JP5292967B2 - Metal plating treatment method - Google Patents

Metal plating treatment method Download PDF

Info

Publication number
JP5292967B2
JP5292967B2 JP2008188841A JP2008188841A JP5292967B2 JP 5292967 B2 JP5292967 B2 JP 5292967B2 JP 2008188841 A JP2008188841 A JP 2008188841A JP 2008188841 A JP2008188841 A JP 2008188841A JP 5292967 B2 JP5292967 B2 JP 5292967B2
Authority
JP
Japan
Prior art keywords
plating
noble metal
coverage
metal
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008188841A
Other languages
Japanese (ja)
Other versions
JP2010024508A (en
Inventor
直高 青山
克己 佐藤
学 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008188841A priority Critical patent/JP5292967B2/en
Publication of JP2010024508A publication Critical patent/JP2010024508A/en
Application granted granted Critical
Publication of JP5292967B2 publication Critical patent/JP5292967B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Metal Rolling (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Fuel Cell (AREA)

Description

本発明は金属めっき処理方法に関し、特に高耐食性と低接触抵抗が求められる用途に適した貴金属めっき品を少ない貴金属使用量で得ることができるようにした貴金属めっき処理方法に関する。   The present invention relates to a metal plating treatment method, and more particularly, to a noble metal plating treatment method capable of obtaining a noble metal plating product suitable for applications requiring high corrosion resistance and low contact resistance with a small amount of noble metal used.

高耐食性と低接触抵抗が求められる用途に適した貴金属めっき品の一例として、燃料電池で用いるセパレータが挙げられる。従来、セパレータの基材として、チタン、スタンレスあるいはアルミニウム等が用いられており、電気的接触抵抗を低減するとともに、燃料電池の運転環境での耐食性を向上させるために、基材表面に金めっき等の貴金属めっきを施すことが行われる。   As an example of a precious metal plated product suitable for applications requiring high corrosion resistance and low contact resistance, a separator used in a fuel cell can be given. Conventionally, titanium, stanless, aluminum, or the like has been used as the separator substrate, and the surface of the substrate is gold-plated to reduce the electrical contact resistance and improve the corrosion resistance in the operating environment of the fuel cell. The noble metal plating is performed.

また、チタン、スタンレスあるいはアルミニウムなど金属基材は表面に酸化被膜を形成しやすく貴金属めっき層との密着性が不十分となることから、通常、金属基材に対して、例えばニッケルめっきによる下地処理を行う(特許文献1参照)などの何らかの前処理を行った後にめっき処理を行うことで、めっき層の密着性を向上させている。   In addition, metal substrates such as titanium, stanless or aluminum tend to form an oxide film on the surface, and the adhesion to the noble metal plating layer is insufficient. The adhesion of the plating layer is improved by performing a plating process after performing some kind of pretreatment such as (see Patent Document 1).

そのような特別の前処理を行うことなく、チタン材の表面に直接貴金属めっきを施しためっき材が、特許文献2に記載されている。そのめっき材は、(1)チタン材表面にNiめっき等の下地めっきを施さずに直接に貴金属めっきをすること、(2)該貴金属をチタン材表面上で粒状に存在させること、(3)該貴金属のチタン材表面上での被覆率を15〜95%とすること、(4)該貴金属のチタン材表面上への付着量を0.01〜0.40mg/cmとすることの総ての要件を具備することを特徴としており、それにより、高めっき密着性、高耐食性及び低接触抵抗を併せ持つ貴金属めっきを施したチタン材が得られると記載されている。 Patent Document 2 discloses a plating material in which noble metal plating is directly applied to the surface of a titanium material without performing such special pretreatment. The plated material is (1) the surface of the titanium material is directly plated with noble metal without applying a base plating such as Ni plating, (2) the noble metal is present in a granular form on the surface of the titanium material, (3) The total coverage of the precious metal on the titanium material surface is 15 to 95%, and (4) the amount of the precious metal deposited on the titanium material surface is 0.01 to 0.40 mg / cm 2. It is described that a titanium material subjected to noble metal plating having high plating adhesion, high corrosion resistance, and low contact resistance can be obtained.

特開2004−296381号公報JP 2004-296281 A 特開2007−146250号公報JP 2007-146250 A

特許文献2に記載される構成を備えためっき材は、金属基材の表面に貴金属を直接めっきして得られるものであり、従来行っていた表面処理工程を省略できる利点がある。しかし、金属基材の表面には粒状である貴金属が存在する形態、すなわち貴金属粒子の凝集体の多数が島状に存在している形態であり、貴金属粒子の凝集体で覆われない領域が金属基材の表面に存在する。それに関連して、特許文献2には、「めっきの付着量を増加していけばやがてチタン材表面全体が隙間無くめっきで被覆されることになるが、金の付着量が多くなると密着性にも悪影響を与える。上記特性をバランス良く向上させるためには、耐食性及び接触抵抗に影響を与えない一定の未被覆部分の存在が必要である。」と記載されており、そのために、前記(3)該貴金属のチタン材表面上での被覆率を15〜95%とすること、および(4)該貴金属のチタン材表面上への付着量を0.01〜0.40mg/cmとすることが必要であると記載されている。 The plating material provided with the structure described in Patent Document 2 is obtained by directly plating a noble metal on the surface of a metal base material, and has an advantage that a conventional surface treatment step can be omitted. However, the surface of the metal substrate is a form in which noble metal particles are present, that is, a form in which a large number of aggregates of noble metal particles are present in an island shape, and a region not covered with aggregates of noble metal particles is a metal. Present on the surface of the substrate. In relation to this, Patent Document 2 states that “if the amount of plating is increased, the entire surface of the titanium material will be covered with plating without any gap, but if the amount of gold is increased, the adhesion will increase. In order to improve the above characteristics in a well-balanced manner, it is necessary to have a certain uncoated portion that does not affect the corrosion resistance and the contact resistance. ” ) The coverage of the noble metal on the surface of the titanium material is 15 to 95%, and (4) The amount of the noble metal deposited on the surface of the titanium material is 0.01 to 0.40 mg / cm 2. Is stated to be necessary.

しかし、特許文献2に記載の該貴金属の被覆率を下限値の15%に施すだけでは、電気導電性の観点から不十分な特性しか得られないことを本発明者らは経験した。また、特許文献2に記載の該貴金属の付着量を下限値の0.01mg/cmで施した場合でも、燃料電池用セパレータに適用した場合、大量の貴金属を使用することになり、さらなる貴金属の低使用量化が求められていた。 However, the present inventors have experienced that if the coverage of the noble metal described in Patent Document 2 is only applied to the lower limit of 15%, only insufficient characteristics can be obtained from the viewpoint of electrical conductivity. Moreover, even when the adhesion amount of the noble metal described in Patent Document 2 is applied at the lower limit of 0.01 mg / cm 2 , when applied to a fuel cell separator, a large amount of noble metal is used. There was a need to reduce the amount of use.

さらに、Auナノオーダーでの比表面積が増えると、本来不活性であるAuに触媒活性が出てくることが知られているが、金属基材の表面にめっき処理で形成されたナノオーダーのAuの微粒子が存在すると、触媒活性作用により、ラジカル反応や酸化反応等、燃料電池におけるセパレータには好ましくない事象が発生する恐れがある。   Furthermore, it is known that when the specific surface area in the Au nano-order increases, catalytic activity appears in the originally inactive Au, but the nano-order Au formed by plating on the surface of the metal substrate. If the fine particles are present, an undesirable event may occur in the separator in the fuel cell, such as a radical reaction or an oxidation reaction, due to the catalytic activity.

本発明は、上記のような事情に鑑みてなされたものであり、金属基材に直接貴金属をめっきして得られる金属材料において、少ない貴金属の使用量でもって、当該金属材料に所望の耐食性と低接触抵抗を付与することができ、かつAuナノ粒子に起因する触媒活性作用によって不都合な事象が生じるのも回避できるようにした金属めっき処理方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and in a metal material obtained by plating a noble metal directly on a metal substrate, the metal material has a desired corrosion resistance with a small amount of noble metal used. It is an object of the present invention to provide a metal plating method capable of imparting a low contact resistance and avoiding the occurrence of an adverse event due to the catalytic activity caused by Au nanoparticles.

本発明による貴金属めっき処理方法は、金属基材表面にめっき処理により貴金属粒子の凝集体の多数が島状に存在する領域を形成する工程と、前記凝集体が島状に存在する領域に圧延処理を施して前記凝集体を二次元化する工程とを少なくとも備えることを特徴とする。   The noble metal plating treatment method according to the present invention includes a step of forming a region in which a large number of aggregates of noble metal particles exist in an island shape by plating on the surface of a metal substrate, and a rolling treatment in the region in which the aggregate exists in an island shape. And at least a step of making the aggregate two-dimensional.

本発明の一態様においては、金属基材表面上での前記凝集体による被覆率が20%以下であり、かつ金属基材表面上における前記圧延処理後の金属めっき層の被覆率が30%以上となるように前記圧延処理を行う。   In one aspect of the present invention, the coverage by the aggregate on the surface of the metal substrate is 20% or less, and the coverage of the metal plating layer after the rolling treatment on the surface of the metal substrate is 30% or more. The rolling process is performed so that

本発明の一態様において、金属基材が、チタン、スタンレスおよびアルミニウムもしくはそれらの合金基材のいずれかであり、貴金属粒子が、Au,Pd,AgおよびIrの少なくとも1種または1種以上である。より好ましくは、金属基材がチタンであり、貴金属粒子がAuである。   In one embodiment of the present invention, the metal substrate is any one of titanium, stanless, aluminum, or an alloy substrate thereof, and the noble metal particles are at least one or more of Au, Pd, Ag, and Ir. . More preferably, the metal substrate is titanium and the noble metal particles are Au.

本発明によれば、めっき処理により形成された貴金属粒子の凝集体によって形成される島状の領域に圧延処理を施す。それにより、三次元状である前記凝集体は平面状に押し潰されて二次元化し、隣同士となった凝集板は再集合して一層の膜を形成する。その結果、貴金属めっきの被覆率は圧延前よりも大きくなる。すなわち、少ない貴金属の使用量でもって金属基材の表面をより広く覆うことができ、当該金属材料の耐食性は向上し接触抵抗を低減させることができる。換言すれば、貴金属の使用量を一定であっても、より大きい酸化等の抑制効果と、接触抵抗低減効果が得られる。   According to the present invention, the island-shaped region formed by the aggregate of noble metal particles formed by plating is subjected to a rolling process. As a result, the three-dimensional aggregate is crushed into a two-dimensional shape by being flattened, and the adjacent aggregate plates are reassembled to form a single film. As a result, the coverage of the noble metal plating becomes larger than that before rolling. That is, the surface of the metal substrate can be covered more widely with a small amount of noble metal used, and the corrosion resistance of the metal material can be improved and the contact resistance can be reduced. In other words, even if the amount of noble metal used is constant, a greater effect of suppressing oxidation, etc. and a reduction in contact resistance can be obtained.

また、前記凝集体が数十ナノオーダー以下のAu微粒子である場合でも、圧延処理によって平面化されるので、前記したAuナノ粒子に起因する触媒活性作用が生じるのも抑制することができる。   Even when the agglomerates are Au fine particles of the order of several tens of nanometers or less, they are planarized by the rolling process, so that the catalytic activity due to the Au nanoparticles can be suppressed.

以下、本発明をより詳細に説明する。
本発明において、貴金属めっきを施す金属基材に特に制限はないが、チタン材、スタンレス材またはアルミニウム材、もしくはそれらの合金材は、めっき厚さ100nm程度以下の場合、凝集力が働いてめっきした領域が島状構造となりやすい材料であることから、そのように金属基材に本発明のよるめっき処理方法を施すことは好適である。なかでも、チタン材は好適である。
Hereinafter, the present invention will be described in more detail.
In the present invention, there is no particular limitation on the metal base material to which the noble metal plating is applied, but when the titanium material, the stanless material, the aluminum material, or an alloy material thereof has a plating thickness of about 100 nm or less, the agglomeration force works and is plated. Since the region is a material that tends to have an island-like structure, it is preferable to apply the plating method according to the present invention to the metal substrate as such. Among these, a titanium material is preferable.

本発明において、めっき材としての貴金属は、Au,Pd,AgおよびIrの少なくとも1種または1種以上であることが望ましい。特にAuは高い延性を持つので好ましい。   In the present invention, the noble metal as the plating material is desirably at least one or more of Au, Pd, Ag and Ir. In particular, Au is preferable because it has high ductility.

本発明において、めっき処理は前記金属基材表面上に直接行う。ただし、金属基材の表面を、脱脂、酸洗および活性化処理等の各種の前処理を行っておくことは好ましい。金属基材表面上での前記貴金属の凝集体による被覆率に特に制限はないが、20%以下であっても、後で行う圧延処理により所望の被覆率を得ることができる。圧延処理後の被覆率はめっき処理された金属材料の用途に応じて適宜設定すればよいが、30%〜100%の範囲が通常である。   In the present invention, the plating treatment is performed directly on the surface of the metal substrate. However, it is preferable to perform various pretreatments such as degreasing, pickling and activation treatment on the surface of the metal substrate. Although there is no restriction | limiting in particular in the coverage with the said noble metal aggregate on the metal base material surface, Even if it is 20% or less, a desired coverage can be obtained by the rolling process performed later. The coverage after the rolling treatment may be appropriately set according to the use of the plated metal material, but is usually in the range of 30% to 100%.

貴金属めっきを行う方法としては、例として、真空蒸着、物理蒸着、化学蒸着、スパッタリング、イオンプレーティング等の乾式めっき、または、電気めっきあるいは無電解めっき等の湿式めっきを挙げることができる。なかでも、付着量や被覆率の制御が容易なことから、電気めっきは好ましい。   Examples of the method for performing noble metal plating include dry plating such as vacuum deposition, physical vapor deposition, chemical vapor deposition, sputtering, and ion plating, or wet plating such as electroplating or electroless plating. Of these, electroplating is preferable because it is easy to control the adhesion amount and the coverage.

所要厚み、好ましくは100nm未満の厚みに貴金属めっきを施した後、熱処理を行うことにより、金属基材と貴金属間の固溶化が進み、かつ金属材料の表面には前記した貴金属粒子の凝集体の多数が島状に存在する島状領域が形成される。   After the noble metal plating is applied to the required thickness, preferably less than 100 nm, a heat treatment is performed, so that the solid solution between the metal substrate and the noble metal advances, and the above-mentioned noble metal particle aggregates are formed on the surface of the metal material. An island-like region in which many exist in an island shape is formed.

本発明において、前記凝集体が島状に存在する領域に対して、圧延処理を施す。圧延はロール圧延のほか、プレス圧延等で行うことができる。圧延時の面圧は、めっき材である貴金属の種類、凝集体の大きさ、得ようとする被覆率等を勘案して、適宜の値を設定する。図1は、めっき材としてAuを用いたときの、被覆率の変化と面圧の関係の一例を示している。より具体的には、チタン基材の表面に電気めっきで4nmのAuめっきを行い、Au凝集体の被覆率が8%である試験片に圧延処理を施した場合の例である。グラフが示すように、圧延処理を行うことにより、Au凝集体は押し潰された二次元状に延伸し、8%の被覆率が30%を越える被覆率にまで拡大する。   In the present invention, a rolling process is performed on a region where the aggregate is present in an island shape. Rolling can be performed by roll rolling, press rolling, or the like. The surface pressure at the time of rolling is set to an appropriate value in consideration of the type of precious metal that is the plating material, the size of the aggregate, the coverage to be obtained, and the like. FIG. 1 shows an example of the relationship between the change in coverage and the surface pressure when Au is used as the plating material. More specifically, this is an example in which 4 nm Au plating is performed on the surface of a titanium base material by electroplating, and a test piece having a coverage of Au aggregate of 8% is rolled. As shown in the graph, by performing the rolling process, the Au aggregates are stretched in a two-dimensional shape that is crushed, and the 8% coverage is expanded to a coverage exceeding 30%.

図2は、チタン基材の表面をAuめっきで覆ったときの、被覆率と接触抵抗の関係を示すグラフであり、図3は、チタン基材の表面をAuめっきで覆ったときの、めっき厚みと被覆率の関係を示すグラフである。なお、ここでいう接触抵抗とは、カーボン拡散層と本処理品とを1MPaで押圧し、その間の抵抗を四端子法で計測した値のことをいう。図2のグラフが示すように、被覆率30%以下、特に20%以下では接触抵抗値が急激に大きくなっており、35%を越えるとほぼ一定の低接触抵抗値が得られる。また、図3のグラフに示すように、Auのめっき厚みが10nm以下程度の場合では、被覆率は20%程度以下である。圧延処理を行わない場合には、被覆率は20%程度以下では接触抵抗が大きく、所望のものが得られない。低接触抵抗のものとするために被覆率30%以上のものを得ようとすると、Auのめっき厚みが30nm程度以上となり、貴金属であるAuの使用量が大きくなる。   FIG. 2 is a graph showing the relationship between the coverage and the contact resistance when the surface of the titanium substrate is covered with Au plating, and FIG. 3 is the plating when the surface of the titanium substrate is covered with Au plating. It is a graph which shows the relationship between thickness and a coverage. In addition, contact resistance here means the value which pressed the carbon diffusion layer and this processed product at 1 MPa, and measured the resistance between them by the four-terminal method. As shown in the graph of FIG. 2, the contact resistance value increases rapidly when the coverage is 30% or less, particularly 20% or less, and an almost constant low contact resistance value is obtained when it exceeds 35%. As shown in the graph of FIG. 3, when the Au plating thickness is about 10 nm or less, the coverage is about 20% or less. When the rolling treatment is not performed, the contact resistance is large when the coverage is about 20% or less, and a desired product cannot be obtained. If an attempt is made to obtain a low contact resistance with a coverage of 30% or more, the Au plating thickness becomes about 30 nm or more, and the amount of Au used as a noble metal increases.

本発明のように、圧延処理を施すことにより、例えば、Au凝集体の被覆率が8%であるものを被覆率が30%を越える低接触抵抗のめっき製品とすることが可能となり、貴金属の使用量を大きく低減することができることがわかる。   By performing the rolling treatment as in the present invention, for example, it is possible to obtain a plated product having a low contact resistance exceeding 30% when the Au aggregate coverage is 8%. It can be seen that the amount used can be greatly reduced.

以下、実施例に基づき本発明を説明する。
(1)試験金属基板として、厚さ0.1mmの純チタンの板状試験片を用いた。
(2)試験片に対して、Auめっきを電気めっきで行った。めっき浴条件は以下のとおりである。
浴種:亜硫酸浴
浴組成:Au4.0g/L,Pd1.5g/L
pH:11.0〜11.5
陽極:Pt−Ti
浴温:60℃
(3)電流密度0.5A/dm、めっき時間10secの条件でめっきを行った後、250℃、10分間の大気環境条件で熱処理を行い、4nm(被覆率8%)の試験体1を得た。また、電流密度0.5A/dm、めっき時間35secの条件でめっきを行った後、250℃、10分間の大気環境条件で熱処理を行い被覆率40%の試験体2を得た。試験体2のめっき表面のSEM像を図4(a)に示した。
(4)試験体1および試験体2の接触抵抗を測定した。接触抵抗の測定は、試験体とAuめっきしたサンプルを接触させ、ロードセルで試験体全面に1MPaの荷重を加え、電流密度100mA/cmで電流を流したときの接触抵抗を測定することで行った。測定した接触抵抗値を表1に圧延前接触抵抗として示した。
(5)試験体1および試験体2の島状となっているAuめっき面にロール圧延による圧延処理を施した。圧延時の面圧はともに5MPaとした。圧延後の被覆率と接触抵抗を測定した。その結果を表1に圧延後の被覆率および圧延後の接触抵抗として示した。また、試験体2の圧延後のめっき表面のSEM像を図4(b)に示した。
Hereinafter, the present invention will be described based on examples.
(1) A pure titanium plate-shaped test piece having a thickness of 0.1 mm was used as a test metal substrate.
(2) Au plating was performed on the test piece by electroplating. The plating bath conditions are as follows.
Bath type: Sulfurous acid bath Composition: Au 4.0 g / L, Pd 1.5 g / L
pH: 11.0-11.5
Anode: Pt-Ti
Bath temperature: 60 ° C
(3) After plating under conditions of a current density of 0.5 A / dm 3 and a plating time of 10 seconds, heat treatment was performed at 250 ° C. for 10 minutes in an atmospheric environment, and a specimen 1 having a thickness of 4 nm (coverage 8%) was obtained. Obtained. Further, after plating was performed under the conditions of a current density of 0.5 A / dm 3 and a plating time of 35 seconds, heat treatment was performed under atmospheric environment conditions at 250 ° C. for 10 minutes to obtain a specimen 2 with a coverage of 40%. The SEM image of the plating surface of the test body 2 is shown in FIG.
(4) The contact resistance of the test body 1 and the test body 2 was measured. The contact resistance is measured by bringing the specimen and Au-plated sample into contact with each other, applying a 1 MPa load to the entire specimen surface with a load cell, and measuring the contact resistance when a current is passed at a current density of 100 mA / cm 2. It was. The measured contact resistance values are shown in Table 1 as contact resistance before rolling.
(5) Rolling treatment by roll rolling was applied to the island-shaped Au plated surfaces of the test body 1 and the test body 2. The surface pressure during rolling was 5 MPa. The coverage after rolling and contact resistance were measured. The results are shown in Table 1 as the coverage after rolling and the contact resistance after rolling. Moreover, the SEM image of the plating surface after rolling of the test body 2 was shown in FIG.4 (b).

Figure 0005292967
Figure 0005292967

(6)圧延前および圧延後の試験体2について、pH2の硫酸水溶液に、Fイオンを10ppm/L添加した液中に、温度80℃で電池温度を模擬したアノード分極電位法にて所定の電位をかけた100hr耐久試験を行い、それぞれの接触抵抗を、(4)と同様にした測定した。その結果を表2に初期接触抵抗(耐久試験前の接触抵抗)とともに示した。 (6) Pre-rolling and post-rolling test specimen 2 was subjected to a predetermined potential by an anodic polarization potential method simulating battery temperature at a temperature of 80 ° C. in a solution in which F ions were added at 10 ppm / L to a sulfuric acid aqueous solution of pH A 100 hr durability test was performed, and each contact resistance was measured in the same manner as in (4). The results are shown in Table 2 together with the initial contact resistance (contact resistance before the durability test).

Figure 0005292967
Figure 0005292967

(7)考察
図4(a)と図4(b)を比較すれば分かるように、本発明による圧延処理を施したことにより、チタン板状試験片の表面に形成されたAu粒子の凝集体からなる島状領域は、該凝集体が破壊されて二次元化することにより、平坦な膜状(図4(b)にPで示す)に変化している。なお、図4(b)では、単に比較の目的で、島状領域の一部が残っている領域を示している。
(7) Consideration As can be seen by comparing FIG. 4 (a) and FIG. 4 (b), agglomerates of Au particles formed on the surface of the titanium plate test piece by performing the rolling treatment according to the present invention. The island-shaped region made of is changed into a flat film shape (indicated by P in FIG. 4B) when the aggregate is destroyed and becomes two-dimensional. FIG. 4B shows a region where a part of the island-like region remains for comparison purposes.

その結果、試験体1の被覆率は8%から35%に拡大しており、接触抵抗も150mΩcmから4.3mΩcmに大きく低減している。一方、当初被覆率が40%である試験体2は、圧延により被覆率は96%まで拡大したが、接触抵抗は当初から小さく、圧延後もほとんど変化しない。このことから、本発明によれば、試験体2と比較してAuの使用量が少ない試験体1であっても、延伸処理を行うことによって充分に小さい値の接触抵抗値であるめっき製品となることがわかる。これにより、貴金属の使用量を低減することができる。 As a result, the coverage of the specimen 1 has increased from 8% to 35%, and the contact resistance has also been greatly reduced from 150 mΩcm 2 to 4.3 mΩcm 2 . On the other hand, the test body 2 having an initial coverage of 40% expanded the coverage to 96% by rolling, but the contact resistance was small from the beginning and hardly changed even after rolling. Therefore, according to the present invention, even with the test body 1 in which the amount of Au used is smaller than that of the test body 2, the plated product having a sufficiently small contact resistance value by performing the stretching treatment, I understand that Thereby, the usage-amount of a noble metal can be reduced.

さらに、表2に示すように、試験体2において、圧延を行わない場合には、Auナノ粒子に起因する触媒活性作用によって、耐久試験後の接触抵抗は3.3mΩcmから9.5mΩcmと3倍程度にまで大きく変化しているが、圧延処理を施した場合には、耐久試験前後での接触抵抗にほとんど変化が見られない。これは、圧延処理を施したことにより、Auナノ粒子の集合体が二次元的に膜状とされた結果と推測される。 Furthermore, as shown in Table 2, in the test material 2, in the case of not performing rolling by the catalytic activity effects due to the Au nanoparticle, the contact resistance after durability test and 9.5Emuomegacm 2 from 3.3Emuomegacm 2 Although it has changed greatly to about 3 times, when a rolling process is performed, there is almost no change in the contact resistance before and after the durability test. This is presumed to be a result of the two-dimensional film formation of the Au nanoparticle aggregate due to the rolling treatment.

圧延処理時での面圧と被覆率の関係の一例を示すグラフ。The graph which shows an example of the relationship between the surface pressure at the time of a rolling process, and a coverage. 被覆率と接触抵抗の関係の一例を示すグラフ。The graph which shows an example of the relationship between a coverage and contact resistance. めっき厚みと被覆率の関係の一例を示すグラフ。The graph which shows an example of the relationship between plating thickness and a coverage. 実施例で用いた試験体2のめっき表面を示すSEM像であり、図4(a)は圧延前の状態を、図4(b)は圧延後の状態を示す。It is a SEM image which shows the plating surface of the test body 2 used in the Example, Fig.4 (a) shows the state before rolling, FIG.4 (b) shows the state after rolling.

Claims (3)

属基材表面にめっき処理により貴金属粒子の凝集体の多数が島状に存在する領域を形成する工程と、前記凝集体が島状に存在する領域に圧延処理を施して前記凝集体を二次元化する工程とを少なくとも備える貴金属めっき処理方法であって、金属基材表面上での前記凝集体による被覆率が20%以下であり、かつ金属基材表面上における前記圧延処理後の金属めっき層の被覆率が30%以上となるように前記圧延処理を行うことを特徴とする金属めっき処理方法。 A step of a number of aggregates of the noble metal particles by plating gold Shokumotozai surface to form a region present in an island shape, the aggregates subjected to a rolling process in a region where the aggregates are present in an island-type secondary A precious metal plating treatment method comprising at least a step of dimensioning, wherein the coverage of the aggregate on the surface of the metal substrate is 20% or less, and the metal plating after the rolling treatment on the surface of the metal substrate noble metal plating method characterized in that coverage of the layers makes the rolling process such that 30% or more. 金属基材が、チタン、スタンレスおよびアルミニウムもしくはそれらの合金基材のいずれかであり、貴金属粒子が、Au,Pd,AgおよびIrの少なくとも1種または1種以上であることを特徴とする請求項1記載の貴金属めっき処理方法。 The metal substrate is any one of titanium, stanless and aluminum or an alloy substrate thereof, and the noble metal particles are at least one or more of Au, Pd, Ag and Ir. precious metal plating method according to 1. 金属基材がチタンであり、貴金属粒子がAuであることを特徴とする請求項に記載の貴金属めっき処理方法。 The noble metal plating method according to claim 2 , wherein the metal substrate is titanium and the noble metal particles are Au.
JP2008188841A 2008-07-22 2008-07-22 Metal plating treatment method Expired - Fee Related JP5292967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188841A JP5292967B2 (en) 2008-07-22 2008-07-22 Metal plating treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188841A JP5292967B2 (en) 2008-07-22 2008-07-22 Metal plating treatment method

Publications (2)

Publication Number Publication Date
JP2010024508A JP2010024508A (en) 2010-02-04
JP5292967B2 true JP5292967B2 (en) 2013-09-18

Family

ID=41730600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188841A Expired - Fee Related JP5292967B2 (en) 2008-07-22 2008-07-22 Metal plating treatment method

Country Status (1)

Country Link
JP (1) JP5292967B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10731151B2 (en) 2002-03-15 2020-08-04 Nuevolution A/S Method for synthesising templated molecules

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6025026B2 (en) * 2012-07-31 2016-11-16 大日本印刷株式会社 LED lead frame or substrate and manufacturing method thereof, and semiconductor device and manufacturing method thereof
EP3133682B1 (en) 2014-04-15 2018-07-11 JFE Steel Corporation Stainless-steel foil for separator of polymer electrolyte fuel cell
EP3336942A4 (en) 2015-08-12 2018-07-18 JFE Steel Corporation Metal plate for separator of polymer electrolyte fuel cell, and metal plate for producing same
JP2021193698A (en) 2020-06-08 2021-12-23 セイコーエプソン株式会社 Semiconductor memory and electronic apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372895A (en) * 1986-09-17 1988-04-02 Nippon Mining Co Ltd Production of parts for electronic and electrical equipment
JPH0368794A (en) * 1989-08-03 1991-03-25 Furukawa Electric Co Ltd:The Production of silver plated stainless steel
JP2002260681A (en) * 2001-02-28 2002-09-13 Daido Steel Co Ltd Metallic separator for solid high polymer fuel cell, and method of manufacturing the same
JP3991701B2 (en) * 2002-02-08 2007-10-17 大同特殊鋼株式会社 Metal separator for fuel cell and manufacturing method thereof
JP2005032594A (en) * 2003-07-07 2005-02-03 Honda Motor Co Ltd Method of manufacturing corrosion resistant metal plate
JP2005100933A (en) * 2003-08-19 2005-04-14 Daido Steel Co Ltd Metal separator for fuel cell, manufacturing method of the same, and fuel cell
JP4494155B2 (en) * 2004-09-29 2010-06-30 日本高純度化学株式会社 Gold-plated structure and fuel cell separator comprising this gold-plated structure
CA2609461C (en) * 2005-06-03 2011-02-15 Honda Motor Co., Ltd. Separator for fuel cell and method for manufacturing the same
JP4859189B2 (en) * 2005-11-29 2012-01-25 Jx日鉱日石金属株式会社 Titanium or titanium alloy material with precious metal plating
JP4847179B2 (en) * 2006-03-31 2011-12-28 Jx日鉱日石金属株式会社 Titanium or titanium alloy material with precious metal plating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10731151B2 (en) 2002-03-15 2020-08-04 Nuevolution A/S Method for synthesising templated molecules

Also Published As

Publication number Publication date
JP2010024508A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
US8137866B2 (en) Titanium material for fuel cell separator having low contact resistance
JP2004296381A (en) Metal separator for fuel cell and its manufacturing method
JP2018170291A (en) Separator material for fuel cell and method for producing the same
KR100707559B1 (en) Titanium material and method for manufacturing the same
JP5292967B2 (en) Metal plating treatment method
EP2782176B1 (en) Titanium material for solid polymer fuel cell separators, method for producing same, and solid polymer fuel cell using same
DE102013209918B4 (en) Process for depositing a permanent thin gold coating on fuel cell bipolar plates
WO2012111671A1 (en) Fuel cell separator
JP4823202B2 (en) Method for producing titanium substrate for fuel cell separator and method for producing fuel cell separator
JP2012028046A (en) Titanium fuel cell separator
TWI261947B (en) Titanium system material for fuel cell separator, and manufacturing method therefor
JP2011077018A (en) Method of manufacturing fuel cell separator
JP4859189B2 (en) Titanium or titanium alloy material with precious metal plating
TWI580103B (en) Electrocatalyst and fuel cell employing the same
WO2006129806A1 (en) Separator for fuel cell and method for manufacturing the same
EP3009530B1 (en) Gold-plate-coated stainless steel material and production method for gold-plate-coated stainless steel material
WO2018147087A1 (en) Stainless steel plate substrate of steel plate for fuel cell separator, and method for producing same
US8367241B2 (en) Separator for fuel cell and manufacturing method therefor
JP2007257883A (en) Fuel cell separator and its manufacturing method
CN102817033A (en) Surface alloying of stainless steel
JP2008277287A (en) Manufacturing method of metallic separator for fuel cell
JP3991701B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP2012186176A (en) Fuel cell separator
JP4847179B2 (en) Titanium or titanium alloy material with precious metal plating
JP2010059454A (en) Titanium material plated with noble metal, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

LAPS Cancellation because of no payment of annual fees