JP5285007B2 - DC current switch - Google Patents

DC current switch Download PDF

Info

Publication number
JP5285007B2
JP5285007B2 JP2010047483A JP2010047483A JP5285007B2 JP 5285007 B2 JP5285007 B2 JP 5285007B2 JP 2010047483 A JP2010047483 A JP 2010047483A JP 2010047483 A JP2010047483 A JP 2010047483A JP 5285007 B2 JP5285007 B2 JP 5285007B2
Authority
JP
Japan
Prior art keywords
contact portion
insulator
electrode
axis
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010047483A
Other languages
Japanese (ja)
Other versions
JP2011181477A (en
Inventor
正二 羽田
英博 高草
實 岡田
晴樹 和田
文夫 村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Data Intellilink Corp
Original Assignee
NTT Data Intellilink Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Data Intellilink Corp filed Critical NTT Data Intellilink Corp
Priority to JP2010047483A priority Critical patent/JP5285007B2/en
Publication of JP2011181477A publication Critical patent/JP2011181477A/en
Application granted granted Critical
Publication of JP5285007B2 publication Critical patent/JP5285007B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/32Insulating body insertable between contacts

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)

Description

本発明は、直流高電圧及び/又は直流大電流に対応可能な直流電流開閉器に関する。   The present invention relates to a DC current switch capable of handling a DC high voltage and / or a DC large current.

従来から、高圧及び/又は大電流の直流電流を遮断するとき、アーク放電が発生し、直流電流は遮断が容易ではないため、直流を給電することが望ましい負荷に対しても給電路において交流給電が為され、末端の負荷側において該交流を直流に変換し負荷に供給している。
しかしながら、最近においては、CO排出抑制などにも関連し、電力効率に優れる高圧直流給電が検討されている。
したがって、高圧及び/又は大電流の直流給電方式において、上記の直流遮断が難しいという問題点を解決する必要がある。
Conventionally, when high-voltage and / or large-current direct current is interrupted, arc discharge occurs, and direct current is not easy to interrupt. The alternating current is converted into direct current on the load side at the end and supplied to the load.
However, recently, high-voltage DC power supply with excellent power efficiency has been studied in connection with CO 2 emission suppression.
Therefore, in the high voltage and / or large current DC power supply system, it is necessary to solve the above-described problem that DC interruption is difficult.

特開2003−208829号公報Japanese Patent Laid-Open No. 2003-208829

特許文献1は、直流遮断器に関するものであるが、以下の問題が存在する。
以下、この出願の明細書の段落「0028」を下記に引用して説明する。
「この遮断器は、図1に示すように、導電支持板11に固定した一対の板ばね10(弾性電極)と、この板ばね10に常時は接触する固定電極20とを具え、板ばね10と固定電極20との間に絶縁板30を抜き差しすることで導通・遮断を行うものである。」以上が特許文献1の記載の一部である。
一般に、直流、交流を問わず、開閉器(スイッチ)における両電極の導通接触部は、凹凸による表面加工が施され、両電極が閉じているとき(導通状態)、この両電極の導通接触部の凸部は相互に接触し導通している。したがって、両導通接触部の間に物を挿入することは困難である(仮にテーパ状板であっても)。
また、上記挿入を容易にするためには、両導通接触部に凹凸を形成せず、つるつる平面とすると、経年変化により両導通接触部に酸化皮膜が発生し、両導通接触部における導通状態が悪化する。
導通接触部が、凹凸による表面加工されている場合は、導通接触部が接触/非接触を繰り返すうちにこの酸化皮膜が削り落とされ、両導通接触部の導通は維持される。
Patent Document 1 relates to a DC circuit breaker, but has the following problems.
Hereinafter, paragraph “0028” of the specification of this application will be described with reference to the following.
“As shown in FIG. 1, this circuit breaker includes a pair of leaf springs 10 (elastic electrodes) fixed to the conductive support plate 11 and a fixed electrode 20 that is always in contact with the leaf spring 10. In this way, the insulating plate 30 is inserted / removed between the fixed electrode 20 and the fixed electrode 20 to conduct / cut off. ”The above is a part of the description of Patent Document 1.
In general, the conductive contact portion of both electrodes in a switch (switch), regardless of whether it is direct current or alternating current, is subjected to surface processing by unevenness, and when both electrodes are closed (conductive state), the conductive contact portion of both electrodes The convex portions of the two are in contact with each other and are conductive. Therefore, it is difficult to insert an object between both conductive contact portions (even if it is a tapered plate).
Further, in order to facilitate the insertion, if the conductive contact portions are not formed with irregularities and are made smooth, an oxide film is generated on the conductive contact portions due to secular change, and the conductive state in the conductive contact portions is Getting worse.
When the surface of the conductive contact portion is processed by unevenness, the oxide film is scraped off while the conductive contact portion repeats contact / non-contact, and the conduction of both conductive contact portions is maintained.

以上の現状に鑑み、本発明は、両導通接触部に凹凸が形成されている場合でも、物(板状絶縁体)の挿入を容易とし、アーク放電を抑制することを実現する。 In view of the above situation, the present invention makes it easy to insert an object (a plate-like insulator) and suppress arc discharge even when both conductive contact portions are uneven.

上記の目的を実現するべく本発明は以下の構成とする。
(1)請求項1に係る直流電流開閉器は、
直流電流の導通から遮断、遮断から導通へと排他的に遷移させる開閉器において、電流の導通、遮断を担う一方の電極の接触部及び/又は他方の電極の接触部に、任意の形状の1又は複数の凹凸の形状が形成され、XYZ座標において前記他方の電極がX軸方向に延在し、前記一方の電極にテーパ状ガイド部が固定され、該一方の電極又は該テーパ状ガイド部には、該一方の電極の接触部と該他方の電極の接触部が接触し導通するための任意の圧力が印加され、前記テーパ状ガイド部のテーパ形成角度は、前記XYZ座標の交点に位置する該テーパ状ガイド部のY軸の負方向先端部、を基点として、X軸方向に角度0rad<該テーパ形成角度<π/2radの傾斜で形成され、該テーパ状ガイド部のテーパ状の先端部は、前記XYZ座標のXY平面に平行にXY平面における0radを超え、かつ、π/2rad未満の座標に位置し、前記X軸の正方向に、前記両接触部と離隔して位置する可動絶縁体は、該X軸の負方向に移動し、前記テーパ状ガイド部をXY平面内において反時計回り方向に回転移動又は前記Y軸の正方向に移動させ、移動する該テーパ状ガイド部に連動して移動する前記一方の電極の接触部は前記他方の電極の接触部から離隔し、該両接触部間に形成される間隙に位置して前記開閉器は電流を遮断し、前記可動絶縁体は、前記X軸の正方向に移動し前記テーパ状ガイド部をXY平面内において時計回り方向に回転移動又は前記Y軸の負方向に移動させ、前記両接触部は接触し導通し、前記開閉器は導通することを特徴とする。
(2)請求項2に係る直流電流開閉器は、請求項1に記載の直流電流開閉器において、
前記可動絶縁体が前記X軸の負方向に移動し、離隔した前記両電極の接触部間の間隙に位置する前に、該間隙にアーク放電が発生し、該間隙に該可動絶縁体が位置したとき、該アーク放電が消滅することを特徴とする。
(3)請求項3に係る直流電流開閉器は、請求項1又は2に記載の直流電流開閉器において、
前記可動絶縁体は、ガラス繊維体又は合成樹脂を含む絶縁体材料からなる、並びにガラス繊維体若しくは合成樹脂を含む該絶縁体材料により被覆されるか又はガラス繊維体若しくは合成樹脂を含む該絶縁体材料により表裏面を挟持される部材からなる、ことを特徴とする。
(4)請求項4に係る直流電流開閉器は、請求項1又は2に記載の直流電流開閉器において、
前記可動絶縁体は、任意の絶縁・不燃性を有する材料からなる部材の一方の面及び/又は他方の面を金属材料で被覆され、該一方の面及び他方の面に金属材料を挟持され、該金属材料間は絶縁され、前記可動絶縁体は前記一方及び/又は他方の電極の接触部に摺動可能であることを特徴とする。
(5)請求項5に係る直流電流開閉器は、請求項1又は2に記載の直流電流開閉器において、
前記可動絶縁体は、絶縁体材料を主要材料として構成され又は任意の部材の一方の面及び/又は他方の面を該絶縁体材料で被覆し若しくは一方の面及び他方の面を該絶縁体材料で挟持し、前記可動絶縁体は前記一方及び/又は他方の電極の接触部に摺動可能であることを特徴とする。
)請求項に係る直流電流開閉器は、請求項に記載の直流電流開閉器において、
前記絶縁体材料は、セラミックス、コランダム、アルミナ又はβ−サイアロンセラミックスを主体とした材料からなることを特徴とする。
)請求項に係る直流電流開閉器は、請求項1に記載の直流電流開閉器において、
前記任意の圧力の発生源は、弾性体によることを特徴とする。
In order to achieve the above object, the present invention has the following configuration.
(1) A DC current switch according to claim 1 is:
In a switch that makes an exclusive transition from conduction to interruption of DC current and from interruption to conduction, a contact portion of one electrode responsible for conduction and interruption of current and / or a contact portion of the other electrode has an arbitrary shape 1 or shapes of a plurality of concave convex is formed, the other electrode in the XYZ coordinates is extending in the X-axis direction, the tapered guide portion is fixed to the one electrode, the one electrode or the tapered guide portion An arbitrary pressure is applied to the contact portion of the one electrode and the contact portion of the other electrode so as to be conductive, and the taper forming angle of the tapered guide portion is located at the intersection of the XYZ coordinates. The taper-shaped guide part is formed with an inclination of an angle 0 rad <the taper formation angle <π / 2 rad in the X-axis direction with the Y-axis negative tip of the taper-shaped guide part as a base point. Part of the XYZ coordinates A movable insulator positioned parallel to the Y plane and exceeding 0 rad in the XY plane and less than π / 2 rad and spaced apart from both contact portions in the positive direction of the X axis is the X axis. The one that moves in conjunction with the taper-shaped guide portion that moves and rotates in the counterclockwise direction in the XY plane or moves in the positive direction of the Y-axis. The contact portion of the electrode is separated from the contact portion of the other electrode, and the switch interrupts the current at a gap formed between the contact portions, and the movable insulator is connected to the X-axis. The taper-shaped guide portion is moved in the positive direction and rotated in the clockwise direction in the XY plane or moved in the negative direction of the Y-axis, the two contact portions are in contact with each other, and the switch is in conduction. Features.
(2) The direct current switch according to claim 2 is the direct current switch according to claim 1,
Before the movable insulator moves in the negative direction of the X-axis and is positioned in the gap between the contact portions of the two separated electrodes, arc discharge occurs in the gap, and the movable insulator is positioned in the gap. When this occurs, the arc discharge is extinguished.
(3) The direct current switch according to claim 3 is the direct current switch according to claim 1 or 2,
The movable insulator is made of an insulating material including a glass fiber body or a synthetic resin, and the insulator including the glass fiber body or the synthetic resin is covered with the insulating material including the glass fiber body or the synthetic resin. It consists of the member which clamps front and back by material, It is characterized by the above-mentioned.
(4) The direct current switch according to claim 4 is the direct current switch according to claim 1 or 2,
The movable insulator is coated with a metal material on one surface and / or the other surface of a member made of a material having an arbitrary insulation and nonflammability, and the metal material is sandwiched between the one surface and the other surface, The metal materials are insulated from each other, and the movable insulator is slidable on the contact portion of the one and / or the other electrode.
(5) The direct current switch according to claim 5 is the direct current switch according to claim 1 or 2,
The movable insulator is composed of an insulator material as a main material, or covers one surface and / or the other surface of an arbitrary member with the insulator material, or the one surface and the other surface of the insulator material. The movable insulator is slidable on the contact portion of the one and / or the other electrode.
( 6 ) The direct current switch according to claim 6 is the direct current switch according to claim 5 ,
The insulator material is made of a material mainly composed of ceramics, corundum, alumina, or β-sialon ceramics.
( 7 ) The direct current switch according to claim 7 is the direct current switch according to claim 1,
The source of the arbitrary pressure is an elastic body.

(A)本発明による直流電流開閉器は、アーク放電を抑制して、高圧及び/又は大電流の直流を遮断できる。
(B)本発明による直流電流開閉器は、アーク放電が極めて小規模であり、かつ、直ちに消滅するため、アーク放電を消滅させる従来技術の装置が不要であるため小型である。
(C)本発明による直流電流開閉器は、可動絶縁体における金属材料又は絶縁体材料が電極の接触部を研磨することができるので、接触部の導通状態が維持される。
(A) The direct current switch according to the present invention can suppress high-voltage and / or high-current direct current by suppressing arc discharge.
(B) The direct current switch according to the present invention is small in size because arc discharge is extremely small and extinguishes immediately, so that no prior art device for extinguishing arc discharge is required.
(C) In the DC current switch according to the present invention, since the metal material or the insulator material in the movable insulator can polish the contact portion of the electrode, the conductive state of the contact portion is maintained.

は、本発明による直流電流開閉器の第1の実施の形態を示す構成図である。These are the block diagrams which show 1st Embodiment of the direct current switch by this invention. は、本発明による直流電流開閉器の第1の実施の形態を示す構成図である。These are the block diagrams which show 1st Embodiment of the direct current switch by this invention. は、本発明による直流電流開閉器の第1の実施の形態を示す構成図である。These are the block diagrams which show 1st Embodiment of the direct current switch by this invention. は、本発明による直流電流開閉器の第1の実施の形態を示す構成図である。These are the block diagrams which show 1st Embodiment of the direct current switch by this invention. は、本発明による直流電流開閉器の第1の実施の形態を示す構成図である。These are the block diagrams which show 1st Embodiment of the direct current switch by this invention. は、本発明による直流電流開閉器の第1の実施の形態を示す構成図である。These are the block diagrams which show 1st Embodiment of the direct current switch by this invention. は、本発明による直流電流開閉器の第1の実施の形態の変形例を示す構成図である。These are the block diagrams which show the modification of 1st Embodiment of the direct current switch by this invention. は、本発明による直流電流開閉器の第1の実施の形態の変形例を示す構成図である。These are the block diagrams which show the modification of 1st Embodiment of the direct current switch by this invention. は、本発明による直流電流開閉器の一部に使用される可動絶縁体のバリエーションを示す構成図である。These are the block diagrams which show the variation of the movable insulator used for some DC current switches by this invention.

各実施の形態等(実施の形態、変形例、可動絶縁体のバリエーション)の説明に入るまえに、各形態等に共通する事項をあらかじめ説明する。
本発明は、明細書、図1〜図9及び図示しない図に替わる説明的明細書記載事項から説明されるが、これらに共通して、全図及び図示しない事項の説明を、必要に応じてXYZ座標により表現する。
たとえば、図1において(a)は、直流電流開閉器の構成図であり、(b)は、(a)におけるXYZ座標を示す。X軸は図の右方向が正、Y軸は図の上方向が正、Z軸は紙面を裏に突き抜ける方向が正である。Z軸の記号は座標矢印における、矢印の後部を示す。
図2において(a)は、直流電流開閉器の構成図であり、(b)は、(a)におけるXYZ座標を示す。X軸は図の右方向が正、Y軸は紙面を裏から表面に突き抜ける方向が正、Z軸は図の上方向が正である。Y軸の記号は座標矢印における、矢印の尖塔部を示す。
図3において(a)は、直流電流開閉器の構成図であり、(b)は、(a)におけるXYZ座標を示す。X軸は紙面を裏から表面に突き抜ける方向が正、Y軸は図の上方向が正、Z軸は図の右方向が正である。X軸の記号は座標矢印における、矢印の尖塔部を示す。
図4〜図6は、図1〜図3における(b)を図示しないが、図1〜図3の(b)にそれぞれ対応した図の存在を前提としている。
図7、図8は、図1における(b)を図示しないが、図1の(b)に対応した図の存在を前提としている。
図9については、(A1)が図1の(b)に対応し、(A2)が図2の(b)に対応し、(B1)が図1の(b)に対応し、(B2)が図2の(b)に対応した図の存在を前提としている。
全図において同様であるが、図1を例にとると、固定電極F、可動電極M、テーパ状ガイド部Gl、テーパ状ガイド部Gr、可動絶縁体Inのそれぞれが延在する方向を基準としてX軸とする。
Prior to the description of each embodiment, etc. (embodiments, modifications, variations of movable insulator), matters common to each embodiment will be described in advance.
The present invention will be explained from the description, FIGS. 1 to 9 and the descriptive description items in place of the drawings (not shown). Expressed in XYZ coordinates.
For example, in FIG. 1, (a) is a block diagram of a direct current switch, and (b) shows XYZ coordinates in (a). The X axis is positive in the right direction of the figure, the Y axis is positive in the upward direction of the figure, and the Z axis is positive in the direction of penetrating through the paper. The Z-axis symbol indicates the rear part of the arrow in the coordinate arrow.
In FIG. 2, (a) is a block diagram of a direct current switch, and (b) shows XYZ coordinates in (a). The X-axis is positive in the right direction in the figure, the Y-axis is positive in the direction through the paper surface from the back to the front, and the Z-axis is positive in the upward direction in the figure. The symbol on the Y axis indicates the spire portion of the arrow in the coordinate arrow.
In FIG. 3, (a) is a block diagram of a direct current switch, and (b) shows XYZ coordinates in (a). The X-axis is positive in the direction through the paper surface from the back to the front, the Y-axis is positive in the upward direction in the figure, and the Z-axis is positive in the right direction in the figure. The X-axis symbol indicates the spire portion of the arrow in the coordinate arrow.
FIGS. 4 to 6 do not show (b) in FIGS. 1 to 3, but are based on the existence of diagrams corresponding to FIGS. 1 to 3 (b).
7 and 8 do not show (b) in FIG. 1, but are based on the existence of a diagram corresponding to (b) in FIG.
9, (A1) corresponds to (b) in FIG. 1, (A2) corresponds to (b) in FIG. 2, (B1) corresponds to (b) in FIG. 1, (B2) Is premised on the existence of a diagram corresponding to FIG.
Although it is the same in all the drawings, taking FIG. 1 as an example, the fixed electrode F, the movable electrode M, the tapered guide portion Gl, the tapered guide portion Gr, and the movable insulator In are defined as the reference directions. The X axis is assumed.

(1)第1の実施の形態
(1−1)ハードウェア構成
本発明の図1(a)〜図3(a)、図4〜図6において、図1は導通状態である直流電流開閉器のXY平面をZ軸負方向からみた左側面図(図3の正面図における左側)、図2は導通状態である直流電流開閉器の上部すなわち、XZ平面をY軸正方向から見た平面図、図3は導通状態である直流電流開閉器の可動絶縁体側すなわち、ZY平面をX軸正方向から見た正面図、図4は非導通状態である直流電流開閉器の左側面図(図6の正面図における左側)、図5は非導通状態である直流電流開閉器の上部から見た平面図、図6は非導通状態である直流電流開閉器の正面図である(移動前の可動絶縁体側から見た)。
図4〜図6のXYZ座標は、図1〜図3のXYZ座標と同一である。
これらの図面は、本発明の直流電流開閉器を模式的に表したものである。
以下、図1〜図6を参照し、本発明の第1の実施の形態である直流電流開閉器のバードウェア構成を説明する。
(1) First Embodiment (1-1) Hardware Configuration In FIG. 1 (a) to FIG. 3 (a) and FIG. 4 to FIG. 6 of the present invention, FIG. 2 is a left side view (left side in the front view of FIG. 3) of the XY plane of FIG. 3, and FIG. 2 is a plan view of the upper part of the DC current switch in a conductive state, that is, the XZ plane is viewed from the positive direction of the Y axis. 3 is a movable insulator side of a DC current switch in a conductive state, that is, a front view when the ZY plane is viewed from the positive direction of the X axis, and FIG. 4 is a left side view of the DC current switch in a non-conductive state (FIG. 6). 5 is a plan view seen from the top of the DC current switch in a non-conductive state, and FIG. 6 is a front view of the DC current switch in a non-conductive state (movable insulation before movement). Seen from the body side).
The XYZ coordinates in FIGS. 4 to 6 are the same as the XYZ coordinates in FIGS.
These drawings schematically show the direct current switch of the present invention.
Hereinafter, with reference to FIGS. 1-6, the birdware structure of the direct current switch which is the 1st Embodiment of this invention is demonstrated.

図1は(a)は、本発明の直流電流開閉器を表したものであり、以下の部材から構成される。
直流電流開閉器の電流の導通路である固定電極F(XYZ座標のX軸方向に延在する他方の電極)、同様に電流の導通路である可動電極M(XYZ座標のX軸方向に延在する一方の電極)、固定電極Fの一部として構成されている接触部Cf、可動電極Mの一部として構成されている接触部Cmが存在する。接触部Cf及び/又は接触部Cmは、電流を導通/遮断する任意の形状の1又は複数の凹凸の形状が施された開閉器の接点である。
特許請求の範囲において、一方のテーパ状ガイド部又は他方のテーパ状ガイド部のいずれかは、テーパ状ガイド部Gl(lはLの小文字、図3及び図6の正面図において左側(Z軸負側)に位置する。)又はテーパ状ガイド部Gr(図3及び図6の正面図において右側(Z軸正側)に位置する。)のいずれかに相当する。
FIG. 1A shows a DC current switch according to the present invention, which is composed of the following members.
The fixed electrode F (the other electrode extending in the X-axis direction of the XYZ coordinates) that is a current conduction path of the DC current switch, and the movable electrode M (also extending in the X-axis direction of the XYZ coordinates) that is also a current conduction path. A contact portion Cf configured as a part of the fixed electrode F, and a contact portion Cm configured as a part of the movable electrode M. Contact portion Cf and / or the contact unit Cm is any one or more contacts of the switchgear shape of concave convex is performed shaped to conduct / cut off the current.
In the claims, either one of the tapered guide portions or the other tapered guide portion is a tapered guide portion Gl (l is a lower case letter L, and the left side in the front view of FIGS. 3 and 6 (Z-axis negative Or the tapered guide portion Gr (located on the right side (Z-axis positive side) in the front views of FIGS. 3 and 6).

可動電極Mには、左側(図1(b)のZ軸負方向、図3及び図6の正面図における左側)のテーパ状ガイド部Glと右側(図1(b)のZ軸正方向、図3及び図6の正面図における右側)のテーパ状ガイド部Grが取り付けられている。
すなわち、テーパ状ガイド部(Gl、Gr)が、支点Fuを軸にX軸からY軸方向にかけて回転移動すると可動電極Mもテーパ状ガイド部に連動して支点Fuを軸にX軸からY軸方向にかけて回転移動する。
固定電極Fは、直流電流開閉器の筐体に固定されて直流電流開閉器内で移動しない。
The movable electrode M includes a tapered guide portion Gl on the left side (the negative direction of the Z axis in FIG. 1B, the left side in the front views of FIGS. 3 and 6) and the right side (the positive direction of the Z axis in FIG. 1B), A tapered guide portion Gr on the right side in the front views of FIGS. 3 and 6 is attached.
That is, when the taper guide part (Gl, Gr) rotates and moves from the X axis to the Y axis direction about the fulcrum Fu, the movable electrode M is also linked to the taper guide part and uses the fulcrum Fu as an axis from the X axis to the Y axis. Rotate in the direction.
The fixed electrode F is fixed to the casing of the DC current switch and does not move in the DC current switch.

可動電極Mを押圧する弾性体であるスプリングSは、接触部Cmと接触部Cfが接触する方向に接触部Cmを接触部Cfに押圧し、接触部Cmと接触部Cfの接触、導通を確実にする。
スプリングSは、図1〜図8のようにコイル状のものや図示しない板バネなどが通常使用される。
The spring S, which is an elastic body that presses the movable electrode M, presses the contact portion Cm against the contact portion Cf in the direction in which the contact portion Cm and the contact portion Cf come into contact, and ensures contact and conduction between the contact portion Cm and the contact portion Cf. To.
As the spring S, a coil-like one as shown in FIGS.

テーパ状ガイド部Glとテーパ状ガイド部Grは、図1(a)〜図3(a)(以下、図1〜図3の(a)の記載は省略する。)、図4〜図8において同形であり、テーパ状ガイド部Gl、Grは、略三角形の形状である。テーパ状ガイド部Gl、Grの略三角形形状の長辺のテーパ状構成は、図1において可動絶縁体Inが、接触部Cm及び接触部Cfの方向(図1において矢印「←」が示すMdiの方向。同様に、図1(b)のX軸負方向。以下、図1〜図3の(b)の記載を省略する。)に移動するとテーパ状ガイド部Gl及びGrの長辺(略三角形形状の下部の長辺(略三角形形状においてY軸負方向))に接触し、テーパ状ガイド部Gl及びGrを押し上げることができるように、略三角形形状の長辺は、X軸正方向にかけて切り上がっている。(図1における接触部Cmと接触部Cfの位置する方向から可動絶縁体Inの位置する方向にかけて切り上がっている。
XYZ座標で示すと、テーパ状ガイド部のテーパ形状は、Y軸方向の厚みがX軸の正方向とY軸の正方向に向かって小さくなっている。すなわち、テーパ状ガイド部の下部ラインが、y=ax+bが描く直線状に切り上がる。ただし、これは模式であり、直線状である必要はない。
特許請求の範囲では「前記両テーパ状ガイド部のテーパ形成角度は、前記XYZ座標の交点に位置する該両テーパ状ガイド部のY軸の負方向先端部、を基点として、X軸方向に角度0rad<該テーパ形成角度<π/2radの傾斜で形成され、該両テーパ状ガイド部のテーパ状の先端部は、前記XYZ座標のXY平面に平行にXY平面における0radを超え、かつ、π/2rad未満の座標に位置し、」と記載されている。
このように、図1〜図8では、テーパ形状の一例を示すのみであり、これに拘束されない。テーパ形状の本質は、接触部Cf及びCmが位置するとこから、可動絶縁体が位置するところに向かい、かつ、該テーパ状ガイド部の最太部の下端を基点としてテーパ状ガイド部下部ラインがY軸正方向に向い切り上がって、可動絶縁体が矢印Mdi方向に進んだとき、テーパ状ガイド部が持ち上る構造であればよい。
テーパ状ガイド部の最厚部とは、テーパの太さ厚さが最大の部分を意味し、図1における固定電極Fに最も近い部分である。
The tapered guide portion Gl and the tapered guide portion Gr are shown in FIGS. 1A to 3A (hereinafter, the description of FIGS. 1 to 3A is omitted) and FIGS. 4 to 8. The taper-shaped guide portions Gl and Gr have a substantially triangular shape. The tapered configuration of the long sides of the substantially triangular shape of the tapered guide portions Gl and Gr is such that the movable insulator In in FIG. 1 is in the direction of the contact portion Cm and the contact portion Cf (Mdi indicated by the arrow “←” in FIG. 1). Similarly, when moving in the negative direction of the X axis in FIG. 1B (hereinafter, the description of FIG. 1B to 3B is omitted), the long sides (substantially triangular) of the tapered guide portions Gl and Gr. The long side of the substantially triangular shape is cut in the positive direction of the X-axis so that it can contact the lower long side of the shape (Y-axis negative direction in the general triangular shape) and push up the tapered guide portions Gl and Gr. It is up. (It is rounded up from the direction in which the contact part Cm and the contact part Cf in FIG. 1 are located to the direction in which the movable insulator In is located.
In terms of the XYZ coordinates, the taper shape of the tapered guide portion is such that the thickness in the Y-axis direction decreases toward the positive direction of the X-axis and the positive direction of the Y-axis. That is, the lower line of the tapered guide portion is rounded up to a straight line drawn by y = ax + b. However, this is a schematic and need not be linear.
In the claims, “the taper forming angle of the both tapered guide portions is an angle in the X-axis direction with the negative tip end of the Y-axis of the both tapered guide portions located at the intersection of the XYZ coordinates as a base point. 0 rad <the taper forming angle <π / 2 rad, and the tapered tip ends of both tapered guide portions exceed 0 rad in the XY plane parallel to the XY plane of the XYZ coordinates, and π / It is located at coordinates less than 2 rad ".
Thus, in FIGS. 1-8, only an example of a taper shape is shown and it is not restrained by this. The essence of the taper shape is that the contact portions Cf and Cm are located, so that the movable insulator is located, and the lower line of the taper guide portion starts from the lower end of the thickest portion of the taper guide portion. Any structure can be used as long as the taper-shaped guide portion is lifted up when the movable insulator is advanced in the direction of the arrow Mdi by being rounded up in the positive direction of the Y-axis.
The thickest portion of the tapered guide portion means a portion where the thickness of the taper is maximum, and is the portion closest to the fixed electrode F in FIG.

可動絶縁体Inは、図1における部材ではない矢印(←)Mdiの方向及びこれと逆方向、すなわち、X軸の正負方向を平行移動できるように、図示しないが任意の構成で支持されている。これにより、可動絶縁体Inは、テーパ状ガイド板Gl及びGrの下部、すなわち、XY平面におけるy=ax+bが描く直線部分(湾曲していてもかまわない、略三角形形状の長辺)を摺動しながら矢印(←)Mdiの方向すなわち、X軸の負方向に移動し、テーパ状ガイド板Gl及びGrを上部に移動できる。摺動の意義は、別の物体と接触し滑りながら動くという意である。
また、可動絶縁体Inを矢印(←)Mdiとは逆方向すなわち、X軸の正方向に移動することで、テーパ状ガイド板Gl及びGrを下部に移動できる。
可動電極Mは、テーパ状ガイド板Gl及びGrに取り付けられているため、可動電極Mの一部である接触部Cmも可動絶縁体Inの移動により、上下移動する。
可動絶縁体Inの矢印(←)Mdiの方向である先端部分は、これが矢印(←)Mdi方向に移動したとき、テーパ状ガイド板GlとGrの下端に略同時に接触する。テーパ状ガイド板GlとGrは、下端のテーパ傾斜形状が略同一であり、これが観察できる図3、図6において左右に位置することが相違するものの、両テーパ状ガイド部Gl、Grの下端(略三角形形状の長辺)から可動電極Mの表面(下部)までの距離は略同一である。
The movable insulator In is supported in an arbitrary configuration (not shown) so that it can be translated in the direction of the arrow (←) Mdi that is not a member in FIG. 1 and in the opposite direction, that is, the positive and negative directions of the X axis. . As a result, the movable insulator In slides below the tapered guide plates Gl and Gr, that is, the straight portion drawn by y = ax + b on the XY plane (which may be curved, the long side of a substantially triangular shape). While moving in the direction of the arrow (←) Mdi, that is, in the negative direction of the X axis, the tapered guide plates Gl and Gr can be moved upward. The significance of sliding is that it moves while sliding on another object.
Further, by moving the movable insulator In in the direction opposite to the arrow (←) Mdi, that is, in the positive direction of the X axis, the tapered guide plates Gl and Gr can be moved downward.
Since the movable electrode M is attached to the tapered guide plates Gl and Gr, the contact portion Cm which is a part of the movable electrode M also moves up and down by the movement of the movable insulator In.
The tip portion of the movable insulator In, which is in the direction of the arrow (←) Mdi, contacts the lower ends of the tapered guide plates Gl and Gr substantially simultaneously when it moves in the direction of the arrow (←) Mdi. The tapered guide plates Gl and Gr have substantially the same tapered shape at the lower end, and are different in that they are located on the left and right in FIGS. 3 and 6 where this can be observed, but the lower ends of the tapered guide portions Gl and Gr ( The distance from the substantially triangular long side) to the surface (lower part) of the movable electrode M is substantially the same.

可動電極Mに備えられた支点Fuは、この支点Fuを軸に可動電極Mが矢印「←」MdmすなわちXY平面において反時計回りに回転できるように構成されている。このため、可動絶縁体Inの上部に表示された部材ではない矢印「←」Mdiの矢印の方向に可動絶縁体Inが移動したとき、可動電極Mは、支点fuを軸に矢印「←」Mdmの方向に回転する。 The fulcrum Fu provided in the movable electrode M is configured such that the movable electrode M can rotate counterclockwise in the arrow “←” Mdm, that is, the XY plane, with the fulcrum Fu as an axis. For this reason, when the movable insulator In moves in the direction of the arrow “←” Mdi that is not a member displayed on the upper portion of the movable insulator In, the movable electrode M has the arrow “←” Mdm about the fulcrum fu. Rotate in the direction of.

図1〜図3においては、可動絶縁体Inが、接触部Cfと接触部Cmの間に挿入されていないため直流電流開閉器の接点(接触部Cf及び接触部Cm)は閉じており導通状態である。 1 to 3, since the movable insulator In is not inserted between the contact portion Cf and the contact portion Cm, the contact of the DC current switch (contact portion Cf and contact portion Cm) is closed and is in a conductive state. It is.

図2は、直流電流開閉器の上部すなわち、Y軸正方向(スプリング゛Sが存在する側)から見た平面図である。接触部Cfと接触部Cmは、スプリング゛Sの直径に対して、順番に内径(破線で示す。)に表示され、また、固定電極Fも可動電極Mの内径(破線で示す。)に表示されているが、内径、同径又は外径に存在しても機能は同一であり、いずれでも構わない。 FIG. 2 is a plan view of the DC current switch as viewed from above, that is, from the positive Y-axis direction (the side where the spring S is present). The contact portion Cf and the contact portion Cm are sequentially displayed on the inner diameter (shown by a broken line) with respect to the diameter of the spring S, and the fixed electrode F is also displayed on the inner diameter (shown by a broken line) of the movable electrode M. However, the function is the same even if it exists in the inner diameter, the same diameter, or the outer diameter, and any of them may be used.

図2において、可動絶縁体Inの横幅、すなわち、可動絶縁体Inの移動方向(X軸方向)に対して垂直方向(Z軸方向の)幅は、テーパ状ガイド板GlとGrとの最大間隔より広くする。可動絶縁体Inは、強度を保持したうえで薄く、テーパ状ガイド部の下端(X軸負方向)との摺動摩擦の少ないものが好適である。
可動絶縁体Inは、機械的強度、耐熱性、耐摩耗性に優れ、摩擦が少ないことが要求されるため、一例として原料がセラミックス材料で製造されるか、別の部材で可動絶縁体Inを形成し、この表面をセラミックスでコーティングすることも好適である。
可動絶縁体の材料、構成は、後述する「可動絶縁体のバリエーション」で説明するが、この説明における可動絶縁体の材料、構成も本実施の形態の一部として本実施の形態を構成する。
In FIG. 2, the lateral width of the movable insulator In, that is, the width perpendicular to the moving direction (X-axis direction) of the movable insulator In (Z-axis direction) is the maximum distance between the tapered guide plates Gl and Gr. Make it wider. The movable insulator In is preferably thin while maintaining strength and has little sliding friction with the lower end (X-axis negative direction) of the tapered guide portion.
Since the movable insulator In is required to have excellent mechanical strength, heat resistance, wear resistance, and low friction, as an example, the raw material is manufactured from a ceramic material, or the movable insulator In is made of another member. It is also suitable to form and coat this surface with ceramics.
The material and configuration of the movable insulator will be described in “variation of the movable insulator” to be described later, but the material and configuration of the movable insulator in this description also constitute this embodiment as part of the present embodiment.

図3は、可動絶縁体InがMdi方向、すなわちX軸負方向に移動する前に存在する位置から見た正面図である。可動絶縁体Inの図示は、図3において割愛している。 FIG. 3 is a front view seen from a position where the movable insulator In exists before moving in the Mdi direction, that is, the X-axis negative direction. The illustration of the movable insulator In is omitted in FIG.

図1〜図3において、接触部Cfと接触部Cmは接触し導通し、直流電流開閉器は導通状態である。 1 to 3, the contact portion Cf and the contact portion Cm are in contact with each other, and the DC current switch is in a conductive state.

図4〜図6は、図1〜図3において、可動絶縁体Inが矢印「←」Mdiの方向すなわちX軸負方向に移動し、接触部Cmと接触部Cfとの間に挿入されて、電流は遮断され、直流電流開閉器は非導通状態である。
これ以外は、図1〜図3と図4〜図6との相違は無く、図1は図4に、図2は図5に、図3は図6にそれぞれ対応している。
したがって、ハードウェア構成の説明において、図4〜図6の説明は、図1〜図3の説明を援用し、重複する説明を割愛する。なお、図4〜図6の部材の符号は図1〜図3の部材の符号と同一であり、機能及び構成についても同一である。
4 to 6, in FIGS. 1 to 3, the movable insulator In moves in the direction of the arrow “←” Mdi, that is, the negative direction of the X axis, and is inserted between the contact portion Cm and the contact portion Cf. The current is cut off and the DC current switch is non-conductive.
Except this, there is no difference between FIGS. 1 to 3 and FIGS. 4 to 6, FIG. 1 corresponds to FIG. 4, FIG. 2 corresponds to FIG. 5, and FIG.
Therefore, in the description of the hardware configuration, the description of FIGS. 4 to 6 uses the description of FIGS. 1 to 3 and omits the overlapping description. In addition, the code | symbol of the member of FIGS. 4-6 is the same as the code | symbol of the member of FIGS. 1-3, and the function and a structure are also the same.

(2)第1の実施の形態の変形例
(2−1)ハードウェア構成
図7は、本発明に係る導通状態である直流電流開閉器2の左側面図(図1における左側面図の定義と同一。図1におけるZ軸負方向から見た図と同様。)であり、
図8は、本発明に係る非導通状態である直流電流開閉器2の左側面図(図4における左側面図の定義と同一。図1におけるZ軸負方向から見た図と同様。)である。
(2) Modification of the First Embodiment (2-1) Hardware Configuration FIG. 7 is a left side view of the DC current switch 2 in a conductive state according to the present invention (definition of the left side view in FIG. 1). The same as that seen from the negative Z-axis direction in FIG.
FIG. 8 is a left side view of the DC current switch 2 in the non-conduction state according to the present invention (same definition as the left side view in FIG. is there.

図7、図8の部材の符号、機能及び構成は、固定電極F2及び可動電極M2を除き、図1〜図6の部材の符号、機能及び構成と同一である。 The reference numerals, functions, and configurations of the members in FIGS. 7 and 8 are the same as the reference numerals, functions, and configurations of the members in FIGS. 1 to 6 except for the fixed electrode F2 and the movable electrode M2.

図7において図示しないが、テーパ状ガイド部Gl、テーパ状ガイド部Gr及び可動電極M2は、上下すなわちY軸正負方向に移動できるよう任意の構成で支えられている。可動電極M2には支点Fuは存在しない。したがって、可動電極M2は回転運動による電流の遮断と導通ではなく上下運動による。 Although not shown in FIG. 7, the tapered guide portion Gl, the tapered guide portion Gr, and the movable electrode M2 are supported by an arbitrary configuration so as to be movable in the vertical direction, that is, in the positive and negative directions of the Y axis. The movable electrode M2 has no fulcrum Fu. Therefore, the movable electrode M2 is not due to the current interruption and conduction due to the rotational movement, but due to the vertical movement.

図7、図8において、固定電極F2及び可動電極M2には、図1〜図6における接触部Cfと接触部Cmの図示は無いが、図7において、固定電極F2と可動電極板M2が接触している部分が接触部であり、図1〜図6における接触部Cfと接触部Cm相当を構成し、機能は同様である。 7 and 8, the fixed electrode F2 and the movable electrode M2 are not shown with the contact portion Cf and the contact portion Cm in FIGS. 1 to 6, but in FIG. 7, the fixed electrode F2 and the movable electrode plate M2 are in contact with each other. The part which is carrying out is a contact part, and comprises the contact part Cf and the contact part Cm in FIGS. 1-6, and a function is the same.

この固定電極F2と可動電極M2が接触している部分が電流を導通/遮断する1又は複数の凹凸の形状が施された接点を構成している。固定電極F2と可動電極M2のいずれかが1又は複数の凹凸の形状が施されている場合もある。凹凸の接触部の構成は様々である(第1の実施の形態においても同様)。 This part fixed electrode F2 and the movable electrode M2 is in contact with the shape of one or more concave convex conduct / cut off the current constitutes a contact which has been subjected. If any of the fixed electrode F2 and the movable electrode M2 is applied the shape of one or more concave convex also. The configuration of the uneven contact portion is various (the same applies to the first embodiment).

図7において上記、固定電極F2及び可動電極M2について、また支点Fuが存在しないという部分が図1〜図6の構成と相違し、その他の部分は、図1〜図6の構成と同一であり、機能もまた同一である。
したがって、図7、図8の部材の符号は、固定電極F2及び可動電極M2を除き、図1〜図6の部材の符号と同一とし、図1〜図6において説明したハードウェア構成の説明を援用し、図7、図8において重複するハードウェア構成の説明を割愛する。なお、支点Fuは、第1の実施の形態の変形例である図7、図8には存在しない。
In FIG. 7, the fixed electrode F <b> 2 and the movable electrode M <b> 2 are different from the configuration in FIGS. 1 to 6 in that the fulcrum Fu does not exist, and the other portions are the same as the configurations in FIGS. The function is also the same.
Accordingly, the reference numerals of the members in FIGS. 7 and 8 are the same as those in FIGS. 1 to 6 except for the fixed electrode F2 and the movable electrode M2, and the description of the hardware configuration described in FIGS. The description of the hardware configuration that overlaps in FIGS. 7 and 8 is omitted. Note that the fulcrum Fu does not exist in FIGS. 7 and 8, which are modifications of the first embodiment.

第1の実施の形態の変形例である図7、図8において、可動絶縁体Inの説明も、第1の実施の形態を援用するべく割愛したが、ここに再掲する。
図7、図8において図示しないが、図2を参照して、可動絶縁体Inの横幅、すなわち、可動絶縁体Inの移動方向(X軸方向)に対して垂直方向(Z軸方向の)幅は、テーパ状ガイド板GlとGrとの最大間隔より広くする。可動絶縁体Inは、強度を保持したうえで薄く、テーパ状ガイド部の下端(X軸負方向)との摺動摩擦の少ないものが好適である。
可動絶縁体Inは、機械的強度、耐熱性、耐摩耗性に優れ、摩擦が少ないことが要求されるため、一例として原料がセラミックス材料で製造されるか、別の部材で可動絶縁体Inを形成し、この表面をセラミックスでコーティングすることも好適である。
可動絶縁体の材料、構成は、後述する「可動絶縁体のバリエーション」で説明するが、この説明における可動絶縁体の材料、構成も本実施の形態の変形例の一部として本実施の形態の変形例を構成する。
In FIGS. 7 and 8, which are modifications of the first embodiment, the description of the movable insulator In is also omitted to use the first embodiment, but it will be described here again.
Although not shown in FIGS. 7 and 8, with reference to FIG. 2, the lateral width of the movable insulator In, that is, the width perpendicular to the moving direction (X-axis direction) of the movable insulator In (Z-axis direction) Is wider than the maximum distance between the tapered guide plates Gl and Gr. The movable insulator In is preferably thin while maintaining strength and has little sliding friction with the lower end (X-axis negative direction) of the tapered guide portion.
Since the movable insulator In is required to have excellent mechanical strength, heat resistance, wear resistance, and low friction, as an example, the raw material is manufactured from a ceramic material, or the movable insulator In is made of another member. It is also suitable to form and coat this surface with ceramics.
The material and configuration of the movable insulator will be described in “variation of the movable insulator” described later, but the material and configuration of the movable insulator in this description are also part of the modification of the present embodiment. A modification is configured.

(3)第1の実施の形態
(3−2)ハードウェア動作
図1〜図6を参照して本発明の第1の実施の形態のハードウェア動作の説明をする。
(3) First Embodiment (3-2) Hardware Operation The hardware operation of the first embodiment of the present invention will be described with reference to FIGS.

<直流電流開閉器が導通状態>
図1〜図3は、直流電流開閉器が導通の状態を示す。図示のとおり、可動絶縁体Inは、接触部Cfと接触部Cmとの間には存在しない。したがって、接触部Cfと接触部Cmは接触し導通状態であり、直流電流開閉器は導通状態である。
<DC current switch is in conduction>
1 to 3 show a state in which the DC current switch is conductive. As illustrated, the movable insulator In does not exist between the contact portion Cf and the contact portion Cm. Therefore, the contact portion Cf and the contact portion Cm are in contact and in a conductive state, and the direct current switch is in a conductive state.

図1〜図3において、スプリングSの下端(スプリングSにおいてY軸負方向)は、可動電極Mの上部(可動電極MにおいてY軸正方向)に取り付けられ、スプリングSの上端(スプリングSにおいてY軸正方向)は、可動電極Mの接触部Cmと固定電極Fの接触部Cfとの接触が確実になるように、可動電極Mの接触部Cmと固定電極Fの接触部Cfを押圧するべく、直流電流開閉器の筺体に圧縮され固定されている(図示なし。)。すなわち、スプリングSは、可動電極Mの接触部Cmを押圧し、これにより固定電極Fの接触部Cfを押圧している。
なお、スプリングSの下端は、テーパ状ガイド部Gl、Grの上部(テーパ状ガイド部Gl、GrにおいてY軸正方向)に取り付けても、可動電極Mの接触部Cmと固定電極Fの接触部Cfを押圧するので、このような構成でもよい。
1 to 3, the lower end of the spring S (Y-axis negative direction in the spring S) is attached to the upper part of the movable electrode M (Y-axis positive direction in the movable electrode M), and the upper end of the spring S (Y in the spring S) In the positive axial direction), the contact portion Cm of the movable electrode M and the contact portion Cf of the fixed electrode F should be pressed so that the contact between the contact portion Cm of the movable electrode M and the contact portion Cf of the fixed electrode F is ensured. The DC current switch is compressed and fixed to the casing (not shown). That is, the spring S presses the contact portion Cm of the movable electrode M, and thereby presses the contact portion Cf of the fixed electrode F.
Even if the lower end of the spring S is attached to the upper part of the tapered guide parts Gl and Gr (the Y-axis positive direction in the tapered guide parts Gl and Gr), the contact part Cm of the movable electrode M and the contact part of the fixed electrode F Since Cf is pressed, such a configuration may be used.

<直流電流開閉器が導通状態から非導通状態に遷移する過程>
図1、図2において、可動絶縁体Inを矢印「←」Mdi方向(X軸負方向)に略平行移動する。移動の手段は図示していないが、手動又はソレノイド、モータ等任意の手段を使用して移動することができる。
<Process in which DC current switch transitions from conductive state to non-conductive state>
In FIG. 1 and FIG. 2, the movable insulator In is substantially translated in the arrow “←” Mdi direction (X-axis negative direction). Although the moving means is not shown, it can be moved manually or using any means such as a solenoid or a motor.

可動絶縁体Inが、矢印「←」Mdiの方向に移動すると、可動絶縁体Inの両脇がテーパ状ガイド部Gl及び/又はテーパ状ガイド部Grの下端(テーパ状ガイド部Gl、GrにおいてY軸負方向であり、略三角形状の長辺)に接触し、さらに、可動絶縁体Inが同方向に移動すると、可動絶縁体Inの上端部分(可動絶縁体InにおいてY軸正方向)がテーパ状ガイド板Gl及び/又はGrの下端を摺動しながら進み、テーパ状ガイド部Gl及びGrは、支点Fuを軸に矢印「←」Mdm(図1参照。XY平面において反時計回り方向。XY平面において正のY軸方向。)の方向に少し回転しながら上部に持ち上げられる。   When the movable insulator In moves in the direction of the arrow “←” Mdi, both sides of the movable insulator In are tapered guide portions Gl and / or lower ends of the tapered guide portions Gr (Y in the tapered guide portions Gl and Gr). When the movable insulator In is moved in the same direction, the upper end portion of the movable insulator In (the Y-axis positive direction in the movable insulator In) is tapered. The taper-shaped guide portions Gl and Gr move while sliding on the lower end of the guide plate Gl and / or Gr, and the arrow “←” Mdm (see FIG. 1 counterclockwise in the XY plane. XY) with the fulcrum Fu as an axis. It is lifted upward while slightly rotating in the direction of the positive Y axis in the plane.

したがって、可動絶縁体Inが所定の距離を移動したところで接触部Cfと接触部Cmは離隔し、接触部Cfと接触部Cmに間隙が発生する。すなわち、テーパ状ガイド板Gl及びGrの動作に連動して接触部Cfと接触部Cmは動く。 Therefore, when the movable insulator In moves a predetermined distance, the contact portion Cf and the contact portion Cm are separated from each other, and a gap is generated between the contact portion Cf and the contact portion Cm. That is, the contact portion Cf and the contact portion Cm move in conjunction with the operation of the tapered guide plates Gl and Gr.

なお、可動絶縁体Inが、接触部Cf、接触部Cmに衝突しないよう、可動絶縁体Inがテーパ状ガイド部Gl及びGrを押し上げ(Y軸正方向)、これと連動して可動電極mが両テーパ状ガイド部と同様な動作をして、接触部Cf、接触部Cm間に間隙を発生させる。したがって、可動絶縁体Inが、接触部Cf、接触部Cm間の間隙を遮る前に、接触部Cf、接触部Cm間にアーク放電が発生する(アーク放電については図示なし。)。 In order to prevent the movable insulator In from colliding with the contact portion Cf and the contact portion Cm, the movable insulator In pushes up the tapered guide portions Gl and Gr (in the positive direction of the Y axis), and the movable electrode m moves in conjunction with this. An operation similar to that of both tapered guide portions is performed to generate a gap between the contact portion Cf and the contact portion Cm. Therefore, before the movable insulator In blocks the gap between the contact portion Cf and the contact portion Cm, arc discharge occurs between the contact portion Cf and the contact portion Cm (the arc discharge is not shown).

図4〜図6に示すよう、さらに、可動絶縁体Inが同方向(X軸負方向)に進み、アーク放電発生直後に可動絶縁体Inが、接触部Cf、接触部Cm間の間隙に進入し、アーク放電は、可動絶縁体Inに遮られ消滅する。このとき発生するアーク放電は極めて小規模、短時間である。
したがって、一時的に小さなアーク放電が発生するが、直後にアーク放電が消滅し、以後、継続してアーク放電の発生はない。
As shown in FIGS. 4 to 6, the movable insulator In further advances in the same direction (X-axis negative direction), and immediately after the arc discharge occurs, the movable insulator In enters the gap between the contact portion Cf and the contact portion Cm. The arc discharge is interrupted by the movable insulator In and disappears. The arc discharge generated at this time is extremely small and short.
Therefore, although a small arc discharge occurs temporarily, the arc discharge disappears immediately after that, and no arc discharge continues thereafter.

なお、テーパ状ガイド部Gl及びGrの三角形形状の下端の頂点(最厚部)の形状は、丸みをもたせ、可動絶縁体Inとの摺動摩擦を小さくすることが好適である。   Note that it is preferable that the shape of the apex (the thickest portion) at the lower end of the triangular shape of the tapered guide portions Gl and Gr be rounded to reduce the sliding friction with the movable insulator In.

<直流電流開閉器が非導通状態から通状態に遷移する過程>
可動絶縁体Inが図4〜図6に示される位置において、図1、図2に示す矢印「←」Mdiとは逆方向(X軸正方向)に可動絶縁体In移動させ、可動絶縁体Inと、テーパ状ガイド部Gl及びGrが接触しない位置まで移動させる。
<Process in which DC current switch transitions from non-conducting state to through state>
4 to 6, the movable insulator In is moved in the direction opposite to the arrow “←” Mdi (X-axis positive direction) shown in FIGS. 1 and 2 to move the movable insulator In. And the tapered guide portions Gl and Gr are moved to a position where they do not contact.

この結果、テーパ状ガイド部Gl、Gr及び可動電極Mは、スプリングSの押圧により、Y軸負方向に移動(XY平面を時計回りに少し回転)し、この過程で、接触部Cmは下降(XY平面を時計回りに少し回転し、すなわち、Y軸負方向に移動)し、再び接触部Cfと接触し導通状態となる。この過程では、接触部Cfと接触部Cmの接触時にアーク放電は発生しない。   As a result, the tapered guide portions Gl and Gr and the movable electrode M are moved in the negative direction of the Y axis (slightly rotated in the XY plane clockwise) by the pressing of the spring S, and in this process, the contact portion Cm is lowered ( The XY plane is slightly rotated clockwise, that is, moved in the negative Y-axis direction), and again comes into contact with the contact portion Cf to be in a conductive state. In this process, arc discharge does not occur when the contact portion Cf and the contact portion Cm contact each other.

以上の動作により、直流電流開閉器は導通し電流を流すことができる導通状態となる。 By the above operation, the DC current switch becomes conductive and becomes a conductive state in which current can flow.

上記の状態遷移を行うことで、随意に直流電流開閉器を導通状態/非導通状態とすることができる。
直流電流開閉器に電流が流れている場合に直流電流開閉器を断(OFF)とすると、アーク放電の期間を一瞬間に抑えて(アーク放電抑制)直流電流を遮断できる。
すなわち、接触部Cfと接触部Cmとの間隔が開くことに追随して、アーク放電が両接触部間に延在し、アーク放電が継続するとういことは無い。
本発明の直流電流開閉器により、高圧及び/又は大電流の直流電流をアーク放電抑制により容易に遮断できる。
By performing the above-described state transition, the DC current switch can be arbitrarily turned on / off.
If the DC current switch is turned off when the current is flowing through the DC current switch, the arc current can be suppressed instantaneously (arc discharge suppression) to cut off the DC current.
That is, following the increase in the distance between the contact portion Cf and the contact portion Cm, arc discharge extends between both contact portions, and arc discharge does not continue.
With the DC current switch of the present invention, high-voltage and / or large-current DC current can be easily interrupted by suppressing arc discharge.

(4)第1の実施の形態の変形例
(4−2)ハードウェア動作
図7、図8を参照して本発明の第1の実施の形態の変形例のハードウェア動作の説明をする。
(4) Modified Example of First Embodiment (4-2) Hardware Operation A hardware operation of a modified example of the first embodiment of the present invention will be described with reference to FIGS.

<直流電流開閉器2が導通状態>
図7は、直流電流開閉器2が導通の状態を示す。図示のとおり、可動絶縁体Inは、固定電極F2と可動電極M2との間には存在しない。したがって、固定電極F2と可動電極M2は接触し導通状態であり、直流電流開閉器2は導通状態である。
<DC current switch 2 is conductive>
FIG. 7 shows a state where the DC current switch 2 is conductive. As illustrated, the movable insulator In does not exist between the fixed electrode F2 and the movable electrode M2. Therefore, the fixed electrode F2 and the movable electrode M2 are in contact and in a conductive state, and the DC current switch 2 is in a conductive state.

スプリングSの下端(スプリングSにおいてY軸負方向)は、可動電極M2の上部(可動電極M2においてY軸正方向)に取り付けられ、スプリングSの上端(スプリングSにおいてY軸正方向)は、可動電極M2と固定電極F2との接触が確実になるように、可動電極M2を固定電極F2に押圧するべく直流電流開閉器の筺体に圧縮され固定されている(図示なし)。
すなわち、スプリングSは、可動電極M2を押圧し、これにより固定電極F2を押圧している。
なお、スプリングSの下端をテーパ状ガイド部Gl、Grの上部(テーパ状ガイド部Gl、GrにおいてY軸正方向)に取り付け(図示なし)ても、可動電極Mの接触部と固定電極Fの接触部を押圧するので、このような構成でもよい。
The lower end of spring S (Y-axis negative direction in spring S) is attached to the upper part of movable electrode M2 (Y-axis positive direction in movable electrode M2), and the upper end of spring S (Y-axis positive direction in spring S) is movable. In order to ensure the contact between the electrode M2 and the fixed electrode F2, the movable electrode M2 is compressed and fixed to the casing of the DC current switch to press the movable electrode M2 against the fixed electrode F2 (not shown).
That is, the spring S presses the movable electrode M2, thereby pressing the fixed electrode F2.
Even if the lower end of the spring S is attached to the upper part of the tapered guide parts Gl, Gr (the Y-axis positive direction in the tapered guide parts Gl, Gr) (not shown), the contact part of the movable electrode M and the fixed electrode F Since the contact portion is pressed, such a configuration may be used.

<直流電流開閉器2が導通状態から非導通状態に遷移する過程>
図7において、可動絶縁体Inを矢印「←」Mdi方向(X軸負方向)に略平行移動する。移動の手段は図示していないが、手動又はソレノイド、モータ等任意の手段を使用して移動することができる。
<Process in which DC current switch 2 transitions from a conductive state to a non-conductive state>
In FIG. 7, the movable insulator In is moved approximately in the arrow “←” Mdi direction (X-axis negative direction). Although the moving means is not shown, it can be moved manually or using any means such as a solenoid or a motor.

図7において、可動絶縁体Inが矢印「←」Mdiの方向に移動すると、可動絶縁体Inの両脇がテーパ状ガイド部Gl及び/又はテーパ状ガイド部Grの下部(テーパ状ガイド部Gl、テーパ状ガイド部GrにおいてY軸負方向すなわち、略三角形状の長辺)に接触し、さらに、可動絶縁体Inが同方向に移動すると、可動絶縁体Inの上面(可動絶縁体InにおいてY軸正方向)がテーパ状ガイド部Gl及び/又はGrの下部を摺動しながら進み、テーパ状ガイド部Gl及びGrは上部に持ち上げられる(テーパ状ガイド部Gl及びGrは、Y軸正方向に移動)。
なお、図示しないが、テーパ状ガイド部Gl又はGrのいずれかの下部に可動絶縁体Inが摺動しても、テーパ状ガイド部Gl及びGrは上部に持ち上げられる構成をとることができる。可動電極M2は、テーパ状ガイド部Gl及びGrに固定するよう取り付けられているため。
これは、1の実施の形態におけるテーパ状ガイド部Gl、Gr及び可動電極Mとの構成により、テーパ状ガイド部Gl又はGrのいずれかの下部に可動絶縁体Inが摺動しても同様にテーパ状ガイド部Gl及びGrを動かすことができる第1の実施の形態でも同様である。
In FIG. 7, when the movable insulator In moves in the direction of arrow “←” Mdi, both sides of the movable insulator In are tapered guide portions Gl and / or lower portions of the tapered guide portions Gr (tapered guide portions Gl, When the taper-shaped guide portion Gr is in contact with the negative Y-axis direction, that is, the substantially triangular long side, and the movable insulator In moves in the same direction, the upper surface of the movable insulator In (the Y-axis in the movable insulator In The forward direction advances while sliding under the tapered guide portions Gl and / or Gr, and the tapered guide portions Gl and Gr are lifted upward (the tapered guide portions Gl and Gr move in the positive direction of the Y axis). ).
Although not shown, even when the movable insulator In slides below either the tapered guide portion Gl or Gr, the tapered guide portions Gl and Gr can be lifted upward. The movable electrode M2 is attached so as to be fixed to the tapered guide portions Gl and Gr.
This is the same even if the movable insulator In slides below either the tapered guide portion Gl or Gr due to the configuration of the tapered guide portions Gl and Gr and the movable electrode M in one embodiment. The same applies to the first embodiment in which the tapered guide portions Gl and Gr can be moved.

テーパ状ガイド部Gl及びGrに固定されている可動電極M2は、可動絶縁体Inが所定の距離を移動(X軸負方向に)したところで、固定電極F2と可動電極M2の接触部は離隔し、固定電極F2の接触部と可動電極M2の接触部間に間隙が発生する。 The movable electrode M2 fixed to the tapered guide portions Gl and Gr is separated from the contact portion between the fixed electrode F2 and the movable electrode M2 when the movable insulator In moves a predetermined distance (in the negative X-axis direction). A gap is generated between the contact portion of the fixed electrode F2 and the contact portion of the movable electrode M2.

なお、可動絶縁体Inが、固定電極F2と可動電極M2に衝突しないよう、可動絶縁体Inがテーパ状ガイド部Gl及びGrを押し上げ(Y軸正方向に)、固定電極F2の接触部と可動電極M2の接触部間に間隙を発生させる。その後、可動絶縁体Inは、固定電極F2、可動電極M2間の間隙に進入することになるが、可動絶縁体Inが、固定電極F2の接触部と可動電極M2の接触部間を遮る前に、固定電極F2の接触部、可動電極M2の接触部間の間隙にアーク放電が発生する(アーク放電については図示なし。)。 In order to prevent the movable insulator In from colliding with the fixed electrode F2 and the movable electrode M2, the movable insulator In pushes up the tapered guide portions Gl and Gr (in the positive direction of the Y axis) and moves with the contact portion of the fixed electrode F2. A gap is generated between the contact portions of the electrode M2. Thereafter, the movable insulator In enters the gap between the fixed electrode F2 and the movable electrode M2, but before the movable insulator In blocks between the contact portion of the fixed electrode F2 and the contact portion of the movable electrode M2. Arc discharge occurs in the gap between the contact portion of the fixed electrode F2 and the contact portion of the movable electrode M2 (the arc discharge is not shown).

図8に示すよう、さらに、可動絶縁体Inが、X軸負方向に進み、アーク放電発生直後に可動絶縁体Inが、固定電極F2の接触部と可動電極M2の接触部間の間隙に進入し、アーク放電を遮り、アーク放電が消滅する。この過程で発生するアーク放電は極めて小規模、短時間である。 As shown in FIG. 8, the movable insulator In further advances in the negative direction of the X axis, and immediately after the occurrence of the arc discharge, the movable insulator In enters the gap between the contact portion of the fixed electrode F2 and the contact portion of the movable electrode M2. The arc discharge is interrupted and the arc discharge disappears. Arc discharge generated in this process is extremely small and short.

したがって、一時的に小さなアーク放電が発生するが、直後にアーク放電が消滅し、以後、継続してアーク放電の発生はない。   Therefore, although a small arc discharge occurs temporarily, the arc discharge disappears immediately after that, and no arc discharge continues thereafter.

テーパ状ガイド部Gl及びGrの三角形形状の下部の頂点(テーパ状ガイド部Gl及びGrにおいてY軸負方向)の形状は、丸みをもたせ、可動絶縁体Inとの摺動摩擦を小さくする。   The shape of the lower apex of the triangular shape of the tapered guide portions Gl and Gr (the Y-axis negative direction in the tapered guide portions Gl and Gr) is rounded to reduce sliding friction with the movable insulator In.

<直流電流開閉器2が非導通状態から通状態に遷移する過程>
可動絶縁体Inが図8に示される位置において、図7に示す矢印「←」Mdiとは逆方向(X軸正方向)に可動絶縁体In移動させ、可動絶縁体Inと、テーパ状ガイド部Gl及びGrが接触しない位置まで移動させる。
この結果、テーパ状ガイド部Gl、Gr及び可動電極M2は、スプリングSの押圧により、Y軸負方向に移動し、可動電極M2の接触部は下降(Y軸負方向に移動)し、再び固定電極F2の接触部と接触し直流電流開閉器2は導通状態となる。
この過程では、固定電極F2の接触部と可動電極M2接触部の接触時にアーク放電は発生しない。
<Process in which DC current switch 2 transitions from a non-conductive state to a conductive state>
At the position where the movable insulator In is shown in FIG. 8, the movable insulator In is moved in the direction opposite to the arrow “←” Mdi shown in FIG. 7 (X-axis positive direction), and the movable insulator In and the tapered guide portion are moved. Move to a position where Gl and Gr do not touch.
As a result, the tapered guide portions Gl and Gr and the movable electrode M2 are moved in the negative Y-axis direction by the pressing of the spring S, and the contact portion of the movable electrode M2 is lowered (moved in the negative Y-axis direction) and fixed again. The direct current switch 2 is brought into conduction when in contact with the contact portion of the electrode F2.
In this process, arc discharge does not occur at the time of contact between the contact portion of the fixed electrode F2 and the contact portion of the movable electrode M2.

以上の動作により、直流電流開閉器2は導通し、電流を流すことができる導通状態となる。 With the above operation, the DC current switch 2 becomes conductive and becomes a conductive state in which a current can flow.

上記の状態遷移を行うことで、随意に直流電流開閉器2を導通状態/非導通状態とすることができる。
直流電流開閉器2に電流が流れている場合に直流電流開閉器2を断(OFF)とすると、アーク放電の期間を一瞬間に抑えて(アーク放電抑制)直流電流を遮断できる。
すなわち、固定電極F2の接触部と可動電極M2の接触部との間隔が開くことに追随して、アーク放電が両電極間に延在し、アーク放電が継続するとういことは無い。
本発明の直流電流開閉器2により、高圧及び/又は大電流の直流電流をアーク放電抑制により容易に遮断できる。
By performing the above-described state transition, the DC current switch 2 can be arbitrarily turned on / off.
If the DC current switch 2 is turned off when the current is flowing through the DC current switch 2, the arc current can be suppressed instantaneously (arc discharge suppression) to interrupt the DC current.
That is, following the increase in the distance between the contact portion of the fixed electrode F2 and the contact portion of the movable electrode M2, the arc discharge extends between both electrodes, and the arc discharge does not continue.
With the DC current switch 2 of the present invention, high-voltage and / or large-current DC current can be easily interrupted by suppressing arc discharge.

(5)第1の実施の形態及びその変形例における可動絶縁体のバリエーション
(5−1)可動絶縁体のバリエーション1
図9の(A1)及び(A2)を参照して、本発明の可動絶縁体のバリエーション1である可動絶縁体In2を説明する。
図9の(A1)は、本発明の第1の実施の形態及びその変形例における図1〜図8の可動絶縁体Inのバリエーションとしての左側面図(図面構成は図1の左側面図に相当)であり、可動絶縁体In2を示す。
(5) Variation of movable insulator in the first embodiment and its modification (5-1) Variation 1 of movable insulator
With reference to (A1) and (A2) of FIG. 9, movable insulator In2 which is the variation 1 of the movable insulator of this invention is demonstrated.
(A1) in FIG. 9 is a left side view as a variation of the movable insulator In of FIGS. 1 to 8 in the first embodiment of the present invention and its modification (the configuration of the drawing is shown in the left side view of FIG. 1). The movable insulator In2 is shown.

図9の(A2)は、可動絶縁体In2の平面図であり、図面構成は本発明の第1の実施の形態における図2の平面図に相当する。 (A2) of FIG. 9 is a plan view of the movable insulator In2, and the configuration of the drawing corresponds to the plan view of FIG. 2 in the first embodiment of the present invention.

図9の(A1)に示される可動絶縁体In2について説明すると、MeA1とMeA2に挟まれているInAは、任意の絶縁・不燃性を有する材料からなる絶縁体InAである。
MeA1、MeA2は、金属材料からなり、可動絶縁体In2の表面を構成する金属片MeA1、金属片MeA2である。金属片MeA1、金属片MeA2間は、電気的に絶縁されていて、導通することはない。
The movable insulator In2 shown in (A1) of FIG. 9 will be described. InA sandwiched between MeA1 and MeA2 is an insulator InA made of a material having arbitrary insulation and nonflammability.
MeA1 and MeA2 are a metal piece MeA1 and a metal piece MeA2 made of a metal material and constituting the surface of the movable insulator In2. The metal piece MeA1 and the metal piece MeA2 are electrically insulated and do not conduct.

金属片MeA1、金属片MeA2は、同図において、略三角形形状のテーパ状に構成されているが、絶縁体InAの上下(Y軸正負方向)の表裏面において、絶縁体InAの先端(X軸負方向、図1における矢印「←」Mdiの方向)における金属片MeA1、金属片MeA2が存在しない部分から、金属片MeA1、金属片MeA2が存在する部分に移り変わる面に段差を作らないためである。
これにより、金属片MeA1、金属片MeA2が、図1〜図6における接触部Cf、接触部Cm、図7、図8における固定電極F2の接触部、可動電極M2の接触部への進入した後、接触部Cf、接触部Cm、固定電極F2の接触部、可動電極M2の接触部への摺動を滑らかにする。
なお、金属片MeA1、金属片MeA2は、絶縁体InAの略最先端まで連続して絶縁体InAを覆い、元々段差を作らない構造も選択できる。この場合でも、金属片MeA1、金属片MeA2は、絶縁されている。
また、絶縁体InAの先端はテーパ状でなく全体として平板でもよく、この場合でも、金属片MeA1、金属片MeA2は、絶縁体InAの先端からテーパ状でInAを挟持しても、テーパ状ではなく平板でInAを挟持してもよい。挟持の意義は、挟んで保持するという意である。
The metal piece MeA1 and the metal piece MeA2 are formed in a substantially triangular taper shape in the drawing, but on the top and bottom surfaces (Y axis positive / negative direction) of the insulator InA, the tip of the insulator InA (X axis) This is because there is no step on the surface where the metal piece MeA1 and the metal piece MeA2 are not present in the negative direction (in the direction of the arrow “←” Mdi in FIG. 1) and the portion where the metal piece MeA1 and the metal piece MeA2 are present. .
Thereby, after the metal piece MeA1 and the metal piece MeA2 enter the contact part Cf, the contact part Cm in FIGS. 1 to 6, the contact part of the fixed electrode F2 in FIGS. 7 and 8, and the contact part of the movable electrode M2. The sliding to the contact part Cf, the contact part Cm, the contact part of the fixed electrode F2, and the contact part of the movable electrode M2 is made smooth.
In addition, the metal piece MeA1 and the metal piece MeA2 can also select a structure that covers the insulator InA continuously up to substantially the forefront of the insulator InA and does not originally form a step. Even in this case, the metal piece MeA1 and the metal piece MeA2 are insulated.
In addition, the tip of the insulator InA is not tapered and may be a flat plate as a whole. Even in this case, the metal piece MeA1 and the metal piece MeA2 are tapered from the tip of the insulator InA and are not tapered. Alternatively, InA may be sandwiched between flat plates. The significance of pinching is to hold the pinch.

金属片MeA1及び金属片MeA2は、図1〜図6における接触部Cf、接触部Cm、図7、図8における固定電極F2の接触部、可動電極M2の接触部の間隙に進入した後、図1〜図6の接触部Cf、接触部Cm、図7、図8における固定電極F2の接触部、可動電極M2の接触部に摺動し、これら接触部に発生した酸化物等の錆等を削り落とす機能を付加してもよく、また、摺動させないこともできる。
摺動させるには、たとえば、可動絶縁体In2の中央部(上記羅列したそれぞれの接触部と摺動する部分)を進行方向と逆方向(X軸正方向)にテーパ状を形成して厚くする。
または、テーパ状にしなくとも、該中央部を厚くして、テーパ状ガイド部のテーパ状傾斜形状を調整し、可動絶縁体In2がテーパ状ガイド部を押し上げ、上記羅列したそれぞれの接触部が開いた後、可動絶縁体In2の該中央部が、該接触部に摺動するようにする。
この場合、可動絶縁体In2はテーパ状ガイド部Gl、Grに摺動しないで、専ら可動絶縁体In2と該接触部が摺動するように構成する。これには、テーパ状ガイド部Gl、Grのテーパ形状のY軸方向の傾斜を、テーパの先端部(X軸正方向)の傾斜角度(X軸からの角度)を大きく、該先端部を過ぎたテーパ部分(X軸負方向)の傾斜角度を小さく又はX軸に平行とする。
本発明では、テーパ状ガイド部Gl、Grと可動絶縁体の全てIn〜In4との摺動により、あらかじめ、上記羅列したそれぞれの接触部間に間隙が発生(第1の実施の形態及びその変形例におけるハードウェア動作説明による。)しているので、該可動絶縁体が該間隙を通過し易い。
これに加えて、該接触部と該可動絶縁体が摺動する場合も、あらかじめ該接触部間に間隙が発生しているので、該間隙に進入した後、該接触部と該可動絶縁体との摺動が開始されるので、該間隙が発生していない該接触部間に該可動絶縁体が無理に進入しようとして進入不可という事態は発生しない。
The metal piece MeA1 and the metal piece MeA2 enter the gap between the contact portion Cf and the contact portion Cm in FIGS. 1 to 6, the contact portion of the fixed electrode F2 in FIGS. 7 and 8, and the contact portion of the movable electrode M2. 1 to 6 slid on the contact portion Cf, the contact portion Cm, the contact portion of the fixed electrode F2 and the contact portion of the movable electrode M2 in FIGS. 7 and 8, and rust such as oxide generated in these contact portions. A function of scraping off may be added, and it may not be slid.
For sliding, for example, the central portion of the movable insulator In2 (the portion that slides with each of the above-described contact portions) is tapered and thickened in the direction opposite to the traveling direction (X-axis positive direction). .
Or, even if it is not tapered, the central part is thickened, the tapered inclined shape of the tapered guide part is adjusted, and the movable insulator In2 pushes up the tapered guide part, and the respective contact parts arranged above are opened. After that, the central portion of the movable insulator In2 is slid on the contact portion.
In this case, the movable insulator In2 is configured so that the movable insulator In2 and the contact portion slide exclusively without sliding on the tapered guide portions Gl and Gr. To this end, the taper-shaped guide portions Gl and Gr have a taper-shaped inclination in the Y-axis direction, and the inclination angle (angle from the X-axis) of the tip end of the taper (X-axis positive direction) is large. The inclination angle of the tapered portion (X-axis negative direction) is made small or parallel to the X-axis.
In the present invention, a gap is generated in advance between each of the above-mentioned contact portions by sliding between the tapered guide portions Gl and Gr and all of the movable insulators In to In4 (first embodiment and modifications thereof). According to the hardware operation explanation in the example), the movable insulator easily passes through the gap.
In addition to this, when the contact portion and the movable insulator slide, a gap is generated between the contact portions in advance, so that after entering the gap, the contact portion and the movable insulator Therefore, there is no situation where the movable insulator cannot enter the contact portion where the gap is not generated and cannot enter the contact portion.

これら摺動は、接触部Cf、接触部Cm、図7、図8における固定電極F2の接触部、可動電極M2の接触部の接触/離隔動作において接触部の酸化物等の錆等を削り落とす機能に追加して、積極的に接触部を磨くものである。
摺動させない方法は、可動絶縁体In2がテーパ状ガイド部にのみ摺動し、上記羅列したそれぞれの接触部間の間隙を可動絶縁体が摺動しないで通過するよう、前記テーパの傾斜角度を大きくする(テーパのY軸方向の厚みを増す)ことなどがある。
These slides scrape off rust such as oxides in the contact portion in the contact / separation operation of the contact portion Cf, the contact portion Cm, the contact portion of the fixed electrode F2 in FIGS. 7 and 8, and the contact portion of the movable electrode M2. In addition to functions, it actively polishes the contact area.
The non-sliding method is such that the movable insulator In2 slides only on the taper-shaped guide portion, and the inclination angle of the taper is set so that the movable insulator passes through the gaps between the contact portions arranged in a row without sliding. Increasing (increasing the thickness of the taper in the Y-axis direction) may be used.

図9の(A1)の別の変形例として、金属片MeA1、金属片MeA2を絶縁体InAに、それぞれ上下(Y軸の正負方向)から食い込ませ(金属片MeA1の先端を軸に、金属片MeA1を時計回りに下方向へ、金属片MeA2の先端を軸に、金属片MeA2を反時計回りに上方向へ)、可動絶縁体In2全体としてテーパ形状を形成しない構成もある。 As another modified example of FIG. 9A1, the metal piece MeA1 and the metal piece MeA2 are bitten into the insulator InA from above and below (in the positive and negative directions of the Y-axis) (the metal piece There is also a configuration in which the taper shape is not formed as a whole of the movable insulator In2 by moving MeA1 downward in the clockwise direction, with the tip of the metal piece MeA2 as the axis, and the metal piece MeA2 in the counterclockwise upward direction).

(5)第1の実施の形態及びその変形例における可動絶縁体のバリエーション
(5−2)可動絶縁体のバリエーション2
図9の(B1)及び(B2)を参照して、本発明の可動絶縁体のバリエーション2であるIn3を説明する。
図9の(B1)は、本発明の第1の実施の形態及びその変形例における図1〜図8の可動絶縁体Inのバリエーションとしての左側面図(図面構成は図1の左側面図に相当)であり、可動絶縁体In3を示す。
(5) Variation of movable insulator in the first embodiment and its modification (5-2) Variation 2 of movable insulator
With reference to (B1) and (B2) of FIG. 9, In3 which is the variation 2 of the movable insulator of the present invention will be described.
(B1) of FIG. 9 is a left side view as a variation of the movable insulator In of FIGS. 1 to 8 in the first embodiment of the present invention and its modification (the configuration of the drawing is shown in the left side view of FIG. 1). The movable insulator In3 is shown.

図9の(B2)は、可動絶縁体In3の平面図であり、図面構成は本発明の第1の実施の形態における図2の平面図に相当する。 (B2) of FIG. 9 is a plan view of the movable insulator In3, and the configuration of the drawing corresponds to the plan view of FIG. 2 in the first embodiment of the present invention.

図9の(B1)は、図1の矢印「←」Mdiの方向(X軸負方向)に可動絶縁体In3が薄くなるテーパ形状を為しているが、テーパ形状でない平版でもよい。 9B1 has a tapered shape in which the movable insulator In3 becomes thin in the direction of the arrow “←” Mdi in FIG. 1 (X-axis negative direction), but a flat plate that is not tapered may be used.

図9の(B2)は、可動絶縁体In3の平面図であり、図面構成は本発明の第1の実施の形態における図2の平面図に相当する。 (B2) of FIG. 9 is a plan view of the movable insulator In3, and the configuration of the drawing corresponds to the plan view of FIG. 2 in the first embodiment of the present invention.

図9の(B2)は、可動絶縁体In3の移動方向(X軸正負方向)に対して、金属板MeBの両脇を絶縁体InB1、絶縁体InB2で覆った構成である。
この絶縁体InB1、絶縁体InB2は、図1における矢印「←」Mdiの方向に、可動絶縁体In3が移動したとき、図1〜図6における接触部Cf、接触部Cm間、図7、図8における固定電極F2の接触部、可動電極M2の接触部間の間隙を通り、アーク放電を遮断する。
このバリエーション2では、可動絶縁体In3と上記接触部との摺動に関し、接触部Cfか接触部Cmのいずれか、可動電極M2の接触部か固定電極F2の接触部のいずれかに摺動させることができる。
(B2) in FIG. 9 is a configuration in which both sides of the metal plate MeB are covered with the insulators InB1 and InB2 with respect to the moving direction of the movable insulator In3 (X-axis positive / negative direction).
The insulator InB1 and the insulator InB2 are moved between the contact portion Cf and the contact portion Cm in FIGS. 1 to 6 when the movable insulator In3 moves in the direction of the arrow “←” Mdi in FIG. 8 passes through the gap between the contact portion of the fixed electrode F2 and the contact portion of the movable electrode M2, and interrupts the arc discharge.
In this variation 2, with respect to sliding between the movable insulator In3 and the contact portion, either the contact portion Cf or the contact portion Cm is slid to either the contact portion of the movable electrode M2 or the contact portion of the fixed electrode F2. be able to.

可動絶縁体In、In2、In3の絶縁材料は、セラミックス、コランダム、アルミナ又はβ−サイアロンセラミックス、ガラス繊維、合成樹脂などが挙げられる。
可動絶縁体に施される金属材料は、機械的強度、耐摩耗性、耐熱性に優れたチタンなどが好適である。
Examples of the insulating material of the movable insulators In, In2, and In3 include ceramics, corundum, alumina or β-sialon ceramics, glass fibers, and synthetic resins.
The metal material applied to the movable insulator is preferably titanium having excellent mechanical strength, wear resistance, and heat resistance.

(5)第1の実施の形態及びその変形例における可動絶縁体のバリエーション
(5−3)可動絶縁体のバリエーション3
図示しないが、絶縁体材料のみで可動絶縁体を構成できる。この可動絶縁体の名称を可動絶縁体In4とする。可動絶縁体In4をテーパ形状にするか平板にするかは自由な選択である。
可動絶縁体をIn4は、図1〜図6における接触部Cf、接触部Cm、図7、図8における固定電極F2の接触部、可動電極M2の接触部を研磨する手段として、可動絶縁体In4を該接触部に摺動させるかさせないかの方法は、上記可動絶縁体のバリエーション1に記載したとおりである。
該接触部を研磨する手段に用いる絶縁体材料としては、セラミックス、コランダム、アルミナ又はβ−サイアロンセラミックスが機械的強度、耐摩耗性、耐熱性に優れ好適である。
該接触部を研磨(摺動)させない場合は、絶縁体材料として、セラミックス、コランダム、アルミナ又はβ−サイアロンセラミックスに加えて、ガラス繊維、合成樹脂が挙げられる。
(5) Variation of movable insulator in the first embodiment and its modification (5-3) Variation 3 of movable insulator
Although not shown, the movable insulator can be constituted only by the insulator material. The name of the movable insulator is referred to as a movable insulator In4. Whether the movable insulator In4 is a tapered shape or a flat plate can be freely selected.
The movable insulator In4 is a movable insulator In4 as means for polishing the contact portion Cf, the contact portion Cm in FIGS. 1 to 6, the contact portion of the fixed electrode F2 and the contact portion of the movable electrode M2 in FIGS. The method for determining whether or not to cause the contact portion to slide is as described in Variation 1 of the movable insulator.
As an insulator material used for the means for polishing the contact portion, ceramics, corundum, alumina, or β-sialon ceramics are preferable because of excellent mechanical strength, wear resistance, and heat resistance.
When the contact portion is not polished (slid), the insulator material includes glass fiber and synthetic resin in addition to ceramics, corundum, alumina, or β-sialon ceramics.

第1の実施の形態とその変形例の各電極の接触部の凹凸の凸部は、線状、格子状、略半球形状の頂点、円柱、円錐形円柱、四角柱、多角形柱、三角柱におけるこれらの上部などが挙げられる。 The protrusions of the concavities and convexities of the contact portions of the electrodes of the first embodiment and the modifications thereof are linear, grid-like, substantially hemispherical apexes, cylinders, conical cylinders, quadrangular pillars, polygonal pillars, triangular prisms. These upper parts are mentioned.

F、F2 固定電極
M、M2 可動電極
Cf 接触部
Cm 接触部
In、In2、In3、In4 可動絶縁体
Gl、Gr テーパ状ガイド部
S 弾性体
Fu 支点
Mdi 可動絶縁体の挿入の移動方向
Mdm 可動電極の回転方向
InA、InB1、InB2 絶縁体
MeA1、MeA2 金属片
MeB 金属板
W1、W1 給電線
F, F2 Fixed electrode M, M2 Movable electrode Cf Contact part Cm Contact part In, In2, In3, In4 Movable insulator Gl, Gr Tapered guide part S Elastic body Fu Support point Mdi Moving direction of insertion of movable insulator Mdm Movable electrode InA, InB1, InB2 Insulator MeA1, MeA2 Metal piece MeB Metal plate W1, W1 Feed line

Claims (7)

直流電流の導通から遮断、遮断から導通へと排他的に遷移させる開閉器において、電流の導通、遮断を担う一方の電極の接触部及び/又は他方の電極の接触部に、任意の形状の1又は複数の凹凸の形状が形成され、XYZ座標において前記他方の電極がX軸方向に延在し、前記一方の電極にテーパ状ガイド部が固定され、該一方の電極又は該テーパ状ガイド部には、該一方の電極の接触部と該他方の電極の接触部が接触し導通するための任意の圧力が印加され、前記テーパ状ガイド部のテーパ形成角度は、前記XYZ座標の交点に位置する該テーパ状ガイド部のY軸の負方向先端部、を基点として、X軸方向に角度0rad<該テーパ形成角度<π/2radの傾斜で形成され、該テーパ状ガイド部のテーパ状の先端部は、前記XYZ座標のXY平面に平行にXY平面における0radを超え、かつ、π/2rad未満の座標に位置し、前記X軸の正方向に、前記両接触部と離隔して位置する可動絶縁体は、該X軸の負方向に移動し、前記テーパ状ガイド部をXY平面内において反時計回り方向に回転移動又は前記Y軸の正方向に移動させ、移動する該テーパ状ガイド部に連動して移動する前記一方の電極の接触部は前記他方の電極の接触部から離隔し、該両接触部間に形成される間隙に位置して前記開閉器は電流を遮断し、前記可動絶縁体は、前記X軸の正方向に移動し前記テーパ状ガイド部をXY平面内において時計回り方向に回転移動又は前記Y軸の負方向に移動させ、前記両接触部は接触し導通し、前記開閉器は導通することを特徴とする直流電流開閉器。 In a switch that makes an exclusive transition from conduction to interruption of DC current and from interruption to conduction, a contact portion of one electrode responsible for conduction and interruption of current and / or a contact portion of the other electrode has an arbitrary shape 1 or shapes of a plurality of concave convex is formed, the other electrode in the XYZ coordinates is extending in the X-axis direction, the tapered guide portion is fixed to the one electrode, the one electrode or the tapered guide portion An arbitrary pressure is applied to the contact portion of the one electrode and the contact portion of the other electrode so as to be conductive, and the taper forming angle of the tapered guide portion is located at the intersection of the XYZ coordinates. The taper-shaped guide part is formed with an inclination of an angle 0 rad <the taper formation angle <π / 2 rad in the X-axis direction with the Y-axis negative tip of the taper-shaped guide part as a base point. Part of the XYZ coordinates A movable insulator positioned parallel to the Y plane and exceeding 0 rad in the XY plane and less than π / 2 rad and spaced apart from both contact portions in the positive direction of the X axis is the X axis. The one that moves in conjunction with the taper-shaped guide portion that moves and rotates in the counterclockwise direction in the XY plane or moves in the positive direction of the Y-axis. The contact portion of the electrode is separated from the contact portion of the other electrode, and the switch interrupts the current at a gap formed between the contact portions, and the movable insulator is connected to the X-axis. The taper-shaped guide portion is moved in the positive direction and rotated in the clockwise direction in the XY plane or moved in the negative direction of the Y-axis, the two contact portions are in contact with each other, and the switch is in conduction. DC current switch featuring. 前記可動絶縁体が前記X軸の負方向に移動し、離隔した前記両電極の接触部間の間隙に位置する前に、該間隙にアーク放電が発生し、該間隙に該可動絶縁体が位置したとき、該アーク放電が消滅することを特徴とする請求項1に記載の直流電流開閉器。 Before the movable insulator moves in the negative direction of the X-axis and is positioned in the gap between the contact portions of the two separated electrodes, arc discharge occurs in the gap, and the movable insulator is positioned in the gap. The DC current switch according to claim 1, wherein the arc discharge is extinguished. 前記可動絶縁体は、ガラス繊維体又は合成樹脂を含む絶縁体材料からなる、並びにガラス繊維体若しくは合成樹脂を含む該絶縁体材料により被覆されるか又はガラス繊維体若しくは合成樹脂を含む該絶縁体材料により表裏面を挟持される部材からなる、ことを特徴とする請求項1又は2に記載の直流電流開閉器。 The movable insulator is made of an insulating material including a glass fiber body or a synthetic resin, and the insulator including the glass fiber body or the synthetic resin is covered with the insulating material including the glass fiber body or the synthetic resin. The DC current switch according to claim 1 or 2, wherein the DC current switch is made of a material having a front and back surfaces sandwiched between materials. 前記可動絶縁体は、任意の絶縁・不燃性を有する材料からなる部材の一方の面及び/又は他方の面を金属材料で被覆され、該一方の面及び他方の面に金属材料を挟持され、該金属材料間は絶縁され、前記可動絶縁体は前記一方及び/又は他方の電極の接触部に摺動可能であることを特徴とする請求項1又は2に記載の直流電流開閉器。 The movable insulator is coated with a metal material on one surface and / or the other surface of a member made of a material having an arbitrary insulation and nonflammability, and the metal material is sandwiched between the one surface and the other surface, 3. The DC current switch according to claim 1, wherein the metal material is insulated, and the movable insulator is slidable on a contact portion of the one and / or the other electrode. 前記可動絶縁体は、絶縁体材料を主要材料として構成され又は任意の部材の一方の面及び/又は他方の面を該絶縁体材料で被覆し若しくは一方の面及び他方の面を該絶縁体材料で挟持し、前記可動絶縁体は前記一方及び/又は他方の電極の接触部に摺動可能であることを特徴とする請求項1又は2に記載の直流電流開閉器。 The movable insulator is composed of an insulator material as a main material, or covers one surface and / or the other surface of an arbitrary member with the insulator material, or the one surface and the other surface of the insulator material. The DC current switch according to claim 1, wherein the movable insulator is slidable on a contact portion of the one and / or the other electrode. 前記絶縁体材料は、セラミックス、コランダム、アルミナ又はβ−サイアロンセラミックスを主体とした材料からなることを特徴とする請求項に記載の直流電流開閉器。 The DC current switch according to claim 5 , wherein the insulator material is made of a material mainly composed of ceramics, corundum, alumina, or β-sialon ceramics. 前記任意の圧力の発生源は、弾性体によることを特徴とする請求項1に記載の直流電流開閉器。 The direct current switch according to claim 1, wherein the source of the arbitrary pressure is an elastic body.
JP2010047483A 2010-03-04 2010-03-04 DC current switch Expired - Fee Related JP5285007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010047483A JP5285007B2 (en) 2010-03-04 2010-03-04 DC current switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010047483A JP5285007B2 (en) 2010-03-04 2010-03-04 DC current switch

Publications (2)

Publication Number Publication Date
JP2011181477A JP2011181477A (en) 2011-09-15
JP5285007B2 true JP5285007B2 (en) 2013-09-11

Family

ID=44692757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010047483A Expired - Fee Related JP5285007B2 (en) 2010-03-04 2010-03-04 DC current switch

Country Status (1)

Country Link
JP (1) JP5285007B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807044A (en) * 2018-06-08 2018-11-13 宁波金宸科技有限公司 A kind of grid arc-control device and its relay

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6004226B2 (en) * 2012-09-13 2016-10-05 パナソニックIpマネジメント株式会社 Trigger switch and power tool
JP6461484B2 (en) * 2014-04-17 2019-01-30 富士通コンポーネント株式会社 Electromagnetic relay

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842228A (en) * 1973-08-27 1974-10-15 Us Navy Circuit breaker assembly with interposed wedge non-conductor and complementary housing arc-prevention structure
JP2000164108A (en) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd Circuit breaker
JP2003208829A (en) * 2002-01-10 2003-07-25 Sumitomo Electric Ind Ltd Direct current breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807044A (en) * 2018-06-08 2018-11-13 宁波金宸科技有限公司 A kind of grid arc-control device and its relay

Also Published As

Publication number Publication date
JP2011181477A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5285007B2 (en) DC current switch
US8757689B2 (en) Permanent magnetic lifting device
KR101913479B1 (en) Electrode for spot welding, and welding device and welding method employing same
JP2015152547A (en) current probe
WO2017059821A1 (en) Contact system and contactor comprising contact system
US20150303015A1 (en) Electromagnetic relay
JP2014085347A (en) Contact spring for inspection socket for high current inspection of electronic component
CN207542087U (en) A kind of novel cambered surface suitable for break group contacts left and right contact strip
JP2014102908A (en) Contact device
CN105489449A (en) Rotatable contact structure of direct-current electromagnetic relay
CN206301709U (en) A kind of arc-extinguishing mechanism of nonpolarity D.C. contactor
CN205406407U (en) Rotatable contact structure of direct current electromagnetic relay
US10566157B2 (en) Heavy current reed switch contact structure
CN105140074B (en) Tilt electric contactor
JP2013140767A5 (en)
CN203910563U (en) Pressure spring-type flat contactor
CN202550078U (en) Power line butting device
CN100361245C (en) Self-cleaning type cam-operated switch capable of being turning on-off quickly
CN104795277B (en) DC contactor
JP2756677B2 (en) Particle handling equipment
CN205303251U (en) Button
CN107910222A (en) A kind of high-voltage switch gear
CN110299263A (en) A kind of microswitch
CN104240976A (en) Self-cleaning contact device for disconnecting switches
CN204730003U (en) The light fixture of fast changable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130130

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130130

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R150 Certificate of patent or registration of utility model

Ref document number: 5285007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees