JP5293209B2 - Method for thermoforming silica glass - Google Patents

Method for thermoforming silica glass Download PDF

Info

Publication number
JP5293209B2
JP5293209B2 JP2009005509A JP2009005509A JP5293209B2 JP 5293209 B2 JP5293209 B2 JP 5293209B2 JP 2009005509 A JP2009005509 A JP 2009005509A JP 2009005509 A JP2009005509 A JP 2009005509A JP 5293209 B2 JP5293209 B2 JP 5293209B2
Authority
JP
Japan
Prior art keywords
silica glass
thermoforming
temperature difference
center
height direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009005509A
Other languages
Japanese (ja)
Other versions
JP2010163300A (en
Inventor
知行 横川
賢 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009005509A priority Critical patent/JP5293209B2/en
Publication of JP2010163300A publication Critical patent/JP2010163300A/en
Application granted granted Critical
Publication of JP5293209B2 publication Critical patent/JP5293209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for heat molding silica glass, which gives uniform optical characteristics. <P>SOLUTION: The method for heat molding silica glass includes: storing silica glass 1 in a carbon container 11; and uniformizing the viscous flow in the silica glass 1 in the height direction of the silica glass 1 when the diameter of the silica glass 1 is expanded in a heating furnace 12 while a load is applied to the silica glass 1. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、シリカガラスの加熱成形方法に関し、詳しくはシリカガラスをカーボン容器に収納し、加熱炉内でシリカガラスを拡径するシリカガラスの加熱成形方法に関する。   The present invention relates to a method for thermoforming silica glass, and more particularly, to a method for thermoforming silica glass in which silica glass is accommodated in a carbon container and the silica glass is expanded in a heating furnace.

シリカガラスは、極めて高純度であり、透明性が高いことが知られている。そのため、通信用光ファイバだけではなく、半導体露光装置用光学レンズや露光用フォトマスクなどの電子産業用途としても幅広く使われている。   Silica glass is known to have extremely high purity and high transparency. For this reason, it is widely used not only for communication optical fibers but also for electronic industry applications such as optical lenses for semiconductor exposure apparatuses and exposure photomasks.

シリカガラスの製法には、大きく分けて以下の二つがある。一つ目の製法は「直接法」と呼ばれ、四塩化珪素を酸水素火炎中で気相加水分解し、ガラスを直接堆積する方法である。この方法は、大型化し易く、レーザ耐性に優れる反面、OH基を1000ppm程度有するために真空紫外透過性が劣るといった特徴がある。   There are roughly the following two methods for producing silica glass. The first production method is called “direct method”, and is a method in which silicon tetrachloride is vapor-phase hydrolyzed in an oxyhydrogen flame to directly deposit glass. This method is easy to increase in size and is excellent in laser resistance, but has a characteristic that vacuum ultraviolet transmittance is inferior because it has about 1000 ppm of OH groups.

もう一つの製法は、「VAD法」あるいは「スート法」と呼ばれ、シリカガラスの微粒子を堆積させたスートと呼ばれる多孔質中間体を製造した後に、加熱処理を施してスートを透明化し、ガラスを製造する方法である。この方法は、直接法に比べて大型化しにくい反面、OH基含有量が少ない、各種ドーパントを入れ易い、赤外透過性や真空紫外透過性、耐熱性等に優れる、といった特徴がある。   Another manufacturing method is called “VAD method” or “soot method”, and after producing a porous intermediate called soot in which fine particles of silica glass are deposited, the soot is made transparent by heat treatment. It is a method of manufacturing. Although this method is difficult to increase in size as compared with the direct method, it has features such as low OH group content, easy addition of various dopants, and excellent infrared transmission, vacuum ultraviolet transmission, heat resistance, and the like.

シリカガラスを光ファイバや光ファイバカプラ等の光学部品にするためには、ガラスを熱加工する必要があるが、光ファイバに加工する場合は、延伸ないしは線引と呼ばれる、棒状のガラスを引き延ばす方式が利用される。   In order to make silica glass into optical parts such as optical fibers and optical fiber couplers, it is necessary to heat-process the glass, but when processing into optical fibers, a method of drawing rod-like glass called drawing or drawing. Is used.

このような一軸変形の定常部における変形プロセスは、簡易な古典的モデルとの整合性もよい。しかしながら、引き延ばしの開始部と終了部などの非定常部や、光学部品としてのレンズなど、3次元形状を付与するための加工プロセスをモデル化し、品質の安定化を図るためには、一次元解析では不十分な可能性がある。   Such a deformation process in the steady portion of the uniaxial deformation has good consistency with a simple classic model. However, one-dimensional analysis is needed to model the processing process for imparting a three-dimensional shape, such as unsteady parts such as the starting and ending parts of stretching, and lenses as optical components, and to stabilize quality. It may be insufficient.

一方、従来のシリカガラスにおける実際の加熱成形方法の一例としては、シリカガラスの上面に上面加熱用ヒータを設けるとともに、シリカガラスの側面に側面加熱用ヒータを設け、等温面が上下方向に平行になるようにし、均一性を高めるようにする加熱方法がある(例えば、特許文献1参照)。   On the other hand, as an example of the actual thermoforming method in the conventional silica glass, an upper surface heater is provided on the upper surface of the silica glass, a side heater is provided on the side surface of the silica glass, and the isothermal surface is parallel to the vertical direction. There is a heating method for improving the uniformity and for example (see, for example, Patent Document 1).

また、別の加熱成形方法の一例として、カーボン容器内にシリカガラスを収納し、フェルト材を介して重石(錘)によりシリカガラスに荷重をかけるようにしたシリカガラスの加熱成形方法がある(例えば、特許文献2参照)。   In addition, as an example of another thermoforming method, there is a silica glass thermoforming method in which silica glass is housed in a carbon container and a load is applied to the silica glass with a weight (weight) via a felt material (for example, , See Patent Document 2).

特開2007−261942号公報JP2007-261194A 特開2002− 53330号公報JP 2002-53330 A

ところが、上記特許文献1及び2に開示された従来のシリカガラスの加熱成形方法では、シリカガラスの粘性流動が不均一になって複屈折や屈折率分布等の光学特性の均一性を高めることが難しかった。   However, in the conventional silica glass thermoforming methods disclosed in Patent Documents 1 and 2, the viscous flow of silica glass becomes non-uniform, and the uniformity of optical properties such as birefringence and refractive index distribution can be improved. was difficult.

その原因としては、シリカガラスを収納しているカーボン容器の天板や底板からシリカガラスの粘性流動とは逆方向に摩擦抵抗が働くためと考えられる。   The reason is considered to be that frictional resistance works in the direction opposite to the viscous flow of silica glass from the top plate or bottom plate of the carbon container containing silica glass.

すなわち、シリカガラスの上下端面では、粘性流動が抑制されてしまうのに対し、シリカガラスの高さ中央付近では粘性流動が起こり易くなって流動量が多くなる。そのため、シリカガラスの上下端面、特に自重により摩擦抵抗が増加しているシリカガラスの下端面付近には、高さ中央付近からガラス母材が流れ込んで来る。   That is, the viscous flow is suppressed on the upper and lower end surfaces of the silica glass, whereas the viscous flow is likely to occur near the center of the height of the silica glass and the flow amount is increased. Therefore, the glass base material flows into the upper and lower end surfaces of the silica glass, particularly near the lower end surface of the silica glass whose friction resistance is increased by its own weight, from the vicinity of the center of the height.

本発明は、上述した事情に鑑みてなされたものであり、その目的は、均一な光学的特性を得ることができるシリカガラスの加熱成形方法を提供することにある。   This invention is made | formed in view of the situation mentioned above, The objective is to provide the thermoforming method of the silica glass which can acquire a uniform optical characteristic.

上記課題を解決することができる本発明に係るシリカガラスの加熱成形方法は、シリカガラスをカーボン容器に収納し、加熱炉内で前記シリカガラスを拡径する加熱成形方法であって、前記シリカガラスの高さ方向中央付近と高さ方向上下端面付近との温度差を50℃±30℃となるように、前記上下端面付近の温度を高く設定し、前記シリカガラスの高さ方向に予め定められた温度分布を付与することで、前記シリカガラス内の中心から外周へ向かう粘性流動を、シリカガラスの高さ方向で均一にすることを特徴としている。
The silica glass thermoforming method according to the present invention capable of solving the above-mentioned problems is a thermoforming method in which silica glass is housed in a carbon container and the silica glass is expanded in a heating furnace, wherein the silica glass The temperature near the upper and lower end surfaces is set high so that the temperature difference between the center in the height direction and the upper and lower end surfaces in the height direction is 50 ° C. ± 30 ° C., and is predetermined in the height direction of the silica glass. By providing the above temperature distribution , the viscous flow from the center to the outer periphery in the silica glass is made substantially uniform in the height direction of the silica glass.

このように構成されたシリカガラスの加熱成形方法によれば、シリカガラスに付与する温度分布として、高さ方向中央付近と高さ方向上下端面付近との温度差を50℃±30℃となるように、上下端面付近の温度を高く設定することで、シリカガラス内の中心から外周へ向かう粘性流動をシリカガラスの高さ方向で略均一にすることができる。そのため、初期の軸対称性を崩すことなく拡径されるので、成形されたシリカガラスの光学的特性を確実に安定化させることができる。これにより、均一な光学的特性を有するシリカガラスを得ることができる。
According to the silica glass thermoforming method thus configured, the temperature distribution applied to the silica glass is such that the temperature difference between the center in the height direction and the vicinity of the upper and lower end surfaces in the height direction is 50 ° C. ± 30 ° C. In addition, by setting the temperature near the upper and lower end surfaces high, the viscous flow from the center in the silica glass toward the outer periphery can be made substantially uniform in the height direction of the silica glass. Therefore, since the diameter is expanded without breaking the initial axial symmetry, the optical characteristics of the formed silica glass can be reliably stabilized. Thereby, the silica glass which has a uniform optical characteristic can be obtained.

また、本発明に係るシリカガラスの加熱成形方法は、前記シリカガラスにカーボンより摩擦抵抗の小さい天板または/及び底板が当接することで、前記粘性流動を均一にすることが望ましい。   Further, in the method for thermoforming silica glass according to the present invention, it is desirable that the viscous flow be made uniform by contacting the silica glass with a top plate and / or a bottom plate having a frictional resistance smaller than that of carbon.

このように構成されたシリカガラスの加熱成形方法によれば、天板や底板から粘性流動とは逆方向に摩擦抵抗が働いたとしても、天板または/及び底板の摩擦抵抗が小さくなっているので、粘性流動をシリカガラスの高さ方向で均一にすることができる。したがって、成形されたシリカガラスの光学的特性を安定化させることができる。
なお、ここで云う「カーボン」とは、一般的なカーボン(摩擦係数0.1〜0.2程度)を意味している。したがって、「カーボンより摩擦抵抗の小さい天板または/及び底板が当接する」とは、少なくても天板自体または底板自体の材質が、摩擦係数0.1以下の材質(例えば0.02〜0.05程度の低摩擦抵抗カーボン等)からなるか、または天板の下面又は底板の上面に後述するカーボン薄膜(摩擦係数0.05程度)等の敷板を介在させることも含まれる。
According to the silica glass thermoforming method thus configured, the friction resistance of the top plate and / or the bottom plate is reduced even if the friction resistance acts in the direction opposite to the viscous flow from the top plate or the bottom plate. Therefore, the viscous flow can be made uniform in the height direction of the silica glass. Therefore, the optical characteristics of the molded silica glass can be stabilized.
In addition, "carbon" here means general carbon (friction coefficient is about 0.1 to 0.2). Therefore, “the top plate or / and the bottom plate having a lower frictional resistance than carbon abuts” means that at least the material of the top plate itself or the bottom plate itself has a friction coefficient of 0.1 or less (for example, 0.02 to 0). Or a floor plate such as a carbon thin film (coefficient of friction of about 0.05) described later on the lower surface of the top plate or the upper surface of the bottom plate.

本発明に係るシリカガラスの加熱成形方法によれば、シリカガラスをカーボン容器に収納し、加熱炉内でシリカガラスを拡径する加熱成形方法において、シリカガラス内の粘性流動をシリカガラスの高さ方向で均一にすることができる。これにより、均一な光学的特性を備えたシリカガラスを得ることができる。   According to the method for thermoforming silica glass according to the present invention, in the thermoforming method in which silica glass is housed in a carbon container and the silica glass is expanded in a heating furnace, the viscous flow in the silica glass is increased by the height of the silica glass. Uniform in direction. Thereby, the silica glass provided with the uniform optical characteristic can be obtained.

本発明の第1実施形態に係るシリカガラスの加熱成形方法を適用するシリカガラス加熱成形装置の一部破断外観斜視図である。It is a partially broken external appearance perspective view of the silica glass thermoforming apparatus to which the silica glass thermoforming method according to the first embodiment of the present invention is applied. 図1を簡略化した縦断面図である。It is the longitudinal cross-sectional view which simplified FIG. 図1のシリカガラスの加熱成形方法によりシリカガラスに温度差50℃の温度分布を付与した場合の温度分布図である。It is a temperature distribution figure at the time of providing the temperature distribution of 50 degreeC of temperature differences to silica glass with the silica glass thermoforming method of FIG. 本発明の第2実施形態に係るシリカガラスの加熱成形方法を適用するシリカガラス加熱成形装置の簡略化した縦断面図である。It is the simplified longitudinal cross-sectional view of the silica glass thermoforming apparatus to which the silica glass thermoforming method which concerns on 2nd Embodiment of this invention is applied. シリカガラスサンプルの変形量の見積もりを得るための模式図である。It is a schematic diagram for obtaining an estimate of the amount of deformation of a silica glass sample. 加熱成形前のシリカガラスサンプルの断面図である。It is sectional drawing of the silica glass sample before heat forming. 温度分布無のシリカガラスサンプルの加熱成形後の断面図である。It is sectional drawing after heat forming of the silica glass sample without temperature distribution. 温度差10℃の温度分布を付与した場合の温度分布図である。It is a temperature distribution figure at the time of providing the temperature distribution of temperature difference 10 degreeC. 図8の加熱成形後を示す断面図である。It is sectional drawing which shows the heat molding of FIG. 温度差20℃の温度分布を付与した場合の加熱成形後を示す断面図である。It is sectional drawing which shows after thermoforming at the time of providing the temperature distribution of 20 degreeC of temperature differences. 温度差50℃の温度分布を付与した場合の加熱成形後を示す断面図である。It is sectional drawing which shows after thermoforming at the time of providing the temperature distribution of 50 degreeC of temperature differences. 温度差80℃の温度分布を付与した場合の加熱成形後を示す断面図である。It is sectional drawing which shows after thermoforming when the temperature distribution of a temperature difference of 80 degreeC is provided. 温度差100℃の温度分布を付与した場合の加熱成形後を示す断面図である。It is sectional drawing which shows after thermoforming at the time of providing the temperature distribution of 100 degreeC of temperature differences. 温度差と均質部分比率との比較グラフである。It is a comparison graph of a temperature difference and a homogeneous part ratio.

以下、本発明に係るシリカガラスの加熱成形方法の好適な実施形態を図面に基づいて詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a method for thermoforming silica glass according to the present invention will be described in detail with reference to the drawings.

図1は本発明に係るシリカガラスの加熱成形方法の第1の実施形態を適用したシリカガラス加熱成形装置の一部破断外観斜視図、図2は図1を簡略化した縦断面図、図3は図1のシリカガラスの加熱成形方法によりシリカガラスに付与される温度分布図である。 FIG. 1 is a partially broken external perspective view of a silica glass thermoforming apparatus to which a first embodiment of a silica glass thermoforming method according to the present invention is applied. FIG. 2 is a longitudinal sectional view of FIG. FIG. 2 is a temperature distribution diagram applied to silica glass by the silica glass thermoforming method of FIG. 1.

図1および図2に示すように、本発明に係る第1の実施形態であるシリカガラス加熱成形装置10は、シリカガラス1を収納するカーボン容器11と、シリカガラス1を収納したカーボン容器11を加熱する加熱炉12と、シリカガラス1に荷重を加える押圧機構13と、を備えている。   As shown in FIGS. 1 and 2, a silica glass thermoforming apparatus 10 according to the first embodiment of the present invention includes a carbon container 11 that contains silica glass 1 and a carbon container 11 that contains silica glass 1. A heating furnace 12 for heating and a pressing mechanism 13 for applying a load to the silica glass 1 are provided.

カーボン容器11は、カーボン材料を用いて、例えば350mmの外径寸法で330mmの内径寸法を有する有底の円筒形状に形成されている。カーボン容器11は、天板14、周板15および底板16を備えている。   The carbon container 11 is formed in a bottomed cylindrical shape using a carbon material, for example, having an outer diameter of 350 mm and an inner diameter of 330 mm. The carbon container 11 includes a top plate 14, a peripheral plate 15, and a bottom plate 16.

加熱炉12は、カーボン容器11を内装する外形を有し、不図示のヒータを備えている。加熱炉12は、シリカガラス1を内装したカーボン容器11を収納してヒータを駆動させ、後述する予め定められた温度分布をシリカガラス1に付与しながら真空加熱を行う。   The heating furnace 12 has an outer shape in which the carbon container 11 is housed, and includes a heater (not shown). The heating furnace 12 houses a carbon container 11 in which the silica glass 1 is housed, drives a heater, and performs vacuum heating while imparting a predetermined temperature distribution described later to the silica glass 1.

押圧機構13は、カーボン容器11の天板14上に載置される例えば6.5kgの錘部材17を有する。押圧機構13は、加熱炉12内で、カーボン容器11に収納されているシリカガラス1を加圧する。また、シリカガラス1の変位量はポテンショメータ19によりモニタされる。
なお、ここでは押圧機構を備えて荷重を加える形態について記載しているが、荷重を加えず、シリカガラスの自重で潰れるような形態であっても良い。
The pressing mechanism 13 includes, for example, a 6.5 kg weight member 17 placed on the top plate 14 of the carbon container 11. The pressing mechanism 13 pressurizes the silica glass 1 accommodated in the carbon container 11 in the heating furnace 12. Further, the displacement amount of the silica glass 1 is monitored by a potentiometer 19.
In addition, although the form which provides a press mechanism and applies a load is described here, the form which is crushed with the dead weight of silica glass without applying a load may be sufficient.

次に、本実施形態のシリカガラスの加熱成形方法について説明する。   Next, the method for thermoforming silica glass of this embodiment will be described.

先ず、所定の寸法緒元を有するシリカガラス1をカーボン容器11の中央部にセットし、カーボン容器11を加熱炉12内に配置する。そして、押圧機構13の錘部材17によりシリカガラス1を加圧する。
このとき、熱処理されたシリカガラス1は、高さ方向に予め定められた温度分布が付与された状態で、カーボン容器11の周板15方向に拡径され、シリカガラス成形体に成形される。
First, the silica glass 1 having a predetermined dimension is set at the center of the carbon container 11, and the carbon container 11 is placed in the heating furnace 12. Then, the silica glass 1 is pressurized by the weight member 17 of the pressing mechanism 13.
At this time, the heat-treated silica glass 1 is expanded in the direction of the peripheral plate 15 of the carbon container 11 with a predetermined temperature distribution in the height direction, and formed into a silica glass molded body.

具体的には、図3に示すように、シリカガラス1の上面2および下面3の温度が中央付近に比べて、50℃程度の温度差をつけることが望ましい。なお、ここでは、シリカガラス1の中心から破線で示した中央部4内は+10℃、その高さ方向の破線7部分で+20℃、破線8部分で+30℃、破線9部分で+40℃、上下面2,3で+50℃の温度差を有している。
これにより、摩擦抵抗の発生するシリカガラス1の上面2および下面3の粘性流動が大きくなり、シリカガラス1内の粘性流動が高さ方向で略均一になって成形されたシリカガラス成形体の光学的特性が安定化される。
Specifically, as shown in FIG. 3, it is desirable that the temperature of the upper surface 2 and the lower surface 3 of the silica glass 1 has a temperature difference of about 50 ° C. compared to the vicinity of the center. Here, the inside of the central portion 4 indicated by a broken line from the center of the silica glass 1 is + 10 ° C., + 20 ° C. at the broken line 7 portion in the height direction, + 30 ° C. at the broken line 8 portion, + 40 ° C. at the broken line 9 portion, The lower surfaces 2 and 3 have a temperature difference of + 50 ° C.
As a result, the viscous flow of the upper surface 2 and the lower surface 3 of the silica glass 1 in which frictional resistance is generated becomes large, and the viscosity of the silica glass molded body formed by making the viscous flow in the silica glass 1 substantially uniform in the height direction. Characteristics are stabilized.

上述したように、本実施形態のシリカガラスの加熱成形方法によれば、シリカガラス1内の中心から外周へ向かう粘性流動を高さ方向で略均一にすることにより、初期の軸対称性を崩すことなく拡径されるので、成形されたシリカガラスの光学的特性を安定化させて、均一な光学的特性を有するシリカガラスを得ることができる。   As described above, according to the silica glass thermoforming method of the present embodiment, the initial axial symmetry is destroyed by making the viscous flow from the center in the silica glass 1 toward the outer periphery substantially uniform in the height direction. Since the diameter of the silica glass is increased, the optical characteristics of the formed silica glass can be stabilized, and a silica glass having uniform optical characteristics can be obtained.

また、シリカガラス1の高さ方向に予め定められた温度分布を付与することで、シリカガラス内の粘性流動を高さ方向で均一にさせ、成形されたシリカガラスの光学的特性を安定化させる。これにより、均一な光学的特性を有する高品質なシリカガラスを得ることができる。   Moreover, by providing a predetermined temperature distribution in the height direction of the silica glass 1, the viscous flow in the silica glass is made uniform in the height direction, and the optical characteristics of the formed silica glass are stabilized. . Thereby, a high-quality silica glass having uniform optical characteristics can be obtained.

次に、本発明に係るシリカガラスの加熱成形方法の第2の実施形態を図4に基づいて説明する。図4は本発明に係るシリカガラスの加熱成形方法の第2の実施形態を適用したシリカガラス加熱成形装置の簡略化した縦断面図である。なお、上記第1の実施形態と同じ構成及び作用に関する説明は同一符号を付すことで省略する。   Next, a second embodiment of the method for thermoforming silica glass according to the present invention will be described with reference to FIG. FIG. 4 is a simplified longitudinal sectional view of a silica glass thermoforming apparatus to which the second embodiment of the silica glass thermoforming method according to the present invention is applied. In addition, the description regarding the same structure and effect | action as the said 1st Embodiment is abbreviate | omitted by attaching | subjecting the same code | symbol.

図4に示すように、本発明に係る第2の実施形態であるシリカガラス加熱成形装置20は、カーボン製の天板14の下面および底板16の上面に、通常のカーボンより摩擦抵抗の小さい材質からなる敷板21,22が配置されている。シリカガラス1の上端面および下端面はこの敷板21,22に当接している。なお、敷板21,22の材質としては、例えば、摩擦係数0.02程度の材料や、通常のカーボンより摩擦抵抗の小さいカーボン薄膜で摩擦係数0.05程度のものを使うことが望ましい。   As shown in FIG. 4, the silica glass thermoforming apparatus 20 according to the second embodiment of the present invention is made of a material having a lower frictional resistance than normal carbon on the lower surface of the carbon top plate 14 and the upper surface of the bottom plate 16. The floor boards 21 and 22 which consist of are arrange | positioned. The upper end surface and the lower end surface of the silica glass 1 are in contact with the floor plates 21 and 22. In addition, as the material of the floor plates 21, 22, it is desirable to use, for example, a material having a friction coefficient of about 0.02 or a carbon thin film having a friction resistance smaller than that of normal carbon and having a friction coefficient of about 0.05.

敷板21,22を配置することで、シリカガラス1の上面および下面の摩擦抵抗が、通常のカーボン製の天板14および底板16に直接当接しているときの摩擦抵抗と比べて小さくなる。これにより、天板14や底板16から粘性流動とは逆方向に摩擦抵抗が働いたとしても、シリカガラス1の上面および下面の摩擦抵抗が小さくなっているので、シリカガラス1内の粘性流動を高さ方向で略均一にすることができる。よって、成形されたシリカガラス成形体の光学的特性が安定化される。   By arranging the floor plates 21 and 22, the frictional resistance of the upper surface and the lower surface of the silica glass 1 becomes smaller than the frictional resistance when directly contacting the normal carbon top plate 14 and bottom plate 16. As a result, even if friction resistance acts in the direction opposite to the viscous flow from the top plate 14 or the bottom plate 16, the frictional resistance of the upper surface and the lower surface of the silica glass 1 is reduced. It can be made substantially uniform in the height direction. Therefore, the optical characteristics of the molded silica glass molded body are stabilized.

上述したように、本実施形態のシリカガラスの加熱成形方法によれば、天板または底板の摩擦抵抗が通常のカーボンより小さくなっているので、粘性流動とは逆方向に作用する摩擦抵抗が天板や底板から働いたとしても、粘性流動を高さ方向で略均一にさせることができる。これにより、成形されたシリカガラスの光学的特性を安定化させることができる。   As described above, according to the silica glass thermoforming method of the present embodiment, the friction resistance of the top plate or the bottom plate is smaller than that of normal carbon. Even when working from the plate or the bottom plate, the viscous flow can be made substantially uniform in the height direction. Thereby, the optical characteristic of the shape | molded silica glass can be stabilized.

次に、本発明に係るシリカガラスの加熱成形方法の作用効果を確認するために行った実施例(シミュレーション結果)について説明する。   Next, examples (simulation results) performed for confirming the effects of the silica glass heat molding method according to the present invention will be described.

シリカガラスの粘性流動解析手法を検討する一環として、古典的モデルによる一軸変形の解析と、3次元熱流体プログラムよる粘性流動解析とを行った。解析のモデルとしては、VAD法で作製した光ファイバ用シリカガラスを、加熱炉内で加熱成形して外径φ300mm(φ12インチ)以上に拡径するプロセスを検討した。   As part of studying the viscous flow analysis method of silica glass, we analyzed uniaxial deformation using a classical model and viscous flow analysis using a three-dimensional thermal fluid program. As a model for the analysis, a process for expanding the diameter of silica glass for optical fibers produced by the VAD method to an outer diameter of φ300 mm (φ12 inches) or more by thermoforming in a heating furnace was examined.

[加熱成形の古典的モデルによる解析]
粘性体の一軸延伸変形については次式のように記述できることが知られている。
[Analysis of thermoforming by classical model]
It is known that the uniaxial stretching deformation of a viscous body can be described as follows.

Figure 0005293209
ここで、fは単位面積当たりの荷重または張力、Tは温度、η(T)はガラス粘度、Sは断面積、vは長手方向の変形速度、zは長手方向軸を表す。
Figure 0005293209
Here, f is the load or tension per unit area, T is the temperature, η (T) is the glass viscosity, S is the cross-sectional area, v is the deformation rate in the longitudinal direction, and z is the longitudinal axis.

図5に示すように、上記数式を元に数値計算を行うことで、任意の断面積Sと厚さzのガラス円柱に、任意の加熱温度Tと荷重fを印加した時の変形量の見積もりが可能である。尚、シリカガラスの粘度η(T)については、別途貫入法により1100℃〜1500℃の温度範囲で実測した結果を用いた。   As shown in FIG. 5, by performing a numerical calculation based on the above formula, an estimation of the deformation amount when an arbitrary heating temperature T and a load f are applied to a glass cylinder having an arbitrary cross-sectional area S and a thickness z. Is possible. In addition, about the viscosity (eta) (T) of silica glass, the result measured in the temperature range of 1100 degreeC-1500 degreeC by the separate penetration method was used.

[FLOW−3Dを用いた粘性流動の3次元解析]
さらに、古典的モデルに加え、ガラスの粘性流動現象を詳細に把握するために、3次元解析を用いて変形挙動の詳細を調べた。
[Three-dimensional analysis of viscous flow using FLOW-3D]
Furthermore, in addition to the classical model, in order to grasp the viscous flow phenomenon of glass in detail, the details of the deformation behavior were investigated using a three-dimensional analysis.

加熱変形中のシリカガラスの粘性流動をシミュレーションするには、ガラス界面の大変形挙動・熱伝達を精度良く計算することがポイントになる。
ガラス界面のモデル化手法としては、Lagrangianr法やEuler法に代表される「直接的表現法」と、VOF(Volume of fluid)法に代表される「間接的表現法」の2種類がある。
In order to simulate the viscous flow of silica glass during heat deformation, it is important to accurately calculate the large deformation behavior and heat transfer at the glass interface.
There are two types of glass interface modeling methods: a “direct representation method” represented by the Lagrangian method and the Euler method, and an “indirect representation method” represented by the VOF (Volume of fluid) method.

前者の直接的表現法は、界面形状に適合した要素を作成できるという長所があるが、大変形解析では要素のアスペクト比が大きくなると共に、計算精度が落ちるといった短所も合わせ持つことが知られている。
また、後者の間接的表現法は、大変形解析には有効であるが、ガラスを格子状に取り扱うため、境界近傍の流れや熱伝達の精度が不十分になることが懸念される。
The former direct expression method has the advantage that an element conforming to the interface shape can be created, but large deformation analysis is known to have the disadvantage that the aspect ratio of the element increases and the calculation accuracy decreases. Yes.
In addition, the latter indirect expression method is effective for large deformation analysis. However, since glass is handled in a lattice shape, there is a concern that the flow near the boundary and the accuracy of heat transfer become insufficient.

そこで、これらの一長一短の問題を解決すべく、Flow Science社の流体解析シミュレータ「FLOW−3D」の適用を検討した。本シミュレータでは、直交格子をベースに、計算セルの一部をカットした滑らかな形状で表現するFAVOR(Fractional Area Volume Obstracle Representation)法を用いてVOF法を拡張しており、間接的表現法の利点はそのままで、壁近傍の流れや熱伝達を精度良く解くことができるという特徴を持っている。   Then, in order to solve these pros and cons, the application of Flow Science's fluid analysis simulator “FLOW-3D” was examined. In this simulator, the VOF method is expanded using the FAVOR (Fractional Area Volume Obstacle Representation) method that expresses a smooth shape with a part of the calculation cell cut based on the orthogonal lattice, and the advantage of the indirect expression method Has the feature that the flow and heat transfer near the wall can be solved accurately.

本シミュレータは、3次元熱流体プログラムの一つとして、界面形状(自由表面)・相変化・圧縮性・流体/剛体との連成運動などの広範囲な流れを扱うことが可能であり、計算結果の妥当性に関する多くの報告例が紹介されている。   This simulator can handle a wide range of flows such as interface shape (free surface), phase change, compressibility, fluid / rigid coupled motion, etc. as one of the 3D thermal fluid programs. There are many reports on the validity of.

しかしながら、シリカガラスのように、大型で高粘度の材料を対象とした解析例は見当たらない。そこで、新たな解析例を検討した。   However, there is no analysis example for a large and highly viscous material such as silica glass. Therefore, a new analysis example was examined.

[解析の準備]
(1)解析条件
解析は、FLOW−3Dの二次元軸対称モデルを用いてモデル化した。シリカガラスの粘度は温度に依存する形式で入力し、外部から温度条件を与えて粘度変化による変形を解析した。
実際の加熱変形は、加熱炉のヒータ能力に依存して4〜5時間を要しているが、実時間を反映させた解析は、計算量が膨大となるため、時間を100倍スケーリング、すなわちガラスの粘度が1/100になるようにスケーリングして解析時間を短縮するようにした。100倍スケーリングの妥当性については後述する。
[Preparation for analysis]
(1) Analysis conditions The analysis was modeled using a two-dimensional axisymmetric model of FLOW-3D. The viscosity of the silica glass was input in a format depending on the temperature, and the deformation due to the viscosity change was analyzed by giving the temperature condition from the outside.
The actual heating deformation takes 4 to 5 hours depending on the heater capacity of the heating furnace, but the analysis reflecting the real time is enormous in the amount of calculation, so the time is scaled by 100 times. The analysis time was shortened by scaling so that the viscosity of the glass was 1/100. The validity of 100 times scaling will be described later.

(2)時間スケーリングの検証
解析で用いる時間スケーリングがどの程度まで許容できるか把握するため、外径150mm、高さ150mmのシリカガラスサンプルを用い、静止荷重6.5kgのみで変形可能な低い粘度設定とする単純なモデルで変位量を比較した。
(2) Verification of time scaling Low viscosity setting that can be deformed with only a static load of 6.5 kg using a silica glass sample with an outer diameter of 150 mm and a height of 150 mm in order to grasp to what extent the time scaling used in the analysis is acceptable. We compared the displacement with a simple model.

変位量の比較の結果、初期高さ150mmから、等倍(1倍)スケーリングで51mm変形した時のそれぞれの計算結果を見ると、10倍と100倍のスケーリングでは、同じ53mmで等倍との変位差は2mm、1000倍のスケーリングになると変位差は4mmであった。
従って、100倍スケーリングまでであれば実態と大きな乖離はないと判断し、以降は計算負荷と精度の両面から、100倍スケーリングで解析を行った。
As a result of the comparison of the displacement amount, when looking at the respective calculation results when the initial height is 150 mm and 51 mm is deformed with the same scale (1 time) scaling, the same magnification is obtained with the same 53 mm with the scaling of 10 times and 100 times. The displacement difference was 2 mm, and when the scaling was 1000 times, the displacement difference was 4 mm.
Therefore, it is judged that there is no big difference from the actual situation up to 100 times scaling, and thereafter, analysis was performed with 100 times scaling from both aspects of calculation load and accuracy.

[粘性流動メカニズムの解析結果]
加熱成形中のガラス全体の粘性流動メカニズムを把握するため、図6に示すようにシリカガラスサンプル5に、複数本のマーキングライン6を予め付しておき、変形に伴ってこれらのマーキングライン6が変化する様子を調査した。なお、マーキングラインはガラス内部の変形、即ち粘性流動の様子を可視化するものであり、特性面では屈折率やドーパント濃度、OH基濃度等の物性の等高線に相当する。
以下、シリカガラスサンプル5内の温度分布が均一な場合と、温度差が発生している場合の両方の調査結果について説明する。
[Analysis results of viscous flow mechanism]
In order to grasp the viscous flow mechanism of the whole glass during heat forming, a plurality of marking lines 6 are attached in advance to the silica glass sample 5 as shown in FIG. The state of change was investigated. The marking line visualizes deformation inside the glass, that is, the state of viscous flow, and corresponds to contour lines of physical properties such as refractive index, dopant concentration, and OH group concentration in terms of characteristics.
Hereinafter, the investigation results for both the case where the temperature distribution in the silica glass sample 5 is uniform and the case where the temperature difference occurs are described.

[温度分布無]
外径170mm、高さ320mmのシリカガラスサンプル5を用い、荷重は6.5kg、サンプル内の温度は均一とした。
[No temperature distribution]
A silica glass sample 5 having an outer diameter of 170 mm and a height of 320 mm was used, the load was 6.5 kg, and the temperature in the sample was uniform.

図7に示すように、温度分布を与えない場合、シリカガラスサンプル5の高さ中央付近において相対的に外周(図の横方向)への流動量が多くなっており、初期に外周付近にあった部分は底部に流れ込んでいる。   As shown in FIG. 7, when the temperature distribution is not given, the amount of flow toward the outer periphery (lateral direction in the figure) is relatively large near the center of the height of the silica glass sample 5, and it is in the vicinity of the outer periphery in the initial stage. The part flows into the bottom.

これは、サンプル上面/天板間、及びサンプル下面/底板間には摩擦力が働いており、特にサンプル下面には錘による荷重に加えて自重分(5.4kg)が上乗せされるため、サンプル上面/天板間よりも摩擦力が大きくなっている。
そのため、初期に上面・下面付近にあった部分はこの摩擦力が粘性流動の逆方向に作用することから高さ中央付近に比べて粘性流動が起きにくく、特に摩擦力の大きいサンプル下面ではこれが顕著になる。そのため、初期に外周付近にあったガラスが下面側へ流れ込んでくると考えられる。
This is because friction force works between the upper surface / top plate of the sample and between the lower surface / bottom plate of the sample, and in particular, the sample's lower surface is loaded with its own weight (5.4 kg) in addition to the load due to the weight. The frictional force is larger than between the upper surface / top plate.
For this reason, the frictional force acts in the opposite direction of the viscous flow in the area near the upper and lower surfaces in the initial stage, so that the viscous flow is less likely to occur than in the vicinity of the center of the height, especially on the lower surface of the sample where the frictional force is large. become. Therefore, it is considered that the glass that was in the vicinity of the outer periphery in the initial stage flows into the lower surface side.

[温度分布有]
次に、上記シリカガラスサンプル5を用い、温度分布を加えて加熱成形する場合について検討する。
具体的には、外径170mm、高さ320mmのシリカガラスサンプル5をカーボン容器11の中央部にセットし、カーボン容器11を加熱炉12内に配置して、荷重11.0kgで押圧した(図2参照)。
[With temperature distribution]
Next, the case where the above silica glass sample 5 is used for thermoforming by adding a temperature distribution will be examined.
Specifically, the silica glass sample 5 having an outer diameter of 170 mm and a height of 320 mm is set at the center of the carbon container 11, and the carbon container 11 is placed in the heating furnace 12 and pressed with a load of 11.0 kg (see FIG. 2).

加熱成形中、シリカガラスサンプル5は、加熱炉のヒータからの輻射熱に加え、天板14及び底板16からの伝熱を受けるため、サンプルの上下付近と高さ中央付近で幾らかの温度差が発生していると推測される。この温度差は、鉛直方向に成形されずに初期の軸対称性が崩れるといったプロセス上及び品質上の不安定要因にもなり兼ねない。   During the thermoforming, the silica glass sample 5 receives heat transfer from the top plate 14 and the bottom plate 16 in addition to the radiant heat from the heater of the heating furnace. Presumed to have occurred. This temperature difference can be an instability factor in process and quality in that the initial axial symmetry is lost without being molded in the vertical direction.

そこで、計算条件でサンプル上下面には、熱伝導量を多く付与することで、上下面と高さ中央付近との間に複数の温度差を付与して解析を行い、それらの変形途中の状態を比較した。   Therefore, by giving a large amount of heat conduction to the upper and lower surfaces of the sample under the calculation conditions, analysis is performed by giving multiple temperature differences between the upper and lower surfaces and the vicinity of the center of the height. Compared.

[温度分布有・温度差10℃]
図8に示すように、シリカガラスサンプル5の中央部4に1800℃を付与し、その上面2および下面3に1810℃の+10℃の温度差を付与した。なお、破線18で+5℃の温度差を有している。
[Temperature distribution available, temperature difference 10 ℃]
As shown in FIG. 8, 1800 ° C. was applied to the central portion 4 of the silica glass sample 5, and a temperature difference of + 10 ° C. of 1810 ° C. was applied to the upper surface 2 and the lower surface 3 thereof. Note that a broken line 18 has a temperature difference of + 5 ° C.

図9に示すように、10℃の温度差を付与した場合、高さ中央付近の流動量が多く、マーキングライン6が荷重方向と平行に近い部分(垂直軸とのなす角度が0〜20度となる範囲)が長さ寸法L1と小さいことが判る。   As shown in FIG. 9, when a temperature difference of 10 ° C. is applied, the amount of flow around the center of the height is large and the marking line 6 is close to the load direction (the angle between the vertical axis is 0 to 20 degrees). It can be seen that the range () is as small as the length dimension L1.

[温度分布有・温度差20℃]
図10に示すように、シリカガラスサンプル5の中央部に1800℃を付与し、その上面および下面に1820℃の+20℃の温度差を付与した。
[Temperature distribution present, temperature difference 20 ℃]
As shown in FIG. 10, 1800 degreeC was provided to the center part of the silica glass sample 5, and the temperature difference of +20 degreeC of 1820 degreeC was provided to the upper surface and the lower surface.

20℃の温度差を付与した場合、高さ中央付近の流動量が多く、マーキングライン6のほぼ平行な部分が、温度差10℃の場合よりも僅かに大きい長さ寸法L2(L1<L2)になっていることが判る。   When a temperature difference of 20 ° C. is applied, the amount of flow near the center of the height is large, and the substantially parallel part of the marking line 6 is slightly larger than the case of a temperature difference of 10 ° C. L2 (L1 <L2) It turns out that it is.

[温度分布有・温度差50℃]
図3を参照して、シリカガラス1の中央部4に1800℃を付与し、その上面2および下面3に1850℃の+50℃の温度差を付与した。
[With temperature distribution, temperature difference 50 ℃]
With reference to FIG. 3, 1800 degreeC was provided to the center part 4 of the silica glass 1, and the temperature difference of +50 degreeC of 1850 degreeC was provided to the upper surface 2 and the lower surface 3. As shown in FIG.

図11に示すように、50℃の温度差を付与した場合、高さ中央付近の流動量が少なく、マーキングライン6のほぼ平行な部分が、温度差10℃および20℃の場合よりも大きい長さ寸法L3(L1<L2<L3)になっているのが判る。すなわち、シリカガラスサンプル5内の粘性流動が略均一になり、成形されたシリカガラス成形体の光学的特性がより安定化されることが推測できる。   As shown in FIG. 11, when a temperature difference of 50 ° C. is applied, the amount of flow around the center of the height is small, and the substantially parallel portion of the marking line 6 is longer than when the temperature difference is 10 ° C. and 20 ° C. It can be seen that the length is L3 (L1 <L2 <L3). That is, it can be estimated that the viscous flow in the silica glass sample 5 becomes substantially uniform, and the optical characteristics of the molded silica glass molded body are further stabilized.

[温度分布有・温度差80℃]
図12に示すように、シリカガラスサンプル5の中央部に1800℃を付与し、その上面および下面に1880℃の+80℃の温度差を付与した。
[Temperature distribution available, temperature difference 80 ℃]
As shown in FIG. 12, 1800 degreeC was provided to the center part of the silica glass sample 5, and the temperature difference of +80 degreeC of 1880 degreeC was provided to the upper surface and the lower surface.

80℃の温度差を付与した場合、高さ中央付近の流動量が少なく、マーキングライン6のほぼ平行な部分が、温度差50℃の場合とほぼ同等の長さ寸法L4になっているのが判る。   When a temperature difference of 80 ° C. is applied, the amount of flow near the center of the height is small, and the substantially parallel portion of the marking line 6 has a length dimension L 4 that is substantially the same as that when the temperature difference is 50 ° C. I understand.

[温度分布有・温度差100℃]
図13に示すように、シリカガラスサンプル5の中央部に1800℃を付与し、その上面および下面に1900℃の+100℃の温度差を付与した。
[Temperature distribution present, temperature difference 100 ℃]
As shown in FIG. 13, 1800 degreeC was provided to the center part of the silica glass sample 5, and the temperature difference of +900 degreeC of 1900 degreeC was provided to the upper surface and the lower surface.

100℃の温度差を付与した場合、高さ中央付近の流動量が多く、マーキングライン6が荷重方向と平行な部分が温度差10℃の場合とほぼ同等の長さ寸法L5と小さくなっているのが判る。これは、温度差が大きくなると、サンプル上下付近の粘性流動が勝ってくるので、高さ中央付近が凹んだ潰れ方をするためである。   When a temperature difference of 100 ° C. is applied, the amount of flow around the center of the height is large, and the portion of the marking line 6 parallel to the load direction is as small as a length dimension L 5 that is substantially the same as when the temperature difference is 10 ° C. I understand. This is because when the temperature difference increases, the viscous flow near the top and bottom of the sample wins, so that the vicinity of the center of the height collapses.

図14に示すように、マーキングライン6と垂直軸のなす角度が0度(平行)〜±20度となる範囲を均質部分とし、全体に対する均質部分の比率が温度差によってどのように異なるかを比較した結果、均質部分の比率が40%以上となる温度差は、50℃±30℃の範囲であることが判る。
したがって、シリカガラスサンプル5に付与する温度分布として、高さ方向中央付近と高さ方向上下端面付近との温度差を50℃±30℃となるように、上下端面付近の温度を高く設定することで、サンプルの粘性流動を高さ方向で略均一にできる。よって、成形されたシリカガラスの光学的特性を確実に安定化させることができる。
As shown in FIG. 14, the range in which the angle between the marking line 6 and the vertical axis is 0 degree (parallel) to ± 20 degrees is defined as a homogeneous part, and the ratio of the homogeneous part to the whole varies depending on the temperature difference. As a result of comparison, it can be seen that the temperature difference at which the ratio of the homogeneous portion is 40% or more is in the range of 50 ° C. ± 30 ° C.
Accordingly, as the temperature distribution to be applied to the silica glass sample 5, the temperature near the upper and lower end surfaces is set high so that the temperature difference between the center in the height direction and the upper and lower end surfaces in the height direction is 50 ° C. ± 30 ° C. Thus, the viscous flow of the sample can be made substantially uniform in the height direction. Therefore, the optical characteristics of the molded silica glass can be reliably stabilized.

これは、上述したように、上下面付近は高さ中央付近に比べて温度が高いために粘度が低くなり、天板及び底板との摩擦力に打ち勝って外周部への流動量が多くなる結果、相対的に高さ中央付近の流動量が少なくなっているためであると考えられる。
このように、加熱炉内に温度分布を積極的に付与することで粘性流動を制御すれば、光学特性等の品質の安定化につながると示唆される。
This is because, as described above, the viscosity in the vicinity of the upper and lower surfaces is lower because the temperature is higher than that in the vicinity of the center of the height, and the amount of flow to the outer peripheral portion is increased by overcoming the frictional force between the top plate and the bottom plate. This is probably because the amount of flow around the center of the height is relatively small.
Thus, it is suggested that controlling the viscous flow by positively imparting a temperature distribution in the heating furnace leads to stabilization of quality such as optical characteristics.

なお、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が自在である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所、等は本発明を達成できるものであれば任意であり、限定されない。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

1 シリカガラス
11 カーボン容器
12 加熱炉
14 天板
16 底板
DESCRIPTION OF SYMBOLS 1 Silica glass 11 Carbon container 12 Heating furnace 14 Top plate 16 Bottom plate

Claims (1)

シリカガラスをカーボン容器に収納し、加熱炉内で前記シリカガラスを拡径する加熱成形方法であって、
前記シリカガラスの高さ方向中央付近と高さ方向上下端面付近との温度差を50℃±30℃となるように、前記上下端面付近の温度を高く設定し、前記シリカガラスの高さ方向に予め定められた温度分布を付与することで、前記シリカガラス内の中心から外周へ向かう粘性流動を、シリカガラスの高さ方向で均一にすることを特徴とするシリカガラスの加熱成形方法。
Silica glass is housed in a carbon container and is a thermoforming method for expanding the silica glass in a heating furnace,
The temperature near the upper and lower end faces is set high so that the temperature difference between the vicinity of the center in the height direction of the silica glass and the upper and lower end faces in the height direction is 50 ° C. ± 30 ° C., and in the height direction of the silica glass A method for thermoforming silica glass, characterized in that a viscous flow from the center to the outer periphery of the silica glass is made substantially uniform in the height direction of the silica glass by applying a predetermined temperature distribution .
JP2009005509A 2009-01-14 2009-01-14 Method for thermoforming silica glass Expired - Fee Related JP5293209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009005509A JP5293209B2 (en) 2009-01-14 2009-01-14 Method for thermoforming silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009005509A JP5293209B2 (en) 2009-01-14 2009-01-14 Method for thermoforming silica glass

Publications (2)

Publication Number Publication Date
JP2010163300A JP2010163300A (en) 2010-07-29
JP5293209B2 true JP5293209B2 (en) 2013-09-18

Family

ID=42579787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009005509A Expired - Fee Related JP5293209B2 (en) 2009-01-14 2009-01-14 Method for thermoforming silica glass

Country Status (1)

Country Link
JP (1) JP5293209B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6162623B2 (en) * 2014-02-25 2017-07-12 信越石英株式会社 Weight stone, quartz glass molding apparatus and quartz glass molding method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220240A (en) * 2001-01-22 2002-08-09 Sumitomo Metal Ind Ltd Method of producing quartz glass by hot forming
JP4288413B2 (en) * 2003-04-07 2009-07-01 株式会社ニコン Quartz glass molding method and molding apparatus
JP2006169033A (en) * 2004-12-15 2006-06-29 Nikon Corp Forming method and forming apparatus for quartz glass

Also Published As

Publication number Publication date
JP2010163300A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP6449248B2 (en) Compensation mold for making ion exchange reinforced 3D glass cover
Guo et al. Stretchable and temperature‐sensitive polymer optical fibers for wearable health monitoring
Može et al. Pool boiling performance of water and self-rewetting fluids on hybrid functionalized aluminum surfaces
Liu et al. Thermoforming mechanism of precision glass moulding
Zhou et al. Investigation on the friction coefficient between graphene-coated silicon and glass using barrel compression test
Yu et al. A comprehensive study on frictional dependence and predictive accuracy of viscoelastic model for optical glass using compression creep test
Zhou et al. Numerical evaluation on the curve deviation of the molded glass lens
Tang et al. Dimension-controlled formation of crease patterns on soft solids
JP5293209B2 (en) Method for thermoforming silica glass
Friderikos et al. Simulation of adiabatic shear bands in orthogonal machining of Ti6Al4V using a rigid-viscoplastic finite element analysis
Solhjoo et al. Continuum mechanics at the atomic scale: Insights into non-adhesive contacts using molecular dynamics simulations
TWI516460B (en) Method for continuously printing precision structures on a glass strip, and glass strip obtained in this way
Fang et al. Stress distribution in silicon subjected to atomic scale grinding with a curved tool path
Lai et al. Creep properties of cylinder metal rubber under static compression at elevated temperatures
JP2007093596A (en) Method and program for measuring relaxation modulus, recording medium with program recorded, and manufacturing method of forming mold
Wang et al. Study the formation process of cuboid microprotrusion by glass molding process
Fan et al. Prediction and experiment of fracture behavior in hot press forming of a TA32 titanium alloy rolled sheet
Ma et al. Numerical modeling of sintering and dehydroxylation of porous silica preform for low-hydroxyl silica glass fabrication
Jiang et al. Simulation of the refractive index variation and validation of the form deviation in precisely molded chalcogenide glass lenses (IRG 26) considering the stress and structure relaxation
Zheng et al. Prediction model for the evolution of residual stresses and machining deformation of uneven milling plate blanks
Yao et al. Effect of elastic modulus on the accuracy of the finite element method in simulating precision glass molding
Joshi et al. Thermo-mechanical characterization of glass at high temperature using the cylinder compression test. Part II: No-slip experiments, viscoelastic constants, and sensitivity
JP6107411B2 (en) Evaluation method for cracking of thin plate
Kaya et al. Estimating Internal Stress of an Alteration Layer Formed on Corroded Boroaluminosilicate Glass through Spectroscopic Ellipsometry Analysis
Chen et al. The deep drawing of a flanged square hole in thin stainless steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Ref document number: 5293209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees