JP5282227B2 - Both-end diamide type hydrogelator - Google Patents

Both-end diamide type hydrogelator Download PDF

Info

Publication number
JP5282227B2
JP5282227B2 JP2009040379A JP2009040379A JP5282227B2 JP 5282227 B2 JP5282227 B2 JP 5282227B2 JP 2009040379 A JP2009040379 A JP 2009040379A JP 2009040379 A JP2009040379 A JP 2009040379A JP 5282227 B2 JP5282227 B2 JP 5282227B2
Authority
JP
Japan
Prior art keywords
integer
hydrocarbon group
formula
mmol
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009040379A
Other languages
Japanese (ja)
Other versions
JP2010195881A (en
Inventor
均 民秋
啓史郎 小川
一孔 戸澗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Ritsumeikan Trust
Original Assignee
Asahi Kasei Corp
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Ritsumeikan Trust filed Critical Asahi Kasei Corp
Priority to JP2009040379A priority Critical patent/JP5282227B2/en
Publication of JP2010195881A publication Critical patent/JP2010195881A/en
Application granted granted Critical
Publication of JP5282227B2 publication Critical patent/JP5282227B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogelling agent having a novel chemical structure and a hydrogel. <P>SOLUTION: This hydrogelling agent is a benzamide derivative represented by Formula (1) (wherein Z<SB>1</SB>and Z<SB>2</SB>each represent an amide bond of NHCO or CONH, k represents an integer of 0 to 4, m represents an integer of 1 to 100, n represents an integer of 1 to 6, and p represents an integer of 1 to 6; R<SB>1</SB>represents a 8-22C hydrocarbon group bonded through an oxygen atom; R<SB>2</SB>represents H or a 1-22C hydrocarbon group bonded through an oxygen atom; and R<SB>3</SB>represents H or a 1-22C alkoxy group, and R<SB>2</SB>and R<SB>3</SB>are not simultaneously H) produced by bonding oligomer or polymer derivatives of ethylene glycol through a plurality of amide bonds. There is also provided a hydrogel comprising the derivative as the hydrogelling agent and water. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、新規な化学構造を有するヒドロゲル化剤、及び、ヒドロゲルに関するものである。   The present invention relates to a hydrogelator having a novel chemical structure and a hydrogel.

低分子ゲルは、低分子化合物が分子間力による自己組織化により3次元ネットワークを形成することによって、溶媒分子を捕捉したゲルである(例えば、非特許文献1参照)。
低分子ゲルは、ゲルを形成する低分子化合物の分子設計が可能なことから、分離膜、センサー、触媒、電子材料、バイオ素材等、様々な分野への応用が期待されている(例えば、非特許文献2参照)。
A low molecular gel is a gel in which solvent molecules are captured by forming a three-dimensional network by self-assembly of low molecular compounds by intermolecular forces (see, for example, Non-Patent Document 1).
Low molecular gels are expected to be applied to various fields such as separation membranes, sensors, catalysts, electronic materials, biomaterials, etc., since molecular design of low molecular compounds that form gels is possible. Patent Document 2).

我々も、新規な構造を有する3,4,5−長鎖アルキルオキシベンズアミド誘導体を合成し(特許文献1参照)、その一部の化合物が有機溶媒をゲル化することを見出し、さらに、アミド結合の数を増やすことでゲル化能が高まることを見出した(特許文献2参照)。   We also synthesized 3,4,5-long-chain alkyloxybenzamide derivatives having a novel structure (see Patent Document 1), and found that some of the compounds gelled organic solvents. It has been found that the gelling ability is increased by increasing the number of the nuclei (see Patent Document 2).

しかし、バイオ素材への応用を考えた場合、有機溶媒をゲル化したオルガノゲルよりも、水をゲル化したヒドロゲルが望ましいことは明らかであるが、低分子が形成するヒドロゲルの報告は少ない(例えば、非特許文献3参照)。また、得られたヒドロゲルをバイオ素材として利用する場合、ヒドロゲル自体が生体適合性を持つことが望ましいが、こうした観点からの報告はほとんど無かった。   However, when considering application to biomaterials, it is clear that water gelled hydrogels are preferable to organogel gels, but there are few reports of low molecular hydrogels (for example, Non-Patent Document 3). Further, when the obtained hydrogel is used as a biomaterial, it is desirable that the hydrogel itself has biocompatibility, but there has been almost no report from this viewpoint.

我々は、これまでに、エチレングリコールのオリゴマー又はポリマー誘導体を結合した3,4,5−長鎖アルキルオキシベンズアミド誘導体を合成し、これらの化合物が医療用材料等に生体適合性を付与する目的で使用できること(特許文献3参照)、また、これらの化合物が有機溶媒をゲル化すること(特許文献4参照)を開示したばかりでなく、さらに、これらの化合物がヒドロゲルを形成することを見出した(特許文献5参照)。しかし、目的や用途に応じてヒドロゲルの物性や調製法等を最適化するために、さらに新規な分子構造を有するヒドロゲル化剤の開発が望まれている。   We have synthesized 3,4,5-long chain alkyloxybenzamide derivatives to which oligomers or polymer derivatives of ethylene glycol have been bound so far, and these compounds are intended to impart biocompatibility to medical materials. It has been disclosed that these compounds can be used (see Patent Document 3), and that these compounds gel organic solvents (see Patent Document 4), and further, these compounds have been found to form hydrogels ( (See Patent Document 5). However, development of a hydrogelator having a new molecular structure is desired in order to optimize the properties and preparation methods of the hydrogel according to the purpose and application.

特開2001−122889号公報JP 2001-122889 A 特開2004−262809号公報JP 2004-262809 A 特開2005−232061号公報JP 2005-232061 A 特開2005−232278号公報JP-A-2005-232278 特開2007−217551号公報JP 2007-217551 A

ケミカル・レビュー(Chem.Rev.)、1997年、97巻、p.3133−3159Chemical Review (Chem. Rev.), 1997, Vol. 97, p. 3133-3159 アンゲバンテ・ヘミー・インターナショナル・エディション(Angew.Chem.Int.Ed.)、2000年、39巻、p.2263−2266Angewante Chemie International Edition (Angew. Chem. Int. Ed.), 2000, 39, p. 2263-2266 ケミカル・レビュー(Chem.Rev.)、2004年、104巻、p.1201−1217Chemical Review (Chem. Rev.), 2004, 104, p. 1201-1217

本発明の課題は、新規な化学構造を有するヒドロゲル化剤、及び、ヒドロゲルを提供することにある。   An object of the present invention is to provide a hydrogelator having a novel chemical structure and a hydrogel.

本発明者らは、式(2)で示されるエチレングリコールのオリゴマー又はポリマーを結合し、長鎖アルキルオキシ基を有するベンズアミド誘導体が、ヒドロゲルを形成することを見出し、その誘導体合成を行ってきた。その際に、それらの誘導体の構造や分子量の確認を目的として、イオン化の条件を精査することにより、質量分析の条件を見出すことができた。その結果、NMR等の解析では見出せなかった、式(1)で示されるエチレングリコールのオリゴマー又はポリマーを介して両末端にベンズアミド誘導体を結合した化合物が含まれることを発見し、本発明を完成するに至った。式(1)で示される化合物は、式(2)で示される化合物のヒドロゲル形成を阻害せず、ヒドロゲルを形成するベンズアミド誘導体に新たな分子構造の多様性をもたらすものであり、ヒドロゲルの物性等を最適化する手段を与える。

Figure 0005282227

(式中で、Z及びZはNHCO又はCONHのアミド結合を、kは0から4までの整数を、mは1から、好ましくは7から、100までの整数を、nは1から、好ましくは2から、6までの整数を、pは1から6までの整数を表す。また、Rは酸素を介して結合した炭素数8から22まで、好ましくは12から18までの炭化水素基を、RはH、又は、酸素を介して結合した炭素数1から22まで、好ましくは18までの炭化水素基を、RはH、又は、酸素を介して結合した炭素数1から22まで、好ましくは18までの炭化水素基を表し、RとRは同時にHではない。また、好ましくはR及びRは酸素原子を介して結合した炭素数12から18までの炭化水素基を、RはH、又は、酸素原子を介して結合した炭素数1から18までの炭化水素基を表す。)
Figure 0005282227

(式中で、XはOH又はNHを、ZはNHCO又はCONHのアミド結合を、kは0から4までの整数を、mは1から、好ましくは7から、100までの整数を、nは1から、好ましくは2から、6までの整数を、pは1から6までの整数を表す。また、Rは酸素を介して結合した炭素数8から22まで、好ましくは12から18までの炭化水素基を、RはH、又は、酸素を介して結合した炭素数1から22まで、好ましくは18までの炭化水素基を、RはH、又は、酸素を介して結合した炭素数1から22まで、好ましくは18までの炭化水素基を表し、RとRは同時にHではない。また、好ましくはR及びRは酸素原子を介して結合した炭素数12から18までの炭化水素基を、RはH、又は、酸素原子を介して結合した炭素数1から18までの炭化水素基を表す。)
すなわち、本発明は、式(1)で示されるベンズアミド誘導体、それを有効成分とするヒドロゲル化剤、そのヒドロゲル化剤と水を含んでなるヒドロゲル、式(1)及び式(2)で示されるベンズアミド誘導体の両方を有効成分として含むヒドロゲル化剤、及び、そのヒドロゲル化剤と水とを含んでなるヒドロゲルを提供する。 The present inventors have found that a benzamide derivative having a long-chain alkyloxy group formed by binding an ethylene glycol oligomer or polymer represented by the formula (2) forms a hydrogel, and has synthesized the derivative. At that time, for the purpose of confirming the structure and molecular weight of these derivatives, it was possible to find the conditions of mass spectrometry by examining the ionization conditions. As a result, it was discovered that a compound having a benzamide derivative bonded to both ends via an oligomer or polymer of ethylene glycol represented by the formula (1), which could not be found by analysis such as NMR, was completed. It came to. The compound represented by the formula (1) does not inhibit the formation of the hydrogel of the compound represented by the formula (2), and brings about a variety of new molecular structures to the benzamide derivative that forms the hydrogel. Gives a means to optimize
Figure 0005282227

(Wherein Z 1 and Z 2 are amide bonds of NHCO or CONH, k is an integer from 0 to 4, m is an integer from 1, preferably from 7 to 100, and n is from 1; Preferably, it represents an integer from 2 to 6, and p represents an integer from 1 to 6. In addition, R 1 is a hydrocarbon group having 8 to 22 carbon atoms, preferably 12 to 18 carbon atoms bonded via oxygen. R 2 represents a hydrocarbon group having 1 to 22 carbon atoms, preferably 18 bonded via H or oxygen, and R 3 represents 1 to 22 carbon atoms bonded via H or oxygen. R 2 and R 3 are not H at the same time, preferably R 1 and R 3 are hydrocarbons having 12 to 18 carbon atoms bonded via an oxygen atom. R 2 is H or carbon bonded via an oxygen atom Represents a hydrocarbon group having a prime number of 1 to 18.)
Figure 0005282227

(Wherein X is OH or NH 2 , Z is an amide bond of NHCO or CONH, k is an integer from 0 to 4, m is an integer from 1, preferably 7 to 100, n Represents an integer from 1, preferably from 2 to 6, and p represents an integer from 1 to 6. R 1 has from 8 to 22 carbon atoms bonded via oxygen, preferably from 12 to 18 R 2 is a hydrocarbon group having 1 to 22 carbon atoms, preferably 18 carbon atoms bonded through H or oxygen, and R 3 is a carbon atom bonded through H or oxygen. R 2 and R 3 are not H at the same time, and preferably R 1 and R 3 are bonded to each other via an oxygen atom, and represent a hydrocarbon group having a number of 1 to 22, preferably 18. the hydrocarbon group of up to, R 2 is H, or, through an oxygen atom It represents a bond hydrocarbon group having 1 to 18 carbon atoms.)
That is, the present invention is represented by formula (1) and formula (2), a benzamide derivative represented by formula (1), a hydrogelator comprising the same as an active ingredient, a hydrogel comprising the hydrogelator and water, formula (1) and formula (2) Provided are a hydrogelator comprising both benzamide derivatives as active ingredients, and a hydrogel comprising the hydrogelator and water.

本発明は、分子の自己組織化により、エチレングリコールのオリゴマー又はポリマーを部分構造とする化合物がヒドロゲル化する希な分子種に、新たな分子構造の多様性を加えるものである。   The present invention adds a variety of new molecular structures to a rare molecular species in which a compound having an ethylene glycol oligomer or polymer as a partial structure hydrogels by molecular self-assembly.

本発明のベンズアミド誘導体は、式(1)で表される化合物である。

Figure 0005282227

(式中で、Z及びZはNHCO又はCONHのアミド結合を、kは0から4までの整数を、mは1から、好ましくは7から、100までの整数を、nは1から、好ましくは2から、6までの整数を、pは1から6までの整数を表す。また、Rは酸素を介して結合した炭素数8から22まで、好ましくは12から18までの炭化水素基を、RはH、又は、酸素を介して結合した炭素数1から22まで、好ましくは18までの炭化水素基を、RはH、又は、酸素を介して結合した炭素数1から22まで、好ましくは18までの炭化水素基を表し、RとRは同時にHではない。また、好ましくはR及びRは酸素原子を介して結合した炭素数12から18までの炭化水素基を、RはH、又は、酸素原子を介して結合した炭酸素数1から18までの炭化水素基を表す。) The benzamide derivative of the present invention is a compound represented by the formula (1).
Figure 0005282227

(Wherein Z 1 and Z 2 are amide bonds of NHCO or CONH, k is an integer from 0 to 4, m is an integer from 1, preferably from 7 to 100, and n is from 1; Preferably, it represents an integer from 2 to 6, and p represents an integer from 1 to 6. In addition, R 1 is a hydrocarbon group having 8 to 22 carbon atoms, preferably 12 to 18 carbon atoms bonded via oxygen. R 2 represents a hydrocarbon group having 1 to 22 carbon atoms, preferably 18 bonded via H or oxygen, and R 3 represents 1 to 22 carbon atoms bonded via H or oxygen. R 2 and R 3 are not H at the same time, preferably R 1 and R 3 are hydrocarbons having 12 to 18 carbon atoms bonded via an oxygen atom. R 2 is H or carbon bonded via an oxygen atom Represents a hydrocarbon group having 1 to 18 oxygen atoms.)

なお、室温付近でのヒドロゲル形成の観点からmは7以上、Rの炭素数は12から18まで、RとRの炭素数は18以下が好ましく、合成工程の観点からnは2以上が好ましい。 In addition, m is preferably 7 or more from the viewpoint of hydrogel formation near room temperature, R 1 has 12 to 18 carbon atoms, R 2 and R 3 have 18 or less carbon atoms, and n is 2 or more from the viewpoint of the synthesis step. Is preferred.

式(1)で示されるベンズアミド誘導体は、例えば、酸素を介して炭化水素基と結合した安息香酸誘導体と末端に保護されたカルボキシ基又はアミノ基を持つアミン誘導体をアミド縮合し(特開2004−2628091)、脱保護の後、エチレングリコールのオリゴマー又はポリマーのアミン誘導体又はカルボン酸誘導体をアミド縮合することによって得られる。その際、Z又はZとエチレングリコールのオリゴマー又はポリマーの間のアルキル鎖長は、下に記載のエチレングリコールのオリゴマー又はポリマーのアミン誘導体又はカルボン酸誘導体の合成法に準じて調整が可能である。また、得られた生成物が、原料あるいは反応条件等により、両端にベンズアミド構造を有する化合物と、一端にのみベンズアミド構造を有する化合物の混合物になる場合は、必要に応じて公知の分取方法、例えば、高速液体クロマトグラフィーにより、一方を分取するか、又は、一方の割合を高めた組成物を得ることが可能である。 The benzamide derivative represented by the formula (1) is, for example, amide-condensed between a benzoic acid derivative bonded to a hydrocarbon group via oxygen and an amine derivative having a carboxy group or amino group protected at the terminal (Japanese Patent Laid-Open No. 2004-2006). 2628091), after deprotection, it is obtained by amide condensation of an ethylene glycol oligomer or polymer amine derivative or carboxylic acid derivative. In this case, the alkyl chain length between Z 1 or Z 2 and the ethylene glycol oligomer or polymer can be adjusted according to the synthesis method of the ethylene glycol oligomer or polymer amine derivative or carboxylic acid derivative described below. is there. Further, when the resulting product is a mixture of a compound having a benzamide structure at both ends and a compound having a benzamide structure only at one end, depending on the raw materials or reaction conditions, a known fractionation method, if necessary, For example, it is possible to fractionate one or obtain a composition with an increased proportion of one by high-performance liquid chromatography.

エチレングリコールのオリゴマー又はポリマーの両端がアミノ化された誘導体は、例えば、市販のエチレングリコールのオリゴマー又はポリマーの両端を、順次、トシル化又はメシル化、トシル基又はメシル基のヨウ素化、ヨウ素基のフタルイミドへの変換、ヒドラジンによる脱保護によって得られる。また、市販で入手できない長さのオリゴマーについては、オリゴエチレングリコールの一端を保護し、他の一端をトシル化して、合計が必要な長さとなるオリゴエチレングリコールと縮合の後、脱保護して得られる化合物(ジャーナル・オブ・オーガニック・ケミストリー(J.Org.Chem.)2004年、69巻、p.639−647)の両端を、順次、トシル化又はメシル化、トシル基又はメシル基のヨウ素化、ヨウ素基のフタルイミドへの変換、ヒドラジンによる脱保護によって得られる(バイオケミストリー(Biochemistry)1980年、19巻、p.4595−4600)。あるいは、トシル化又はメシル化に続いて、トシル基又はメシル基のアジド化、それに引き続く還元によっても同様の化合物が得られる。特に、エチレングリコールのオリゴマー又はポリマーをメシル化することにより、その両端にアミノ基を導入した化合物を得ることが容易となる。   Derivatives in which both ends of the ethylene glycol oligomer or polymer are aminated are, for example, tosylated or mesylated, iodinated tosyl group or mesyl group, iodine group Obtained by conversion to phthalimide and deprotection with hydrazine. For oligomers with lengths that are not commercially available, one end of oligoethylene glycol is protected, the other end is tosylated, and condensed with oligoethylene glycol, the total length of which is required, followed by deprotection. Tosylation or mesylation, iodination of a tosyl group or mesyl group, in order, on both ends of the resulting compound (J. Org. Chem. 2004, 69, p. 639-647) , Conversion of iodine group to phthalimide, deprotection with hydrazine (Biochemistry 1980, 19, p. 4595-4600). Alternatively, a similar compound can be obtained by tosylation or mesylation followed by azidation of a tosyl group or mesyl group, followed by reduction. In particular, by mesylating an ethylene glycol oligomer or polymer, it becomes easy to obtain a compound having amino groups introduced at both ends thereof.

エチレングリコールのオリゴマー又はポリマーの両端がカルボキシ基である誘導体は、同様に、例えば、末端に保護されたカルボキシ基を持つアルコールとのエーテル形成によって得られる。   Derivatives in which both ends of the ethylene glycol oligomer or polymer are carboxy groups are likewise obtained, for example, by ether formation with alcohols having terminally protected carboxy groups.

3、4、5位に酸素原子を介して同じ炭化水素基を結合した安息香酸誘導体は、3,4,5−トリヒドロキシ安息香酸エステルをエーテル化の後、エステルを加水分解することによって得られる。   A benzoic acid derivative having the same hydrocarbon group bonded to the 3, 4, 5 position via an oxygen atom is obtained by etherifying 3,4,5-trihydroxybenzoic acid ester and then hydrolyzing the ester. .

5位が水素で、3位と4位に酸素原子を介して同じ炭化水素基を結合した安息香酸誘導体は、3,4−ジヒドロキシ安息香酸エステルを原料に、3位と4位を同時にエーテル化した後、エステルを加水分解することによって得られる。また、3位と4位に酸素原子を介して異なる炭化水素基を結合した安息香酸誘導体は、例えば、3位と4位の反応性の違いを利用して、4位を選択的にエーテル化し、続いて、3位を4位とは異なる炭化水素基によってエーテル化した後、エステルを加水分解することによって得られる。   A benzoic acid derivative in which the 5-position is hydrogen and the same hydrocarbon group is bonded to the 3-position and 4-position via an oxygen atom, and 3- and 4-positions are simultaneously etherified using 3,4-dihydroxybenzoate as a raw material. And then obtained by hydrolyzing the ester. In addition, a benzoic acid derivative in which different hydrocarbon groups are bonded to the 3-position and 4-position via an oxygen atom, for example, selectively etherifies the 4-position by utilizing the difference in reactivity between the 3-position and 4-position. Subsequently, it is obtained by hydrolyzing the ester after etherification of the 3-position with a hydrocarbon group different from the 4-position.

5位に酸素原子を介して3位と4位とは異なる炭化水素基を有する安息香酸誘導体は、例えば、3,4,5−トリヒドロキシ安息香酸エステルの3位と4位をボロン酸誘導体の選択的な架橋を用いて保護し、5位をエーテル化の後、該ボロン酸誘導体を脱保護し、上記と同様の方法で、3位と4位のエーテル化と、それに続くエステルの加水分解によって得られる。   A benzoic acid derivative having a hydrocarbon group different from the 3rd and 4th positions through an oxygen atom at the 5th position is, for example, the 3rd and 4th positions of the 3,4,5-trihydroxybenzoic acid ester of the boronic acid derivative. Protection with selective crosslinking, etherification at the 5-position followed by deprotection of the boronic acid derivative, etherification at the 3- and 4-positions followed by hydrolysis of the ester in the same manner as above Obtained by.

4位が水素で、3位と5位に酸素原子を介して同じ炭化水素基を結合した安息香酸誘導体は、3,5−ジヒドロキシ安息香酸エステルを原料に、3位と5位を同時にエーテル化した後、エステルを加水分解することによって得られる。また、3位と5位に酸素原子を介して異なる炭化水素基を有する安息香酸誘導体は、例えば、エーテル化の際の炭化水素化剤の当量を抑えて、片側がエーテル化されたものを単離し、残りの水酸基を異なる炭化水素化剤でエーテル化した後、エステルを加水分解することによって得られる。   A benzoic acid derivative in which the 4-position is hydrogen and the same hydrocarbon group is bonded to the 3-position and 5-position via an oxygen atom, and 3- and 5-positions are simultaneously etherified using 3,5-dihydroxybenzoate as a raw material. And then obtained by hydrolyzing the ester. In addition, a benzoic acid derivative having different hydrocarbon groups at the 3-position and 5-position via an oxygen atom, for example, can be obtained by reducing the equivalent of a hydrocarbonating agent during etherification and by simply converting one etherified. And the remaining hydroxyl group is etherified with a different hydrocarbonating agent and then the ester is hydrolyzed.

4位に酸素原子を介して3位と5位とは異なる炭化水素基を有する安息香酸誘導体は、例えば、3,4,5−トリヒドロキシ安息香酸エステルの4位の反応性の差を利用して、まず、4位をエーテル化の後、上記と同様の方法で、3位と5位のエーテル化と、それに続くエステルの加水分解によって得られる。   A benzoic acid derivative having a hydrocarbon group different from the 3rd and 5th positions through an oxygen atom at the 4th position utilizes, for example, the difference in reactivity at the 4th position of 3,4,5-trihydroxybenzoic acid ester. First, after etherification at the 4-position, it is obtained by etherification at the 3-position and 5-position and subsequent hydrolysis of the ester in the same manner as described above.

式(1)で示されるベンズアミド誘導体は、単独で、あるいは、例えば、式(2)で示される化合物との混合物として、ヒドロゲル化剤として用いることができる。
本発明において、上記式(1)で表される化合物とともに併用することのできるベンズアミド誘導体は式(2)で表される化合物である。

Figure 0005282227

(式中で、XはOH又はNHを、ZはNHCO又はCONHのアミド結合を、kは0から4までの整数を、mは1から、好ましくは7から、100までの整数を、nは1から、好ましくは2から、6までの整数を、pは1から6までの整数を表す。また、Rは酸素を介して結合した炭素数8から22まで、好ましくは12から18までの炭化水素基を、RはH、又は、酸素を介して結合した炭素数1から22まで、好ましくは18までの炭化水素基を、RはH、又は、酸素を介して結合した炭素数1から22まで、好ましくは18までの炭化水素基を表し、RとRは同時にHではない。また、好ましくは、R及びRは酸素原子を介して結合した炭素数12から18までの炭化水素基を、RはH、又は、酸素原子を介して結合した炭素数1から18までの炭化水素基を表す。)
なお、室温付近でのヒドロゲル形成の観点からmは7以上(より好ましくは20以上80以下)、Rの炭素数は12から18まで、RとRの炭素数は18以下が好ましく、合成工程の観点からnは2以上が好ましい。
式(2)で示されるベンズアミド誘導体は、例えば、酸素を介して炭化水素基と結合した安息香酸誘導体と末端に保護されたカルボキシ基又はアミノ基を持つアミン誘導体をアミド縮合し(特開2004−2628091)、脱保護の後、エチレングリコールのオリゴマー又はポリマーのアミン誘導体又はカルボン酸誘導体をアミド縮合することによって得られる。また、末端のXとエチレングリコールのオリゴマー又はポリマーの間のアルキル鎖長、及び、Zとエチレングリコールのオリゴマー又はポリマーの間のアルキル鎖長は、下に記載のエチレングリコールのオリゴマー又はポリマーのアミン誘導体又はカルボン酸誘導体の合成法に準じて調整が可能である。 The benzamide derivative represented by the formula (1) can be used as a hydrogelator alone or as a mixture with the compound represented by the formula (2), for example.
In the present invention, the benzamide derivative that can be used together with the compound represented by the above formula (1) is a compound represented by the formula (2).
Figure 0005282227

(Wherein X is OH or NH 2 , Z is an amide bond of NHCO or CONH, k is an integer from 0 to 4, m is an integer from 1, preferably 7 to 100, n Represents an integer from 1, preferably from 2 to 6, and p represents an integer from 1 to 6. R 1 has from 8 to 22 carbon atoms bonded via oxygen, preferably from 12 to 18 R 2 is a hydrocarbon group having 1 to 22 carbon atoms, preferably 18 carbon atoms bonded through H or oxygen, and R 3 is a carbon atom bonded through H or oxygen. R 2 and R 3 are not H at the same time, and preferably R 1 and R 3 are from 12 carbon atoms bonded via an oxygen atom. a hydrocarbon group of up to 18, R 2 is through H, or an oxygen atom Te represents a hydrocarbon group of a carbon number of 1 bound to 18.)
From the viewpoint of forming a hydrogel near room temperature, m is 7 or more (more preferably 20 to 80), R 1 has 12 to 18 carbon atoms, and R 2 and R 3 have 18 or less carbon atoms, From the viewpoint of the synthesis step, n is preferably 2 or more.
The benzamide derivative represented by the formula (2) is obtained by, for example, amide condensation of a benzoic acid derivative bonded to a hydrocarbon group via oxygen and an amine derivative having a protected carboxy group or amino group at the terminal (Japanese Patent Application Laid-Open No. 2004-2005). 2628091), after deprotection, it is obtained by amide condensation of an ethylene glycol oligomer or polymer amine derivative or carboxylic acid derivative. The alkyl chain length between the terminal X and the ethylene glycol oligomer or polymer, and the alkyl chain length between Z and the ethylene glycol oligomer or polymer are the amine derivatives of the ethylene glycol oligomer or polymer described below. Or it can adjust according to the synthesis method of a carboxylic acid derivative.

エチレングリコールのオリゴマー又はポリマーのアミン誘導体は、例えば、市販のエチレングリコールのオリゴマー又はポリマーの一端、又は、両端を、順次、トシル化又はメシル化、トシル基又はメシル基のヨウ素化、ヨウ素基のフタルイミドへの変換、ヒドラジンによる脱保護によって得られる。また、市販で入手できない長さのオリゴマーについては、オリゴエチレングリコールの一端を保護し、他の一端をトシル化して、合計が必要な長さとなるオリゴエチレングリコールと縮合の後、脱保護して得られる化合物(ジャーナル・オブ・オーガニック・ケミストリー(J.Org.Chem.)2004年、69巻、p.639−647)の一端、又は、両端を、順次、トシル化又はメシル化、トシル基又はメシル基のヨウ素化、ヨウ素基のフタルイミドへの変換、ヒドラジンによる脱保護によって得られる(バイオケミストリー(Biochemistry)1980年、19巻、p.4595−4600)。あるいは、トシル化又はメシル化に続いて、トシル基又はメシル基のアジド化、それに引き続く還元によっても同様の化合物が得られる。   Examples of ethylene glycol oligomers or polymer amine derivatives include, for example, tosylation or mesylation, iodination of tosyl group or mesyl group, iodine group phthalimide at one end or both ends of commercially available ethylene glycol oligomer or polymer. Obtained by conversion to hydrazine and deprotection. For oligomers with lengths that are not commercially available, one end of oligoethylene glycol is protected, the other end is tosylated, and condensed with oligoethylene glycol, the total length of which is required, followed by deprotection. One of the compounds (J. Org. Chem. 2004, 69, p.639-647) or both ends are sequentially tosylated or mesylated, tosyl group or mesyl. It is obtained by iodination of the group, conversion of the iodine group to phthalimide, deprotection with hydrazine (Biochemistry 1980, 19, p. 4595-4600). Alternatively, a similar compound can be obtained by tosylation or mesylation followed by azidation of a tosyl group or mesyl group, followed by reduction.

エチレングリコールのオリゴマー又はポリマーのカルボン鎖誘導体は、同様に、例えば、末端に保護されたカルボキシ基を持つアルコールとのエーテル形成によって得られる。   Oligomeric or polymeric carboxylic chain derivatives of ethylene glycol are likewise obtained, for example, by ether formation with alcohols having terminally protected carboxy groups.

3、4、5位に酸素原子を介して同じ炭化水素基を結合した安息香酸誘導体は、3,4,5−トリヒドロキシ安息香酸エステルをエーテル化の後、エステルを加水分解することによって得られる。   A benzoic acid derivative having the same hydrocarbon group bonded to the 3, 4, 5 position via an oxygen atom is obtained by etherifying 3,4,5-trihydroxybenzoic acid ester and then hydrolyzing the ester. .

5位が水素で、3位と4位に酸素原子を介して同じ炭化水素基を結合した安息香酸誘導体は、3,4−ジヒドロキシ安息香酸エステルを原料に、3位と4位を同時にエーテル化した後、エステルを加水分解することによって得られる。また、3位と4位に酸素原子を介して異なる炭化水素基を結合した安息香酸誘導体は、例えば、3位と4位の反応性の違いを利用して、4位を選択的にエーテル化し、続いて、3位を4位とは異なる炭化水素基によってエーテル化した後、エステルを加水分解することによって得られる。   A benzoic acid derivative in which the 5-position is hydrogen and the same hydrocarbon group is bonded to the 3-position and 4-position via an oxygen atom, and 3- and 4-positions are simultaneously etherified using 3,4-dihydroxybenzoate as a raw material. And then obtained by hydrolyzing the ester. In addition, a benzoic acid derivative in which different hydrocarbon groups are bonded to the 3-position and 4-position via an oxygen atom, for example, selectively etherifies the 4-position by utilizing the difference in reactivity between the 3-position and 4-position. Subsequently, it is obtained by hydrolyzing the ester after etherification of the 3-position with a hydrocarbon group different from the 4-position.

5位に酸素原子を介して3位と4位とは異なる炭化水素基を有する安息香酸誘導体は、例えば、3,4,5−トリヒドロキシ安息香酸エステルの3位と4位をボロン酸誘導体の選択的な架橋を用いて保護し、5位をエーテル化の後、該ボロン酸誘導体を脱保護し、上記と同様の方法で、3位と4位のエーテル化と、それに続くエステルの加水分解によって得られる。
4位が水素で、3位と5位に酸素原子を介して同じ炭化水素基を結合した安息香酸誘導体は、3,5−ジヒドロキシ安息香酸エステルを原料に、3位と5位を同時にエーテル化した後、エステルを加水分解することによって得られる。また、3位と5位に酸素原子を介して異なる炭化水素基を有する安息香酸誘導体は、例えば、エーテル化の際の炭化水素化剤の当量を抑えて、片側がエーテル化されたものを単離し、残りの水酸基を異なる炭化水素化剤でエーテル化した後、エステルを加水分解することによって得られる。
A benzoic acid derivative having a hydrocarbon group different from the 3rd and 4th positions through an oxygen atom at the 5th position is, for example, the 3rd and 4th positions of the 3,4,5-trihydroxybenzoic acid ester of the boronic acid derivative. Protection with selective crosslinking, etherification at the 5-position followed by deprotection of the boronic acid derivative, etherification at the 3- and 4-positions followed by hydrolysis of the ester in the same manner as above Obtained by.
A benzoic acid derivative in which the 4-position is hydrogen and the same hydrocarbon group is bonded to the 3-position and 5-position via an oxygen atom, and 3- and 5-positions are simultaneously etherified using 3,5-dihydroxybenzoate as a raw material. And then obtained by hydrolyzing the ester. In addition, a benzoic acid derivative having different hydrocarbon groups at the 3-position and 5-position via an oxygen atom, for example, can be obtained by reducing the equivalent of a hydrocarbonating agent during etherification and by simply converting one etherified. And the remaining hydroxyl group is etherified with a different hydrocarbonating agent and then the ester is hydrolyzed.

4位に酸素原子を介して3位と5位とは異なる炭化水素基を有する安息香酸誘導体は、例えば、3,4,5−トリヒドロキシ安息香酸エステルの4位の反応性の差を利用して、まず、4位をエーテル化の後、上記と同様の方法で、3位と5位のエーテル化と、それに続くエステルの加水分解によって得られる。   A benzoic acid derivative having a hydrocarbon group different from the 3rd and 5th positions through an oxygen atom at the 4th position utilizes, for example, the difference in reactivity at the 4th position of 3,4,5-trihydroxybenzoic acid ester. First, after etherification at the 4-position, it is obtained by etherification at the 3-position and 5-position and subsequent hydrolysis of the ester in the same manner as described above.

式(2)で示されるベンズアミド誘導体は、そのヒドロゲル化を妨げない物質として式(1)で示されるベンズアミド誘導体との混合物として、ヒドロゲル化剤として用いることができる。なお、混合物の場合、式(2)で示されるベンズアミド誘導体は式(1)で示されるベンズアミド誘導体と同じ合成ルートを経て合成することができるが、両者を各々単独で合成して両者を混合してもよいし、あるいは前者又は後者の合成過程で両者が混合物として得られればそれを混合物として用いてもよい。   The benzamide derivative represented by the formula (2) can be used as a hydrogelator as a mixture with the benzamide derivative represented by the formula (1) as a substance that does not hinder its hydrogelation. In the case of a mixture, the benzamide derivative represented by the formula (2) can be synthesized through the same synthetic route as the benzamide derivative represented by the formula (1), but both are synthesized independently and mixed together. Alternatively, if both are obtained as a mixture in the former or the latter synthesis process, they may be used as a mixture.

ヒドロゲルは、式(1)で示されるベンズアミド誘導体、又は式(1)及び式(2)で示されるベンズアミド誘導体の混合物を有効成分として含むヒドロゲル化剤を、適当量、水に懸濁させ、そのままヒドロゲルを用いる温度まで加熱するか、又は、一旦、ヒドロゲル化剤が溶解する温度まで加熱の後、室温まで冷却するか、該冷却後再度加熱するか、若しくは、該冷却後さらに低い温度まで冷却することによって製造する。   The hydrogel is obtained by suspending an appropriate amount of a hydrogelator containing a benzamide derivative represented by the formula (1) or a mixture of benzamide derivatives represented by the formula (1) and the formula (2) as an active ingredient in water, and Heat to the temperature at which the hydrogel is used, or heat to a temperature at which the hydrogelator dissolves and then cool to room temperature, reheat after the cooling, or cool to a lower temperature after the cooling Manufactured by.

以下に、本発明をさらに詳細に説明するが、本発明は以下の記述に限定されるものではない。ここには、代表的な質量分析による解析結果を示すが、同じ合成ルートを経て合成される式(2)で示されるベンズアミド誘導体には、式(1)で示される両端ベンズアミド誘導体が含まれると考えられる。   The present invention will be described in more detail below, but the present invention is not limited to the following description. Here, the analysis results by typical mass spectrometry are shown, but the benzamide derivative represented by the formula (2) synthesized via the same synthesis route includes the both-end benzamide derivative represented by the formula (1). Conceivable.

なお、以下において、EDC・HClは水溶性カルボジイミド塩酸塩の、HOBtは1−ヒドロキシベンゾトリアゾール水和物の、PEGはポリエチレングリコールの略号である。   In the following, EDC.HCl is an abbreviation for water-soluble carbodiimide hydrochloride, HOBt is an abbreviation for 1-hydroxybenzotriazole hydrate, and PEG is an abbreviation for polyethylene glycol.

<合成例1>
(水酸基をアミノ基に変換した分子量2000のPEGの合成)
分子量2000のPEG(4.00 g, 2.00 mmol) をピリジン(10 ml) に溶解し、p-トルエンスルホニルクロリド(0.76 g, 4.00 mmol) を加え、室温で3時間撹拌した。反応終了後クロロホルム(100 ml) を加え、1M HCl(100 ml)で中和し、溶液を4% NaHCO3、飽和NaClの順で洗浄し、有機相を無水硫酸ナトリウムで脱水した。乾燥剤をろ別して、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=10:1)で精製し、水酸基がトシル化された分子量2000のPEG(4.140 g, 1.92 mmol, 96%) を得た。
1H-NMR (CDCl3) δ = 7.79 (2H, d, J = 8.0 Hz, 2,6-H of TsO), 7.34 (2H, d, J = 8.0 Hz, 3,5-H of Ts), 4.16 (2H, t, J = 5.2 Hz, CH2OTs), 3.83~3.45 (~178H, m, OCH2 × 89), 2.45 (3H, s, 4-CH3 of Ts)。
<Synthesis Example 1>
(Synthesis of PEG having a molecular weight of 2000, in which a hydroxyl group is converted to an amino group)
PEG (4.00 g, 2.00 mmol) having a molecular weight of 2000 was dissolved in pyridine (10 ml), p-toluenesulfonyl chloride (0.76 g, 4.00 mmol) was added, and the mixture was stirred at room temperature for 3 hours. After completion of the reaction, chloroform (100 ml) was added, neutralized with 1M HCl (100 ml), the solution was washed with 4% NaHCO 3 and saturated NaCl in this order, and the organic phase was dried over anhydrous sodium sulfate. The desiccant was filtered off and the solvent was distilled off. The residue was purified by silica gel column chromatography (chloroform: methanol = 10: 1) to obtain PEG (4.140 g, 1.92 mmol, 96%) having a molecular weight of 2000 having a hydroxyl group tosylated.
1 H-NMR (CDCl 3 ) δ = 7.79 (2H, d, J = 8.0 Hz, 2,6-H of TsO), 7.34 (2H, d, J = 8.0 Hz, 3,5-H of Ts), 4.16 (2H, t, J = 5.2 Hz, CH 2 OTs), 3.83 ~ 3.45 (~ 178H, m, OCH 2 × 89), 2.45 (3H, s, 4-CH 3 of Ts).

水酸基がトシル化された分子量2000のPEG(4.140 g, 1.92 mmol) をアセトニトリル(20 ml) に溶解し、アジ化ナトリウム(0.195 g, 3.00 mmol) を加え、32時間加熱還流した。反応終了後室温に戻し、水(20 ml) を加えた。ジクロロメタンを加え有機相を抽出し、有機相を無水硫酸ナトリウムで脱水した。乾燥剤をろ別し、溶媒を留去して、水酸基がアジド化された分子量2000のPEG(3.280 g, 1.62 mmol, 84%) を得た。
1H-NMR (CDCl3) δ = 3.83~3.45 (~178H, m, OCH2 × 89), 3.39 (2H, t, J = 5.2 Hz, CH2N3)。
PEG (4.140 g, 1.92 mmol) having a molecular weight of 2,000 tosylated hydroxyl group was dissolved in acetonitrile (20 ml), sodium azide (0.195 g, 3.00 mmol) was added, and the mixture was heated to reflux for 32 hours. After completion of the reaction, the temperature was returned to room temperature, and water (20 ml) was added. Dichloromethane was added to extract the organic phase, and the organic phase was dehydrated with anhydrous sodium sulfate. The desiccant was filtered off and the solvent was distilled off to obtain PEG (3.280 g, 1.62 mmol, 84%) having a molecular weight of 2000 and having a hydroxyl group azidated.
1 H-NMR (CDCl 3 ) δ = 3.83 to 3.45 (~ 178H, m, OCH 2 × 89), 3.39 (2H, t, J = 5.2 Hz, CH 2 N 3 ).

水酸基がアジド化された分子量2000のPEG(1.537 g, 0.759 mmol) をピリジン(5 ml) に溶解し、トリフェニルホスフィン(0.394 g, 1.50 mmol)を加え、室温で2時間撹拌した。反応終了後、28 %NH4OH(10 ml)を加え2時間静置した。溶媒を留去し、水酸基をアミノ基に変換した分子量2000のPEGを含んだ生成物を得た。
1H-NMR (CDCl3) δ = 3.83~3.45 (~178H, m, OCH2 × 89), 2.86 (2H, t, J = 5.2 Hz, CH2N)。
PEG (1.537 g, 0.759 mmol) having a molecular weight of azidated with a hydroxyl group of 2000 was dissolved in pyridine (5 ml), triphenylphosphine (0.394 g, 1.50 mmol) was added, and the mixture was stirred at room temperature for 2 hours. After completion of the reaction, 28% NH 4 OH (10 ml) was added and allowed to stand for 2 hours. The product containing PEG having a molecular weight of 2000, in which the solvent was distilled off and the hydroxyl group was converted to an amino group, was obtained.
1 H-NMR (CDCl 3 ) δ = 3.83 to 3.45 (~ 178H, m, OCH 2 × 89), 2.86 (2H, t, J = 5.2 Hz, CH 2 N).

<実施例1>
(式(1)で、k=0、m=42〜45、n=2、Z=CONH、Z=NHCO、p=1、R=R=OC1429、R=OCHの化合物を含む組成物の合成)
<Example 1>
(In the formula (1), k = 0, m = 42 to 45, n = 2, Z 1 = CONH, Z 2 = NHCO, p = 1, R 1 = R 3 = OC 14 H 29 , R 2 = OCH Synthesis of a composition comprising 3 compounds)

グリシン(0.375 g, 5.00 mmol)をメタノール(5 ml) に溶解し、0℃に溶液を冷却しながら塩化チオニル(1.07 ml, 15.0 mmol)を滴下した。滴下後60℃まで加熱し、一晩加熱還流した。反応終了後、溶媒を留去し、グリシンメチルエステル塩酸塩(0.370 g, 0.175 mmol, 58%)を得た。
1H-NMR (CDCl3) δ = 3.80 (3H, s, COOCH3), 3.73 (2H, s, NCH2)。
Glycine (0.375 g, 5.00 mmol) was dissolved in methanol (5 ml), and thionyl chloride (1.07 ml, 15.0 mmol) was added dropwise while cooling the solution to 0 ° C. After dropping, the mixture was heated to 60 ° C. and heated to reflux overnight. After completion of the reaction, the solvent was distilled off to obtain glycine methyl ester hydrochloride (0.370 g, 0.175 mmol, 58%).
1 H-NMR (CDCl 3 ) δ = 3.80 (3H, s, COOCH 3 ), 3.73 (2H, s, NCH 2 ).

3,5-ビス(テトラデシルオキシ)-4-メトキシ安息香酸(バイオオーガニック・メディシナル・ケミストリー(Bioorg.Med.Chem.)2002年、10巻、p. 4013−4022)(0.577 g, 1.00 mmol)をTHF (5 ml)に溶解し、HOBt (0.170 g, 1.20 mmol)とEDC・HCl (0.230 g, 1.20 mmol)を加え、室温で30分間撹拌した。その後、グリシンメチルエステル塩酸塩(0.151 g, 1.20 mmol)をTHF (5 ml)に溶解し、トリエチルアミン(0.222 ml, 1.60 mmol)を加えた混合溶液を、反応溶液に加えて室温で一晩攪拌した。反応終了後、溶液をクロロホルムで希釈し、4%NaHCO3水溶液、飽和NaCl水溶液の順で洗浄し、有機相を無水硫酸ナトリウムで脱水した。乾燥剤をろ別して、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)で精製し、N-(3,5-ビス(テトラデシルオキシ)-4-メトキシ)ベンゾイル-2-アミノ酢酸メチル(0.499 g, 0.770 mmol, 77%) を得た。 3,5-bis (tetradecyloxy) -4-methoxybenzoic acid (Bioorganic. Med. Chem. 2002, 10 vol., P. 4013-4022) (0.577 g, 1.00 mmol) Was dissolved in THF (5 ml), HOBt (0.170 g, 1.20 mmol) and EDC.HCl (0.230 g, 1.20 mmol) were added, and the mixture was stirred at room temperature for 30 minutes. Then, glycine methyl ester hydrochloride (0.151 g, 1.20 mmol) was dissolved in THF (5 ml), and a mixed solution in which triethylamine (0.222 ml, 1.60 mmol) was added was added to the reaction solution and stirred overnight at room temperature. . After completion of the reaction, the solution was diluted with chloroform, washed with 4% NaHCO 3 aqueous solution and saturated NaCl aqueous solution in this order, and the organic phase was dehydrated with anhydrous sodium sulfate. The desiccant was filtered off and the solvent was distilled off. The residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1), and methyl N- (3,5-bis (tetradecyloxy) -4-methoxy) benzoyl-2-aminoacetate (0.499 g, 0.770 mmol). , 77%).

白色粉末; 1H-NMR (CDCl3) δ = 7.00 (2H, s, 2,6-H), 6.52 (1H, br-t, NH), 4.23 (2H, d, J = 6 Hz, NCH2), 4.03 (4H, t, J = 7 Hz, 3,5-OCH2), 3.87 (3H, s, 4-OCH3), 3.81 (3H, s, COOCH3), 1.82 (4H, quintet, J = 7 Hz, 3,5-OCCH2), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC2CH2), 1.26 (40H, m, 3,5-OC3C10H20), 0.88 (6H, t, J = 7 Hz, 3,5-OC13CH3)。 White powder; 1 H-NMR (CDCl 3 ) δ = 7.00 (2H, s, 2,6-H), 6.52 (1H, br-t, NH), 4.23 (2H, d, J = 6 Hz, NCH 2 ), 4.03 (4H, t, J = 7 Hz, 3,5-OCH 2 ), 3.87 (3H, s, 4-OCH 3 ), 3.81 (3H, s, COOCH 3 ), 1.82 (4H, quintet, J = 7 Hz, 3,5-OCCH 2 ), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC 2 CH 2 ), 1.26 (40H, m, 3,5-OC 3 C 10 H 20 ) , 0.88 (6H, t, J = 7 Hz, 3,5-OC 13 CH 3 ).

N-(3,5-ビス(テトラデシルオキシ)-4-メトキシ)ベンゾイル-2-アミノ酢酸メチル(0.100 g, 0.154 mmol) をエタノール(9 ml)と水(3 ml) に溶解し、水酸化カリウム(0.1 g) を加え、78℃で一晩加熱還流した。反応溶液を室温に戻し、2% HCl (20 ml) 、ジクロロメタン(12 ml) を加え、さらに50時間撹拌した。反応終了後、溶媒を留去し、メタノールから再結晶して、N-(3,5-ビス(テトラデシルオキシ)-4-メトキシ)ベンゾイル-2-アミノ酢酸(0.955 g, 0.151 mmol, 98%) を得た。   Methyl N- (3,5-bis (tetradecyloxy) -4-methoxy) benzoyl-2-aminoacetate (0.100 g, 0.154 mmol) is dissolved in ethanol (9 ml) and water (3 ml) and hydroxylated. Potassium (0.1 g) was added, and the mixture was heated to reflux at 78 ° C. overnight. The reaction solution was returned to room temperature, 2% HCl (20 ml) and dichloromethane (12 ml) were added, and the mixture was further stirred for 50 hours. After completion of the reaction, the solvent was distilled off and recrystallized from methanol to give N- (3,5-bis (tetradecyloxy) -4-methoxy) benzoyl-2-aminoacetic acid (0.955 g, 0.151 mmol, 98% )

白色粉末; 1H-NMR (CDCl3) δ = 7.00 (2H, s, 2,6-H), 6.56 (1H, br-t, NH), 4.28 (2H, d, J = 5 Hz, NCH2), 4.03 (4H, t, J = 7 Hz, 3,5-OCH2), 3.87 (3H, s, 4-OCH3), 1.82 (4H, quintet, J = 7 Hz, 3,5-OCCH2), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC2CH2), 1.25 (40H, m, 3,5-OC3C10H20), 0.88 (6H, t, J = 7 Hz, 3,5-OC13CH3)。 White powder; 1 H-NMR (CDCl 3 ) δ = 7.00 (2H, s, 2,6-H), 6.56 (1H, br-t, NH), 4.28 (2H, d, J = 5 Hz, NCH 2 ), 4.03 (4H, t, J = 7 Hz, 3,5-OCH 2 ), 3.87 (3H, s, 4-OCH 3 ), 1.82 (4H, quintet, J = 7 Hz, 3,5-OCCH 2 ), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC 2 CH 2 ), 1.25 (40H, m, 3,5-OC 3 C 10 H 20 ), 0.88 (6H, t, J = 7 Hz, 3,5-OC 13 CH 3 ).

N-(3,5-ビス(テトラデシルオキシ)-4-メトキシ)ベンゾイル-2-アミノ酢酸(0.0317 g, 0.0500 mmol) をジクロロメタン(5 ml) に溶解し、HOBt (0.0085 g, 0.060 mmol)とEDC・HCl (0.0115 g, 0.060 mmol) を加え、室温で1時間撹拌した。ジクロロメタン(5 ml) に合成例1で合成した分子量2000のPEG誘導体(過剰量の未精製物)を溶解し、滴下ロートを用いて反応溶液に滴下しながら、さらに2時間撹拌した。反応終了後、溶液を4%NaHCO3水溶液、飽和NaCl水溶液の順で洗浄し、有機相を無水硫酸ナトリウムで脱水した。乾燥剤をろ別して、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=9:1)で精製し、生成物(0.0809 g, 0.0310 mmol, 62%)(式(2)で示される化合物として計算)を得た。
1H-NMR (CDCl3) δ = 7.08 (2H, s, 2,6-H), 4.11 (2H, d, J = 5 Hz, NCH2), 4.03 (4H, t, J = 7 Hz, 3,5-OCH2), 3.86 (3H, s, 4-OCH3), 3.86-3.49 (〜180H, m, OCH2CH2 × 45), 1.82 (4H, quintet, J = 7 Hz, 3,5-OCCH2), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC2CH2), 1.26 (40H, m, 3,5-OC3C10H20), 0.88 (6H, t, J = 7 Hz, 3,5-OC13CH3)。
N- (3,5-bis (tetradecyloxy) -4-methoxy) benzoyl-2-aminoacetic acid (0.0317 g, 0.0500 mmol) was dissolved in dichloromethane (5 ml) and HOBt (0.0085 g, 0.060 mmol) was dissolved. EDC · HCl (0.0115 g, 0.060 mmol) was added, and the mixture was stirred at room temperature for 1 hour. The PEG derivative of 2000 molecular weight synthesized in Synthesis Example 1 (excess amount of unpurified product) was dissolved in dichloromethane (5 ml), and the mixture was further stirred for 2 hours while dropping into the reaction solution using a dropping funnel. After completion of the reaction, the solution was washed with 4% NaHCO 3 aqueous solution and saturated NaCl aqueous solution in this order, and the organic phase was dehydrated with anhydrous sodium sulfate. The desiccant was filtered off and the solvent was distilled off. The residue was purified by silica gel column chromatography (chloroform: methanol = 9: 1) to obtain a product (0.0809 g, 0.0310 mmol, 62%) (calculated as a compound represented by formula (2)).
1 H-NMR (CDCl 3 ) δ = 7.08 (2H, s, 2,6-H), 4.11 (2H, d, J = 5 Hz, NCH 2 ), 4.03 (4H, t, J = 7 Hz, 3 , 5-OCH 2 ), 3.86 (3H, s, 4-OCH 3 ), 3.86-3.49 (~ 180H, m, OCH 2 CH 2 × 45), 1.82 (4H, quintet, J = 7 Hz, 3,5 -OCCH 2 ), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC 2 CH 2 ), 1.26 (40H, m, 3,5-OC 3 C 10 H 20 ), 0.88 (6H, t, J = 7 Hz, 3,5-OC 13 CH 3 ).

<解析例1>
(式(1)で、k=0、m=42〜45、n=2、Z=CONH、Z=NHCO、p=1、R=R=OC1429、R=OCHの化合物の質量分析)
島津AXIMA CFR plusを用い、窒素レーザー(337 nm)、リフレクトロンモード、正イオン検出、積算回数500回、イオン化助剤をヨウ化ナトリウムアセトン溶液(1mg/ml)、マトリクスをジスラノールクロロホルム溶液(10mg/ml)、試料濃度1mg/ml(クロロホルム溶液)、スキャンレンジm/z 1-5000の条件で、実施例1の生成物のMALDI-TOF/MS測定を行った。
<Analysis example 1>
(In the formula (1), k = 0, m = 42 to 45, n = 2, Z 1 = CONH, Z 2 = NHCO, p = 1, R 1 = R 3 = OC 14 H 29 , R 2 = OCH Mass spectrometry of compound 3 )
Using Shimadzu AXIMA CFR plus, nitrogen laser (337 nm), reflectron mode, positive ion detection, accumulation of 500 times, ionization aid as sodium iodide acetone solution (1 mg / ml), matrix as dithranol chloroform solution ( The product of Example 1 was subjected to MALDI-TOF / MS measurement under the conditions of 10 mg / ml), sample concentration 1 mg / ml (chloroform solution), and scan range m / z 1-5000.

原料の分子量2000のPEGと類似する分子量分布を有し、式(2)で、X=OH、k=0、m=42〜45、n=2、Z=NHCO、p=1、R=R=OC1429、R=OCHの化合物に相当する分子量分布を有するピークの他に、分子量が614大きい、式(1)で、k=0、m=42〜45、n=2、Z=CONH、Z=NHCO、p=1、R=R=OC1429、R=OCHの化合物に相当する分子量分布を有するピークが検出され、両端ベンズアミド誘導体の生成を確認した。 It has a molecular weight distribution similar to that of PEG having a molecular weight of 2000, and in formula (2), X = OH, k = 0, m = 42 to 45, n = 2, Z = NHCO, p = 1, R 1 = In addition to the peak having a molecular weight distribution corresponding to the compound of R 3 ═OC 14 H 29 , R 2 ═OCH 3 , the molecular weight is 614 large. In formula (1), k = 0, m = 42 to 45, n = 2, Z 1 = CONH, Z 2 = NHCO, p = 1, R 1 = R 3 = OC 14 H 29 , a peak having a molecular weight distribution corresponding to the compound of R 2 = OCH 3 was detected, and both ends of the benzamide derivative Confirmed generation.

解析を行ったロットでは、ピークの高さの比は約10:1であった。
<実施例2>
(式(1)で、k=0、m=42〜45、n=2、Z=CONH、Z=NHCO、p=2、R=R=OC1429、R=OCHの化合物を含む組成物の合成)
メタノール(5 ml)を0℃に冷却しながら塩化チオニル(1.07 ml, 15.0 mmol)を滴下後30分間撹拌した。β-アラニン(0.445 g, 5.00 mmol)を加え室温で一晩撹拌した。反応終了後、溶媒を留去し、β-アラニンメチルエステル塩酸塩(0.546 g, 3.91 mmol, 78%)を得た。
1H-NMR (CDCl3) δ = 3.80 (3H, s, COOCH3), 3.18 (2H, t, J = 6 Hz, NCH2), 2.79 (2H, t, J = 6 Hz, NCCH2)。
For the lots analyzed, the peak height ratio was about 10: 1.
<Example 2>
(In the formula (1), k = 0, m = 42 to 45, n = 2, Z 1 = CONH, Z 2 = NHCO, p = 2, R 1 = R 3 = OC 14 H 29 , R 2 = OCH Synthesis of a composition comprising 3 compounds)
While methanol (5 ml) was cooled to 0 ° C., thionyl chloride (1.07 ml, 15.0 mmol) was added dropwise and stirred for 30 minutes. β-Alanine (0.445 g, 5.00 mmol) was added and stirred overnight at room temperature. After completion of the reaction, the solvent was distilled off to obtain β-alanine methyl ester hydrochloride (0.546 g, 3.91 mmol, 78%).
1 H-NMR (CDCl 3 ) δ = 3.80 (3H, s, COOCH 3 ), 3.18 (2H, t, J = 6 Hz, NCH 2 ), 2.79 (2H, t, J = 6 Hz, NCCH 2 ).

3,5-ビス(テトラデシルオキシ)-4-メトキシ安息香酸(0.289 g, 0.500 mmol)をジクロロメタン(5 ml)に溶解し、HOBt (0.085 g, 0.600 mmol)とEDC・HCl (0.115 g, 0.600 mmol)を加え、室温で30分間撹拌した。その後、β-アラニンメチルエステル塩酸塩(0.105 g, 0.750 mmol)をジクロロメタン(5 ml)に懸濁させ、試料が完全に溶解するまで、徐々にトリエチルアミンを加えた混合溶液を、先の反応溶液に加えて室温で一晩攪拌した。反応終了後、溶液をクロロホルムで希釈し、4%NaHCO3水溶液、飽和NaCl水溶液の順で洗浄し、有機相を無水硫酸ナトリウムで脱水した。乾燥剤をろ別して、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)で精製し、N-(3,5-ビス(テトラデシルオキシ)-4-メトキシ)ベンゾイル-2-アミノプロピオン酸メチル(0.239 g, 0.361 mmol, 72%) を得た。 3,5-bis (tetradecyloxy) -4-methoxybenzoic acid (0.289 g, 0.500 mmol) was dissolved in dichloromethane (5 ml), and HOBt (0.085 g, 0.600 mmol) and EDC · HCl (0.115 g, 0.600) were dissolved. mmol) was added and stirred at room temperature for 30 minutes. Then, β-alanine methyl ester hydrochloride (0.105 g, 0.750 mmol) was suspended in dichloromethane (5 ml), and the mixed solution with triethylamine added gradually was added to the previous reaction solution until the sample was completely dissolved. In addition, the mixture was stirred overnight at room temperature. After completion of the reaction, the solution was diluted with chloroform, washed with 4% NaHCO 3 aqueous solution and saturated NaCl aqueous solution in this order, and the organic phase was dehydrated with anhydrous sodium sulfate. The desiccant was filtered off and the solvent was distilled off. The residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1), and methyl N- (3,5-bis (tetradecyloxy) -4-methoxy) benzoyl-2-aminopropionate (0.239 g, 0.361). mmol, 72%).

白色粉末; 1H-NMR (CDCl3) δ = 7.00 (2H, s, 2,6-H), 6.53 (1H, br-t, NH), 4.03 (4H, t, J = 7 Hz, 3,5-OCH2), 3.86 (3H, s, 4-OCH3), 3.71 (3H, s, COOCH3), 3.70 (2H, t, J = 6 Hz, NCH2), 2.70 (2H, t, J = 6 Hz, NCCH2), 1.82 (4H, quintet, J = 7 Hz, 3,5-OCCH2), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC2CH2), 1.26 (40H, m, 3,5-OC3C10H20), 0.88 (6H, t, J = 7 Hz, 3,5-OC13CH3)。 White powder; 1 H-NMR (CDCl 3 ) δ = 7.00 (2H, s, 2,6-H), 6.53 (1H, br-t, NH), 4.03 (4H, t, J = 7 Hz, 3, 5-OCH 2 ), 3.86 (3H, s, 4-OCH 3 ), 3.71 (3H, s, COOCH 3 ), 3.70 (2H, t, J = 6 Hz, NCH 2 ), 2.70 (2H, t, J = 6 Hz, NCCH 2 ), 1.82 (4H, quintet, J = 7 Hz, 3,5-OCCH 2 ), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC 2 CH 2 ), 1.26 ( 40H, m, 3,5-OC 3 C 10 H 20 ), 0.88 (6H, t, J = 7 Hz, 3,5-OC 13 CH 3 ).

N-(3,5-ビス(テトラデシルオキシ)-4-メトキシ)ベンゾイル-2-アミノプロピオン酸メチル(0.239 g, 0.361 mmol) をエタノール(20 ml)と水(9 ml) に溶解し、水酸化カリウム(0.5 g) を加え、78℃で一晩加熱還流した。反応溶液を室温に戻し、2% HCl (50 ml) 、ジクロロメタン(30 ml) を加え、さらに50時間撹拌した。反応終了後、溶媒を留去し、メタノールから再結晶してN-(3,5-ビス(テトラデシルオキシ)-4-メトキシ)ベンゾイル-2-アミノプロピオン酸(0.215 g, 0.332 mmol, 92%) を得た。   Methyl N- (3,5-bis (tetradecyloxy) -4-methoxy) benzoyl-2-aminopropionate (0.239 g, 0.361 mmol) is dissolved in ethanol (20 ml) and water (9 ml). Potassium oxide (0.5 g) was added, and the mixture was heated to reflux at 78 ° C. overnight. The reaction solution was returned to room temperature, 2% HCl (50 ml) and dichloromethane (30 ml) were added, and the mixture was further stirred for 50 hours. After completion of the reaction, the solvent was distilled off and recrystallized from methanol to give N- (3,5-bis (tetradecyloxy) -4-methoxy) benzoyl-2-aminopropionic acid (0.215 g, 0.332 mmol, 92% )

白色粉末; 1H-NMR (CDCl3) δ = 6.95 (2H, s, 2,6-H), 6.65 (1H, br-t, NH), 4.02 (4H, t, J = 7 Hz, 3,5-OCH2), 3.86 (3H, s, 4-OCH3), 3.72 (2H, quartet, J = 6 Hz, NCH2), 2.73 (2H, t, J = 6 Hz, NCCH2), 1.82 (4H, quintet, J = 7 Hz, 3,5-OCCH2), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC2CH2), 1.26 (40H, m, 3,5-OC3C10H20), 0.88 (6H, t, J = 7 Hz, 3,5-OC13CH3)。 White powder; 1 H-NMR (CDCl 3 ) δ = 6.95 (2H, s, 2,6-H), 6.65 (1H, br-t, NH), 4.02 (4H, t, J = 7 Hz, 3, 5-OCH 2 ), 3.86 (3H, s, 4-OCH 3 ), 3.72 (2H, quartet, J = 6 Hz, NCH 2 ), 2.73 (2H, t, J = 6 Hz, NCCH 2 ), 1.82 ( 4H, quintet, J = 7 Hz, 3,5-OCCH 2 ), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC 2 CH 2 ), 1.26 (40H, m, 3,5-OC 3 C 10 H 20 ), 0.88 (6H, t, J = 7 Hz, 3,5-OC 13 CH 3 ).

N-(3,5-ビス(テトラデシルオキシ)-4-メトキシ)ベンゾイル-2-アミノプロピオン酸(0.0648 g, 0.100 mmol) をジクロロメタン(10 ml) に溶解し、HOBt (0.0170 g, 0.120 mmol)とEDC・HCl (0.0230 g, 0.120 mmol)を加え、室温で1時間撹拌した。ジクロロメタン(5 ml) に合成例1で合成した分子量2000のPEG誘導体(過剰量の未精製物)を溶解し、滴下ロートを用いて反応溶液に滴下しながら、さらに2時間撹拌した。反応終了後、溶液を4%NaHCO3水溶液、飽和NaCl水溶液の順で洗浄し、有機相を無水硫酸ナトリウムで脱水した。乾燥剤をろ別して、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=9:1)で精製し、生成物(0.149 g, 0.0568 mmol, 57%)(式(2)で示される化合物として計算)を得た。 N- (3,5-bis (tetradecyloxy) -4-methoxy) benzoyl-2-aminopropionic acid (0.0648 g, 0.100 mmol) was dissolved in dichloromethane (10 ml) and HOBt (0.0170 g, 0.120 mmol) And EDC · HCl (0.0230 g, 0.120 mmol) were added, and the mixture was stirred at room temperature for 1 hour. The PEG derivative of 2000 molecular weight synthesized in Synthesis Example 1 (excess amount of unpurified product) was dissolved in dichloromethane (5 ml), and the mixture was further stirred for 2 hours while dropping into the reaction solution using a dropping funnel. After completion of the reaction, the solution was washed with 4% NaHCO 3 aqueous solution and saturated NaCl aqueous solution in this order, and the organic phase was dehydrated with anhydrous sodium sulfate. The desiccant was filtered off and the solvent was distilled off. The residue was purified by silica gel column chromatography (chloroform: methanol = 9: 1) to obtain a product (0.149 g, 0.0568 mmol, 57%) (calculated as a compound represented by formula (2)).

白色粉末; 1H-NMR (CDCl3) δ = 7.00 (2H, s, 2,6-H), 6.75 (1H, br-t, NH), 4.03 (4H, t, J = 7 Hz, 3,5-OCH2), 3.85 (3H, s, 4-OCH3), 3.86-3.44 (~180H, m, OCH2CH2 × 45), 2.52 (2H, t, J = 6 Hz, NCCH2), 1.81 (4H, quintet, J = 7 Hz, 3,5-OCCH2), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC2CH2), 1.25 (40H, m, 3,5-OC3C10H20), 0.88 (6H, t, J = 7 Hz, 3,5-OC13CH3)。 White powder; 1 H-NMR (CDCl 3 ) δ = 7.00 (2H, s, 2,6-H), 6.75 (1H, br-t, NH), 4.03 (4H, t, J = 7 Hz, 3, 5-OCH 2 ), 3.85 (3H, s, 4-OCH 3 ), 3.86-3.44 (~ 180H, m, OCH 2 CH 2 × 45), 2.52 (2H, t, J = 6 Hz, NCCH 2 ), 1.81 (4H, quintet, J = 7 Hz, 3,5-OCCH 2 ), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC 2 CH 2 ), 1.25 (40H, m, 3,5- OC 3 C 10 H 20 ), 0.88 (6H, t, J = 7 Hz, 3,5-OC 13 CH 3 ).

<解析例2>
(式(1)で、k=0、m=42〜45、n=2、Z=CONH、Z=NHCO、p=2、R=R=OC1429、R=OCHの化合物の質量分析)
解析例1と同様の条件で、実施例2の生成物のMALDI-TOF/MS測定を行った。
原料の分子量2000のPEGと類似する分子量分布を有し、式(2)で、X=OH、k=0、m=42〜45、n=2、Z=NHCO、p=2、R=R=OC1429、R=OCHの化合物に相当する分子量分布を有するピークの他に、分子量が628大きい、式(1)で、k=0、m=42〜45、n=2、Z=CONH、Z=NHCO、p=2、R=R=OC1429、R=OCHの化合物に相当する分子量分布を有するピークが検出され、両端ベンズアミド誘導体の生成を確認した。
解析を行ったロットでは、ピークの高さの比は約10:1であった。
<Analysis example 2>
(In the formula (1), k = 0, m = 42 to 45, n = 2, Z 1 = CONH, Z 2 = NHCO, p = 2, R 1 = R 3 = OC 14 H 29 , R 2 = OCH Mass spectrometry of compound 3 )
Under the same conditions as in Analysis Example 1, the product of Example 2 was subjected to MALDI-TOF / MS measurement.
It has a molecular weight distribution similar to that of PEG having a molecular weight of 2000, and in formula (2), X = OH, k = 0, m = 42 to 45, n = 2, Z = NHCO, p = 2, R 1 = In addition to the peak having a molecular weight distribution corresponding to the compound of R 3 ═OC 14 H 29 , R 2 ═OCH 3 , the molecular weight is 628 large. In formula (1), k = 0, m = 42 to 45, n = 2, Z 1 = CONH, Z 2 = NHCO, p = 2, R 1 = R 3 = OC 14 H 29 , a peak having a molecular weight distribution corresponding to the compound of R 2 = OCH 3 was detected, and both ends of the benzamide derivative Confirmed generation.
For the lots analyzed, the peak height ratio was about 10: 1.

<実施例3>
(式(1)で、k=0、m=42〜45、n=2、Z=CONH、Z=NHCO、p=3、R=R=OC1429、R=OCHの化合物を含む組成物の合成)
メタノール(5 ml)を0℃に冷却しながら塩化チオニル(1.07 ml, 15.0 mmol)を滴下後30分間撹拌した。4-アミノ酪酸(0.445 g, 5.00 mmol)を加え室温で一晩撹拌した。反応終了後、溶媒を留去し、4-アミノ酪酸メチルエステル塩酸塩(0.550 g, 3.58 mmol, 72%)を得た。
1H-NMR (CDCl3) δ = 3.27 (3H, s, COOCH3), 2.89 (2H, t, J = 6 Hz, NCH2), 2.37 (2H, t, J = 6 Hz, NC2CH2), 1.87 (2H, quintet, J = 6 Hz, NCCH2)。
<Example 3>
(In the formula (1), k = 0, m = 42 to 45, n = 2, Z 1 = CONH, Z 2 = NHCO, p = 3, R 1 = R 3 = OC 14 H 29 , R 2 = OCH Synthesis of a composition comprising 3 compounds)
While methanol (5 ml) was cooled to 0 ° C., thionyl chloride (1.07 ml, 15.0 mmol) was added dropwise and stirred for 30 minutes. 4-Aminobutyric acid (0.445 g, 5.00 mmol) was added and stirred at room temperature overnight. After completion of the reaction, the solvent was distilled off to obtain 4-aminobutyric acid methyl ester hydrochloride (0.550 g, 3.58 mmol, 72%).
1 H-NMR (CDCl 3 ) δ = 3.27 (3H, s, COOCH 3 ), 2.89 (2H, t, J = 6 Hz, NCH 2 ), 2.37 (2H, t, J = 6 Hz, NC 2 CH 2 ), 1.87 (2H, quintet, J = 6 Hz, NCCH 2 ).

3,5-ビス(テトラデシルオキシ)-4-メトキシ安息香酸(0.289 g, 0.500 mmol)をジクロロメタン(5 ml)に溶解し、HOBt (0.085 g, 0.600 mmol)とEDC・HCl (0.115 g, 0.600 mmol)を加え、室温で30分間撹拌した。その後、4-アミノ酪酸メチルエステル塩酸塩(0.115 g, 0.750 mmol)をジクロロメタン(5 ml)に懸濁させ、試料が完全に溶解するまで、徐々にトリエチルアミンを加えた混合溶液を、先の反応溶液に加えて室温で一晩攪拌した。反応終了後、溶液をクロロホルムで希釈し、4%NaHCO3水溶液、飽和NaCl水溶液の順で洗浄し、有機相を無水硫酸ナトリウムで脱水した。乾燥剤をろ別して、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)で精製し、N-(3,5-ビス(テトラデシルオキシ)-4-メトキシ)ベンゾイル-2-アミノ酪酸メチル(0.220 g, 0.325 mmol, 65%) を得た。 3,5-bis (tetradecyloxy) -4-methoxybenzoic acid (0.289 g, 0.500 mmol) was dissolved in dichloromethane (5 ml), and HOBt (0.085 g, 0.600 mmol) and EDC · HCl (0.115 g, 0.600) were dissolved. mmol) was added and stirred at room temperature for 30 minutes. Then, 4-aminobutyric acid methyl ester hydrochloride (0.115 g, 0.750 mmol) was suspended in dichloromethane (5 ml), and the mixed solution was gradually added with triethylamine until the sample was completely dissolved. And stirred at room temperature overnight. After completion of the reaction, the solution was diluted with chloroform, washed with 4% NaHCO 3 aqueous solution and saturated NaCl aqueous solution in this order, and the organic phase was dehydrated with anhydrous sodium sulfate. The desiccant was filtered off and the solvent was distilled off. The residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1) and methyl N- (3,5-bis (tetradecyloxy) -4-methoxy) benzoyl-2-aminobutyrate (0.220 g, 0.325 mmol). , 65%).

白色粉末; 1H-NMR (CDCl3) δ = 7.00 (2H, s, 2,6-H), 6.53 (1H, br-t, NH), 4.04 (4H, t, J = 7 Hz, 3,5-OCH2), 3.86 (3H, s, 4-OCH3), 3.67 (3H, s, COOCH3), 3.49 (2H, quartet, J = 6 Hz, NCH2), 2.47 (2H, t, J = 6 Hz, NC2CH2), 1.97 (2H, quintet, J = 6 Hz, NCCH2), 1.82 (4H, quintet, J = 7 Hz, 3,5-OCCH2), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC2CH2), 1.26 (40H, m, 3,5-OC3C10H20), 0.88 (6H, t, J = 7 Hz, 3,5-OC13CH3)。
N-(3,5-ビス(テトラデシルオキシ)-4-メトキシ)ベンゾイル-2-アミノ酪酸(0.220 g, 0.325 mmol) をエタノール(20 ml)と水(7 ml) に溶解し、水酸化カリウム(0.5 g) を加え、78℃で一晩加熱還流した。反応溶液を室温に戻し、2% HCl (50 ml) 、ジクロロメタン(30 ml) を加えさらに50時間撹拌した。反応終了後、溶媒を留去し、メタノールから再結晶してN-(3,5-ビス(テトラデシルオキシ)-4-メトキシ)ベンゾイル-2-アミノ酪酸(0.203 g, 0.307 mmol, 95%) を得た。
White powder; 1 H-NMR (CDCl 3 ) δ = 7.00 (2H, s, 2,6-H), 6.53 (1H, br-t, NH), 4.04 (4H, t, J = 7 Hz, 3, 5-OCH 2 ), 3.86 (3H, s, 4-OCH 3 ), 3.67 (3H, s, COOCH 3 ), 3.49 (2H, quartet, J = 6 Hz, NCH 2 ), 2.47 (2H, t, J = 6 Hz, NC 2 CH 2 ), 1.97 (2H, quintet, J = 6 Hz, NCCH 2 ), 1.82 (4H, quintet, J = 7 Hz, 3,5-OCCH 2 ), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC 2 CH 2 ), 1.26 (40H, m, 3,5-OC 3 C 10 H 20 ), 0.88 (6H, t, J = 7 Hz, 3,5-OC 13 CH 3).
N- (3,5-bis (tetradecyloxy) -4-methoxy) benzoyl-2-aminobutyric acid (0.220 g, 0.325 mmol) dissolved in ethanol (20 ml) and water (7 ml) (0.5 g) was added, and the mixture was heated to reflux at 78 ° C. overnight. The reaction solution was returned to room temperature, 2% HCl (50 ml) and dichloromethane (30 ml) were added, and the mixture was further stirred for 50 hours. After completion of the reaction, the solvent was distilled off and recrystallized from methanol to give N- (3,5-bis (tetradecyloxy) -4-methoxy) benzoyl-2-aminobutyric acid (0.203 g, 0.307 mmol, 95%) Got.

白色粉末; 1H-NMR (CDCl3) δ = 6.97 (2H, s, 2,6-H), 6.43 (1H, br-t, NH), 4.03 (4H, t, J = 7 Hz, 3,5-OCH2), 3.89 (3H, s, 4-OCH3), 3.53 (2H, quartet, J = 6 Hz, NCH2), 2.48 (2H, t, J = 6 Hz, NC2CH2), 1.97 (2H, quintet, J = 6 Hz, NCCH2), 1.82 (4H, quintet, J = 7 Hz, 3,5-OCCH2), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC2CH2), 1.26 (40H, m, 3,5-OC3C10H20), 0.88 (6H, t, J = 7 Hz, 3,5-OC13CH3)。 White powder; 1 H-NMR (CDCl 3 ) δ = 6.97 (2H, s, 2,6-H), 6.43 (1H, br-t, NH), 4.03 (4H, t, J = 7 Hz, 3, 5-OCH 2 ), 3.89 (3H, s, 4-OCH 3 ), 3.53 (2H, quartet, J = 6 Hz, NCH 2 ), 2.48 (2H, t, J = 6 Hz, NC 2 CH 2 ), 1.97 (2H, quintet, J = 6 Hz, NCCH 2 ), 1.82 (4H, quintet, J = 7 Hz, 3,5-OCCH 2 ), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC 2 CH 2 ), 1.26 (40H, m, 3,5-OC 3 C 10 H 20 ), 0.88 (6H, t, J = 7 Hz, 3,5-OC 13 CH 3 ).

N-(3,5-ビス(テトラデシルオキシ)-4-メトキシ)ベンゾイル-2-アミノ酪酸(0.0662 g, 0.100 mmol) をジクロロメタン(10 ml) に溶解し、HOBt (0.0170 g, 0.120 mmol)とEDC・HCl (0.0230 g, 0.120 mmol) を加え、室温で1時間撹拌した。ジクロロメタン(5 ml) に合成例1で合成した分子量2000のPEG誘導体(過剰量の未精製物)を溶解し、滴下ロートを用いて反応溶液に滴下しながら、さらに2時間撹拌した。反応終了後、溶液を4%NaHCO3水溶液、飽和NaCl水溶液の順で洗浄し、有機相を無水硫酸ナトリウムで脱水した。乾燥剤をろ別して、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=9:1)で精製し、生成物(0.146 g, 0.0552 mmol, 55%)(式(2)で示される化合物として計算)を得た。 N- (3,5-bis (tetradecyloxy) -4-methoxy) benzoyl-2-aminobutyric acid (0.0662 g, 0.100 mmol) was dissolved in dichloromethane (10 ml) and HOBt (0.0170 g, 0.120 mmol) was dissolved. EDC · HCl (0.0230 g, 0.120 mmol) was added, and the mixture was stirred at room temperature for 1 hour. The PEG derivative of 2000 molecular weight synthesized in Synthesis Example 1 (excess amount of unpurified product) was dissolved in dichloromethane (5 ml), and the mixture was further stirred for 2 hours while dropping into the reaction solution using a dropping funnel. After completion of the reaction, the solution was washed with 4% NaHCO 3 aqueous solution and saturated NaCl aqueous solution in this order, and the organic phase was dehydrated with anhydrous sodium sulfate. The desiccant was filtered off and the solvent was distilled off. The residue was purified by silica gel column chromatography (chloroform: methanol = 9: 1) to obtain a product (0.146 g, 0.0552 mmol, 55%) (calculated as a compound represented by formula (2)).

白色粉末; 1H-NMR (CDCl3) δ = 6.97 (2H, s, 2,6-H), 6.43 (1H, br-t, NH), 4.03 (4H, t, J = 7 Hz, 3,5-OCH2), 3.89 (3H, s, 4-OCH3), 3.76-3.47 (〜180H, m, OCH2CH2 × 45), 2.48 (2H, t, J = 6 Hz, NC2CH2), 1.97 (2H, quintet, J = 6 Hz, NCCH2), 1.82 (4H, quintet, J = 7 Hz, 3,5-OCCH2), 1.46 (4H, quintet, J = 7 Hz, 3,5-OC2CH2), 1.26 (40H, m, 3,5-OC3C10H20), 0.88 (6H, t, J = 7 Hz, 3,5-OC13CH3)。 White powder; 1 H-NMR (CDCl 3 ) δ = 6.97 (2H, s, 2,6-H), 6.43 (1H, br-t, NH), 4.03 (4H, t, J = 7 Hz, 3, 5-OCH 2 ), 3.89 (3H, s, 4-OCH 3 ), 3.76-3.47 (~ 180H, m, OCH 2 CH 2 × 45), 2.48 (2H, t, J = 6 Hz, NC 2 CH 2 ), 1.97 (2H, quintet, J = 6 Hz, NCCH 2 ), 1.82 (4H, quintet, J = 7 Hz, 3,5-OCCH 2 ), 1.46 (4H, quintet, J = 7 Hz, 3,5 -OC 2 CH 2 ), 1.26 (40H, m, 3,5-OC 3 C 10 H 20 ), 0.88 (6H, t, J = 7 Hz, 3,5-OC 13 CH 3 ).

<解析例3>
(式(1)で、k=0、m=42〜45、n=2、Z=CONH、Z=NHCO、p=3、R=R=OC1429、R=OCHの化合物の質量分析)
解析例1と同様の条件で、実施例3の生成物のMALDI-TOF/MS測定を行った。
<Analysis example 3>
(In the formula (1), k = 0, m = 42 to 45, n = 2, Z 1 = CONH, Z 2 = NHCO, p = 3, R 1 = R 3 = OC 14 H 29 , R 2 = OCH Mass spectrometry of compound 3 )
Under the same conditions as in Analysis Example 1, the product of Example 3 was subjected to MALDI-TOF / MS measurement.

原料の分子量2000のPEGと類似する分子量分布を有し、式(2)で、X=OH、k=0、m=42〜45、n=2、Z=NHCO、p=3、R=R=OC1429、R=OCHの化合物に相当する分子量分布を有するピークの他に、分子量が642大きい、式(1)で、k=0、m=42〜45、n=2、Z=CONH、Z=NHCO、p=3、R=R=OC1429、R=OCHの化合物に相当する分子量分布を有するピークが検出され、両端ベンズアミド誘導体の生成を確認した。
解析を行ったロットでは、ピークの高さの比は約10:1であった。
It has a molecular weight distribution similar to that of PEG having a molecular weight of 2000, and in formula (2), X = OH, k = 0, m = 42 to 45, n = 2, Z = NHCO, p = 3, R 1 = In addition to the peak having a molecular weight distribution corresponding to the compound of R 3 ═OC 14 H 29 , R 2 ═OCH 3 , the molecular weight is 642 large. In formula (1), k = 0, m = 42 to 45, n = 2, a peak having a molecular weight distribution corresponding to a compound of Z 1 = CONH, Z 2 = NHCO, p = 3, R 1 = R 3 = OC 14 H 29 , R 2 = OCH 3 was detected. Confirmed generation.
For the lots analyzed, the peak height ratio was about 10: 1.

<実施例4>
(ヒドロゲル形成)
実施例1、2、及び3で合成した各ベンズアミド誘導体組成物を、60mMの水溶液として調製し、昇温によるヒドロゲル形成を観測した。いずれも、37度に静置することで1時間以内にヒドロゲルを形成することが、倒置法により確認された。
<Example 4>
(Hydrogel formation)
Each benzamide derivative composition synthesized in Examples 1, 2, and 3 was prepared as a 60 mM aqueous solution, and formation of a hydrogel due to an increase in temperature was observed. In any case, it was confirmed by the inversion method that a hydrogel was formed within one hour by allowing to stand at 37 degrees.

本発明が提供するヒドロゲルは、生体適合性が知られるエチレングリコールのオリゴマー又はポリマー構造を有し、3次元細胞培養、細胞や蛋白質の分離・精製、蛋白質医薬品の徐放等に利用することができる。   The hydrogel provided by the present invention has an ethylene glycol oligomer or polymer structure known to be biocompatible, and can be used for three-dimensional cell culture, separation and purification of cells and proteins, sustained release of protein drugs, and the like. .

Claims (10)

式(1)で示されるベンズアミド誘導体。
Figure 0005282227

(式中で、Z及びZはNHCO又はCONHのアミド結合を、kは0から4までの整数を、mは1から100までの整数を、nは1から6までの整数を、pは1から6までの整数を表す。また、Rは酸素を介して結合した炭素数8から22までの炭化水素基を、RはH、又は、酸素を介して結合した炭素数1から22までの炭化水素基を、RはH、又は、酸素を介して結合した炭素数1から22までの炭化水素基を表し、RとRは同時にHではない。)
A benzamide derivative represented by the formula (1).
Figure 0005282227

(Wherein Z 1 and Z 2 are NHCO or CONH amide bonds, k is an integer from 0 to 4, m is an integer from 1 to 100, n is an integer from 1 to 6, p Represents an integer of 1 to 6. R 1 represents a hydrocarbon group having 8 to 22 carbon atoms bonded through oxygen, and R 2 represents H or 1 to C 1 bonded through oxygen. (In the hydrocarbon group up to 22, R 3 represents H or a hydrocarbon group having 1 to 22 carbon atoms bonded through oxygen, and R 2 and R 3 are not H at the same time.)
請求項1に記載した化合物を有効成分として含むヒドロゲル化剤。   A hydrogelator comprising the compound according to claim 1 as an active ingredient. 請求項2に記載したヒドロゲル化剤と水を含んでなるヒドロゲル。   A hydrogel comprising the hydrogelator according to claim 2 and water. 請求項1に記載した化合物、及び、式(2)で示されるベンズアミド誘導体を有効成分として含むヒドロゲル化剤。
Figure 0005282227

(式中で、XはOH又はNHを、ZはNHCO又はCONHのアミド結合を、kは0から4までの整数を、mは1から100までの整数を、nは1から6までの整数を、pは1から6までの整数を表す。また、Rは酸素を介して結合した炭素数8から22までの炭化水素基を、RはH、又は、酸素を介して結合した炭素数1から22までの炭化水素基を、RはH、又は、酸素を介して結合した炭素数1から22までの炭化水素基を表し、RとRは同時にHではない。)
A hydrogelator comprising the compound according to claim 1 and a benzamide derivative represented by the formula (2) as active ingredients.
Figure 0005282227

Wherein X is OH or NH 2 , Z is an amide bond of NHCO or CONH, k is an integer from 0 to 4, m is an integer from 1 to 100, and n is from 1 to 6. P is an integer from 1 to 6. R 1 is a hydrocarbon group having 8 to 22 carbon atoms bonded through oxygen, and R 2 is bonded through H or oxygen. (The hydrocarbon group having 1 to 22 carbon atoms, R 3 represents H or a hydrocarbon group having 1 to 22 carbon atoms bonded through oxygen, and R 2 and R 3 are not H at the same time.)
請求項4に記載したヒドロゲル化剤と水とを含んでなるヒドロゲル。   A hydrogel comprising the hydrogelator according to claim 4 and water. 式(3)で示されるベンズアミド誘導体。
Figure 0005282227

(式中で、Z及びZはNHCO又はCONHのアミド結合を、kは0から4までの整数を、mは7から100までの整数を、nは2から6までの整数を、pは1から6までの整数を表す。また、R及びRは酸素原子を介して結合した炭素数12から18までの炭化水素基を、RはH、又は、酸素原子を介して結合した炭素数1から18までの炭化水素基を表す。)
A benzamide derivative represented by the formula (3).
Figure 0005282227

(Wherein Z 1 and Z 2 are NHCO or CONH amide bonds, k is an integer from 0 to 4, m is an integer from 7 to 100, n is an integer from 2 to 6, p Represents an integer from 1 to 6. In addition, R 1 and R 3 are a hydrocarbon group having 12 to 18 carbon atoms bonded through an oxygen atom, and R 2 is bonded through H or an oxygen atom. Represents a hydrocarbon group having 1 to 18 carbon atoms.)
請求項6に記載した化合物を有効成分として含むヒドロゲル化剤。   A hydrogelator comprising the compound according to claim 6 as an active ingredient. 請求項7に記載したヒドロゲル化剤と水を含んでなるヒドロゲル。   A hydrogel comprising the hydrogelator according to claim 7 and water. 請求項6に記載した化合物、及び、式(4)で示されるベンズアミド誘導体を有効成分として含むヒドロゲル化剤。
Figure 0005282227

(式中で、XはOH又はNHを、ZはNHCO又はCONHのアミド結合を、kは0から4までの整数を、mは7から100までの整数を、nは2から6までの整数を、pは1から6までの整数を表す。また、R及びRは酸素原子を介して結合した炭素数12から18までの炭化水素基を、RはH、又は、酸素原子を介して結合した炭素数1から18までの炭化水素基を表す。)
A hydrogelator comprising the compound according to claim 6 and a benzamide derivative represented by the formula (4) as active ingredients.
Figure 0005282227

Wherein X is OH or NH 2 , Z is an amide bond of NHCO or CONH, k is an integer from 0 to 4, m is an integer from 7 to 100, and n is from 2 to 6. P represents an integer of 1 to 6. R 1 and R 3 represent a hydrocarbon group having 12 to 18 carbon atoms bonded via an oxygen atom, and R 2 represents H or an oxygen atom. Represents a hydrocarbon group having 1 to 18 carbon atoms bonded via
請求項9に記載したヒドロゲル化剤と水とを含んでなるヒドロゲル。   A hydrogel comprising the hydrogelator according to claim 9 and water.
JP2009040379A 2009-02-24 2009-02-24 Both-end diamide type hydrogelator Expired - Fee Related JP5282227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009040379A JP5282227B2 (en) 2009-02-24 2009-02-24 Both-end diamide type hydrogelator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009040379A JP5282227B2 (en) 2009-02-24 2009-02-24 Both-end diamide type hydrogelator

Publications (2)

Publication Number Publication Date
JP2010195881A JP2010195881A (en) 2010-09-09
JP5282227B2 true JP5282227B2 (en) 2013-09-04

Family

ID=42820929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009040379A Expired - Fee Related JP5282227B2 (en) 2009-02-24 2009-02-24 Both-end diamide type hydrogelator

Country Status (1)

Country Link
JP (1) JP5282227B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102317253B (en) * 2009-02-24 2014-11-26 学校法人立命馆 Dual-terminal amide hydrogelling agent
EP2570474B1 (en) * 2011-09-13 2014-11-19 The Procter and Gamble Company Stable water-soluble unit dose articles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637121A (en) * 1994-12-30 1997-06-10 Chevron Chemical Company Poly(oxyalkylene) aromatic amides and fuel compositions containing the same
JP3947483B2 (en) * 2003-02-28 2007-07-18 財団法人野口研究所 Diamide type gelling agent
JP4947512B2 (en) * 2006-02-16 2012-06-06 公益財団法人野口研究所 Biocompatible hydrogel
JP2010083859A (en) * 2008-09-04 2010-04-15 Ritsumeikan Diamide type hydro-gelling agent
CN102317253B (en) * 2009-02-24 2014-11-26 学校法人立命馆 Dual-terminal amide hydrogelling agent

Also Published As

Publication number Publication date
JP2010195881A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP4947512B2 (en) Biocompatible hydrogel
JP2009540072A5 (en)
JP5949037B2 (en) Polyoxyethylene derivatives having multiple hydroxyl groups at the ends
JP2011505420A5 (en)
Lai et al. Star-shaped mesogens of triazine-based dendrons and dendrimers as unconventional columnar liquid crystals
JP5406692B2 (en) Method for producing organopolysiloxane compound
JP2013253104A (en) De novo synthesis of conjugate
JP2006282525A (en) Ionic liquid having benzoic acid derivative as anion
JP5282227B2 (en) Both-end diamide type hydrogelator
JP3947483B2 (en) Diamide type gelling agent
JP5352810B2 (en) Asymmetric hydrogelator
JP2009084272A (en) Benzamide derivative, hydrogelling agent and hydrogel
JP5282200B2 (en) Transparent hydrogelator
JP5604714B2 (en) Double-ended amide-type hydrogelator
JP2010083859A (en) Diamide type hydro-gelling agent
JP2018172649A (en) Production method of polyoxyethylene derivative having a plurality of hydroxyl groups at the terminal
JP2014224194A (en) Cationic water-soluble polymer and hydrogel comprising the same
JP2010059323A (en) Double chain hydrogelling agent
JP2005232278A (en) Gellant for preparing mold
JP2008248224A (en) Ionic organic compound and manufacturing method thereof as well as hydrogelling agent comprising the ionic organic compound and hydrogel
JP2008543999A5 (en)
JP6435557B2 (en) Cationic water-soluble polymer and hydrogel comprising the same
JP2013185086A (en) Urea type hydrogelling agent
JP4873570B2 (en) POLY [2] CATENAN COMPOUND AND MONOMER THEREOF AND METHOD FOR PRODUCING THEM
JP5663289B2 (en) Method for producing organopolysiloxane compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130416

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees