JP5289462B2 - Ceramic heater - Google Patents

Ceramic heater Download PDF

Info

Publication number
JP5289462B2
JP5289462B2 JP2010542940A JP2010542940A JP5289462B2 JP 5289462 B2 JP5289462 B2 JP 5289462B2 JP 2010542940 A JP2010542940 A JP 2010542940A JP 2010542940 A JP2010542940 A JP 2010542940A JP 5289462 B2 JP5289462 B2 JP 5289462B2
Authority
JP
Japan
Prior art keywords
ceramic
cross
heating resistor
curved
straight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010542940A
Other languages
Japanese (ja)
Other versions
JPWO2010071049A1 (en
Inventor
規光 日浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010542940A priority Critical patent/JP5289462B2/en
Publication of JPWO2010071049A1 publication Critical patent/JPWO2010071049A1/en
Application granted granted Critical
Publication of JP5289462B2 publication Critical patent/JP5289462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/027Heaters specially adapted for glow plug igniters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)

Description

本発明は、例えば燃焼式車載暖房装置における点火用若しくは炎検知用のヒータ、石油ファンヒータ等の各種燃焼機器の点火用のヒータ、自動車エンジンのグロープラグ用のヒータ、酸素センサ等の各種センサ用のヒータ、測定機器の加熱用のヒータ等に利用されるセラミックヒータに関する。   The present invention is, for example, for a heater for ignition or flame detection in a combustion-type in-vehicle heating device, a heater for ignition of various combustion devices such as an oil fan heater, a heater for a glow plug of an automobile engine, and various sensors such as an oxygen sensor. The present invention relates to a ceramic heater used as a heater, a heater for heating a measuring instrument, and the like.

自動車エンジンのグロープラグ等に用いられるセラミックヒータとして、例えば、セラミック基体と、そのセラミック基体に埋設され、その両端に接続された電極部を介して通電されることにより抵抗発熱するセラミック発熱体が、一方の基端部から延び先端部で方向変換して他方の基端部へ至るU字状等の形状の方向変換部と、その方向変換部の各基端部から同方向に延びる2本の直線部とを備えた構成のものが知られている(例えば、特許文献1,2を参照)。
特許第3346447号公報 特許第3737845号公報
As a ceramic heater used for a glow plug or the like of an automobile engine, for example, a ceramic base and a ceramic heating element that generates resistance by being energized through electrode portions embedded in the ceramic base and connected to both ends thereof, A direction changing portion having a U-shape or the like extending from one base end portion and changing the direction at the tip portion to the other base end portion, and two extending in the same direction from each base end portion of the direction changing portion The thing of the structure provided with the linear part is known (for example, refer patent document 1, 2).
Japanese Patent No. 3346447 Japanese Patent No. 3737845

このようなセラミックヒータにおいては、セラミックス等の磁器の表面における周方向の温度分布にムラが生じやすいために、断続的に作動させた際の耐久性が悪いという問題点があった。この原因は、発熱体の表面から磁器の表面までの距離が不均一であるために、磁器の表面において部位によって温度差が生じるためである。   Such a ceramic heater has a problem that durability is poor when it is intermittently operated because unevenness in the temperature distribution in the circumferential direction on the surface of a ceramic such as ceramics is likely to occur. This is because the distance from the surface of the heating element to the surface of the porcelain is non-uniform, resulting in a temperature difference depending on the part on the surface of the porcelain.

そこで、特許文献1には、発熱体の断面形状や位置を調整することによって、発熱体の表面から磁器の表面までの距離の不均一を是正することにより磁器の表面の温度分布にムラが生じにくいようにして、耐久性を向上させるとともに磁器の内外での温度差も低減させることが記載されている。   Therefore, Patent Document 1 discloses that the temperature distribution on the surface of the porcelain is uneven by correcting the non-uniformity of the distance from the surface of the heating element to the surface of the porcelain by adjusting the cross-sectional shape and position of the heating element. It is described that it is difficult to improve the durability and reduce the temperature difference between the inside and outside of the porcelain.

また、特許文献2には、セラミック発熱体の先端のU字形の湾曲部の断面を直線部の断面より大きくするとともに、U字形の内側外形線における直線部から湾曲部への移行点が、U字形の外側外形線における移行点よりも、セラミック発熱体のU字開口部側に位置するようにすることにより、セラミック発熱体のU字形の湾曲部の先端近傍において、セラミック発熱体とセラミック基体との線膨張係数の差異に基づく応力集中による耐久性の低下を抑えることができることが記載されている。   Patent Document 2 discloses that the cross section of the U-shaped curved portion at the tip of the ceramic heating element is larger than the cross section of the straight portion, and the transition point from the straight portion to the curved portion in the U-shaped inner outline is U The ceramic heating element, the ceramic base, and the ceramic heating element are located near the tip of the U-shaped curved portion of the ceramic heating element by being located on the U-shaped opening side of the ceramic heating element with respect to the transition point in the outer shape line of the letter shape. It is described that it is possible to suppress a decrease in durability due to stress concentration based on the difference in linear expansion coefficient.

しかしながら、自動車エンジンのグロープラグ等に用いられるセラミックヒータは、近年、さらなる急速昇温が求められているため、発熱体に大電流が流れる。その結果、発熱体の先端部のU字状の方向変換部にマイクロクラック等が発生し、発熱体の抵抗が変化して、信頼性および耐久性が低下するという問題点があった。このような問題点は、特許文献2に記載されたような、発熱体の先端のU字形の湾曲部の断面を直線部の断面より大きくするという構成によっては、解消することが不十分であった。   However, ceramic heaters used for automotive engine glow plugs and the like have recently been required to be further rapidly heated, so that a large current flows through the heating element. As a result, there is a problem that micro cracks or the like occur in the U-shaped direction changing portion at the tip of the heating element, the resistance of the heating element changes, and reliability and durability are lowered. Such a problem is insufficient to be solved depending on the configuration in which the cross section of the U-shaped curved portion at the tip of the heating element is made larger than the cross section of the straight portion as described in Patent Document 2. It was.

従って、本発明は、上記従来の問題点に鑑みて案出されたものであり、その目的は、急速昇温等の際に発熱体に大電流が流れても発熱体の先端部のU字状の方向変換部にマイクロクラック等が発生することを抑制して、高い信頼性および耐久性を有するセラミックヒータを提供することである。   Accordingly, the present invention has been devised in view of the above-described conventional problems, and its purpose is to form a U-shape at the tip of the heating element even when a large current flows through the heating element during rapid temperature rise or the like. An object of the present invention is to provide a ceramic heater having high reliability and durability by suppressing the occurrence of microcracks or the like in the direction changing portion.

本発明のセラミックヒータは、棒状のセラミック基体の内部に、該セラミック基体の先端部に位置する折返し部を有し、該折返し部から2本が直線的に平行に延びた平行部を有する発熱抵抗体が埋設されており、前記折返し部は、前記平行部の端部からの湾曲部およびこれら湾曲部間の直線部を有しており、前記発熱抵抗体は、平面視したときに前記湾曲部の幅が前記直線部の幅よりも大きく、前記湾曲部の厚みが前記直線部の厚みよりも大きく、前記湾曲部の断面積が前記直線部の断面積および前記平行部の断面積よりも大きいことを特徴とするものである。
The ceramic heater of the present invention has a folded portion located at the tip of the ceramic substrate inside the rod-shaped ceramic substrate, and two heating resistors having two parallel portions extending linearly in parallel from the folded portion. A body is embedded, and the folded portion has a curved portion from an end of the parallel portion and a straight portion between the curved portions, and the heating resistor has the curved portion when viewed in plan. The width of the curved portion is larger than the width of the straight portion, and the cross-sectional area of the curved portion is larger than the cross-sectional area of the straight portion and the parallel portion. It is characterized by this.

また、本発明のセラミックヒータは、上記の構成において、前記直線部の前記セラミック基体の先端側の長さが、前記セラミック基体の先端から前記直線部までの距離よりも長いことを特徴とするものである。   Moreover, the ceramic heater of the present invention is characterized in that, in the above-mentioned configuration, the length of the straight portion on the tip side of the ceramic base is longer than the distance from the tip of the ceramic base to the straight portion. It is.

また、本発明のセラミックヒータは、上記の構成において、前記発熱抵抗体は、前記直線部の厚みが前記平行部の厚みよりも大きいことを特徴とするものである。
Moreover, the ceramic heater of the present invention is characterized in that, in the above-described configuration, the heating resistor has a thickness of the straight portion larger than a thickness of the parallel portion.

また、本発明のセラミックヒータは、上記の構成において、前記発熱抵抗体は、断面形状が楕円形状または八角形状であることを特徴とするものである。   Moreover, the ceramic heater of the present invention is characterized in that, in the above configuration, the heating resistor has an elliptical or octagonal cross-sectional shape.

本発明のセラミックヒータによれば、棒状のセラミック基体の内部に、そのセラミック基体の先端部に位置する折返し部を有し、その折返し部から2本が直線的に平行に延びた平行部を有する発熱抵抗体が埋設されており、折返し部は、平行部の端部からの湾曲部およびこれら湾曲部間の直線部を有しており、湾曲部の断面積が直線部の断面積および平行部の断面積よりも大きいことから、折返し部全体の断面積を大きくした場合よりも、湾曲部よりも断面積が小さい直線部が存在することによってセラミック基体の先端部を効率的に発熱させることができる。その結果、セラミック基体の先端側への放熱によるセラミック基体の先端部の温度低下を小さくすることができるため、最高温度領域が棒状のセラミック基体の軸線方向に広くなる。これにより、セラミック基体の表面に急激な温度差(温度勾配)が発生しにくくなり、セラミックヒータの信頼性および耐久性が向上する。   According to the ceramic heater of the present invention, the rod-shaped ceramic substrate has a folded portion located at the tip of the ceramic substrate, and two parallel portions extending linearly in parallel from the folded portion. The heating resistor is embedded, and the folded portion has a curved portion from the end of the parallel portion and a straight portion between these curved portions, and the cross-sectional area of the curved portion is the cross-sectional area of the straight portion and the parallel portion Therefore, the tip portion of the ceramic base can be efficiently heated by the presence of a straight portion having a smaller cross-sectional area than the curved portion, as compared with the case where the cross-sectional area of the entire folded portion is increased. it can. As a result, the temperature drop at the tip of the ceramic substrate due to heat radiation to the tip of the ceramic substrate can be reduced, so that the maximum temperature range is widened in the axial direction of the rod-shaped ceramic substrate. This makes it difficult for a rapid temperature difference (temperature gradient) to occur on the surface of the ceramic substrate, improving the reliability and durability of the ceramic heater.

また、折返し部は、電流が流れにくい形状であるが、断面積が直線部の断面積および平行部の断面積よりも大きい湾曲部と、湾曲部よりも断面積は小さいが、電流が流れやすい形状である直線部とを有していることから、折返し部に大電流を効率よく流すことができる。その結果、発熱抵抗体の折返し部に無駄な抵抗がかからず、折返し部にマイクロクラック等が発生することを抑制して、長期間の使用に耐え得るものとなる。従って、セラミックヒータの信頼性および耐久性が向上する。   The folded portion has a shape in which current does not easily flow, but the cross-sectional area is larger than the cross-sectional area of the linear portion and the cross-sectional area of the parallel portion, and the cross-sectional area is smaller than that of the curved portion, but current easily flows. Since it has the linear part which is a shape, a large electric current can be efficiently sent through a folding | turning part. As a result, useless resistance is not applied to the folded portion of the heating resistor, and microcracks and the like are prevented from occurring in the folded portion, and can withstand long-term use. Therefore, the reliability and durability of the ceramic heater are improved.

また、本発明のセラミックヒータは、上記の構成において、直線部のセラミック基体の先端側の長さが、セラミック基体の先端から直線部までの距離よりも長いときには、セラミック基体の先端側への放熱によるセラミック基体の先端部の温度低下を小さくすることができるため、最高温度領域が棒状のセラミック基体の軸線方向により広くなる。その結果、セラミック基体の表面に急激な温度差(温度勾配)がより発生しにくくなり、セラミックヒータの信頼性および耐久性がさらに向上する。   In the ceramic heater of the present invention, in the above configuration, when the length of the straight portion on the tip side of the ceramic substrate is longer than the distance from the tip of the ceramic substrate to the straight portion, the heat dissipation to the tip side of the ceramic substrate is performed. Therefore, the temperature drop at the tip of the ceramic substrate can be reduced, so that the maximum temperature region becomes wider in the axial direction of the rod-shaped ceramic substrate. As a result, a rapid temperature difference (temperature gradient) is less likely to occur on the surface of the ceramic substrate, and the reliability and durability of the ceramic heater are further improved.

また、本発明のセラミックヒータは、上記の構成において、発熱抵抗体は、平面視したときに湾曲部の幅が直線部の幅よりも大きく、湾曲部の厚みが直線部の厚みよりも大きことから、電流が流れにくい形状である湾曲部の抵抗がより小さくなるため、折返し部に大電流をより効率よく流すことができる。その結果、発熱抵抗体の折返し部に無駄な抵抗がかからず、折返し部にマイクロクラック等が発生することを抑制して、より長期間の使用に耐え得るものとなる。従って、セラミックヒータの信頼性および耐久性がさらに向上する。
Further, the ceramic heater of the present invention, in the above configuration, the heat generating resistor, rather the width of the curved portion is large for Ri by the width of the straight portion in a plan view, the thickness of the curved portion than the thickness of the straight portions from the fact not large, the resistance of the curved portion is less likely to form a current flow is smaller, it can flow more efficiently a large current to the folded portion. As a result, useless resistance is not applied to the folded portion of the heating resistor, and microcracks and the like are prevented from occurring in the folded portion, and can be used for a longer period of time. Therefore, the reliability and durability of the ceramic heater are further improved.

また、本発明のセラミックヒータは、上記の構成において、発熱抵抗体は、断面形状が楕円形状または八角形状であるときには、発熱抵抗体の位置、セラミック基体の外形形状によってセラミック基体に急激な温度差が発生しにくいように構成することの自由度が高まる。従って、セラミックヒータの信頼性および耐久性をより向上させることができる。   In the ceramic heater of the present invention, in the above configuration, when the heating resistor has an elliptical shape or an octagonal shape, the temperature difference between the ceramic substrate and the ceramic substrate depends on the position of the heating resistor and the outer shape of the ceramic substrate. This increases the degree of freedom in constructing such that it is difficult to occur. Therefore, the reliability and durability of the ceramic heater can be further improved.

本発明のセラミックヒータの実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the ceramic heater of this invention. 図1に示すセラミックヒータにおける先端部付近を拡大した拡大断面図である。It is the expanded sectional view which expanded the front-end | tip part vicinity in the ceramic heater shown in FIG. (a)は、発熱抵抗体の縦断面形状が積層方向に直交する方向に沿って圧縮された楕円形状である場合を示す、図2のA−A線における縦断面図、(b)は、発熱抵抗体の縦断面形状が積層方向に直交する方向に沿って圧縮された八角形状である場合を示す、図2のA−A線における縦断面図である。(A) is a longitudinal sectional view taken along the line AA of FIG. 2, showing a case where the longitudinal sectional shape of the heating resistor is an elliptical shape compressed along a direction orthogonal to the stacking direction, (b) It is a longitudinal cross-sectional view in the AA line of FIG. 2 which shows the case where the longitudinal cross-sectional shape of a heating resistor is an octagon shape compressed along the direction orthogonal to a lamination direction.

以下、本発明のセラミックヒータについて実施の形態の例を図面を参照して詳細に説明する。   Hereinafter, the example of embodiment about the ceramic heater of this invention is demonstrated in detail with reference to drawings.

図1は本実施の形態のセラミックヒータ1の発熱抵抗体3およびリード8の部位を示す断面図、図2は図1におけるセラミック基体9の先端部2を拡大した拡大断面図である。   FIG. 1 is a cross-sectional view showing the portions of the heating resistor 3 and the leads 8 of the ceramic heater 1 of the present embodiment, and FIG. 2 is an enlarged cross-sectional view in which the tip 2 of the ceramic substrate 9 in FIG. 1 is enlarged.

本実施の形態のセラミックヒータ1は、棒状のセラミック基体9の内部に、そのセラミック基体9の先端部2に位置する折返し部4を有し、その折返し部4から2本が直線的に平行に延びた平行部5を有する発熱抵抗体3が埋設されており、折返し部4は、平行部5の端部からの湾曲部4bおよびこれら湾曲部4b間の直線部4aを有しており、湾曲部4bの断面積が直線部4aの断面積および平行部5の断面積よりも大きい。   The ceramic heater 1 according to the present embodiment has a folded portion 4 located at the tip 2 of the ceramic base 9 inside the rod-shaped ceramic base 9, and the two from the folded portion 4 are linearly parallel to each other. A heating resistor 3 having an extended parallel portion 5 is embedded, and the folded portion 4 has a curved portion 4b from the end of the parallel portion 5 and a straight portion 4a between the curved portions 4b. The cross-sectional area of the part 4 b is larger than the cross-sectional area of the straight part 4 a and the cross-sectional area of the parallel part 5.

このような構成により、折返し部4全体の断面積を大きくした場合よりも、湾曲部4bよりも断面積が小さい直線部4aが存在することによってセラミック基体9の先端部2を効率的に発熱させることができる。すなわち、電流が流れやすい形状であるが、湾曲部4bよりも断面積が小さい直線部4aは、湾曲部4bより断面積が大きい場合と比較して抵抗が若干大きくなるため、効率的に発熱することとなる。その結果、セラミック基体9の先端側への放熱によるセラミック基体9の先端部2の温度低下を小さくすることができるため、最高温度領域が棒状のセラミック基体9の軸線方向に広くなる。これにより、セラミック基体9の表面に急激な温度差(温度勾配)が発生しにくくなり、セラミックヒータ1の信頼性および耐久性が向上する。   With such a configuration, the tip portion 2 of the ceramic base 9 is efficiently heated by the presence of the straight portion 4a having a smaller cross-sectional area than the curved portion 4b, compared to the case where the entire cross-sectional area of the folded portion 4 is increased. be able to. In other words, the straight portion 4a, which has a shape in which current easily flows, but has a smaller cross-sectional area than the curved portion 4b, has a slightly larger resistance than the case where the cross-sectional area is larger than that of the curved portion 4b. It will be. As a result, the temperature drop of the tip 2 of the ceramic substrate 9 due to the heat radiation to the tip of the ceramic substrate 9 can be reduced, so that the maximum temperature range is widened in the axial direction of the rod-shaped ceramic substrate 9. Thereby, it becomes difficult to generate a rapid temperature difference (temperature gradient) on the surface of the ceramic substrate 9, and the reliability and durability of the ceramic heater 1 are improved.

また、折返し部4は、電流が流れにくい形状であるが、断面積が直線部4aの断面積および平行部5の断面積よりも大きい湾曲部4bと、湾曲部4bよりも断面積は小さいが、電流が流れやすい形状である直線部4aとを有していることから、折返し部4に大電流を効率よく流すことができる。その結果、発熱抵抗体3の折返し部4に無駄な抵抗がかからず、折返し部4にマイクロクラック等が発生することを抑制して、長期間の使用に耐え得るものとなる。従って、セラミックヒータ1の信頼性および耐久性が向上する。   In addition, the folded portion 4 has a shape in which current does not easily flow, but the cross-sectional area is larger than the cross-sectional area of the straight portion 4a and the cross-sectional area of the parallel portion 5, and the cross-sectional area is smaller than the curved portion 4b. Since the linear portion 4a having a shape in which current easily flows is provided, a large current can be efficiently passed through the folded portion 4. As a result, useless resistance is not applied to the folded portion 4 of the heating resistor 3, and the occurrence of microcracks or the like in the folded portion 4 is suppressed, so that it can withstand long-term use. Therefore, the reliability and durability of the ceramic heater 1 are improved.

なお、直線部4aとは、平面視したときに湾曲部4b,4bの間で少なくとも折返し部4の外側(セラミック基体9の先端側)に形成された、直線状の形状を有する部分のことである。また、折返し部4の外側だけでなく、湾曲部4b,4bの間で折返し部4の内側にも、折返し部4の外側の直線状の形状を有する部分に対向する直線状の形状を有する部分があってもよい。   The straight portion 4a is a portion having a linear shape formed at least outside the folded portion 4 (at the front end side of the ceramic base 9) between the curved portions 4b and 4b when viewed in plan. is there. Also, a portion having a linear shape facing not only the outside of the folded portion 4 but also the portion having the linear shape outside the folded portion 4 inside the folded portion 4 between the curved portions 4b and 4b. There may be.

本実施の形態のセラミックヒータ1におけるセラミック基体9は、酸化物セラミックス,窒化物セラミックス,炭化物セラミックス等の電気的な絶縁性を有するセラミックスから成る。特に、セラミック基体9は、窒化珪素質セラミックスから成ることが好適である。窒化珪素質セラミックスは、主成分である窒化珪素が高強度、高靱性、高絶縁性および耐熱性の観点で優れているからである。この窒化珪素質セラミックスは、例えば、主成分の窒化珪素に対して、焼結助剤として3〜12質量%のY,Yb,Er等の希土類元素酸化物、0.5〜3質量%のAl、さらに焼結体に含まれるSiO量として1.5〜5質量%となるようにSiOを混合し、所定の形状に成形し、その後、1650〜1780℃でホットプレス焼成することにより得ることができる。The ceramic substrate 9 in the ceramic heater 1 of the present embodiment is made of ceramics having electrical insulation properties such as oxide ceramics, nitride ceramics, carbide ceramics. In particular, the ceramic substrate 9 is preferably made of silicon nitride ceramics. This is because silicon nitride ceramics is excellent in terms of high strength, high toughness, high insulating properties, and heat resistance. This silicon nitride ceramic is, for example, 3 to 12% by mass of a rare earth element oxide such as Y 2 O 3 , Yb 2 O 3 , Er 2 O 3 as a sintering aid with respect to silicon nitride as a main component, 0.5 to 3% by mass of Al 2 O 3 , and further SiO 2 is mixed so that the amount of SiO 2 contained in the sintered body is 1.5 to 5% by mass, molded into a predetermined shape, and then 1650 to 1780 ° C. It can be obtained by hot press firing.

また、セラミック基体9として窒化珪素質セラミックスから成るものを用いる場合、MoSiO,WSi等を混合し分散させることが好ましい。この場合、母材である窒化珪素質セラミックスの熱膨張率を発熱抵抗体3の熱膨張率に近づけることができ、セラミックヒータ1の耐久性を向上させることができる。Further, when a ceramic substrate 9 made of silicon nitride ceramics is used, it is preferable to mix and disperse MoSiO 2 , WSi 2 or the like. In this case, the thermal expansion coefficient of the silicon nitride ceramic as the base material can be brought close to the thermal expansion coefficient of the heating resistor 3, and the durability of the ceramic heater 1 can be improved.

また、発熱抵抗体3は、W,Mo,Tiなどの炭化物、窒化物、珪化物などを主成分とするものを使用することができる。上記の材料のなかでも、炭化タングステン(WC)が、セラミック基体9との熱膨張率の差が小さいこと、高い耐熱性を有すること、および比抵抗が小さいことの点で、発熱抵抗体3の材料として優れている。さらに、発熱抵抗体3は、無機導電体のWCを主成分とし、これに添加される窒化珪素の含有率が20質量%以上であるものが好ましい。例えば、窒化珪素質セラミックスから成るセラミック基体9中において、発熱抵抗体3となる導体成分は窒化珪素と比較して熱膨張率が大きいため、通常は引張応力が掛かった状態にある。これに対して、発熱抵抗体3中に窒化珪素を添加することにより、熱膨張率をセラミック基体9のそれに近づけて、セラミックヒータ1の昇温時および降温時の熱膨張率の差による応力を緩和することができる。   The heating resistor 3 may be composed mainly of carbides such as W, Mo and Ti, nitrides and silicides. Among the above materials, tungsten carbide (WC) has a small difference in thermal expansion coefficient from the ceramic substrate 9, has high heat resistance, and has low specific resistance. It is excellent as a material. Furthermore, it is preferable that the heating resistor 3 is mainly composed of WC of an inorganic conductor, and the content of silicon nitride added thereto is 20% by mass or more. For example, in the ceramic substrate 9 made of silicon nitride ceramics, the conductor component serving as the heating resistor 3 has a higher coefficient of thermal expansion than silicon nitride, and therefore is usually in a state where tensile stress is applied. On the other hand, by adding silicon nitride to the heating resistor 3, the thermal expansion coefficient is brought close to that of the ceramic substrate 9, and the stress due to the difference in thermal expansion coefficient when the ceramic heater 1 is heated and lowered is reduced. Can be relaxed.

また、発熱抵抗体3に含まれる窒化珪素の含有量が40質量%以下であるときには、発熱抵抗体3の抵抗値を比較的小さくして安定させることができる。従って、発熱抵抗体3に含まれる窒化珪素の含有量は20質量%〜40質量%であることが好ましい。より好ましくは、窒化珪素の含有量は25質量%〜35質量%がよい。また、発熱抵抗体3への同様の添加物として、窒化珪素の代わりに窒化硼素を4質量%〜12質量%添加することもできる。   Further, when the content of silicon nitride contained in the heating resistor 3 is 40% by mass or less, the resistance value of the heating resistor 3 can be made relatively small and stabilized. Therefore, the content of silicon nitride contained in the heating resistor 3 is preferably 20% by mass to 40% by mass. More preferably, the content of silicon nitride is 25% by mass to 35% by mass. Further, as a similar additive to the heating resistor 3, boron nitride can be added in an amount of 4% by mass to 12% by mass instead of silicon nitride.

また、発熱抵抗体3の厚みは、0.5mm〜1.5mm程度がよい。この厚みの範囲内とすることにより、発熱抵抗体3の抵抗が小さくなって効率良く発熱するものとなり、また、積層構造のセラミック基体9の積層界面の密着性を保持することができる。   The thickness of the heating resistor 3 is preferably about 0.5 mm to 1.5 mm. By setting the thickness within this range, the resistance of the heating resistor 3 is reduced and heat is efficiently generated, and the adhesion at the laminated interface of the ceramic base 9 having a laminated structure can be maintained.

また、発熱抵抗体3の幅は、0.3mm〜1.3mm程度がよい。この幅の範囲内とすることにより、発熱抵抗体3の抵抗が小さくなって効率良く発熱するものとなり、また、積層構造のセラミック基体9の積層界面の密着性を保持することができる。   The width of the heating resistor 3 is preferably about 0.3 mm to 1.3 mm. By setting the width within this range, the resistance of the heating resistor 3 is reduced and heat is efficiently generated, and the adhesion at the laminated interface of the ceramic base 9 having a laminated structure can be maintained.

発熱抵抗体3における折返し部4は、湾曲部4bの断面積が直線部4aの断面積および平行部5の断面積よりも大きいが、湾曲部4bの断面積は、直線部4aの断面積および平行部5の断面積よりも10%〜50%程度大きいことが好ましい(ただし、直線部4aの断面積および平行部5の断面積はほぼ同じである場合を含むものとする)。この範囲内とすることにより、電流が流れにくい形状である湾曲部4bの抵抗が直線部4aおよび平行部5と同程度に小さくなり、また、湾曲部4bが効率的に発熱するものとなる。   The folded portion 4 of the heating resistor 3 has a cross-sectional area of the curved portion 4b larger than that of the straight portion 4a and that of the parallel portion 5, but the cross-sectional area of the curved portion 4b is equal to the cross-sectional area of the straight portion 4a. It is preferable that the cross-sectional area of the parallel part 5 is about 10% to 50% larger (however, the cross-sectional area of the straight part 4a and the cross-sectional area of the parallel part 5 are assumed to be substantially the same). By setting it within this range, the resistance of the curved portion 4b having a shape in which current does not easily flow becomes as small as that of the straight portion 4a and the parallel portion 5, and the curved portion 4b generates heat efficiently.

また、本実施の形態のセラミックヒータ1は、直線部4aのセラミック基体9の先端側の長さLが、セラミック基体9の先端から直線部4aまでの距離Dよりも長いことが好ましい。   In the ceramic heater 1 of the present embodiment, the length L of the straight portion 4a on the tip side of the ceramic base 9 is preferably longer than the distance D from the tip of the ceramic base 9 to the straight portion 4a.

この構成により、セラミック基体9の先端側への放熱によるセラミック基体9の先端部2の温度低下を小さくすることができるため、最高温度領域が棒状のセラミック基体9の軸線方向により広くなる。その結果、セラミック基体9の表面に急激な温度差(温度勾配)がより発生しにくくなり、セラミックヒータ1の信頼性および耐久性がさらに向上する。   With this configuration, the temperature drop of the tip 2 of the ceramic substrate 9 due to heat radiation to the tip of the ceramic substrate 9 can be reduced, so that the maximum temperature region becomes wider in the axial direction of the rod-shaped ceramic substrate 9. As a result, an abrupt temperature difference (temperature gradient) is less likely to occur on the surface of the ceramic substrate 9, and the reliability and durability of the ceramic heater 1 are further improved.

直線部4aのセラミック基体9の先端側の長さLは、セラミック基体9の先端から直線部4aまでの距離Dよりも20%〜70%程度長いことが好ましい。この範囲内とすることにより、セラミック基体9の先端側への放熱によるセラミック基体9の先端部2の温度低下を小さくすることができ、また、セラミック基体9の軸線方向の先端部2の局所的な温度の低下により、温度分布が局所的に劣化し急激な温度差が局所的に発生することを抑えることができる。具体的には、直線部4aのセラミック基体9の先端側の長さLは0.4mm〜1.4mm程度、セラミック基体9の先端から直線部4aまでの距離Dは0.3mm〜0.8mm程度であることが、上記の理由から好適である。   The length L of the straight portion 4a on the tip side of the ceramic base 9 is preferably about 20% to 70% longer than the distance D from the tip of the ceramic base 9 to the straight portion 4a. By setting it within this range, the temperature drop of the tip 2 of the ceramic substrate 9 due to heat radiation to the tip of the ceramic substrate 9 can be reduced, and the local tip of the tip 2 of the ceramic substrate 9 in the axial direction can be reduced. It is possible to prevent the temperature distribution from locally deteriorating and a sudden temperature difference from occurring locally due to a significant temperature drop. Specifically, the length L of the straight portion 4a on the tip side of the ceramic base 9 is about 0.4 mm to 1.4 mm, and the distance D from the tip of the ceramic base 9 to the straight portion 4a is about 0.3 mm to 0.8 mm. However, it is preferable for the above reason.

また、図2に示した折返し部4の形状は、湾曲部4bの外側の外形線が複数の直線部分を繋げて湾曲させた形状であり、湾曲部4bの内側の外形線が一つの直線部分から成り、直線部4aが、折返し部4の外側(セラミック基体9の先端側)に形成された直線状部(外側の直線状部)と、折返し部4の内側に形成された、外側の直線状部に対向する内側の直線状部とから成る形状であるが、このような形状に限定されるものではない。   The shape of the folded portion 4 shown in FIG. 2 is a shape in which the outer contour line of the bending portion 4b is curved by connecting a plurality of straight portions, and the outer contour line of the bending portion 4b is one straight portion. The straight portion 4a is formed on the outer side of the folded portion 4 (the tip side of the ceramic base 9) (outer straight portion), and the outer straight line formed on the inner side of the folded portion 4. However, the present invention is not limited to such a shape.

例えば、折返し部4の形状は、湾曲部4bの外側の外形線および内側の外形線の少なくとも一方が円弧状等の曲線状であってよく、また、湾曲部4bの外側の外形線および内側の外形線の両方が円弧状等の曲線状であってもよい。また、湾曲部4bの外側の外形線および内側の外形線の一方が円弧状等の曲線状であり、他方が少なくとも一つの直線部分から成るものであってもよい。   For example, the shape of the folded portion 4 may be such that at least one of the outer contour line and the inner contour line of the curved portion 4b is a curved shape such as an arc shape, and the outer contour line and the inner contour line of the curved portion 4b. Both of the outlines may have a curved shape such as an arc. Further, one of the outer outline and the inner outline of the curved portion 4b may be a curved shape such as an arc, and the other may be composed of at least one straight line portion.

また、湾曲部4bの外側の外形線および内側の外形線が両方とも円弧状である場合、それらの曲率半径が異なっていてもよい。例えば、湾曲部4bの外側の外形線の曲率半径が内側の外形線の曲率半径よりも大きくなるようにすることもできる。この場合、湾曲部4bの外側の外形線を緩やかな円弧状として、外側の外形線付近において電流が流れやすいようにすることができる。   Further, when both the outer outline and the outer outline of the curved portion 4b are arcuate, their radii of curvature may be different. For example, the curvature radius of the outer contour line of the curved portion 4b can be larger than the curvature radius of the inner contour line. In this case, the outer outline of the curved portion 4b can be formed in a gentle arc shape so that current can easily flow in the vicinity of the outer outline.

また、直線部4aは、少なくとも外側の直線状部を有する形状であればよい。この場合、2つの湾曲部4bの外側の外形線同士を最短距離で繋ぐことができ、直線部4aの抵抗を小さくすることができる。直線部4aの内側の外形線は、もともと2つの湾曲部4bの内側の外形線同士の間の間隔が小さいため、必ずしも直線状部でなくてもよいが、直線状部である方が直線部4aにおいて電流が流れやすくなり好ましい。   Moreover, the linear part 4a should just be a shape which has an outside linear part at least. In this case, the outer outlines of the two curved portions 4b can be connected with the shortest distance, and the resistance of the straight portion 4a can be reduced. The outline of the inside of the straight part 4a is not necessarily a straight part because the distance between the outlines of the inside of the two curved parts 4b is originally small, but the straight part is not necessarily a straight part. 4a is preferable because current easily flows.

また、本実施の形態のセラミックヒータ1は、発熱抵抗体3は、平面視したときに、湾曲部4bの幅が直線部4aの幅よりも大きい。また、発熱抵抗体3は、平面視したときに、湾曲部4bの幅が平行部5の幅よりも大きいことが好ましい。
Further, the ceramic heater 1 of this embodiment, the heat generating resistor 3, in a plan view, the width of the curved portion 4b is larger Ri by the width of the linear portion 4a. The heating resistor 3 preferably has a width of the curved portion 4b larger than a width of the parallel portion 5 when viewed in plan .

この構成により、電流が流れにくい形状である湾曲部4bの抵抗がより小さくなるため、折返し部4に大電流をより効率よく流すことができる。その結果、発熱抵抗体3の折返し部4に無駄な抵抗がかからず、折返し部4にマイクロクラック等が発生することを抑制して、より長期間の使用に耐え得るものとなる。従って、セラミックヒータ1の信頼性および耐久性がさらに向上する。   With this configuration, the resistance of the curved portion 4b, which has a shape in which the current does not easily flow, is further reduced, so that a large current can flow through the folded portion 4 more efficiently. As a result, useless resistance is not applied to the folded portion 4 of the heating resistor 3, and the occurrence of microcracks or the like in the folded portion 4 is suppressed, so that it can withstand long-term use. Therefore, the reliability and durability of the ceramic heater 1 are further improved.

湾曲部4bの幅は直線部4aの幅および平行部5の幅よりも5%〜45%程度大きいことが好ましい(ただし、直線部4aの幅および平行部5の幅はほぼ同じである場合を含むものとする)。この範囲内とすることにより、電流が流れにくい形状である湾曲部4bの抵抗がより小さくなるため、折返し部4に大電流をより効率よく流すことができ、また、発熱抵抗体3とセラミック基体9の表面との間の絶縁距離を保持して絶縁性を維持することができる。具体的には、湾曲部4bの幅は0.35mm〜1.3mm程度、直線部4aの幅および平行部5の幅は0.3mm〜1.25mm程度であることが、上記の理由から好適である。   The width of the curved portion 4b is preferably about 5% to 45% larger than the width of the straight portion 4a and the width of the parallel portion 5 (however, the width of the straight portion 4a and the width of the parallel portion 5 are substantially the same. Included). By setting it within this range, the resistance of the curved portion 4b, which has a shape in which current does not easily flow, becomes smaller, so that a large current can flow more efficiently through the folded portion 4, and the heating resistor 3 and the ceramic substrate It is possible to maintain the insulating property while maintaining the insulating distance between the surface 9 and the surface 9. Specifically, the width of the curved portion 4b is preferably about 0.35 mm to 1.3 mm, and the width of the straight portion 4a and the width of the parallel portion 5 are preferably about 0.3 mm to 1.25 mm.

なお、湾曲部4b、直線部4aおよび平行部5のそれぞれの厚みが同じであるときには、それらの幅を上記のように調整するだけで折り返し部4の抵抗を調整できるという利点がある。 In addition, when each thickness of the curved part 4b, the linear part 4a, and the parallel part 5 is the same, there exists an advantage that resistance of the folding | returning part 4 can be adjusted only by adjusting those widths as mentioned above.

また、湾曲部4bは、平面視形状が円弧状、楕円弧状等の丸みを帯びた曲線状の形状であるか、または複数の直線部分を繋げて全体として湾曲させた形状であってもよい。湾曲部4bの平面視形状が円弧状である場合、その中心部の曲率半径は0.3mm〜0.8mm程度がよい。この範囲内とすることにより、湾曲部4bの抵抗が大きくなるのを抑えることができるとともに、所望の長さの直線部4aを形成することが容易になる。   In addition, the curved portion 4b may have a curved shape with a round shape such as an arc shape or an elliptical arc shape in plan view, or a shape curved as a whole by connecting a plurality of linear portions. When the plan view shape of the curved portion 4b is an arc shape, the curvature radius of the central portion is preferably about 0.3 mm to 0.8 mm. By setting it within this range, it is possible to suppress an increase in resistance of the curved portion 4b and to easily form the straight portion 4a having a desired length.

また、本実施の形態のセラミックヒータ1は、発熱抵抗体3は、断面形状が楕円形状または八角形状であることが好ましい。   In the ceramic heater 1 of the present embodiment, the heating resistor 3 preferably has an elliptical or octagonal cross-sectional shape.

この構成により、発熱抵抗体3の位置、セラミック基体9の外形形状によってセラミック基体9に急激な温度差が発生しにくいように構成することの自由度が高まる。従って、セラミックヒータ1の信頼性および耐久性をより向上させることができる。   With this configuration, the degree of freedom in configuring the ceramic base 9 so that a rapid temperature difference is less likely to occur due to the position of the heating resistor 3 and the outer shape of the ceramic base 9 is increased. Therefore, the reliability and durability of the ceramic heater 1 can be further improved.

また、セラミック基体9が積層構造のものであるときには、図3に示すように、発熱抵抗体3は積層方向Sに直交する方向に沿って圧縮された楕円形状または八角形状の縦断面形状を有することが好ましい。この場合、積層構造のセラミック基体9の積層界面9aの上下の層を発熱抵抗体3のアンカー効果によって密着させることができる。   When the ceramic substrate 9 has a laminated structure, as shown in FIG. 3, the heating resistor 3 has an elliptical or octagonal longitudinal sectional shape compressed along a direction orthogonal to the lamination direction S. It is preferable. In this case, the upper and lower layers of the laminated interface 9 a of the ceramic substrate 9 having a laminated structure can be brought into close contact by the anchor effect of the heating resistor 3.

なお、図3(a)は、発熱抵抗体3の縦断面形状が積層方向Sに直交する方向に沿って圧縮された楕円形状である場合を示す、図2のA−A線における縦断面図であり、図3(b)は、発熱抵抗体3の縦断面形状が積層方向Sに直交する方向に沿って圧縮された八角形状である場合を示す、図2のA−A線における縦断面図である。積層方向Sに直交する方向に沿って圧縮された形状であるとは、積層方向Sに沿った方向に長手方向あるいは長軸方向を有し、積層方向Sに直交する方向に沿った方向に短手方向あるいは短軸方向を有するような形状を意味する。   3A is a longitudinal sectional view taken along line AA in FIG. 2, showing a case where the longitudinal sectional shape of the heating resistor 3 is an elliptical shape compressed along a direction orthogonal to the stacking direction S. FIG. FIG. 3B shows a longitudinal section taken along the line AA of FIG. 2, showing a case where the longitudinal sectional shape of the heating resistor 3 is an octagonal shape compressed along a direction orthogonal to the stacking direction S. FIG. The shape compressed along the direction orthogonal to the stacking direction S has a longitudinal direction or a major axis direction in the direction along the stacking direction S and is short in a direction along the direction orthogonal to the stacking direction S. A shape having a hand direction or a minor axis direction is meant.

また、2つの平行部5間の間隔は0.3mm〜0.6mm程度がよい。この範囲内とすることにより、2つの平行部5間で短絡が発生することを抑えることができ、また、イオン移動による体積変化により、発熱抵抗体3におけるマイクロクラック発生の原因となるマイグレーションが発生することを低減できる。   The interval between the two parallel portions 5 is preferably about 0.3 mm to 0.6 mm. By making it within this range, it is possible to suppress the occurrence of a short circuit between the two parallel portions 5, and migration that causes microcracks in the heating resistor 3 occurs due to a volume change due to ion movement. Can be reduced.

リード部8は、発熱抵抗体3と同様の材料を用いて形成することができる。特に、WCが、セラミック基体9との熱膨張率の差が小さいこと、高い耐熱性を有すること、および比抵抗が小さいことの点で、リード部8の材料として好適である。また、リード部8は無機導電体であるWCを主成分とし、これに窒化珪素を含有量が15質量%以上となるように添加することが好ましい。窒化珪素の含有量が増すにつれてリード部8の熱膨張率をセラミック基体9を構成する窒化珪素の熱膨張率に近づけることができる。また、窒化珪素の含有量が40質量%以下であるときには、リード部8の抵抗値が小さくなるとともに安定する。従って、窒化珪素の含有量は15質量%〜40質量%が好ましい。より好ましくは、窒化珪素の含有量は20質量%〜35質量%とするのがよい。   The lead portion 8 can be formed using the same material as the heating resistor 3. In particular, WC is suitable as a material for the lead portion 8 in that it has a small difference in coefficient of thermal expansion from the ceramic substrate 9, high heat resistance, and low specific resistance. The lead portion 8 is preferably composed mainly of WC, which is an inorganic conductor, and silicon nitride is added to the lead portion 8 so that the content is 15% by mass or more. As the silicon nitride content increases, the thermal expansion coefficient of the lead portion 8 can be made closer to the thermal expansion coefficient of silicon nitride constituting the ceramic substrate 9. Further, when the content of silicon nitride is 40% by mass or less, the resistance value of the lead portion 8 becomes small and stable. Therefore, the content of silicon nitride is preferably 15% by mass to 40% by mass. More preferably, the content of silicon nitride is 20% by mass to 35% by mass.

次に、本実施の形態のセラミックヒータ1の製造方法について説明する。セラミックヒータ1は、例えば、上記本実施の形態の構成の発熱抵抗体3を金型を用いた射出成形法等によって形成することができる。   Next, the manufacturing method of the ceramic heater 1 of this Embodiment is demonstrated. The ceramic heater 1 can be formed by, for example, the heating resistor 3 having the configuration of the present embodiment by an injection molding method using a mold.

まず、導電性セラミック粉末,樹脂バインダー等を含む、発熱抵抗体3およびリード部8となる導電性ペースト、並びに絶縁性セラミック粉末,樹脂バインダー等を含むセラミック基体9となるセラミックペーストを作製する。   First, a conductive paste to be the heating resistor 3 and the lead portion 8 including the conductive ceramic powder and the resin binder, and a ceramic paste to be the ceramic base 9 including the insulating ceramic powder and the resin binder are prepared.

次に、導電性ペーストを用いて射出成形法等によって発熱抵抗体3となる所定パターンの導電性ペーストの成形体(成形体A)を形成する。成形体Aを金型内に保持した状態で、導電性ペーストを金型内に充填してリード部8となる所定パターンの導電性ペーストの成形体(成形体B)を形成する。これにより、成形体Aと、それに接続された成形体Bとが、金型内に保持された状態となる。   Next, a conductive paste molded body (molded body A) having a predetermined pattern to be the heating resistor 3 is formed by an injection molding method or the like using the conductive paste. With the molded body A held in the mold, the conductive paste is filled into the mold to form a conductive paste molded body (molded body B) having a predetermined pattern to be the lead portion 8. Thereby, the molded object A and the molded object B connected to it will be in the state hold | maintained in the metal mold | die.

次に、金型内に成形体Aおよび成形体Bを保持した状態で、金型の一部をセラミック基体9成形用のものに取り替えた後、金型内にセラミック基体9となるセラミックペーストを充填する。これにより、成形体Aおよび成形体Bがセラミックペーストの成形体(成形体C)で覆われたセラミックヒータ1の成形体(成形体E)が得られる。   Next, in a state where the molded body A and the molded body B are held in the mold, a part of the mold is replaced with one for molding the ceramic base 9, and then a ceramic paste that becomes the ceramic base 9 is placed in the mold. Fill. Thereby, the molded body (molded body E) of the ceramic heater 1 in which the molded body A and the molded body B are covered with the molded body of the ceramic paste (molded body C) is obtained.

次に、得られた成形体Eを1700℃程度で焼成することにより、セラミックヒータ1を作製することができる。焼成は、水素ガス等の非酸化性ガス雰囲気中で行なうことが好ましい。   Next, the obtained molded body E is fired at about 1700 ° C., whereby the ceramic heater 1 can be manufactured. The firing is preferably performed in a non-oxidizing gas atmosphere such as hydrogen gas.

本発明の実施例のセラミックヒータを以下のようにして作製した。   The ceramic heater of the example of the present invention was produced as follows.

まず、炭化タングステン(WC)粉末を50質量%、窒化珪素(Si)粉末を35質量%、樹脂バインダーを15質量%含む導電性ペーストを、金型内に射出成形して発熱抵抗体となる成形体Aを作製した。First, a conductive paste containing 50% by mass of tungsten carbide (WC) powder, 35% by mass of silicon nitride (Si 3 N 4 ) powder, and 15% by mass of a resin binder is injection-molded into a mold to form a heating resistor. A molded product A was produced.

次に、この成形体Aを金型内に保持した状態で、リード部となる上記の導電性ペーストを金型内に充填することにより、成形体Aと接続させてリード部となる成形体Bを形成した。このとき、表1の試料No.1〜13に示すように、種々の形状を有する金型を用いて、13種の形状の発熱抵抗体を形成した。   Next, with the molded body A held in the mold, the conductive paste serving as the lead portion is filled in the mold, thereby connecting the molded body A to the molded body B serving as the lead portion. Formed. At this time, sample No. As shown in 1 to 13, 13 types of heating resistors were formed using molds having various shapes.

次に、成形体Aおよび成形体Bを金型内に保持した状態で、窒化珪素(Si)粉末を85質量%、焼結助剤としてのイッテリビウム(Yb)の酸化物(Yb)を10質量%、発熱抵抗体およびリード部に熱膨張率を近づけるためのWCを5質量%含むセラミックペーストを、金型内に射出成形した。これにより、セラミック基体となる成形体C中に成形体Aおよび成形体Bが埋設された構成の成形体Eを形成した。Next, 85% by mass of silicon nitride (Si 3 N 4 ) powder and ytterbium (Yb) oxide (Yb 2 ) as a sintering aid while the molded body A and the molded body B are held in the mold. A ceramic paste containing 10% by mass of O 3 ) and 5% by mass of WC for bringing the coefficient of thermal expansion close to the heating resistor and the lead part was injection molded into a mold. Thus, a molded body E having a configuration in which the molded body A and the molded body B were embedded in the molded body C serving as a ceramic base was formed.

次に、得られた成形体Eを円筒状の炭素製の型に入れた後、窒素ガスから成る非酸化性ガス雰囲気中で、1650℃〜1780℃の温度、30MPa〜50MPaの圧力でホットプレスを行ない焼結した。得られた焼結体の表面に露出したリード部の端部に筒状金具をロウ付けしてセラミックヒータを作製した。   Next, the obtained compact E is put into a cylindrical carbon mold, and then hot pressed at a temperature of 1650 ° C. to 1780 ° C. and a pressure of 30 MPa to 50 MPa in a non-oxidizing gas atmosphere made of nitrogen gas. And sintered. A cylindrical metal fitting was brazed to the end portion of the lead portion exposed on the surface of the obtained sintered body to produce a ceramic heater.

このセラミックヒータを用いて冷熱サイクル試験を行なった。冷熱サイクル試験の条件は、まずセラミックヒータに通電して発熱抵抗体の温度が1400℃になるように印加電圧を設定し、1)5分間通電、2)2分間非通電の1),2)を1サイクルとし、1万サイクル繰り返した。冷熱サイクル試験前後のセラミックヒータの抵抗値の変化を測定し、抵抗値の変化が10%未満である場合を耐久性に問題無し(表1で「○」で表示)、抵抗値の変化が10%以上である場合を耐久性に問題有り(表1で「×」で表示)と判定した。結果を表1に示す。   A cooling / heating cycle test was conducted using this ceramic heater. The conditions of the thermal cycle test are as follows: First, the ceramic heater is energized, the applied voltage is set so that the temperature of the heating resistor is 1400 ° C, 1) energized for 5 minutes, 2) non-energized for 2 minutes 1), 2) Was 1 cycle and repeated 10,000 cycles. The change in the resistance value of the ceramic heater before and after the thermal cycle test was measured. If the change in resistance value was less than 10%, there was no problem with durability (indicated by “O” in Table 1), and the change in resistance value was 10 % Or more was determined to have a problem with durability (indicated by “x” in Table 1). The results are shown in Table 1.

なお、耐久性に問題有りと判定した試料には発熱抵抗体にマイクロクラックが発生していた。   Note that microcracks were generated in the heating resistor in the sample determined to have a problem in durability.

Figure 0005289462
Figure 0005289462

表1より、本発明の範囲内のものであるNo.3,4,11,12は、発熱抵抗体の折り返し部における湾曲部の断面積が折り返し部における直線部の断面積および平行部の断面積よりも大きく、直線部のセラミック基体の先端側の長さLがセラミック基体の先端から直線部までの距離Dよりも長く、湾曲部の幅が直線部の幅および平行部の幅よりも大きく、発熱抵抗体の断面形状が楕円形状または八角形状である場合であり、抵抗変化が1%と本発明のセラミックヒータのなかでは最も小さかった。   From Table 1, No. which is within the scope of the present invention. 3, 4, 11 and 12 are such that the cross-sectional area of the curved portion in the folded portion of the heating resistor is larger than the cross-sectional area of the straight portion and the parallel portion in the folded portion, and the length of the straight portion on the tip side of the ceramic base is The length L is longer than the distance D from the tip of the ceramic substrate to the straight portion, the width of the curved portion is larger than the width of the straight portion and the width of the parallel portion, and the cross-sectional shape of the heating resistor is elliptical or octagonal. The resistance change was 1%, which was the smallest among the ceramic heaters of the present invention.

なお、No.3は、L/D=1.6、湾曲部の厚みが0.97mm、直線部の厚みが0.93mm、平行部の厚みが0.72mmであった。No.4は、L/D=1.6、湾曲部の厚みが0.96mm、直線部の厚みが0.84mm、平行部の厚みが0.64mmであった。No.11は、L/D=1.2、湾曲部の厚みが0.90mm、直線部の厚みが0.77mm、平行部の厚みが0.64mmであった。No.12は、L/D=1.6、湾曲部の厚みが0.85mm、直線部の厚みが0.82mm、平行部の厚みが0.82mmであった。   In addition, No. 3, L / D = 1.6, the thickness of the curved portion was 0.97 mm, the thickness of the straight portion was 0.93 mm, and the thickness of the parallel portion was 0.72 mm. No. No. 4 was L / D = 1.6, the thickness of the curved portion was 0.96 mm, the thickness of the straight portion was 0.84 mm, and the thickness of the parallel portion was 0.64 mm. No. 11, L / D = 1.2, the thickness of the curved portion was 0.90 mm, the thickness of the straight portion was 0.77 mm, and the thickness of the parallel portion was 0.64 mm. No. No. 12 had L / D = 1.6, the thickness of the curved portion was 0.85 mm, the thickness of the straight portion was 0.82 mm, and the thickness of the parallel portion was 0.82 mm.

また、本発明の範囲内のものであるNo.5は、湾曲部の断面積が直線部の断面積および平行部の断面積よりも大きく、長さLが距離Dよりも長く、湾曲部の幅が直線部の幅および平行部の幅よりも大きく、発熱抵抗体の断面形状が円形状である場合であり、抵抗変化が2%となった。   In addition, No. which is within the scope of the present invention. 5, the cross-sectional area of the curved portion is larger than the cross-sectional area of the straight portion and the parallel portion, the length L is longer than the distance D, and the width of the curved portion is larger than the width of the straight portion and the parallel portion. This is a large case where the cross-sectional shape of the heating resistor is circular, and the resistance change is 2%.

なお、No.5は、L/D=1.6、湾曲部の厚みが0.71mm、直線部の厚みが0.62mm、平行部の厚みが0.62mmであった。   In addition, No. 5, L / D = 1.6, the thickness of the curved portion was 0.71 mm, the thickness of the straight portion was 0.62 mm, and the thickness of the parallel portion was 0.62 mm.

また、本発明の範囲内のものであるNo.6は、湾曲部の断面積が直線部の断面積および平行部の断面積よりも大きく、長さLが距離Dよりも短く、湾曲部の幅が直線部の幅および平行部の幅と同じであり、発熱抵抗体の断面形状が四角形状である場合であり、抵抗変化が8%と本発明のセラミックヒータのなかでは最も大きくなった。   In addition, No. which is within the scope of the present invention. 6, the cross-sectional area of the curved portion is larger than the cross-sectional areas of the straight portion and the parallel portion, the length L is shorter than the distance D, and the width of the curved portion is the same as the width of the straight portion and the parallel portion. This is the case where the cross-sectional shape of the heating resistor is a square shape, and the resistance change is 8%, which is the largest among the ceramic heaters of the present invention.

なお、No.6は、L/D≒0.7、湾曲部の厚みが0.73mm、直線部の厚みが0.65mm、平行部の厚みが0.65mmであった。   In addition, No. 6 was L / D≈0.7, the thickness of the curved portion was 0.73 mm, the thickness of the straight portion was 0.65 mm, and the thickness of the parallel portion was 0.65 mm.

また、本発明の範囲内のものであるNo.7は、湾曲部の断面積が直線部の断面積および平行部の断面積よりも大きく、長さLが距離Dよりも長く、湾曲部の幅が直線部の幅および平行部の幅と同じであり、発熱抵抗体の断面形状が四角形状である場合であり、抵抗変化が6%と本発明のセラミックヒータのなかでは大きい方であった。   In addition, No. which is within the scope of the present invention. 7, the cross-sectional area of the curved portion is larger than the cross-sectional areas of the straight portion and the parallel portion, the length L is longer than the distance D, and the width of the curved portion is the same as the width of the straight portion and the parallel portion. This is the case where the cross-sectional shape of the heating resistor is a square shape, and the resistance change is 6%, which is the larger of the ceramic heaters of the present invention.

なお、No.7は、L/D≒1.6、湾曲部の厚みが0.73mm、直線部の厚みが0.65mm、平行部の厚みが0.65mmであった。   In addition, No. 7 was L / D≈1.6, the thickness of the curved portion was 0.73 mm, the thickness of the straight portion was 0.65 mm, and the thickness of the parallel portion was 0.65 mm.

また、本発明の範囲内のものであるNo.8は、湾曲部の断面積が直線部の断面積および平行部の断面積よりも大きく、長さLが距離Dよりも長く、湾曲部の幅が直線部の幅および平行部の幅よりも大きく、発熱抵抗体の断面形状が六角形状である場合であり、抵抗変化が3%であった。   In addition, No. which is within the scope of the present invention. 8 is that the cross-sectional area of the curved portion is larger than the cross-sectional area of the straight portion and the parallel portion, the length L is longer than the distance D, and the width of the curved portion is larger than the width of the straight portion and the width of the parallel portion. It was a large case where the cross-sectional shape of the heating resistor was hexagonal, and the resistance change was 3%.

なお、No.8は、L/D≒1.6、湾曲部の厚みが1.00mm、直線部の厚みが0.87mm、平行部の厚みが0.67mmであった。   In addition, No. 8 was L / D≈1.6, the thickness of the curved portion was 1.00 mm, the thickness of the straight portion was 0.87 mm, and the thickness of the parallel portion was 0.67 mm.

また、本発明の範囲内のものであるNo.9は、湾曲部の断面積が直線部の断面積および平行部の断面積よりも大きく、長さLが距離Dと同じであり、湾曲部の幅が直線部の幅および平行部の幅よりも大きく、発熱抵抗体の断面形状が楕円形状である場合であり、抵抗変化が4%であった。   In addition, No. which is within the scope of the present invention. 9 is that the cross-sectional area of the curved portion is larger than the cross-sectional area of the straight portion and the parallel portion, the length L is the same as the distance D, and the width of the curved portion is larger than the width of the straight portion and the width of the parallel portion. This is the case where the cross-sectional shape of the heating resistor is elliptical, and the resistance change was 4%.

なお、No.9は、L/D≒1、湾曲部の厚みが0.85mm、直線部の厚みが0.82mm、平行部の厚みが0.82mmであった。   In addition, No. 9 was L / D≈1, the thickness of the curved portion was 0.85 mm, the thickness of the straight portion was 0.82 mm, and the thickness of the parallel portion was 0.82 mm.

また、本発明の範囲内のものであるNo.10は、湾曲部の断面積が直線部の断面積および平行部の断面積よりも大きく、長さLが距離Dよりも短く、湾曲部の幅が直線部の幅および平行部の幅よりも大きく、発熱抵抗体の断面形状が楕円形状である場合であり、抵抗変化が5%と本発明のセラミックヒータの中では大きい方であった。   In addition, No. which is within the scope of the present invention. 10, the cross-sectional area of the curved portion is larger than the cross-sectional area of the straight portion and the parallel portion, the length L is shorter than the distance D, and the width of the curved portion is larger than the width of the straight portion and the parallel portion. This is a case where the cross-sectional shape of the heating resistor is elliptical, and the resistance change is 5%, which is larger in the ceramic heater of the present invention.

なお、No.10は、L/D≒0.7、湾曲部の厚みが0.85mm、直線部の厚みが0.82mm、平行部の厚みが0.82mmであった。   In addition, No. 10 was L / D≈0.7, the thickness of the curved portion was 0.85 mm, the thickness of the straight portion was 0.82 mm, and the thickness of the parallel portion was 0.82 mm.

また、本発明の範囲内のものであるNo.13は、湾曲部の断面積が直線部の断面積および平行部の断面積よりも大きく、長さLが距離Dよりも長く、湾曲部の幅が直線部の幅および平行部の幅と同じであり、発熱抵抗体の断面形状が楕円形状である場合であり、抵抗変化が3%であった。   In addition, No. which is within the scope of the present invention. 13 is such that the cross-sectional area of the curved portion is larger than the cross-sectional area of the straight portion and the parallel portion, the length L is longer than the distance D, and the width of the curved portion is the same as the width of the straight portion and the parallel portion. This is the case where the cross-sectional shape of the heating resistor is elliptical, and the resistance change was 3%.

なお、No.13は、L/D=1.6、湾曲部の厚みが0.92mm、直線部の厚みが0.82mm、平行部の厚みが0.82mmであった。   In addition, No. No. 13 had L / D = 1.6, the thickness of the curved portion was 0.92 mm, the thickness of the straight portion was 0.82 mm, and the thickness of the parallel portion was 0.82 mm.

以上より、発熱抵抗体の折り返し部における湾曲部の断面積が折り返し部における直線部の断面積および平行部の断面積よりも大きいという構成(構成1)を満たし、直線部のセラミック基体の先端側の長さLがセラミック基体の先端から直線部までの距離Dよりも長いという構成(構成2)を満たし、湾曲部の幅が直線部の幅および平行部の幅よりも大きいという構成(構成3)を満たし、発熱抵抗体の断面形状が楕円形状または八角形状であるという構成(構成4)を満たしている、No.3,4,11,12が抵抗変化が最も小さいことが分かった。   As described above, the configuration (Configuration 1) in which the cross-sectional area of the curved portion of the folded portion of the heating resistor is larger than the cross-sectional area of the straight portion and the parallel portion of the folded portion is satisfied. Satisfies the configuration (configuration 2) in which the length L is longer than the distance D from the tip of the ceramic substrate to the straight portion, and the configuration in which the width of the curved portion is larger than the width of the straight portion and the width of the parallel portion (configuration 3). ) And the configuration (configuration 4) in which the cross-sectional shape of the heating resistor is an elliptical shape or an octagonal shape is satisfied. 3, 4, 11, 12 were found to have the smallest resistance change.

No.3,4,11,12とNo.5を比較すると、発熱抵抗体の断面形状が円形状であるNo.5の抵抗変化が若干大きくなった。   No. 3, 4, 11, 12 and No. 5 and No. 5 in which the cross-sectional shape of the heating resistor is circular. The resistance change of 5 was slightly increased.

No.3,4とNo.13を比較すると、湾曲部の幅が直線部の幅および平行部の幅よりも大きいという構成3を満たしているNo.3,4が、構成3を満たしていないNo.13よりも抵抗変化が小さくなった。   No. 3 and 4 and no. 13, No. 13 satisfying the configuration 3 in which the width of the curved portion is larger than the width of the straight portion and the width of the parallel portion. No. 3 and 4 do not satisfy the configuration 3. The resistance change was smaller than 13.

No.6とNo.7を比較すると、長さLが距離Dよりも大きいという構成3を満たしているNo.7(L/D=1.6)が、構成3を満たしていないNo.6(L/D≒0.7)よりも抵抗変化が小さくなった。   No. 6 and no. 7 and No. 7 satisfying the configuration 3 in which the length L is greater than the distance D. 7 (L / D = 1.6) is No. The resistance change was smaller than 6 (L / D≈0.7).

本発明の範囲外のものであるNo.1,2は、抵抗変化が55%,40%といずれも非常に大きくなった。   No. which is outside the scope of the present invention. For 1 and 2, the resistance change was 55% and 40%, both of which were very large.

1:セラミックヒータ
2:先端部
3:発熱抵抗体
4:折り返し部
4a:直線部
4b:湾曲部
5:平行部
9:セラミック基体
L:直線部4aのセラミック基体9の先端側の長さ
D:セラミック基体9の先端から直線部4aまでの距離
1: Ceramic heater 2: Tip part 3: Heating resistor 4: Folded part 4a: Straight line part 4b: Curved part 5: Parallel part 9: Ceramic base L: Length D of the straight part 4a on the tip side of the ceramic base 9: Distance from the tip of the ceramic substrate 9 to the straight portion 4a

Claims (4)

棒状のセラミック基体の内部に、該セラミック基体の先端部に位置する折返し部を有し、該折返し部から2本が直線的に平行に延びた平行部を有する発熱抵抗体が埋設されており、前記折返し部は、前記平行部の端部からの湾曲部およびこれら湾曲部間の直線部を有しており、前記発熱抵抗体は、平面視したときに前記湾曲部の幅が前記直線部の幅よりも大きく、前記湾曲部の厚みが前記直線部の厚みよりも大きく、前記湾曲部の断面積が前記直線部の断面積および前記平行部の断面積よりも大きいことを特徴とするセラミックヒータ。 A heating resistor having a folded portion located at the tip of the ceramic substrate, and two parallel portions extending linearly in parallel from the folded portion is embedded in the rod-shaped ceramic substrate, The folded portion has a curved portion from the end of the parallel portion and a straight portion between the curved portions, and the heating resistor has a width of the curved portion of the straight portion when viewed in plan. A ceramic heater characterized in that it is larger than the width, the thickness of the curved portion is larger than the thickness of the straight portion, and the cross-sectional area of the curved portion is larger than the cross-sectional area of the straight portion and the cross-sectional area of the parallel portion. . 前記直線部の前記セラミック基体の先端側の長さが、前記セラミック基体の先端から前記直線部までの距離よりも長いことを特徴とする請求項1に記載のセラミックヒータ。   2. The ceramic heater according to claim 1, wherein a length of the straight portion on a tip side of the ceramic base is longer than a distance from a tip of the ceramic base to the straight portion. 前記発熱抵抗体は、前記直線部の厚みが前記平行部の厚みよりも大きいことを特徴とする請求項1に記載のセラミックヒータ。 2. The ceramic heater according to claim 1, wherein the heating resistor has a thickness of the straight portion larger than a thickness of the parallel portion. 前記発熱抵抗体は、断面形状が楕円形状または八角形状であることを特徴とする請求項1に記載のセラミックヒータ。   The ceramic heater according to claim 1, wherein the heating resistor has an elliptical shape or an octagonal cross-sectional shape.
JP2010542940A 2008-12-15 2009-12-08 Ceramic heater Active JP5289462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010542940A JP5289462B2 (en) 2008-12-15 2009-12-08 Ceramic heater

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008317926 2008-12-15
JP2008317926 2008-12-15
PCT/JP2009/070521 WO2010071049A1 (en) 2008-12-15 2009-12-08 Ceramic heater
JP2010542940A JP5289462B2 (en) 2008-12-15 2009-12-08 Ceramic heater

Publications (2)

Publication Number Publication Date
JPWO2010071049A1 JPWO2010071049A1 (en) 2012-05-24
JP5289462B2 true JP5289462B2 (en) 2013-09-11

Family

ID=42268720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010542940A Active JP5289462B2 (en) 2008-12-15 2009-12-08 Ceramic heater

Country Status (2)

Country Link
JP (1) JP5289462B2 (en)
WO (1) WO2010071049A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104401A1 (en) * 2008-02-20 2009-08-27 日本特殊陶業株式会社 Ceramic heater and glow plug
US20130256298A1 (en) * 2010-09-27 2013-10-03 Kotaro Taimura Heater and glow plug provided with same
JP5726311B2 (en) * 2011-08-29 2015-05-27 京セラ株式会社 Heater and glow plug equipped with the same
DE102014226433A1 (en) 2014-12-18 2016-06-23 Robert Bosch Gmbh Electric heating element and contacting with improved durability
JP6970188B2 (en) * 2017-04-27 2021-11-24 京セラ株式会社 Heater and glow plug with it

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251183A (en) * 1985-08-28 1987-03-05 株式会社デンソー Manufacture of ceramic heater
JPH09184622A (en) * 1995-12-29 1997-07-15 Ngk Spark Plug Co Ltd Glow plug
WO2005098317A1 (en) * 2004-04-07 2005-10-20 Ngk Spark Plug Co., Ltd. Ceramic heater and manufacturing method thereof, and glow plug using ceramic heater
JP2006040882A (en) * 2004-06-25 2006-02-09 Ngk Spark Plug Co Ltd Manufacturing method of ceramic heater, ceramic heater manufactured by this method, and glow plug equipped with ceramic heater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2537271B2 (en) * 1988-09-09 1996-09-25 日本特殊陶業株式会社 Ceramic heating element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251183A (en) * 1985-08-28 1987-03-05 株式会社デンソー Manufacture of ceramic heater
JPH09184622A (en) * 1995-12-29 1997-07-15 Ngk Spark Plug Co Ltd Glow plug
WO2005098317A1 (en) * 2004-04-07 2005-10-20 Ngk Spark Plug Co., Ltd. Ceramic heater and manufacturing method thereof, and glow plug using ceramic heater
JP2006040882A (en) * 2004-06-25 2006-02-09 Ngk Spark Plug Co Ltd Manufacturing method of ceramic heater, ceramic heater manufactured by this method, and glow plug equipped with ceramic heater

Also Published As

Publication number Publication date
WO2010071049A1 (en) 2010-06-24
JPWO2010071049A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5166451B2 (en) Ceramic heater and glow plug
US9702559B2 (en) Heater and glow plug provided with same
JP5289462B2 (en) Ceramic heater
JP6337046B2 (en) Heater and glow plug equipped with the same
WO2012099232A1 (en) Heater and glow plug provided with same
EP2704518B1 (en) Heater and glow plug provided with same
JP5436687B2 (en) Heater and glow plug equipped with the same
JP5726311B2 (en) Heater and glow plug equipped with the same
JP6105464B2 (en) Heater and glow plug equipped with the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R150 Certificate of patent or registration of utility model

Ref document number: 5289462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150