blending amount must be increased in order to obtain sufficient flame retardancy.
Patent Document 4 proposes the combined use of a flame-retardant inorganic powder and a binder. In order to achieve sufficient flame retardancy, there are problems such as an increased amount of adhesion and a hard texture. Furthermore, for the purpose of obtaining flame retardancy, it is conceivable to add a flame retardant to the thermoplastic synthetic fiber nonwoven fabric, but there are problems such as corrosion when used as a heat insulating material for steel pipes such as copper, aluminum and iron. Has occurred.

特開平11−221872号公報JP-A-11-218772 特開昭57−205600号公報JP-A-57-205600 特開昭54−68470号公報JP 54-68470 A 特許3256019号公報Japanese Patent No. 3256019

本発明の課題は、上記従来の問題を解決し、無機質繊維の裁断、スリットなどの取り扱い時の微細な繊維の飛散、肌に突き刺さるチクチク性などを防止するため、不織布の袋形状で密封し、飛散防止性、コンパクト梱包等の取り扱い性に優れた無機質繊維充填袋体及びその梱包体を提供することである。   The problem of the present invention is to solve the above-mentioned conventional problems, and to prevent inorganic fibers from being cut, scattered fine fibers during handling such as slits, and tingling properties that pierce the skin. An object of the present invention is to provide an inorganic fiber-filled bag body excellent in handling properties such as scattering prevention and compact packaging, and its package.

本発明者らは、前記課題を解決するため鋭意検討した結果、極細繊維層と径の太い繊維
層との積層不織布を用いることで、飛散防止性、取り扱い性の両面に優れている事を見出し、本発明に到達した。本願で特許請求される発明は、以下の通りである。
(1)無機質繊維層を含有するマットが、不織布からなる袋に収納された袋体であって、該不織布が、目付け10〜100g/m、通気性が1cc/cm/sec以上を有し、繊維径0.1〜7μmの極細繊維層と繊維径10〜30μmの繊維層との積層不織布であり、上記不織布からなる袋の端部が接合強度1N/25mm以上で密封されていることを特徴とする無機質繊維充填袋体。
(2)前記積層不織布が、繊維径0.1〜7μmの極細繊維層を中間層とし、上下層に繊維径10〜30μmの熱可塑性合繊長繊維層を配し、熱圧着で接合一体化してなることを特徴とする上記(1)記載の無機質繊維充填袋体。
(3)前記積層不織布が、上層に繊維径10〜30μmの繊維層、中間層に繊維径0.1〜7μmの極細繊維層、下層に上層の繊維融点より30〜160℃低い低融点繊維を含有する繊維層を積層していることを特徴とする上記(1)又は(2)記載の無機質繊維充填袋体。
(4)前記積層不織布に、繊維径0.1〜7μmの極細繊維層の目付けが少なくとも1g/m以上であることを特徴とする上記(1)〜(3)記載のいずれか1項に記載の無機質繊維充填袋体。
(5)前記積層不織布が、部分熱圧着率5〜30%で接合してなることを特徴とする上記(1)〜(4)記載のいずれか1項に記載の無機質繊維充填袋体。
(6)前記積層不織布が、ポリエステル系繊維又はポリエステル系共重合体繊維からなることを特徴とする上記(1)〜(5)記載のいずれか1項に記載の無機質繊維充填袋体。
(7)前記無機質繊維層を含有するマットの嵩密度が5〜300kg/mであることを特徴とする上記(1)〜(6)のいずれか1項に記載の無機質繊維充填袋体。
(8)前記無機質繊維層を含有するマットが厚み1〜300mm、幅10〜2000mm、長さ10〜40000mmに成形されていることを特徴とする上記(1)〜(7)のいずれか1項に記載の無機質繊維充填袋体。
(9)前記無機質繊維層を含有するマットが、丸、四角、三角又は多角形状の部分的穴加工、スリット加工が施され、該マット端部周囲が、前記不織布で接合密封されていることを特徴とする上記(1)〜(8)のいずれか1項に記載の無機質繊維充填袋体。
(10)上記(1)〜(9)のいずれか1項に記載の無機質繊維充填袋体が、3〜50枚重ねられて、脱気され、密封梱包されていることを特徴とする無機質繊維充填袋体の梱包体。
As a result of intensive studies to solve the above problems, the present inventors have found that by using a laminated nonwoven fabric of an ultrafine fiber layer and a fiber layer having a large diameter, it is excellent in both scattering prevention and handling properties. The present invention has been reached. The invention claimed in the present application is as follows.
(1) A mat containing an inorganic fiber layer is a bag body housed in a bag made of nonwoven fabric, and the nonwoven fabric has a basis weight of 10 to 100 g / m 2 and air permeability of 1 cc / cm 2 / sec or more. And a laminated nonwoven fabric of ultrafine fiber layers having a fiber diameter of 0.1 to 7 μm and fiber layers having a fiber diameter of 10 to 30 μm, and the end portion of the bag made of the nonwoven fabric is sealed with a bonding strength of 1 N / 25 mm or more. An inorganic fiber-filled bag.
(2) The laminated nonwoven fabric has an ultrafine fiber layer with a fiber diameter of 0.1 to 7 μm as an intermediate layer, and a thermoplastic synthetic long fiber layer with a fiber diameter of 10 to 30 μm is arranged on the upper and lower layers, and bonded and integrated by thermocompression bonding. The inorganic fiber-filled bag according to (1) above, wherein
(3) The laminated nonwoven fabric comprises a fiber layer having a fiber diameter of 10 to 30 μm in the upper layer, an ultrafine fiber layer having a fiber diameter of 0.1 to 7 μm in the intermediate layer, and a low melting fiber having a lower melting point of 30 to 160 ° C. than the fiber melting point of the upper layer in the lower layer. The inorganic fiber-filled bag according to (1) or (2) above, wherein the fiber layers to be contained are laminated.
(4) The laminated nonwoven fabric according to any one of (1) to (3), wherein the basis weight of the ultrafine fiber layer having a fiber diameter of 0.1 to 7 μm is at least 1 g / m 2 or more. The inorganic fiber-filled bag body as described.
(5) The inorganic fiber-filled bag according to any one of (1) to (4), wherein the laminated nonwoven fabric is bonded at a partial thermocompression bonding rate of 5 to 30%.
(6) The inorganic fiber-filled bag according to any one of (1) to (5), wherein the laminated nonwoven fabric is made of polyester fiber or polyester copolymer fiber.
(7) The inorganic fiber-filled bag according to any one of (1) to (6) above, wherein the mat containing the inorganic fiber layer has a bulk density of 5 to 300 kg / m 3 .
(8) Any one of the above (1) to (7), wherein the mat containing the inorganic fiber layer is formed to have a thickness of 1 to 300 mm, a width of 10 to 2000 mm, and a length of 10 to 40000 mm. An inorganic fiber-filled bag body according to 1.
(9) The mat containing the inorganic fiber layer is subjected to circular, square, triangular or polygonal partial hole processing and slit processing, and the mat end periphery is bonded and sealed with the nonwoven fabric. The inorganic fiber-filled bag according to any one of (1) to (8) above, which is characterized.
(10) The inorganic fiber, wherein the inorganic fiber-filled bag body according to any one of the above (1) to (9) is degassed and hermetically packed in a stack of 3 to 50 sheets Packing body of filling bag body.

本発明の無機質繊維充填袋体は、折れ、脱落、切断など粉塵が発生し易い無機質繊維マットを、極細繊維層と太い繊維層との緻密化された積層不織布の袋を用いて密封することで、袋外への無機質繊維の浮遊を防止でき、無機質繊維袋体の取り扱い性が向上し、チクチク性がない作業が可能となる。
従って、給湯槽の金属鋼管用断熱材、魔法瓶などの断熱材、冷蔵庫、保冷庫などの断熱材、及び、家屋の壁、屋根下材などの建材用断熱材、自動車内装用などの断熱材・保温材などに広く使用できる。
また、充填袋体が適度な通気性を有するため、無機質繊維充填袋体が、3〜50枚重ねて、脱気し、密封梱包することが出来、コンパクトで効率的な輸送、保管が可能となり、取り扱い性が向上する。
The inorganic fiber-filled bag body of the present invention is formed by sealing an inorganic fiber mat that is likely to generate dust such as folding, dropping off, and cutting with a bag of a laminated nonwoven fabric in which an ultrafine fiber layer and a thick fiber layer are densified. In addition, the inorganic fibers can be prevented from floating outside the bag, the handleability of the inorganic fiber bag body is improved, and the work without tingling is possible.
Therefore, insulation for metal steel pipes in hot water tanks, insulation materials such as thermos, insulation materials such as refrigerators and cold storages, insulation materials for building materials such as house walls and roofing materials, insulation materials for automobile interiors, etc. Can be widely used for heat insulation.
In addition, since the filled bag body has an appropriate air permeability, 3 to 50 sheets of inorganic fiber filled bag bodies can be stacked, deaerated, and hermetically sealed, enabling compact and efficient transportation and storage. , Handling is improved.

本発明の無機質繊維充填袋体は、ロックウール、ガラス繊維、セラミックフイバーなどの無機質繊維を、極細繊維層と太い繊維層との緻密化された積層不織布の袋に充填し、端部周囲を接合して、密封することで、袋外にでる無機質繊維の飛散が防止でき、袋表面を
手で触っても、肌を刺激するチクチク性が防止できるなどの特徴がある。
第一の特徴は、極細繊維を含有した緻密構成の積層不織布を採用することである。
積層不織布は、極細繊維層と太い繊維層との積層組み合わせた多層構成であり、繊維間隙がより小さくできることにより、無機質繊維の遮蔽効果が向上する。
The inorganic fiber-filled bag body of the present invention is filled with inorganic fibers such as rock wool, glass fiber, ceramic fiber, etc. into a bag of laminated nonwoven fabric with a fine fiber layer and a thick fiber layer, and the periphery of the end portion is filled. By bonding and sealing, the inorganic fibers can be prevented from scattering outside the bag, and even if the bag surface is touched by hand, tingling properties that irritate the skin can be prevented.
The first feature is to employ a dense laminated nonwoven fabric containing ultrafine fibers.
The laminated nonwoven fabric has a multilayer structure in which an ultrafine fiber layer and a thick fiber layer are laminated and combined, and the fiber gap can be further reduced, thereby improving the shielding effect of inorganic fibers.

第二の特徴は、積層不織布の強度が高いことである。積層不織布は、極細繊維と太い繊維との積層で、強度が高くでき、取り扱い作業、運搬などで、破れ、破袋し難い構造とすることができる。
第三の特徴は、積層不織布の一方の面に、熱接着性に優れた繊維層を用い、当該層同士を接着面に用いることで、熱接着性に優れた袋体を形成でき、製袋加工性が向上できる点である。
第四の特徴は、通気性を有する積層不織布で被覆された袋体とすることである。この為、嵩高な無機質繊維の包装に用いる積層不織布の袋が通気性を有し、数枚重ねて、加圧することで容易に圧縮でき、且つ、非通気フイルムで包装し、脱気することによりコンパクトな梱包が可能となる。
The second feature is that the strength of the laminated nonwoven fabric is high. The laminated non-woven fabric is a laminate of ultrafine fibers and thick fibers, can have a high strength, and can have a structure that is not easily broken or broken by handling work or transportation.
The third feature is that, by using a fiber layer excellent in thermal adhesiveness on one surface of the laminated nonwoven fabric, and using the layers on the adhesive surface, a bag body excellent in thermal adhesiveness can be formed. It is a point which can improve workability.
A fourth feature is that the bag is covered with a laminated nonwoven fabric having air permeability. For this reason, the bag of laminated nonwoven fabric used for packaging of bulky inorganic fibers has air permeability, can be easily compressed by stacking several layers, pressurizing, and packaging with a non-ventilated film and degassing Compact packaging is possible.

本発明に用いる不織布は、極細繊維層と太い繊維層とが積層されてなる積層不織布である。
本発明において、極細繊維の繊維径は0.1〜7μm、好ましくは0.3〜5μmであり、メルトブロー方式、フラッシュ紡糸方式などで繊維化される。使用される樹脂としては、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、共重合ポリエチレン、共重合ポリプロピレンなどのポリオレフイン系樹脂、ナイロン6、ナイロン66、ナイロン12、ナイロン210、共重合ナイロンなどのポリアミド系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、共重合ポリエステルなどのポリエステル系樹脂などが挙げられる。強度、耐熱性の点から、ポリエステル系樹脂が好ましい。
上記繊維径を有する極細繊維層は、繊維間隙を極小さく制御できる為、無機質繊維の中での、微細な無機質繊維までも遮蔽するに有効である。
The nonwoven fabric used in the present invention is a laminated nonwoven fabric in which an ultrafine fiber layer and a thick fiber layer are laminated.
In the present invention, the ultrafine fiber has a fiber diameter of 0.1 to 7 μm, preferably 0.3 to 5 μm, and is fiberized by a melt blow method, a flash spinning method, or the like. Examples of the resin used include polyolefin resins such as low density polyethylene, high density polyethylene, polypropylene, copolymer polyethylene and copolymer polypropylene, and polyamides such as nylon 6, nylon 66, nylon 12, nylon 210 and copolymer nylon. And polyester resins such as polyethylene resins, polyethylene terephthalate, polybutylene terephthalate, and copolyesters. From the viewpoint of strength and heat resistance, a polyester resin is preferred.
The ultrafine fiber layer having the above fiber diameter is effective in shielding even fine inorganic fibers among inorganic fibers because the fiber gap can be controlled to be extremely small.

太い繊維層の繊維径は、10〜30μm、好ましくは12〜25μmであり、製造方法は、スパンボンド方式、ニードルパンチ方式、柱状流交絡方式、トウ開繊方式などで繊維ウエブ形成、接合工程を得て不織布が得られる。不織布に用いられる繊維は、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、共重合ポリエチレン、共重合ポリプロピレンなどのポリオレフイン系繊維、ナイロン6、ナイロン66、ナイロン12、ナイロン210、共重合ナイロンなどのポリアミド系繊維、ポリエチレンテレフタレート、ポリブチレンテレフタレート、共重合ポリエステルなどのポリエステル系繊維、高融点成分を芯、低融点成分を鞘などの複合繊維などの、短繊維、長繊維、又は単独繊維、二種以上の混合繊維などが用いられる。強度、耐熱性の点から、ポリエステル系樹脂が好ましい。
本発明の積層不織布では、無機質繊維の遮蔽効果において、太い繊維層は強度保持作用と、プレフィルター作用として、有効に作用する。特に、太い繊維層で大きな繊維径の無機質繊維を遮蔽し、極細繊維層で、微細な無機質繊維を遮蔽でき、効率的な多段遮蔽が可能となる。
本発明の積層不織布では、繊維間隙の指標として、平均流量開孔径を用い、この値が30μm以下が好ましく、より好ましくは20μm以下、特に好ましくは、1〜15μmの範囲である。平均流量開孔径がこの範囲にあると、充分な無機質繊維の遮蔽効果、不織布全体としての通気性効果が達成できる。
特に、繊維に機能性を付与する必要性がある場合は、難燃剤、着色剤などの添加剤が0.01〜10wt%添加、塗布されて用いられる。
The fiber diameter of the thick fiber layer is 10 to 30 μm, preferably 12 to 25 μm, and the manufacturing method is a spun bond method, a needle punch method, a columnar entanglement method, a toe opening method, etc. To obtain a non-woven fabric. The fibers used for the nonwoven fabric are, for example, polyolefin fibers such as low density polyethylene, high density polyethylene, polypropylene, copolymer polyethylene, copolymer polypropylene, and polyamides such as nylon 6, nylon 66, nylon 12, nylon 210, copolymer nylon, and the like. Fiber, polyester fiber such as polyethylene terephthalate, polybutylene terephthalate, copolymer polyester, short fiber, long fiber, or single fiber, such as composite fiber such as core, high melting point component, and low melting point component, sheath, etc. The mixed fiber or the like is used. From the viewpoint of strength and heat resistance, a polyester resin is preferred.
In the laminated nonwoven fabric of the present invention, the thick fiber layer effectively acts as a strength retaining action and a prefilter action in the inorganic fiber shielding effect. In particular, a thick fiber layer can shield inorganic fibers having a large fiber diameter, and an ultrafine fiber layer can shield fine inorganic fibers, thereby enabling efficient multistage shielding.
In the laminated nonwoven fabric of the present invention, the average flow pore size is used as an index of the fiber gap, and this value is preferably 30 μm or less, more preferably 20 μm or less, and particularly preferably in the range of 1 to 15 μm. When the average flow pore size is in this range, sufficient inorganic fiber shielding effect and air permeability effect as a whole nonwoven fabric can be achieved.
In particular, when there is a need to impart functionality to the fiber, 0.01 to 10 wt% of an additive such as a flame retardant or a colorant is added and applied.

本発明の積層不織布は、太い繊維層により、取り扱い時などの破れ、袋形状に加工する
時の強度などの面で、満足できる機械特性を得ることができる。例えば、引張強力が10N/5cm以上、好ましくは15N/5cm〜150N/5cmであり、袋形状にした時の接合部の剥離強度が、1N/25mm以上、好ましくは、3〜100N/25mmである。
引張強力が10N/5cm未満、接合部の剥離強度が1N/25mm未満では、取り扱い作業中、梱包、輸送作業などで、破れ、破袋などが生じ易い。
The laminated nonwoven fabric of the present invention can obtain satisfactory mechanical properties in terms of strength such as tearing during handling and processing into a bag shape due to the thick fiber layer. For example, the tensile strength is 10 N / 5 cm or more, preferably 15 N / 5 cm to 150 N / 5 cm, and the peel strength of the joint when formed into a bag shape is 1 N / 25 mm or more, preferably 3 to 100 N / 25 mm. .
When the tensile strength is less than 10 N / 5 cm and the peel strength of the joint is less than 1 N / 25 mm, tearing, bag breaking, and the like are likely to occur during handling, packaging, and transportation.

本発明の積層不織布は、極細繊維層と太い繊維層とを、それぞれ少なくとも1層以上用いるか(例えば、極細繊維層を1層又は2層以上、太い繊維層を1層又は2層以上)または太い繊維層を高融点繊維層とし、他面を低融点繊維層とするなどの組み合わせが採用できる。低融点繊維層としては、低融点成分を鞘部に配した鞘芯構造複合繊維を用いることや、サイドバイサイド型の複合繊維を用いることが出来る。
具体的には、繊維径0.1〜7μmの極細繊維層を中間層とし、上下層に繊維径10〜30μmの熱可塑性合繊長繊維層を配し、熱圧着で接合一体化したものや上層に繊維径10〜30μmの繊維層、中間層に繊維径0.1〜7μmの極細繊維層、下層に上層の繊維融点より30〜160℃低い低融点繊維を含有する繊維層を積層したものとすることができる。積層不織布の下層に、低融点繊維を含有する熱接着性に優れた繊維層を用い、当該層同士を袋体の接着面に用いる事で、熱接着性に優れた袋体を形成でき、製袋加工性が向上できる。
本発明の積層不織布の接合方法は、特に限定されないで、重ねて使用することもできる。更に、作業性などの点から一体化して好ましく使用できる。例えば、一対の凹凸ロールと平滑ロールなどの熱エンボス加工、ホットメルト系樹脂、反応性ウレタン系樹脂などの接着剤による接着加工、ニードルパンチ、柱状流交絡などの機械交絡加工などで行う事ができる。
The laminated nonwoven fabric of the present invention uses at least one or more ultrafine fiber layers and thick fiber layers (for example, one or more ultrafine fiber layers, one or two thick fiber layers) or A combination of a thick fiber layer as a high-melting fiber layer and the other surface as a low-melting fiber layer can be employed. As the low melting point fiber layer, a sheath core structure composite fiber in which a low melting point component is arranged in a sheath part or a side-by-side type composite fiber can be used.
Specifically, an ultra-fine fiber layer having a fiber diameter of 0.1 to 7 μm is used as an intermediate layer, and a thermoplastic synthetic long fiber layer having a fiber diameter of 10 to 30 μm is arranged on the upper and lower layers, and bonded and integrated by thermocompression bonding or an upper layer A fiber layer having a fiber diameter of 10 to 30 μm, an ultrafine fiber layer having a fiber diameter of 0.1 to 7 μm in the intermediate layer, and a fiber layer containing low melting point fibers lower by 30 to 160 ° C. than the fiber melting point of the upper layer in the lower layer can do. By using a fiber layer excellent in thermal adhesiveness containing low melting point fibers in the lower layer of the laminated nonwoven fabric, and using the layers on the adhesive surface of the bag body, a bag body excellent in thermal adhesiveness can be formed. Bag processability can be improved.
The joining method of the laminated nonwoven fabric of this invention is not specifically limited, It can also be used repeatedly. Furthermore, it can be preferably used in an integrated manner from the viewpoint of workability. For example, it can be performed by heat embossing such as a pair of concave and convex rolls and smooth rolls, adhesive processing such as hot melt resin and reactive urethane resin, mechanical entanglement processing such as needle punch, columnar flow entanglement, etc. .

本発明の積層不織布の熱圧着接合は、例えば、凹凸を有するエンボスロールと平滑ロール間で加熱、圧着して接合することである。加熱温度は、繊維の軟化温度以上の温度から融点以下の温度範囲である。しかし、低融点繊維の熱劣化を考慮した場合、上下ロールの温度差を150℃以下、好ましくは130℃以下が好ましい。熱圧着の圧力は10〜1000kPa/cm、好ましくは50〜700kPa/cmである。
積層不織布の熱圧着接合は、強度、風合いなどから、部分的に行うことが好ましい。例えば、全体の表面積に対して、部分的に圧着される面積が、5〜30%、好ましくは、7〜30%である。熱圧着率が5%未満では、接合面積が少なすぎて強度が不足する。一方、30%を超えると、強度は高くなるが、硬い風合いとなる。
凹凸エンボス模様としては、特に限定されないが、全体に対して均等に配置されていることが好ましい。形状としては、丸状、楕円状、菱形状、円柱状、四角状などの、平行均等配置、千鳥状配置などの均等配置することが好ましい。熱圧着部一個の面積は、0.3〜1.5mm、好ましくは、0.4〜1.2mmであり、熱圧着の間隔は、0.3〜3mm、好ましくは、0.5〜2.5mmの均等配置させる。
The thermocompression bonding of the laminated nonwoven fabric of the present invention is, for example, heating and press-bonding between an embossed roll having unevenness and a smooth roll and joining. The heating temperature is a temperature range from the temperature above the softening temperature of the fiber to below the melting point. However, in consideration of thermal degradation of the low melting point fiber, the temperature difference between the upper and lower rolls is 150 ° C. or less, preferably 130 ° C. or less. The pressure of thermocompression bonding is 10 to 1000 kPa / cm, preferably 50 to 700 kPa / cm.
The thermocompression bonding of the laminated nonwoven fabric is preferably performed partially in view of strength, texture and the like. For example, the area that is partially crimped to the entire surface area is 5 to 30%, preferably 7 to 30%. If the thermocompression bonding rate is less than 5%, the bonding area is too small and the strength is insufficient. On the other hand, if it exceeds 30%, the strength is increased, but a hard texture is obtained.
The concavo-convex embossed pattern is not particularly limited, but it is preferable that the concavo-convex embossed pattern is arranged uniformly over the whole. As the shape, it is preferable to arrange them in a uniform manner such as a parallel uniform arrangement or a staggered arrangement such as a round shape, an elliptical shape, a rhombus shape, a cylindrical shape, or a square shape. Thermocompression bonded portions one of area, 0.3 to 1.5 mm 2, preferably a 0.4 to 1.2 mm 2, the distance between the thermocompression bonding, 0.3 to 3 mm, preferably, 0.5 Distribute equally 2.5 mm.

本発明の積層不織布の目付けは、10〜100g/m、好ましくは、15〜70g/mである。目付けが10g/m未満では、繊維の緻密性が低下して、間隙が広くなり、被覆しても、断熱材の飛散防止性が低下する。一方、100g/m超えると、断熱材の飛散防止性が向上するが、風合いが硬くなり、厚みが大きくなり、袋体の製袋加工性が低下する。
特に、極細繊維層の目付けは、1g/m以上、好ましくは1.5〜20g/mであり、特に好ましくは、2〜15g/mである。特に、好ましい態様としては、太い繊維間隙に、部分的に極細繊維を埋没させる構造にする、例えば、太い繊維の上に、極細繊維を積層し、ウエブを吸引させて捕集し、熱圧着させるスパンボンド方式などが行われる。
極細繊維層の目付けが1g/m未満では、太い繊維の間隙を充分に被覆した緻密な構
成にする事ができない。
The basis weight of the laminated nonwoven fabric of the present invention is 10 to 100 g / m 2 , preferably 15 to 70 g / m 2 . When the basis weight is less than 10 g / m 2 , the denseness of the fiber is lowered, the gap is widened, and even if it is covered, the scattering prevention property of the heat insulating material is lowered. On the other hand, when it exceeds 100 g / m 2 , the anti-scattering property of the heat insulating material is improved, but the texture becomes hard, the thickness is increased, and the bag-making processability of the bag body is lowered.
In particular, the basis weight of the microfiber layer is, 1 g / m 2 or more, preferably from 1.5 to 20 / m 2, particularly preferably 2 to 15 g / m 2. In particular, as a preferred embodiment, a structure in which ultrafine fibers are partially embedded in a thick fiber gap is used. For example, ultrafine fibers are laminated on thick fibers, and the web is sucked and collected and thermocompression bonded. A spunbond method is performed.
When the basis weight of the ultrafine fiber layer is less than 1 g / m 2, it is not possible to obtain a dense structure in which the gaps between the thick fibers are sufficiently covered.

本発明の無機質繊維は、石綿、ガラス繊維、ロックウール、セラミックフアイバーなどであり、更に無機質繊維のニードルパンチ加工したニードルマット、フエノール樹脂などの接着剤塗布加工した樹脂加工の無機質繊維マットなどがある。
更に断熱性、保温性の効果を向上させるため、無機質繊維とグラスペーパー、などの嵩密度の異なる無機質繊維、アルミ箔などの金属箔との組み合わせなどが用いられる。
特に、0.1〜10μm、好ましくは、1〜7μmの繊維径の無機質繊維が好ましく用いられる。無機質繊維の嵩密度は、5〜300kg/m、好ましくは、7〜250kg/mである。厚み、目付けは目的に応じて変わるが、例えば、厚みが1〜300mm、好ましくは3〜250mmであり、目付けは、50〜2000g/m、好ましくは70〜1500g/mである。
The inorganic fiber of the present invention is asbestos, glass fiber, rock wool, ceramic fiber, and the like, and further includes a needle mat processed with a needle punch of inorganic fiber, a resin processed inorganic fiber mat processed with an adhesive such as phenol resin, and the like. .
Further, in order to improve the effects of heat insulation and heat retention, a combination of inorganic fibers and inorganic fibers having different bulk densities, such as glass paper, and metal foils, such as aluminum foil, are used.
In particular, an inorganic fiber having a fiber diameter of 0.1 to 10 μm, preferably 1 to 7 μm is preferably used. The bulk density of the inorganic fiber is 5 to 300 kg / m 3 , preferably 7 to 250 kg / m 3 . The thickness and basis weight vary depending on the purpose. For example, the thickness is 1 to 300 mm, preferably 3 to 250 mm, and the basis weight is 50 to 2000 g / m 2 , preferably 70 to 1500 g / m 2 .

無機質繊維の成型加工の形状としては、四角、丸形、三角又は多角形状、テープ状などがあり、特に、断熱材、保温材などの目的で、部分的に四角、丸形、三角又は多角形状などに打ち抜き加工され、使用する形状は特に限定されないが、無機質繊維の周囲は全て、本発明の積層不織布で被覆することが必要である。
成型形状は、幅が10〜2000mm、好ましくは15〜1500mm、長さ10〜40000mm、好ましくは、15〜20000mmである。
As the shape of the inorganic fiber molding process, there are square, round, triangular or polygonal shape, tape shape, etc., especially for the purpose of heat insulating material, heat insulating material, etc., partially square, round, triangular or polygonal shape. The shape to be used is not particularly limited, but it is necessary to cover the entire periphery of the inorganic fiber with the laminated nonwoven fabric of the present invention.
The molded shape has a width of 10 to 2000 mm, preferably 15 to 1500 mm, and a length of 10 to 40,000 mm, preferably 15 to 20000 mm.

本発明の積層不織布の袋は、無機質繊維マットを入れることができ、且つ、接合端部の幅を1〜30mm、好ましくは2〜25mmの接合部分を有する袋形状にすることが必要である。次いで、無機質繊維マットを入れ、袋の周囲端部の接合は、粘着剤、接着剤などを直接不織布の接合端部に塗布する方法、粘着剤、接着剤などが塗布されたフイルム、不織布を不織布接合端部に挟み込む方法、又は不織布より、融点が30〜160℃低融点のフイルム、又は不織布を挟み込む方法などで行う事ができる。
更に、上層に繊維径10〜30μmの繊維層、中間層に繊維径0.1〜7μmの極細繊維層、下層に上層の繊維融点より30〜160℃低い低融点繊維を含有する繊維層を積層した積層不織布を用い、該低融点繊維含有繊維層同士を接合することにより袋とすることもできる。
The bag of the laminated nonwoven fabric of the present invention needs to be formed into a bag shape in which an inorganic fiber mat can be put and the joint end portion has a joint portion of 1 to 30 mm, preferably 2 to 25 mm. Next, an inorganic fiber mat is put in and the peripheral end of the bag is joined by a method of directly applying a pressure-sensitive adhesive, an adhesive, etc. to the joint end of the non-woven fabric, a film coated with a pressure-sensitive adhesive, an adhesive, etc. It can be carried out by a method of sandwiching at the joining end portion or a method of sandwiching a non-woven fabric, a film having a melting point of 30 to 160 ° C. or a non-woven fabric, or the like.
Further, a fiber layer having a fiber diameter of 10 to 30 μm is laminated on the upper layer, an ultrafine fiber layer having a fiber diameter of 0.1 to 7 μm is laminated on the intermediate layer, and a fiber layer containing low melting point fibers lower by 30 to 160 ° C. than the fiber melting point of the upper layer is laminated on the lower layer. By using the laminated nonwoven fabric, the low melting point fiber-containing fiber layers can be joined to form a bag.

本発明の無機質繊維充填袋体は、成形加工された無機質繊維を前記不織布の袋に入れて、端部を接合して密封される。
前記不織布の袋端部接合は、接合強度1N/2.5cm以上であれば特に限定されない。
具体的には、例えば、前記不織布の接合部に直接、接着剤、粘着剤などを塗布する方法、又は、前記不織布の融点より低融点のフイルム、不織布を接合部に介在させる方法、ミシン糸を用いる縫製方法、内部加熱方式の超音波ウエルダー法、高周波ウエルダー法、加熱バーなどで加熱する加熱シール法、溶断シール法などがある。従って本発明に用いる粘着剤、接着剤、フイルム、接着用不織布は、本発明の接合強度が得られれば特に限定されない。
例えば、接着剤、粘着剤としては、ポリエチレン系樹脂、ポリエチレン系共重合体、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、エステル系樹脂、エチレンー酢酸ビニル系樹脂などの1種又は2種以上の樹脂が用いられる。特に、樹脂が難燃性を有しているか、難燃剤が練りこまれた接着剤、粘着剤などで難燃性に合格する樹脂が好ましく用いられる。
The inorganic fiber-filled bag body of the present invention is sealed by putting molded inorganic fibers in the nonwoven fabric bag and joining the end portions.
The bag end bonding of the nonwoven fabric is not particularly limited as long as the bonding strength is 1 N / 2.5 cm or more.
Specifically, for example, a method of directly applying an adhesive, a pressure-sensitive adhesive, or the like to the joint portion of the nonwoven fabric, or a film having a melting point lower than the melting point of the nonwoven fabric, a method of interposing the nonwoven fabric in the joint portion, a sewing thread There are a sewing method to be used, an ultrasonic heating method using an internal heating method, a high-frequency welding method, a heating sealing method in which heating is performed with a heating bar, and a fusing sealing method. Therefore, the pressure-sensitive adhesive, adhesive, film and non-woven fabric for bonding used in the present invention are not particularly limited as long as the bonding strength of the present invention is obtained.
For example, as an adhesive or pressure-sensitive adhesive, one or two of polyethylene resin, polyethylene copolymer, polyamide resin, vinyl chloride resin, vinylidene chloride resin, ester resin, ethylene-vinyl acetate resin, etc. The above resins are used. In particular, a resin that has flame retardancy or that passes the flame retardancy with an adhesive, a pressure-sensitive adhesive or the like in which a flame retardant is kneaded is preferably used.

本発明の無機質繊維充填袋体の接合強度は、取り扱い作業、梱包工程、輸送工程などの作業で破れ、破袋しないことが必要であり、接合強度が、1N/25mm以上、好ましくは2N/25mm〜200N/25mmあり、特に好ましくは15〜200N/25mmである。
接合強度が1N/25mm未満では、取り扱い作業中に接合部分の破れ、破袋が生じ易くなるなどの問題が生じる。
本発明の無機質繊維充填袋体は、断熱性・保温性などを高くする目的で、嵩高な無機質繊維構造となっており、輸送する時には、梱包効率を上げる事が重要である。そこで、本発明の無機質繊維充填袋体の梱包体は、本発明の無機質繊維充填袋体を3〜50枚重ねて、厚み20〜100μmの非通気性のポリエチレンフイルムなどに入れ、加圧プレス機などで加圧する工程、吸引装置などで脱気する工程をへて、コンパクトな無機質繊維充填袋体の梱包体とすることが容易にできる。
The bonding strength of the inorganic fiber-filled bag body of the present invention must be torn during handling operations, packing processes, transportation processes, etc., and must not be broken, and the bonding strength is 1 N / 25 mm or more, preferably 2 N / 25 mm. It is -200N / 25mm, Most preferably, it is 15-200N / 25mm.
If the bonding strength is less than 1 N / 25 mm, problems such as breakage of the bonded portion and easy breakage occur during handling operations.
The inorganic fiber-filled bag body of the present invention has a bulky inorganic fiber structure for the purpose of enhancing heat insulation and heat retention, and it is important to increase packing efficiency when transporting. Therefore, the inorganic fiber-filled bag body of the present invention is made by stacking 3 to 50 sheets of the inorganic fiber-filled bag body of the present invention and putting them in a non-breathable polyethylene film having a thickness of 20 to 100 μm. It is possible to easily form a compact package of an inorganic fiber-filled bag by going through a process of pressurizing with a vacuum and a process of deaeration with a suction device.

本発明を実施例に基づいて説明する。
測定方法は以下のとおりである。
(1)目付(g/m):縦20cm×横25cmの試料を3カ所切り取り、重量を測定
し、その平均値を単位当たりの質量に換算して求める。
(JIS−L−1906)
(2)平均繊維径(μm):顕微鏡で500倍の拡大写真を取り、10本の平均値で求め
る。
(3)厚み(mm):無機質繊維層の厚みは、荷重2kPaでJIS−L−1906に準拠 。積層不織布の厚みは、荷重10kPaでJIS−L−1906に準 拠。
(4)嵩密度(kg/m):目付け/厚みから得た。
(5)通気性:JIS−L−1906フラジュール法に準拠。
(6)発塵性:10cm角の試料表面を金属棒で叩くことにより発塵させる。次いで、発
塵したガラス繊維を吸引ロートに捕集し、顕微鏡を用いて繊維の本数を測
定した。
発塵条件:振とう速度210回/分、時間3分
The present invention will be described based on examples.
The measurement method is as follows.
(1) Weight per unit area (g / m 2 ): Cut a sample 20 cm long × 25 cm wide and measure the weight
Then, the average value is obtained by converting it into mass per unit.
(JIS-L-1906)
(2) Average fiber diameter (μm): Take a 500 times magnified photograph with a microscope and find the average value of 10
The
(3) Thickness (mm): The thickness of the inorganic fiber layer conforms to JIS-L-1906 with a load of 2 kPa. The thickness of the laminated nonwoven fabric conforms to JIS-L-1906 with a load of 10 kPa.
(4) Bulk density (kg / m 3 ): Obtained from basis weight / thickness.
(5) Breathability: Conforms to JIS-L-1906 Frajour method.
(6) Dust generation: Dust is generated by hitting a 10 cm square sample surface with a metal rod. Next, departure
Collect the dusty glass fiber in a suction funnel and measure the number of fibers using a microscope.
Set.
Dust generation conditions: shaking speed 210 times / minute, time 3 minutes

(7)腐食性:銅製金属板を2cm角に切断し、不織布を5cm角2枚切り取り厚み5m
mのガラス板2枚を用いて、ガラス板/不織布/銅板/不織布/ガラス板
に重ねて、荷重1kg/cmで、温度65℃×湿度85%の恒温高湿槽
で7日間処理し、腐食状態を観察して下記の基準で判定した。
5級:金属片の表面の変色・腐食がまったくない。
4級:金属片の表面の変色が僅かにある。
3級:金属片の表面の変色・腐食が僅かにあるが目立たない。
2級:金属片の表面の変色・腐食が少しある。
1級:金属片の表面の変色・腐食が甚だしい。
(7) Corrosiveness: A copper metal plate is cut into a 2 cm square, and a nonwoven fabric is cut into two 5 cm squares to a thickness of 5 m.
Using two glass plates of m, glass plate / nonwoven fabric / copper plate / nonwoven fabric / glass plate
A constant temperature and high humidity tank with a load of 1 kg / cm 2 and a temperature of 65 ° C. and a humidity of 85%.
For 7 days, and the corrosion state was observed and judged according to the following criteria.
Grade 5: No discoloration or corrosion of the surface of the metal piece.
Grade 4: There is a slight discoloration of the surface of the metal piece.
Third grade: The surface of the metal piece is slightly discolored and corroded, but is not noticeable.
Second grade: There is little discoloration and corrosion of the surface of the metal piece.
First grade: Discoloration / corrosion of the surface of the metal piece is severe.

(8)引張強力(N/5cm):定長引張試験機を用い、試料幅5cm長さ30cmを切
り取り、つかみ間隔20cm、引張速度10cm/mi
nで、引張強力をタテ、ヨコ各々3カ所測定し、平均値
で示す。
(9)接合強度(N):定長引張試験機を用い、試料幅25mm長さ200mmを切り取
り、接合部分を約50mm上下方向に剥離し、180度剥離する
ように各々取り付け、つかみ間隔100mm、引張速度10cm
/minで、剥離強度をタテ、ヨコ各々3カ所測定し最大強度の
平均値で示す。
(10)難燃性:JIS−L−1091 A−3法(水平法)に準じる。
合格:燃焼長さ10cm以下 残炎時間20秒以下
(8) Tensile strength (N / 5cm): Using a constant-length tensile tester, cut a sample width of 5cm and a length of 30cm.
Peeling, gripping interval 20 cm, tensile speed 10 cm / mi
n, measure the tensile strength at three vertical and horizontal positions, average value
It shows with.
(9) Bonding strength (N): Using a constant-length tensile tester, cut a sample width of 25 mm and a length of 200 mm
Peel the joint part up and down about 50mm and peel 180 degrees
Each mounting, gripping interval 100mm, tensile speed 10cm
/ Min, peel strength is measured at 3 points each for vertical and horizontal
Shown as an average value.
(10) Flame retardancy: Conforms to JIS-L-1091 A-3 method (horizontal method).
Pass: Combustion length 10 cm or less Afterflame time 20 seconds or less

(11)平均流量孔径(μm):PMI社製のパームポロメーター型式CFP−1200
AEXを用いる。
平均流量孔径は、CUMULATIVE FILTER
FLOW VS DIAMETERグラフにおけるCU
MULATIVE FILTER FLOWの値が50
%のDIAMETERとする。
測定には、浸液にPMI社製シルウイックを用いた。試
料を浸液に浸して充分に脱気してから測定する。
(11) Average flow pore size (μm): Palm porometer model CFP-1200 manufactured by PMI
AEX is used.
The average flow pore size is CUMULARIVE FILTER
CU in FLOW VS DIAMETER graph
The value of MULTIFILTER FLOW is 50
% DIAMETER.
For the measurement, Pyr Sylwick was used as the immersion liquid. Trial
Measure the sample after immersing it in the immersion liquid and thoroughly degassing it.

[実施例1]
本発明の積層不織布の第3層として、ポリエチレンテレフタレート(PET、融点265℃)をスパンボンド用紡糸口金から、紡糸温度300℃で平均繊径14μm、目付け12g/mの熱可塑性繊維ウェブを作成した。次に、第2層としてポリエチレンテレフタレート(PET、融点260℃)を用いメルトブロー用噴射口金から、紡糸温度300℃、加熱エアは320℃で1000Nm/hrで、平均繊径2μm、目付け6g/mの極細繊維ウェブを吐出して積層した。その上に、第1層のポリエチレンテレフタレート(PET、融点265℃)をスパンボンド用紡糸口金から紡糸温度300℃で平均繊径14μm、目付け12g/mの熱可塑性繊維ウェブを捕集ネット上に積層繊維ウェブとして積層し、圧着面積率が、15%エンボスロール、線圧350N/cm、上下温度を230℃/235℃で熱圧着して実施例1の積層不織布(目付け30g/m)を得た。
[Example 1]
As a third layer of the laminated nonwoven fabric of the present invention, a thermoplastic fiber web having an average fiber diameter of 14 μm and a basis weight of 12 g / m 2 at a spinning temperature of 300 ° C. is produced from a spinneret for spunbond using polyethylene terephthalate (PET, melting point 265 ° C.). did. Next, polyethylene terephthalate (PET, melting point 260 ° C.) was used as the second layer, and from a melt-blow nozzle, the spinning temperature was 300 ° C., the heated air was 320 N ° C. and 1000 Nm 3 / hr, the average fiber diameter was 2 μm, and the basis weight was 6 g / m. Two ultrafine fiber webs were discharged and laminated. On top of that, a thermoplastic fiber web having a first layer of polyethylene terephthalate (PET, melting point 265 ° C.) with a spinning temperature of 300 ° C. and an average fiber diameter of 14 μm and a basis weight of 12 g / m 2 is collected on a collection net. Laminated nonwoven web of Example 1 (basis weight 30 g / m 2 ) was laminated by laminating as a laminated fiber web and thermocompression bonded with a 15% embossing roll, linear pressure 350 N / cm, and vertical temperature of 230 ° C / 235 ° C. Obtained.

次いで、厚み25mm、繊維径4μm、嵩密度60kg/mのガラス繊維のニードルマットを、タテ10cmヨコ20cmの長方形の寸法に切断し、タテ30cmヨコ30cmに切り取った上記不織布で包み込み、3方向の端部を10mm重ねて合わせ本縫い方法でミシン縫製して包装し、本発明の無機質繊維充填袋体を得た。
得られた無機質繊維充填袋体の発塵性、腐食性の測定結果を表−1に記載した。
表−1から、本発明の無機質繊維充填袋体は、発塵性、腐食性に優れたものであった。
Next, a glass fiber needle mat having a thickness of 25 mm, a fiber diameter of 4 μm, and a bulk density of 60 kg / m 3 is cut into a rectangular size of 10 cm in length and 20 cm in length, and is wrapped in the above-mentioned nonwoven fabric cut in a length of 30 cm in width and 30 cm in width. The end portions were overlapped by 10 mm, and the sewing machine was sewn and packaged by a main sewing method to obtain an inorganic fiber-filled bag body of the present invention.
Table 1 shows the measurement results of dust generation and corrosivity of the obtained inorganic fiber-filled bag body.
From Table 1, the inorganic fiber filling bag body of this invention was excellent in dust generation property and corrosivity.

[実施例2]
本発明の積層不織布の第3層として、スパンボンド用の2成分紡糸口金から、芯がポリエチレンテレフタレート、鞘がポリエステル共重合体(PET/C0−PET 融点265℃/210℃)の芯鞘構造の平均繊径17μm、目付20g/m複合繊維ウェブを作成した。次に、第2層としてポリエチレンテレフタレート(PET 融点260℃)を用いメルトブロー用噴射口金から、紡糸温度300℃、加熱エアは320℃で1000Nm/hrで、平均繊径2μm、目付10g/m極細繊維ウェブを吐出して積層した。その上に、第1層の一般的なポリエチレンテレフタレートをスパンボンド用紡糸口金から、紡糸温度300℃で平均繊径14μm、目付20g/m熱可塑性繊維ウェブを捕集ネット上に積層繊維ウェブとして積層し、圧着面積率が、25%エンボスロール、線圧350N/cm、上下温度を230℃/145℃で熱圧着して実施例2の積層不織布を(目付け30g/m)得た。
[Example 2]
As the third layer of the laminated nonwoven fabric of the present invention, a core-sheath structure in which a core is polyethylene terephthalate and a sheath is a polyester copolymer (PET / C0-PET melting point 265 ° C./210° C.) from a two-component spinneret for spunbond. A composite fiber web having an average fine diameter of 17 μm and a basis weight of 20 g / m 2 was prepared. Next, polyethylene terephthalate (PET melting point 260 ° C.) was used as the second layer, from a melt-blowing nozzle, spinning temperature 300 ° C., heated air at 320 ° C. and 1000 Nm 3 / hr, average fine diameter 2 μm, basis weight 10 g / m 2. The ultrafine fiber web was discharged and laminated. On top of that, a general polyethylene terephthalate of the first layer is spun from a spinneret for spunbond, an average fiber diameter of 14 μm at a spinning temperature of 300 ° C., and a 20 g / m 2 thermoplastic fiber web as a laminated fiber web on a collection net. The laminated nonwoven fabric was subjected to thermocompression bonding with an embossing roll having a pressure bonding area ratio of 25%, a linear pressure of 350 N / cm, and an upper and lower temperature of 230 ° C./145° C. to obtain a laminated nonwoven fabric of Example 2 (mesh weight 30 g / m 2 ).

次いで、厚み50mm、繊維径6μm、12kg/mのガラス繊維マットにフエノール樹脂加工して、塗布量10wt%にしたガラス繊維マットをタテ10cmヨコ20cmの長方形の寸法に切断し、タテ35cmヨコ35cmに切り取った上記不織布により、第3層を内側にして上記ガラス繊維マットを包み込んだ後、不織布の端部10mm内側に、幅5mmの熱シールバーを温度180℃、圧力5kPa、接圧時間1秒で接合し本発明の無機質繊維充填袋体体を得た。
表−1から、本発明の無機繊維充填袋体は、発塵性、腐食性に優れたものであった。
Next, a glass fiber mat having a thickness of 50 mm, a fiber diameter of 6 μm, and 12 kg / m 3 is subjected to phenol resin processing, and the glass fiber mat having a coating amount of 10 wt% is cut into a rectangular size of 10 cm in length and 20 cm in length, and 35 cm in length and 35 cm in width. After wrapping the glass fiber mat with the third layer inside with the non-woven fabric cut out in a non-woven fabric, a heat seal bar having a width of 5 mm is placed at the inner end 10 mm of the non-woven fabric at a temperature of 180 ° C., a pressure of 5 kPa, and a contact time of 1 second. To obtain an inorganic fiber-filled bag body of the present invention.
From Table 1, the inorganic fiber filled bag body of this invention was excellent in dust generation property and corrosivity.

[実施例3]
本発明の積層不織布の第3層として、エチレングリコールとジメチレンテレフタレート
に、3−メチルホスフイニコプロピオン酸エステルを1.2wt%添加し共重合した難燃性共重合ポリエチレンテレフタレートをスパンボンド用紡糸口金から、紡糸温度290℃で平均繊径16μm、目付け15g/m熱可塑性長繊維ウェブを作成した。次に、第2層としてポリエチレンテレフタレート(PET、融点260℃)を用いメルトブロー用噴射口金から、紡糸温度300℃、加熱エアは320℃で1000Nm/hrで、平均繊径2μm、目付け5g/mの極細繊維ウェブを吐出して積層した。その上に、第3層と同様の目付け15g/m熱可塑性長繊維ウェブを積層し、積層ウエブを、圧着面積率が、25%エンボスロール、線圧350N/cm、上下温度を220℃/225℃で熱圧着して実施例3の難燃性エステル不織布を得た。
[Example 3]
As a third layer of the laminated nonwoven fabric of the present invention, a flame-retardant copolymer polyethylene terephthalate copolymerized by adding 1.2 wt% of 3-methylphosphinicopropionic acid ester to ethylene glycol and dimethylene terephthalate is spun for spinning. From the die, a thermoplastic long fiber web with a spinning temperature of 290 ° C. and an average fiber diameter of 16 μm and a basis weight of 15 g / m 2 was prepared. Next, polyethylene terephthalate (PET, melting point 260 ° C.) was used as the second layer, and from a melt-blow nozzle, the spinning temperature was 300 ° C., the heated air was 320 ° C. and 1000 Nm 3 / hr, the average fine diameter was 2 μm, and the basis weight was 5 g / m. Two ultrafine fiber webs were discharged and laminated. A 15 g / m 2 thermoplastic long fiber web having the same weight as the third layer is laminated thereon, and the laminated web has a 25% embossed roll with a crimping area ratio, a linear pressure of 350 N / cm, and an upper and lower temperature of 220 ° C. / The flame-retardant ester nonwoven fabric of Example 3 was obtained by thermocompression bonding at 225 ° C.

次いで、厚み50mm、繊維径6μm、嵩密度12kg/mのガラス繊維マットにフエノール樹脂で加工して、塗布量10wt%にしたガラス繊維マットをタテ10cmヨコ20cmの長方形の寸法に切断し、タテ35cmヨコ35cmに切り取った上記不織布により、上記ガラス繊維マットを包み込んだ後、該不織布の端部10mm幅に、ホットメルト系のポリアミド系接着剤を塗布量30g/mになるように、ホットメルトガンを用いて接着し、本発明の無機質繊維充填袋体体を得た。
得られた無機質繊維充填袋体の発塵性、腐食性の測定結果を表−1に記載した。
表−1から、本発明の無機質繊維充填袋体は、発塵性、腐食性及び、難燃性に優れたものであった。
Next, a glass fiber mat having a thickness of 50 mm, a fiber diameter of 6 μm, and a bulk density of 12 kg / m 3 is processed with a phenol resin to cut the glass fiber mat to a coating amount of 10 wt% into a rectangular size of 10 cm in length and 20 cm in length. After wrapping the glass fiber mat with the non-woven fabric cut to a length of 35 cm, the hot-melt polyamide adhesive is applied to the end 10 mm width of the non-woven fabric so that the application amount is 30 g / m 2. Adhesion was performed using a gun to obtain an inorganic fiber-filled bag body of the present invention.
Table 1 shows the measurement results of dust generation and corrosivity of the obtained inorganic fiber-filled bag body.
From Table 1, the inorganic fiber-filled bag body of the present invention was excellent in dust generation, corrosivity and flame retardancy.

[実施例4]
本発明の積層不織布に用いる太い繊維層は、スパンボンド用の2成分紡糸口金から、芯がポリエチレンテレフタレート、鞘がポリエチレン(PE/PET 融点130℃/265℃)の芯鞘構造の平均繊径17μm、目付30g/m複合繊維ウェブを捕集ネット上に形成し、一対の平滑金属ロール間で、線圧350N/cm、上下温度を105℃/110℃で熱圧着して得られた。
また、極細繊維層は、ポリプロピレン(PP、融点165℃)を用いメルトブロー用噴射口金から、紡糸温度210℃、加熱エアは230℃で1000Nm/hrで平均繊維径3μm、目付け20g/mの極細繊維不織布を得た。次いで、太い繊維の不織布と極細繊維不織布とを、ポリアミド系ホットメルト樹脂を用いて、カーテンスプレー方式で5g/m塗布し、接合し、本発明の積層不織布を得た。
[Example 4]
The thick fiber layer used in the laminated nonwoven fabric of the present invention has an average fiber diameter of 17 μm from a two-component spinneret for spunbond, a core-sheath structure in which the core is polyethylene terephthalate and the sheath is polyethylene (PE / PET melting point 130 ° C./265° C.). 30 g / m 2 composite fiber web was formed on the collection net, and was thermocompression bonded between a pair of smooth metal rolls at a linear pressure of 350 N / cm and an upper and lower temperature of 105 ° C./110° C.
The ultrafine fiber layer is made of polypropylene (PP, melting point 165 ° C.) and melt blown from a spray blow nozzle of 210 ° C., heated air is 230 ° C., 1000 Nm 3 / hr, average fiber diameter is 3 μm, and basis weight is 20 g / m 2 . An ultrafine fiber nonwoven fabric was obtained. Next, a thick fiber nonwoven fabric and an ultrafine fiber nonwoven fabric were applied and bonded at 5 g / m 2 by a curtain spray method using a polyamide hot melt resin to obtain a laminated nonwoven fabric of the present invention.

次いで、厚み25mm、繊維径4μm、嵩密度60kg/mのガラス繊維マットを、タテ10cmヨコ20cmの長方形の寸法に切断し、タテ30cmヨコ30cmに切り取った上記不織布により、上記ガラス繊維マットを包み込み、3方向の端部を10mm重ねて合わせ本縫い方法でミシン縫製して包装し、本発明の無機質繊維充填袋体を得た。
得られた無機質繊維充填袋体の発塵性、腐食性の測定結果を表―1に記載した。
表―1から、本発明の無機質繊維充填袋体は、発塵性、腐食性に優れたものであった。
Next, a glass fiber mat having a thickness of 25 mm, a fiber diameter of 4 μm, and a bulk density of 60 kg / m 3 is cut into a rectangular size of 10 cm in length and 20 cm in length, and the glass fiber mat is wrapped with the nonwoven fabric cut in 30 cm in length and 30 cm in width. The end portions in the three directions were overlapped by 10 mm, and the machine was sewn and packaged by a main sewing method to obtain an inorganic fiber-filled bag body of the present invention.
Table 1 shows the measurement results of dust generation and corrosivity of the obtained inorganic fiber-filled bag.
From Table 1, the inorganic fiber-filled bag body of the present invention was excellent in dust generation and corrosivity.

[比較例1]
実施例1に用いたガラス繊維のニードルマットを、タテ10cmヨコ20cmの長方形の寸法に切断したガラス繊維マットとした。
[Comparative Example 1]
The glass fiber needle mat used in Example 1 was a glass fiber mat cut into a rectangular size of 10 cm in length and 20 cm in width.

[比較例2]
ポリエチレンテレフタレートをスパンボンド用紡糸口金から、紡糸温度300℃で平均繊径14μm、目付け30g/m熱可塑性長繊維ウェブを捕集ネット上に形成させ、圧着面積率が、15%エンボスロール、線圧350N/cm、上下温度を230℃/235℃で熱圧着して不織布を得た。次いで、難燃加工剤を塗布した。
難燃加工は、大京化学製の燐酸グアニジン誘導体からなる難燃剤(ビゴール415)を用い含浸加工して塗布量15wt%になるようして難燃性不織布を得た。
次いで、実施例1と同様のガラス繊維のニードルマットを用い、タテ30cmヨコ30cmに切り取った上記不織布により、上記ガラス繊維マットを包み込み、3方向の端部を10mm重ねて合わせ本縫い方法でミシン縫製して包装し、断熱材充填袋体を得た。
表−1から、得られた断熱材充填袋体は、発塵性、難燃性に優れたものであったが、金属の腐食性は1級であった。
[Comparative Example 2]
Polyethylene terephthalate through a spinneret for spun bond, an average fiber diameter 14μm at a spinning temperature of 300 ° C., to form a basis weight 30 g / m 2 thermoplastic long fiber web on the collecting net, crimping area ratio is 15% embossing roll, wire A nonwoven fabric was obtained by thermocompression bonding at a pressure of 350 N / cm and a vertical temperature of 230 ° C./235° C. Next, a flame retardant finish was applied.
In the flame-retardant processing, a flame-retardant nonwoven fabric was obtained by impregnating with a flame retardant (Bigol 415) made of a guanidine phosphate derivative manufactured by Daikyo Chemical Co., Ltd. so that the coating amount was 15 wt%.
Next, using the same glass fiber needle mat as in Example 1, the glass fiber mat is wrapped with the non-woven fabric cut into a length of 30 cm and the length is 30 cm. And packaged to obtain a heat-insulating material-filled bag.
From Table 1, although the obtained heat insulating material filling bag body was excellent in dust generation property and flame retardancy, the corrosivity of the metal was first grade.

Figure 0005294608
Figure 0005294608

[実施例5]
実施例1の本発明の無機質繊維充填袋体を10枚重ね、厚み50μm幅60cm長さ100cmのポリエチレン製平袋に挿入にして、プレス機に装着させ、圧縮、脱気してから、幅10mmのポリプロピレン梱包テープで梱包して、厚み約14cmタテ12cmヨコ22cmの本発明のコンパクトな無機質繊維充填袋体の梱包体を得た。
[Example 5]
Ten sheets of the inorganic fiber-filled bag body of the present invention of Example 1 are stacked, inserted into a polyethylene flat bag having a thickness of 50 μm, a width of 60 cm, and a length of 100 cm, mounted on a press machine, compressed and degassed, and then a width of 10 mm. Was packed with a polypropylene packing tape, and a compact package of the inorganic fiber-filled bag of the present invention having a thickness of about 14 cm, a length of 12 cm, and a width of 22 cm was obtained.

[実施例6]
実施例2の本発明の無機質繊維充填袋体を10枚重ね、厚み50μm幅65cm長さ130cmのポリエチレン製平袋に挿入にして、プレス機に装着させ、圧縮、脱気してから、幅10mmのポリエチレンテープで梱包して、厚み約10cmタテ12cmヨコ22cmの本発明のコンパクトな無機質繊維充填袋体の梱包体を得た。
[Example 6]
Ten sheets of the inorganic fiber-filled bag body of the present invention of Example 2 are stacked, inserted into a flat polyethylene bag having a thickness of 50 μm, a width of 65 cm, and a length of 130 cm, mounted on a press machine, compressed and degassed, and then a width of 10 mm. Was packed with a polyethylene tape to obtain a compact inorganic fiber-filled bag body of the present invention having a thickness of about 10 cm, a length of 12 cm, and a width of 22 cm.

[実施例7]
実施例3の本発明の無機質繊維充填袋体を10枚重ね、厚み50μm幅65cm長さ130cmのポリエチレン製平袋に挿入にして、プレス機に装着させ、圧縮、脱気してから、幅10mmのポリエチレンテープで梱包して、厚み約10cmタテ12cmヨコ22cmの本発明のコンパクトな無機質繊維充填袋体の梱包体を得た。
[Example 7]
Ten sheets of the inorganic fiber-filled bag of the present invention of Example 3 were stacked and inserted into a polyethylene flat bag having a thickness of 50 μm, a width of 65 cm, and a length of 130 cm, mounted on a press machine, compressed and degassed, and then a width of 10 mm. Was packed with a polyethylene tape to obtain a compact inorganic fiber-filled bag body of the present invention having a thickness of about 10 cm, a length of 12 cm, and a width of 22 cm.

[実施例8]
実施例4の本発明の無機質繊維充填袋体を10枚重ね、厚み50μm幅60cm長さ100cmのポリエチレン製平袋に挿入にして、プレス機に装着させ、圧縮、脱気してから、幅10mmのポリプロピレン梱包テープで梱包して、厚み約14cmタテ12cmヨコ22cmの本発明のコンパクトな無機質繊維充填袋体の梱包体を得た。
[Example 8]
Ten sheets of the inorganic fiber-filled bag body of the present invention of Example 4 were stacked, inserted into a flat polyethylene bag having a thickness of 50 μm, a width of 60 cm, and a length of 100 cm, mounted on a press machine, compressed and degassed, and then a width of 10 mm. Was packed with a polypropylene packing tape, and a compact package of the inorganic fiber-filled bag of the present invention having a thickness of about 14 cm, a length of 12 cm, and a width of 22 cm was obtained.

本発明の無機質繊維充填袋体は、ロックウール、ガラス繊維、セラミックフアイバーなどの無機質繊維マットを、積層不織布で密封包装した袋体である。この袋体を採用することにより、無機質繊維を裁断、打ち抜き、スリットなどの加工工程時に繊維が空気中に飛散、また作業中に肌に突き刺ささり、チクチクするなどを防止できる。空気中の飛散繊維が浮遊する環境が改善でき、作業者、取扱者などが安心して作業できる。
従って、無機繊維充填袋体は、無機質繊維マットを不織布の袋で密封するため、作業環境が改善でき、且つ、肌に突き刺さるなどの問題が解決され、取り扱い性が格段に改善されている。そこで、断熱性、保温性、価格面などに優れている特徴を活かした用途への展開ができる。
例えば、魔法瓶、給湯器、冷蔵庫、冷凍庫などの家電製品、エンジンルーム、天井材などの自動車内装材、壁材、屋根などの建材などの断熱材、保温材、吸音材などに広く利用できる。
The inorganic fiber-filled bag body of the present invention is a bag body in which an inorganic fiber mat such as rock wool, glass fiber, or ceramic fiber is hermetically packaged with a laminated nonwoven fabric. By adopting this bag, it is possible to prevent the inorganic fibers from being scattered in the air during processing steps such as cutting, punching, and slitting, and being stuck in the skin during work and tingling. The environment in which scattered fibers float in the air can be improved, and workers and operators can work with peace of mind.
Therefore, since the inorganic fiber-filled bag body seals the inorganic fiber mat with a non-woven bag, the working environment can be improved, and problems such as piercing the skin are solved, and the handleability is remarkably improved. Therefore, it is possible to develop applications that take advantage of features that are superior in heat insulation, heat retention, and price.
For example, it can be widely used for household appliances such as thermos bottles, water heaters, refrigerators, freezers, automobile interior materials such as engine rooms and ceiling materials, heat insulating materials such as wall materials and building materials such as roofs, heat insulating materials, and sound absorbing materials.

Claims (7)

目付けが50〜2000g/m、嵩密度が5〜300kg/mの無機質繊維層を含有するマットがポリエステル系繊維又はポリエステル系共重合体繊維からなる不織布袋に収納された袋体であって、該不織布、目付けが10〜100g/m、通気性が1cc/cm/sec以上を有し、上層に繊維径10〜30μmの繊維層、中間層に繊維径0.1〜7μmの極細繊維層、下層に上層の繊維融点より30〜160℃低い低融点繊維を含有する繊維層を積層した積層不織布であり、該積層不織布からなる袋の端部が接合強度2〜200N/25mmで接合されていることを特徴とする無機質繊維充填袋体。 A basis weight of 50 to 2000 g / m 2, bulk density was in the bag member mats containing is housed in a bag of nonwoven fabric made of polyester fibers or polyester copolymer fiber inorganic fiber layer 5~300kg / m 3 The nonwoven fabric has a basis weight of 10 to 100 g / m 2 , an air permeability of 1 cc / cm 2 / sec or more, a fiber layer having a fiber diameter of 10 to 30 μm as an upper layer, and a fiber diameter of 0.1 to 7 μm as an intermediate layer. A laminated nonwoven fabric in which a fiber layer containing a low melting point fiber lower by 30 to 160 ° C. than the fiber melting point of the upper layer is laminated on the lower layer , and the end portion of the bag made of the laminated nonwoven fabric has a bonding strength of 2 to 200 N / 25 mm An inorganic fiber-filled bag body, characterized by being joined by 前記積層不織布が、繊維径0.1〜7μmの極細繊維層を中間層とし、上下層に繊維径10〜30μmの熱可塑性合繊長繊維層を配し、熱圧着で接合一体化していることを特徴とする請求項1に記載の無機質繊維充填袋体。   The laminated nonwoven fabric has an ultrafine fiber layer with a fiber diameter of 0.1 to 7 μm as an intermediate layer, and a thermoplastic synthetic long fiber layer with a fiber diameter of 10 to 30 μm is arranged on the upper and lower layers, and bonded and integrated by thermocompression bonding. The inorganic fiber-filled bag according to claim 1, wherein 前記積層不織布において、繊維径0.1〜7μmの極細繊維層の目付けが、少なくとも1g/m以上であることを特徴とする請求項1又は2に記載の無機質繊維充填袋体。 3. The inorganic fiber-filled bag according to claim 1, wherein the basis weight of the ultrafine fiber layer having a fiber diameter of 0.1 to 7 μm is at least 1 g / m 2 or more in the laminated nonwoven fabric. 前記積層不織布が、部分熱圧着率5〜30%で接合してなることを特徴とする請求項1〜のいずれか1項に記載の無機質繊維充填袋体。 The inorganic fiber-filled bag according to any one of claims 1 to 3 , wherein the laminated nonwoven fabric is bonded at a partial thermocompression bonding rate of 5 to 30%. 前記無機質繊維層を含有するマットが、厚み1〜300mm、幅10〜2000mm、長さ10〜40000mmに成形されていることを特徴とする請求項1〜のいずれか1項に記載の無機質繊維充填袋体。 The inorganic fiber according to any one of claims 1 to 4 , wherein the mat containing the inorganic fiber layer is formed to have a thickness of 1 to 300 mm, a width of 10 to 2000 mm, and a length of 10 to 40000 mm. Filled bag body. 前記無機質繊維層を含有するマットが、丸、四角、三角又は多角形状の部分的穴加工、スリット加工が施され、該マット端部周囲が前記不織布で接合されていることを特徴とする請求項1〜のいずれか1項に記載の無機質繊維充填袋体。 The mat containing the inorganic fiber layer is subjected to a circular, square, triangular or polygonal partial hole processing, slit processing, and the periphery of the mat end is bonded with the nonwoven fabric. The inorganic fiber-filled bag body according to any one of 1 to 5 . 請求項1〜のいずれか1項に記載の無機質繊維充填袋体が、3〜50枚重ねられて、脱気され、密封梱包されていることを特徴とする無機質繊維充填袋体の梱包体。 The inorganic fiber-filled bag body according to any one of claims 1 to 6 , wherein 3 to 50 sheets of the inorganic fiber-filled bag body are stacked, degassed and hermetically sealed. .
JP2007291964A 2007-11-09 2007-11-09 Inorganic fiber-filled bag body and its package Active JP5294608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007291964A JP5294608B2 (en) 2007-11-09 2007-11-09 Inorganic fiber-filled bag body and its package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007291964A JP5294608B2 (en) 2007-11-09 2007-11-09 Inorganic fiber-filled bag body and its package

Publications (2)

Publication Number Publication Date
JP2009114600A JP2009114600A (en) 2009-05-28
JP5294608B2 true JP5294608B2 (en) 2013-09-18

Family

ID=40782049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291964A Active JP5294608B2 (en) 2007-11-09 2007-11-09 Inorganic fiber-filled bag body and its package

Country Status (1)

Country Link
JP (1) JP5294608B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103466999B (en) * 2013-08-27 2015-10-21 信阳科思建筑节能科技有限公司 Superfine fibre theremal-preserving heat-insulating material, thermal insulation thermal insulation board and preparation method thereof
JP2015197601A (en) * 2014-04-01 2015-11-09 帝人株式会社 Sound adsorption material
JP7028695B2 (en) * 2018-04-04 2022-03-02 旭化成株式会社 Bulky flexible non-woven fabric

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343679A (en) * 1998-04-01 1999-12-14 Nippon Petrochem Co Ltd Heat insulating material and its using method
JPH11291377A (en) * 1998-04-06 1999-10-26 Chisso Corp Composite nonwoven fabric
JP2003028384A (en) * 2001-07-19 2003-01-29 Kanegafuchi Chem Ind Co Ltd Heat insulating material of crushed foam filled in bag like object
JP2004162914A (en) * 2002-10-24 2004-06-10 Nisshinbo Ind Inc Vacuum insulation material and its manufacturing method
JP5030427B2 (en) * 2006-01-25 2012-09-19 旭化成せんい株式会社 Bag

Also Published As

Publication number Publication date
JP2009114600A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
CA2584932C (en) Multi-layer thermal insulation system
JP5290797B2 (en) Breathable waterproof sheet for building materials
US20130291990A1 (en) Duct insulation laminates and methods of manufacturing and installation
JP2010523428A5 (en)
WO2002068193A1 (en) Laminate for packaging and package
JP5680869B2 (en) Sheet material for building materials
JP4361202B2 (en) Sound-absorbing material including meltblown nonwoven fabric
JP5294608B2 (en) Inorganic fiber-filled bag body and its package
JP2009184296A (en) Sound absorbing material, and method for manufacturing the same
CN111479680A (en) Laminated sound absorbing material
JP5208861B2 (en) Sound-absorbing laminate and molded article of sound-absorbing laminate
JP2002086605A (en) Heat adhesive composite sheet
JP6349019B1 (en) Melt blown non-woven fabric, its use and production method thereof
JP6498454B2 (en) Sheet for multilayer molding and sheet molded body
JP4156014B1 (en) Insulation-filled bag body and its packaging body
JP2006285086A (en) Sound absorbing heat insulating material
JP6774042B2 (en) Laminated sound absorbing material
JP4705401B2 (en) Nonwoven fabric for feather collection bags
JP4361201B2 (en) Sound-absorbing material including meltblown nonwoven fabric
JP5178332B2 (en) Hot water storage
TW202210676A (en) Sound-absorbing material, sound-absorbing panel in which same is used, and method for manufacturing sound-absorbing material
JP2001219493A (en) Laminated nonwoven fabric and heat-fusible article
JP2010125805A (en) Heat insulation for building material and its manufacturing method
JP2012167412A (en) Water-liftable fiber structure
JP4482241B2 (en) Package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R150 Certificate of patent or registration of utility model

Ref document number: 5294608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350