JP5281873B2 - Immersion objective optical system with an intermediate imaging plane and designed at infinity - Google Patents

Immersion objective optical system with an intermediate imaging plane and designed at infinity Download PDF

Info

Publication number
JP5281873B2
JP5281873B2 JP2008295713A JP2008295713A JP5281873B2 JP 5281873 B2 JP5281873 B2 JP 5281873B2 JP 2008295713 A JP2008295713 A JP 2008295713A JP 2008295713 A JP2008295713 A JP 2008295713A JP 5281873 B2 JP5281873 B2 JP 5281873B2
Authority
JP
Japan
Prior art keywords
group
lens
refractive power
cemented
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008295713A
Other languages
Japanese (ja)
Other versions
JP2010122443A (en
Inventor
真人 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008295713A priority Critical patent/JP5281873B2/en
Priority to US12/619,119 priority patent/US8107170B2/en
Publication of JP2010122443A publication Critical patent/JP2010122443A/en
Application granted granted Critical
Publication of JP5281873B2 publication Critical patent/JP5281873B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence

Description

この発明は、細胞の機能の解明やイメージング等のアプリケーションに用いられる顕微鏡対物ユニットに関し、哺乳類特に動物を生きたままで観察するのに好適な顕微鏡対物ユニットに関するものである。   The present invention relates to a microscope objective unit used for applications such as elucidation of cell functions and imaging, and relates to a microscope objective unit suitable for observing a mammal, particularly an animal alive.

従来、特定の分子や組織、細胞などに色素や蛍光マーカーをつけて、これを蛍光顕微鏡や共焦点レーザー走査顕微鏡などで観察して、生物の細胞や組織内の分子の振る舞いなどを観察する方法が行なわれている。
マウスなどの哺乳類の生物個体が生きた状態での分子の振る舞いは培養細胞とは異なる場合が有り、個体が生きたまま(in vivo)で生体組織や細胞内の観察が行なわれている(例えば、特許文献1参照。)。
Conventionally, a dye or fluorescent marker is attached to a specific molecule, tissue, cell, etc., and this is observed with a fluorescence microscope or a confocal laser scanning microscope to observe the behavior of molecules in living cells and tissues. Has been done.
Molecular behavior in the living state of a mammal such as a mouse may be different from that of a cultured cell, and observation of living tissues and cells is performed while the individual is alive (in vivo) (for example, , See Patent Document 1).

特開2006−119300号公報JP 2006-119300 A

従来のレーザー走査型共焦点顕微鏡を始めとする顕微鏡は、ラットやマウス等の実験小動物の各種臓器を生きたままの状態(in vivo)で観察することは想定していない。しかし、生物個体の内部を観察する場合、従来の顕微鏡対物レンズでは、その外径が大きいため、生体を大きく切り開いて観察する必要がある。しかし、生体を大きく切り開くと侵襲が高いので、長時間の観察は不可能である。   Microscopes such as conventional laser scanning confocal microscopes do not assume that various organs of small experimental animals such as rats and mice are observed in a living state (in vivo). However, when observing the inside of a living organism, the conventional microscope objective lens has a large outer diameter. However, since the invasiveness is high when the living body is greatly opened, long-time observation is impossible.

すなわち、これら実験小動物の各種臓器を観察するには、表皮や筋肉組織を切開し、あるいは、頭蓋骨に穿孔して内部の臓器を露出させる必要があるが、観察部位に近接配置される対物レンズのサイズが実験小動物もしくは観察対象に比較して大きいために、内部の臓器などを観察する場合には、表皮や筋肉組織等を大きく切開、あるいは大きな孔を開ける必要がある。   That is, in order to observe various organs of these experimental small animals, it is necessary to incise the epidermis and muscle tissue or to pierce the skull to expose the internal organs. Since the size is larger than that of an experimental small animal or an observation target, when observing an internal organ or the like, it is necessary to make a large incision or open a large hole in the epidermis or muscle tissue.

一方、先端径を細くした特許文献1の光学系が開示されているが、マウスの脳などの比較的小さな臓器の深部を観察する場合には、まだ侵襲が高く、生体に与えるダメージを考えると、正常な状態での観察は困難であるという不都合がある。更にこの光学系では、多光子励起で観察するには開口数が小さく、分解能が落ちるのはもちろんのこと、検出光が弱いために、S/Nが良くないという課題がある。   On the other hand, although the optical system of Patent Document 1 with a reduced tip diameter is disclosed, when observing the deep part of a relatively small organ such as the brain of a mouse, it is still highly invasive and considering damage to the living body. There is an inconvenience that observation in a normal state is difficult. Furthermore, in this optical system, there is a problem that the S / N is not good because the numerical aperture is small and the resolution is lowered when observing by multiphoton excitation, and the detection light is weak.

本発明は、上述した事情に鑑みてなされたものであって、実験小動物を始めとする哺乳類の細胞、筋肉等の生体組織、あるいは、心臓、肝臓等の各種臓器、特に脳組織を生きたままの状態で、比較的長期間にわたって低侵襲に観察することを可能とするとともに、多光子励起に用いるための無限遠設計で中間結像面を持つ液浸細径対物光学系を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and remains alive in mammalian tissues including experimental small animals, living tissues such as muscles, or various organs such as heart and liver, particularly brain tissues. It is possible to provide a liquid immersion small-diameter objective optical system having an intermediate image plane with an infinite design for use in multiphoton excitation, while enabling low-invasive observation over a relatively long period of time. It is aimed.

上記目的を達成するために、本発明は以下の手段を提供する。
本発明は、物体側から順に、正屈折力の第1群、正屈折力の第2群、負屈折力の第3群、正屈折力の第4群そして正屈折力の第5群で構成され、前記第1群は、像側に凸面を向けた平凸レンズを含み、物体面からの発散光束を、より発散の小さな光束に変換し、前記第2群は、最も物体側のレンズ面が物体側に凸面を向けた接合レンズで構成され、前記第3群は、最も像側のレンズ面が像側に凹面を向けた接合レンズで構成され、前記第4群は、最も物体側に配置され像側レンズ面が像側に凸面を向けたレンズと、最も像側に配置され物体側レンズ面が物体側に凸面を向けたレンズとを含み、前記第3群からの発散光束を収斂光束に変換し、前記第5群は、凸レンズと凹レンズが接合され、かつ前記接合面が負屈折力である接合レンズを含み、前記接合面における光束径が前記第1群から第4群までの間における光束径よりも大きくなっており、無限遠設計で前記第4群と前記第5群との間に中間結像面を有する液浸細径対物光学系を提供する。
In order to achieve the above object, the present invention provides the following means.
The present invention includes, in order from the object side, a first group having positive refractive power, a second group having positive refractive power, a third group having negative refractive power, a fourth group having positive refractive power, and a fifth group having positive refractive power. The first group includes a plano-convex lens having a convex surface directed toward the image side , converts a divergent light beam from the object surface into a light beam having a smaller divergent property, and the second group has a lens surface closest to the object side. a cemented lens having a convex surface on the object side, the third group, most lens surface on the image side is a cemented lens having a concave surface on the image side, the fourth group disposed closest to the object side A lens having a convex surface facing the image side and a lens disposed closest to the image side and having a convex surface facing the object side, the diverging light beam from the third group being a convergent light beam. was converted to the fifth group, convex and concave lenses are bonded, and include a cemented lens wherein the bonding surface is a negative refractive power It is larger than the beam diameter of light flux diameter in until the fourth group from the first group in the bonding surface, an intermediate image plane between the fourth group at infinity design and the fifth group An immersion small-diameter objective optical system is provided.

本発明によれば、正屈折力の第1群において、最も物体側が略平面となることにより、間に気泡が入らないようにすることができる。また、像面側に凸面を向けた平凸レンズを含むことにより、アプラナティック条件に近くして、球面収差とコマ収差の発生を小さくすることができる。   According to the present invention, in the first group having positive refracting power, the most object side becomes a substantially flat surface, so that bubbles can be prevented from entering therebetween. Further, by including a plano-convex lens having a convex surface facing the image surface side, it is possible to reduce the occurrence of spherical aberration and coma aberration close to the aplanatic condition.

正屈折力の第2群において、最も物体側のレンズ面が物体側に凸面を向けることにより、球面収差やコマ収差が大きく発生するが、光束の発散を小さくして第2群以降で光線高が高くなるのを防ぐことができ、レンズ外径を小さくすることができる。   In the second group having positive refracting power, when the lens surface closest to the object side has a convex surface facing the object side, spherical aberration and coma aberration are greatly generated. Can be prevented, and the lens outer diameter can be reduced.

負屈折力の第3群において、最も像面側のレンズ面が像面側に凹面を向けていることによって、第3群内での光線高を高くすることなく、ペッツバール和を小さくすることができ像面湾曲を補正することができる。   In the third group of negative refractive power, the Petzval sum can be reduced without increasing the ray height in the third group by the lens surface closest to the image surface facing the concave surface toward the image surface side. And curvature of field can be corrected.

正屈折力の第4群においては、最も物体側に配置されたレンズの像面側レンズ面が像面側に凸面を向けていることで、アプラナティック条件に近くし、第3群からの発散光を球面収差とコマ収差の発生を大きくすることなく、略収斂光にすることができる。更に最も像側に配置されたレンズの物体側レンズ面が物体側に凸面を向けることで、アプラナティック条件に近くし、球面収差とコマ収差の発生を大きくすることなく収斂光にすることができる。   In the fourth group having positive refractive power, the image surface side lens surface of the lens disposed closest to the object side has a convex surface facing the image surface side, so that it approaches the aplanatic condition. The divergent light can be made substantially convergent without increasing the generation of spherical aberration and coma. Furthermore, the object-side lens surface of the lens arranged closest to the image side has a convex surface directed toward the object side, so that it is close to the aplanatic condition, and convergent light can be obtained without increasing the generation of spherical aberration and coma aberration. it can.

正屈折力の第5群において、発散光を平行光に変換するために全体として正屈折力を持たせると共に、負屈折力の接合面を持つ接合レンズを含むことによって、第1群から第4群で補正しきれなかった球面収差、色収差を補正することができる。
また、中間結像面を本液浸細径対物光学系内に設けることにより、像側の射出瞳位置をレンズ外に配置することが可能となる。
In the fifth group having positive refractive power, in order to convert divergent light into parallel light, the whole group has positive refractive power, and includes a cemented lens having a negative refractive power joint surface. It is possible to correct spherical aberration and chromatic aberration that could not be corrected by the group.
In addition, by providing the intermediate imaging plane in the liquid immersion objective optical system, the exit pupil position on the image side can be arranged outside the lens.

よって、このように構成された本発明に係る無限遠設計で中間結像面を持つ液浸細径対物光学系によれば、外径が細く、全長が長く、諸収差が良好に補正されていて、多光子励起にも使用可能な高開口数でin vivo観察に適した無限遠設計で中間結像面を持つ液浸細径対物光学系を実現することができる。   Therefore, according to the immersion infinity objective optical system having an intermediate image plane in the infinity design according to the present invention configured as described above, the outer diameter is thin, the total length is long, and various aberrations are well corrected. Thus, it is possible to realize an immersion small-diameter objective optical system having an intermediate imaging plane with an infinity design suitable for in vivo observation with a high numerical aperture that can also be used for multiphoton excitation.

上記発明においては、以下の条件式(1)を満足することが好ましい。
(1) 0.15 < F12/(L13・NA) < 0.25
ただし、F12は、第1群から第2群までを合わせた焦点距離、L13は、物体面から第3群の最も像側面までの光軸距離、そして、NAは、無限遠設計で中間結像面を持つ液浸細径対物光学系の物体側開口数である。
In the said invention, it is preferable to satisfy the following conditional expressions (1).
(1) 0.15 <F 12 / (L 13 · NA) <0.25
Where F 12 is the focal length of the first group to the second group, L 13 is the optical axis distance from the object plane to the most image side surface of the third group, and NA is an intermediate at an infinite design. This is the object-side numerical aperture of an immersion small-diameter objective optical system having an image plane.

条件式(1)が0.15を下回ると第1群から第2群を合わせた焦点距離F12が小さくなり、第1群と第2群の屈折力が強くなるため、球面収差が大きく発生し、その補正が困難になるとともに、物体側NAが大きくなるため、第1群及び第2群の光線高が大きくなるため細径にすることができない。また、L13が長くなり、本液浸細径対物光学系の細径部分が長くなり、軸外光のケラレが発生し視野範囲が狭くなるなどするため、不都合である。 Condition (1) is the focal length F 12 decreases the combined second group from the first group falls below 0.15, the refractive power of the first group and the second group becomes strong, the spherical aberration is largely generated However, the correction becomes difficult and the object-side NA becomes large, so that the light beam heights of the first group and the second group become large, so that the diameter cannot be reduced. Further, L 13 is long, narrow portion of the immersion small-diameter objective optical system becomes longer, since the field of view vignetting occurs off-axis light is such narrow, is disadvantageous.

逆に、条件式(1)が0.25を上回ると、第1群から第2群を合わせた焦点距離F12が大きくなり屈折力が小さくなる。その結果、物体からの発散光を収斂することができず、第1群と第2群の光線高が大きくなって不都合である。また、物体側開口数NAが小さくなるため、分解能が落ちるなど不都合が生じる。また、L13が短くなるため、本液浸細径対物光学系の細径部分の長さが短くなり、マウスなどの小動物の生体深部を観察するときに、より深部を低侵襲に観察することが困難になる。 Conversely, if the conditional expression (1) exceeds 0.25, the refractive power focal length F 12 from the first group the combined second group becomes large decreases. As a result, divergent light from the object cannot be converged, and the light heights of the first group and the second group become large, which is inconvenient. In addition, since the object-side numerical aperture NA is small, inconveniences such as a reduction in resolution occur. Further, since the L 13 is shortened, it shortens the length of the small-diameter portion of the immersion small-diameter objective optical system, when observing a small animal biological deep, such as a mouse, to observe more deep minimally invasive Becomes difficult.

また、上記発明においては、以下の条件式(2)から(5)を満足することが好ましい。
(2) 12 < F/F12 < 14
(3) 1.7 < φ/φ12 < 2.5
(4) 1.75 < n12 < 1.90
(5) 80 < ν < 95
Moreover, in the said invention, it is preferable to satisfy the following conditional expressions (2) to (5).
(2) 12 <F 5 / F 12 <14
(3) 1.7 <φ 5 / φ 12 <2.5
(4) 1.75 <n 12 < 1.90
(5) 80 <ν 5 <95

ただし、F12は、第1群から第2群までを合わせた焦点距離、Fは、第5群の焦点距離、φ12は、第1群と第2群のレンズのうち最も小さなレンズ径、φは、第5群のレンズのうち最も大きなレンズ径、n12は、第1群と第2群のレンズのうち最も大きな屈折率(d線)、νは、第5群の負屈折力の接合面を持つ接合レンズの凸レンズのアッベ数(d線)である。 Where F 12 is the focal length of the first group to the second group, F 5 is the focal length of the fifth group, and φ 12 is the smallest lens diameter among the lenses of the first group and the second group. , Φ 5 is the largest lens diameter among the lenses of the fifth group, n 12 is the largest refractive index (d line) of the lenses of the first group and the second group, and ν 5 is the negative of the fifth group. It is the Abbe number (d line) of the convex lens of the cemented lens having the cemented surface of refractive power.

条件式(2)が12を下回ると、第1群から第2群を合わせた焦点距離F12が大きくなり、第1、2群の屈折力が小さくなるため、物体からの発散光を収斂することができず、前記第1、2群での光線高が大きくなり不都合である。
逆に、条件式(2)が14を上回ると、第5群の焦点距離Fが大きくなるため、第4群からの発散光を収斂光に変換できなくなるので不都合であると共に、第1群から第2群を合わせた焦点距離F12が小さくなり第1、2群の屈折力が大きくなるため、この第1、2群で大きな球面収差が発生し不都合である。
If conditional expression (2) is below 12, the focal length F 12 from the first group the combined second group becomes large, the refractive power of the first and second group decreases, converge the diverging light from the object This is inconvenient because the beam height in the first and second groups becomes large.
Conversely, if the conditional expression (2) exceeds 14, the focal length F 5 of the fifth group becomes large, which is inconvenient because divergent light from the fourth group cannot be converted into convergent light. the refractive power of the first and second group focal length F 12 obtained by combining the second group becomes smaller increases from a large spherical aberration occurs inconvenience in the first and second group.

条件式(3)が1.7を下回ると、第5群のレンズのうち最も大きなレンズ径φが小さくなるため、第1群から第4群で発生した球面収差などをはじめとする諸収差の補正が困難になるとともに、第1群と第2群のレンズのうち最も小さなレンズ径φ12が大きくなるため、細径にすることができず不都合である。 When conditional expression (3) is below 1.7, because the largest lens diameter phi 5 of the fifth lens group becomes small, various aberrations including such as a spherical aberration generated in the fourth group from the first group together it becomes difficult to correct, for the smallest lens diameter phi 12 of the first group and the second lens group becomes large, which is undesirable can not be thin.

逆に、条件式(3)が2.5を上回ると、第5群のレンズのうち最も大きなレンズ径φが大きくなり、第1群と第2群のレンズのうち最も小さなレンズ径φ12が小さくなるため、収差補正の点では好都合であるが、レンズ径φ12が小さくなりすぎると軸外光がケラレるなどして、物体側開口数NAや視野範囲が小さくなるなど不都合が生じるため、適切な値に留めておくのが好ましい。 Conversely, if the conditional expression (3) exceeds 2.5, the largest lens diameter phi 5 is increased out of the fifth lens group, the smallest lens diameter of the first group and the second lens group phi 12 since smaller, but in terms of aberration correction it is advantageous, when the lens diameter phi 12 is too small off-axis light in such vignetting, since the inconvenience, such as the object-side numerical aperture NA and field of view becomes smaller It is preferable to keep it at an appropriate value.

条件式(4)が1.75を下回ると、第1,2群の屈折力が小さくなり、物体からの発散光を収束させることができず、光線高が高くなり細径にすることができないため不都合である。
逆に条件式(4)が1.90を上回ると、第1,2群の曲率半径が大きくなるため、球面収差の補正が過剰になるため不都合である。
When the conditional expression (4) is less than 1.75, the refractive powers of the first and second groups become small, the diverging light from the object cannot be converged, the light beam height becomes high and the diameter cannot be reduced. Therefore, it is inconvenient.
On the other hand, if conditional expression (4) exceeds 1.90, the radius of curvature of the first and second lens groups becomes large, which is inconvenient because the correction of spherical aberration becomes excessive.

条件式(5)が80を下回ると、通常接合レンズの凹レンズには高屈折高分散のフリント系硝材を用いるため、接合面でのアッベ数の差が小さくなり第1群から第4群で発生した色収差の補正が困難になる。
逆に条件式(5)が95を上回ると、色収差の補正が過剰になるため不都合である。
When the conditional expression (5) is less than 80, the concave lens of the normal cemented lens uses a flint glass material with high refraction and high dispersion, so that the difference in Abbe number on the cemented surface becomes small and occurs in the first group to the fourth group. It becomes difficult to correct the chromatic aberration.
On the other hand, if conditional expression (5) exceeds 95, the correction of chromatic aberration becomes excessive, which is inconvenient.

本発明によれば、実験小動物を始めとする哺乳類の細胞、筋肉等の生体組織、あるいは、心臓、肝臓等の各種臓器、特に脳組織を生きたままの状態で、比較的長期間にわたって低侵襲に観察することが可能となるとともに、多光子励起に使用することができるようになるという効果を奏する。   According to the present invention, living tissue of mammalian cells including small experimental animals, muscles and other biological tissues, or various organs such as the heart and liver, particularly brain tissues, remain alive for a relatively long period of time. This makes it possible to observe the image and to use it for multiphoton excitation.

〔第1の実施例〕
図1に本発明の第1の実施例のレンズ構成を示し、その実施形態について以下に説明する。
本実施形態に係る無限遠設計で中間結像面を持つ液浸細径対物光学系1は、最も物体側に配置されたレンズの物体側のレンズ面が略平面であるレンズと、像面側に凸面を向けた平凸レンズを含む正屈折力の第1群G1、最も物体側のレンズ面が物体側に凸面を向けている正屈折力の第2群G2、最も像面側のレンズ面が像面側に凹面を向けている負屈折力の第3群G3、最も物体側に配置されたレンズの像面側レンズ面が像面側に凸面を向けており、更に最も像側に配置されたレンズの物体側レンズ面が物体側に凸面を向けたことを特徴とする正屈折力の第4群G4、負屈折力の接合面を持つ凸レンズと凹レンズとの接合レンズを含む正屈折力の第5群G5、そして第4群G4と第5群G5との間に配置された中間結像面で構成されている。
[First embodiment]
FIG. 1 shows a lens configuration of a first example of the present invention, and an embodiment thereof will be described below.
The immersion small-diameter objective optical system 1 having an intermediate image plane with an infinity design according to the present embodiment includes a lens having a substantially flat object-side lens surface disposed on the most object side, and an image plane side. A first lens unit G1 having a positive refractive power including a plano-convex lens having a convex surface facing the lens, a second lens group G2 having a positive refractive power having the lens surface closest to the object side facing the convex surface toward the object side, and a lens surface closest to the image surface side. The third lens group G3 having negative refractive power with the concave surface facing the image surface side, the image surface side lens surface of the lens disposed closest to the object side is directed convex toward the image surface side, and further disposed closest to the image side A fourth lens group G4 having a positive refractive power, wherein the object side lens surface of the lens has a convex surface facing the object side, and a positive refractive power including a cemented lens of a convex lens having a negative refractive power cemented surface and a concave lens. The fifth lens group G5 is composed of an intermediate image plane disposed between the fourth lens group G4 and the fifth lens group G5.

更に具体的には、第1レンズ群G1は、平行平板L1と、像面側に凸面を向けd線の屈折率が1.883である平凸レンズL2とから構成され正屈折力を有する。
第2レンズ群G2は、物体側の面が物体側に凸面を向けている両凸レンズL3と両凹レンズL4とを接合した接合レンズから構成され正屈折力を有する。
More specifically, the first lens group G1 includes a parallel flat plate L1, and a planoconvex lens L2 having a convex surface facing the image surface and a refractive index of d-line of 1.883, and has positive refractive power.
The second lens group G2 includes a cemented lens in which a biconvex lens L3 having a convex surface facing the object side and a biconcave lens L4 are cemented, and has positive refractive power.

第3レンズ群G3は、両凸レンズL5と像側の面が像面側に凹面を向けている両凹レンズL6とを接合した接合レンズから構成され負屈折力を有する。
第4レンズ群G4は、最も物体側に配置された両凸レンズL7の像側レンズ面が像側に凸面を向けており、最も像側に配置された平凸レンズL8の物体側レンズ面が物体側に凸面を向けており、全体として正屈折力を有する。
The third lens group G3 includes a cemented lens obtained by cementing a biconvex lens L5 and a biconcave lens L6 having an image-side surface facing the concave surface toward the image surface side, and has negative refractive power.
In the fourth lens group G4, the image side lens surface of the biconvex lens L7 disposed closest to the object side has the convex surface facing the image side, and the object side lens surface of the planoconvex lens L8 disposed closest to the image side is the object side. The convex surface is directed to the surface, and has positive refractive power as a whole.

第5レンズ群G5は、両凸レンズL9、像側に凹面を向けた負屈折力のメニスカスレンズL10と物体側に凸面を向けた正屈折力の平凸レンズL11とを接合し接合面が負屈折力の接合レンズ、および、像側に凸面を向けた正屈折力の平凸レンズL12と物体側に凹面を向けた負屈折力のメニスカスレンズL13とを接合し接合面が負屈折力の接合レンズから構成され、全体として正屈折力を有し、平凸レンズL11と平凸レンズL12のアッベ数は94.9である。
そして、像側の射出瞳の位置は、メニスカスレンズL13から1.3mm像側に配置される。
The fifth lens group G5 includes a biconvex lens L9, a negative refractive power meniscus lens L10 having a concave surface directed toward the image side, and a planoconvex lens L11 having a positive refractive power toward the object side, and a cemented surface having a negative refractive power. And a positive refractive power plano-convex lens L12 having a convex surface facing the image side and a negative refractive power meniscus lens L13 having a concave surface facing the object side, and a cemented surface having a negative refractive power. As a whole, it has positive refractive power, and the Abbe number of the plano-convex lens L11 and the plano-convex lens L12 is 94.9.
The position of the exit pupil on the image side is arranged 1.3 mm from the meniscus lens L13.

本実施形態においては、各レンズL1〜L13が以下の条件式(1)〜(5)を満たすように構成されている。
(1) 0.15 < F12/(L13・NA) < 0.25
(2) 12 < F/F12 < 14
(3) 1.7 < φ/φ12 < 2.5
(4) 1.75 < n12 < 1.90
(5) 80 < ν < 95
In the present embodiment, the lenses L1 to L13 are configured to satisfy the following conditional expressions (1) to (5).
(1) 0.15 <F 12 / (L 13 · NA) <0.25
(2) 12 <F 5 / F 12 <14
(3) 1.7 <φ 5 / φ 12 <2.5
(4) 1.75 <n 12 < 1.90
(5) 80 <ν 5 <95

ここで、F12は、第1群G1から第2群G2までを合わせた焦点距離、L13は、物体面から第3群G3の最も像側面までの光軸距離、NAは、無限遠設計で中間結像面を持つ液浸細径対物光学系1の物体側開口数、Fは、第5群G5の焦点距離、φ12は、第1群G1と第2群G2のレンズL1〜L4のうち最も小さなレンズ径、φは、第5群G5のレンズL9〜L13のうち最も大きなレンズ径、n12は、第1群G1と第2群G2のレンズL1〜L4のうち最も大きな屈折率(d線)、νは、第5群G5の負屈折力の接合面を持つ接合レンズの平凸レンズL11のアッベ数(d線)である。 Here, F 12 is the focal length of the first group G 1 to the second group G 2, L 13 is the optical axis distance from the object plane to the most image side of the third group G 3, and NA is an infinite design. in object-side numerical aperture of the immersion small-diameter objective optical system 1 having an intermediate image plane, F 5 is the focal length of the fifth lens group G5, phi 12, the first lens group G1 and the second lens group G2 lens L1~ smallest lens diameter of L4, phi 5 is the largest lens diameter of the fifth lens group G5 lens L9~L13, n 12 is the largest among the first group G1 and the lens L1~L4 of the second group G2 Refractive index (d-line), ν 5 is the Abbe number (d-line) of the plano-convex lens L11 of the cemented lens having the cemented surface having the negative refractive power of the fifth group G5.

表1に本実施例に係る液浸細径対物光学系1のレンズデータを示し、図3に本実施例の収差図を示す。   Table 1 shows lens data of the immersion small-diameter objective optical system 1 according to the present example, and FIG. 3 shows aberration diagrams of the present example.

Figure 0005281873
Figure 0005281873

表中の記号については、
r:曲率半径, d:面間隔, nd:屈折率(d線), νd:アッベ数(d線)
となっている。
For symbols in the table,
r: radius of curvature, d: spacing, nd: refractive index (d line), νd: Abbe number (d line)
It has become.

本実施例において、条件式(1)〜(5)における各値は以下の通りである。
12 = 0.418
= 5.50
13 = 3.70
NA = 0.62
φ12 = 0.80
φ = 1.80
12 = 1.883
ν = 94.9
(1)F12/(L13・NA) = 0.18
(2)F/F12 = 13.2
(3)φ/φ12 = 2.25
(4)n12 = 1.883
(5)ν = 94.9
In the present embodiment, each value in the conditional expressions (1) to (5) is as follows.
F 12 = 0.418
F 5 = 5.50
L 13 = 3.70
NA = 0.62
φ 12 = 0.80
φ 5 = 1.80
n 12 = 1.883
ν 5 = 94.9
(1) F 12 / (L 13 · NA) = 0.18
(2) F 5 / F 12 = 13.2
(3) φ 5 / φ 12 = 2.25
(4) n 12 = 1.883
(5) ν 5 = 94.9

本実施例に係る液浸細径対物光学系1においては、レンズL1〜L6のレンズ直径は0.8mm、レンズL7,L8のレンズ直径は1.2mm、レンズL9〜L13のレンズ直径は1.8mmであり、レンズL1からレンズL6までの先端部分は非常に小さい径のレンズのみで構成されている。   In the immersion small-diameter objective optical system 1 according to this example, the lens diameters of the lenses L1 to L6 are 0.8 mm, the lens diameters of the lenses L7 and L8 are 1.2 mm, and the lens diameters of the lenses L9 to L13 are 1. The front end portion from the lens L1 to the lens L6 is composed of only a lens having a very small diameter.

このため、マウスなどの実験小動物の体内奥深くを低侵襲で比較的長期間に渡ってin vivo観察するのに適している。また、本実施例は近赤外域まで収差を補正しており、近赤外光を用いて試料の表面だけでなく比較的散乱の影響を受けずに生体内部を観察することができる。更に、物体側開口数を比較的大きくしているため多光子励起にも使用することができる。   For this reason, it is suitable for in vivo observation of a deep inside of a small experimental animal such as a mouse for a relatively long time with minimal invasiveness. In addition, the present embodiment corrects aberrations up to the near-infrared region, and the near-infrared light can be used to observe not only the surface of the sample but also the inside of the living body relatively without being affected by scattering. Furthermore, since the object-side numerical aperture is relatively large, it can also be used for multiphoton excitation.

〔第2の実施例〕
図2に本発明の第2の実施例のレンズ構成を示し、その実施形態について以下に説明する。
なお、第1の実施例と共通する構成については、同一の符号を付すこととする。
本実施形態に係る無限遠設計で中間結像面を持つ液浸細径対物光学系1は、最も物体側に配置されたレンズの物体側のレンズ面が略平面であるレンズと、像面側に凸面を向けた平凸レンズを含む正屈折力の第1群G1、最も物体側のレンズ面が物体側に凸面を向けている正屈折力の第2群G2、最も像面側のレンズ面が像面側に凹面を向けている負屈折力の第3群G3、最も物体側に配置されたレンズの像面側レンズ面が像面側に凸面を向けており、更に最も像側に配置されたレンズの物体側レンズ面が物体側に凸面を向けている正屈折力の第4群G4、負屈折力の接合面を持つ凸レンズと凹レンズとの接合レンズを含む正屈折力の第5群G5、そして第4群G4と第5群G5との間に配置された中間結像面で構成されている。
[Second Embodiment]
FIG. 2 shows a lens configuration of a second example of the present invention, and an embodiment thereof will be described below.
In addition, the same code | symbol shall be attached | subjected about the structure which is common in 1st Example.
The immersion small-diameter objective optical system 1 having an intermediate image plane with an infinity design according to the present embodiment includes a lens having a substantially flat object-side lens surface disposed on the most object side, and an image plane side. A first lens unit G1 having a positive refractive power including a plano-convex lens having a convex surface facing the lens, a second lens group G2 having a positive refractive power having the lens surface closest to the object side facing the convex surface toward the object side, and a lens surface closest to the image surface side. The third lens group G3 having negative refractive power with the concave surface facing the image surface side, the image surface side lens surface of the lens disposed closest to the object side is directed convex toward the image surface side, and further disposed closest to the image side Fourth lens group G4 having a positive refractive power in which the object-side lens surface of the lens has a convex surface facing the object side, and a fifth lens group G5 having a positive refractive power including a cemented lens of a convex lens having a cemented surface having a negative refractive power and a concave lens. , And an intermediate imaging plane disposed between the fourth group G4 and the fifth group G5.

更に具体的には、第1群G1は、平行平板L31と像面側に凸面を向けd線の屈折率が1.883である平凸レンズL32から構成され正屈折力を有する。
第2群G2は、物体側の面が物体側に凸面を向けている両凸レンズL33と平凹レンズL34とを接合した接合レンズから構成され正屈折力を有する。
More specifically, the first group G1 includes a parallel flat plate L31 and a plano-convex lens L32 having a convex surface facing the image surface and a refractive index of d-line of 1.883, and has positive refractive power.
The second group G2 includes a cemented lens in which a biconvex lens L33 having a convex surface facing the object side and a plano-concave lens L34 are cemented, and has positive refractive power.

第3群G3は、両凸レンズL35と像側の面が像面側に凹面を向けている両凹レンズL36とを接合した接合レンズから構成され負屈折力を有する。
第4群G4は、最も物体側に配置された平凸レンズL37の像側レンズ面が像側に凸面を向けており、最も像側に配置された平凸レンズL38の物体側レンズ面が物体側に凸面を向けており、全体として正屈折力を有する。
The third group G3 includes a cemented lens in which a biconvex lens L35 and a biconcave lens L36 having an image-side surface facing a concave surface on the image surface side and has negative refractive power.
In the fourth group G4, the image side lens surface of the plano-convex lens L37 disposed closest to the object side has the convex surface facing the image side, and the object side lens surface of the plano-convex lens L38 disposed closest to the image side is directed to the object side. It has a convex surface and has positive refractive power as a whole.

第5群G5は、像側に凸面を向けた正屈折力のメニスカスレンズL39、および、像側に凸面を向けた正屈折力の平凸レンズL40と像側に凸面を向けた負屈折力のメニスカスレンズL41とを接合し接合面が負屈折力の接合レンズから構成され、全体として正屈折力を有し、平凸レンズL40のアッベ数は94.9である。
そして、像側の射出瞳の位置は、メニスカスレンズL41から4.8mm像側に配置される。
The fifth group G5 includes a positive refractive power meniscus lens L39 having a convex surface facing the image side, a positive refractive power plano-convex lens L40 having a convex surface facing the image side, and a negative refractive power meniscus having a convex surface facing the image side. The lens L41 is cemented and the cemented surface is composed of a cemented lens having a negative refractive power, and has a positive refractive power as a whole. The Abbe number of the plano-convex lens L40 is 94.9.
The position of the exit pupil on the image side is arranged on the 4.8 mm image side from the meniscus lens L41.

本実施形態においては、各レンズL31〜L41が以下の条件式(1)〜(5)を満たすように構成されている。
(1) 0.15 < F12/(L13・NA) < 0.25
(2) 12 < F/F12 < 14
(3) 1.7 < φ/φ12 < 2.5
(4) 1.75 < n12 < 1.90
(5) 80 < ν < 95
In the present embodiment, the lenses L31 to L41 are configured to satisfy the following conditional expressions (1) to (5).
(1) 0.15 <F 12 / (L 13 · NA) <0.25
(2) 12 <F 5 / F 12 <14
(3) 1.7 <φ 5 / φ 12 <2.5
(4) 1.75 <n 12 < 1.90
(5) 80 <ν 5 <95

ここで、F12は、第1群G1から第2群G2までを合わせた焦点距離、L13は、物体面から第3群G3の最も像側面までの光軸距離、NAは、無限遠設計で中間結像面を持つ液浸細径対物光学系1の物体側開口数、Fは、第5群G5の焦点距離、φ12は、第1群G1と第2群G2のレンズL31〜L34のうち最も小さなレンズ径、φは、第5群G5のレンズL39〜L41のうち最も大きなレンズ径、n12は第1群G1と第2群G2のレンズL31〜L34のうち最も大きな屈折率(d線)、νは第5群G5の負屈折力の接合面を持つ接合レンズの凸レンズL40のアッベ数(d線)である。 Here, F 12 is the focal length of the first group G 1 to the second group G 2, L 13 is the optical axis distance from the object plane to the most image side of the third group G 3, and NA is an infinite design. in object-side numerical aperture of the immersion small-diameter objective optical system 1 having an intermediate image plane, F 5 is the focal length of the fifth lens group G5, phi 12, the first lens group G1 and the second lens group G2 lens L31~ smallest lens diameter of L34, phi 5 is the largest lens diameter of the lens L39~L41 the fifth group G5, n 12 is the greatest refractive among lenses L31~L34 the first lens group G1 and the second lens group G2 The ratio (d line), ν 5 is the Abbe number (d line) of the convex lens L40 of the cemented lens having the cemented surface having the negative refractive power of the fifth group G5.

表2に本実施例に係る液浸細径対物光学系1のレンズデータを示し、図4に本実施例の収差図を示す。   Table 2 shows lens data of the immersion small-diameter objective optical system 1 according to the present example, and FIG. 4 shows aberration diagrams of the present example.

Figure 0005281873
Figure 0005281873

本実施例に係る液浸細径対物光学系1は、基本的には第1の実施例とほぼ同じであるが、第1の実施例よりも歪曲収差を補正し、像の歪みを少なくした例である。
更に、本実施例においても、レンズL31〜L36のレンズ直径は0.8mm、レンズL37,L38のレンズ直径は1.2mmであり、その先端部分は非常に小さい径のレンズのみで構成されている。
The immersion small-diameter objective optical system 1 according to the present embodiment is basically the same as the first embodiment, but corrects distortion aberration and reduces image distortion than the first embodiment. It is an example.
Furthermore, also in this embodiment, the lens diameters of the lenses L31 to L36 are 0.8 mm, the lens diameters of the lenses L37 and L38 are 1.2 mm, and the tip portion is composed of only a lens having a very small diameter. .

このため、マウスなどの実験小動物の体内奥深くを低侵襲で比較的長期間に渡ってin vivo観察するのに適している。また、近赤外域まで収差を補正しており、近赤外光を用いて試料の表面だけでなく比較的散乱の影響を受けずに生体内部を観察することができるとともに、物体側開口数を比較的大きくしているため多光子励起にも使用することができる。   For this reason, it is suitable for in vivo observation of a deep inside of a small experimental animal such as a mouse for a relatively long time with minimal invasiveness. In addition, aberrations are corrected up to the near-infrared region, and not only the surface of the sample but also the inside of the living body can be observed relatively unaffected by scattering, and the object-side numerical aperture can be Since it is relatively large, it can also be used for multiphoton excitation.

本実施例において、条件式(1)〜(5)における各値は以下の通りである。
12 = 0.470
= 6.07
13 = 3.72
NA = 0.61
φ12 = 0.80
φ = 1.60
12 = 1.883
ν = 94.9
(1)F12/(L13・NA) = 0.20
(2)F/F12 = 12.9
(3)φ/φ12 = 2.00
(4)n12 = 1.883
(5)ν = 94.9
In the present embodiment, each value in the conditional expressions (1) to (5) is as follows.
F 12 = 0.470
F 5 = 6.07
L 13 = 3.72
NA = 0.61
φ 12 = 0.80
φ 5 = 1.60
n 12 = 1.883
ν 5 = 94.9
(1) F 12 / (L 13 · NA) = 0.20
(2) F 5 / F 12 = 12.9
(3) φ 5 / φ 12 = 2.00
(4) n 12 = 1.883
(5) ν 5 = 94.9

なお、実施例1,2ともに、像側への射出光が平行光となるので、それ自体では結像しない。そこで、以下の表3に示すレンズデータを有し、図5にレンズ構成図を示す結像レンズと組み合わせて使用する。   In both the first and second embodiments, the light emitted to the image side becomes parallel light, so that no image is formed by itself. Therefore, the lens data shown in Table 3 below is used, and the lens data is used in combination with the imaging lens whose lens configuration is shown in FIG.

Figure 0005281873
Figure 0005281873

本発明の第1の実施例に係る液浸細径対物光学系の構成図である。It is a block diagram of the immersion small diameter objective optical system based on the 1st Example of this invention. 本発明の第2の実施例に係る液浸細径対物光学系の構成図である。It is a block diagram of the immersion small diameter objective optical system which concerns on the 2nd Example of this invention. 本発明の第1の実施例に係る液浸細径対物光学系の収差図で、(a)球面収差、(b)正弦条件違反量、(c)非点収差、(d)は歪曲収差を表している。FIG. 4 is an aberration diagram of the immersion small-diameter objective optical system according to the first example of the present invention. (A) Spherical aberration, (b) Sine condition violation amount, (c) Astigmatism, (d) shows distortion aberration. Represents. 本発明の第2の実施例に係る液浸細径対物光学系の収差図で、(a)球面収差、(b)は正弦条件違反量、(c)非点収差、(d)歪曲収差を表している。FIG. 6 is an aberration diagram of the immersion small-diameter objective optical system according to the second example of the present invention. (A) Spherical aberration, (b) Sine condition violation amount, (c) Astigmatism, (d) Distortion aberration Represents. 結像レンズの一例を示す構成図である。It is a block diagram which shows an example of an imaging lens.

符号の説明Explanation of symbols

1 液浸細径対物光学系
G1 第1群
G2 第2群
G3 第3群
G4 第4群
G5 第5群
L1,L31 平行平板
L2,L32 平凸レンズ
L3,L33 両凸レンズ
L4 両凹レンズ
L5,L35 両凸レンズ
L6,L36 両凹レンズ
L7 両凸レンズ
L8,L38 平凸レンズ
L9 両凸レンズ
L10 メニスカスレンズ(凹レンズ)
L11 平凸レンズ
L12 平凸レンズ
L13 メニスカスレンズ
L34 平凹レンズ
L37 平凸レンズ
L39 メニスカスレンズ
L40 平凸レンズ
L41 メニスカスレンズ(凹レンズ)
DESCRIPTION OF SYMBOLS 1 Liquid immersion objective optical system G1 1st group G2 2nd group G3 3rd group G4 4th group G5 5th group L1, L31 Parallel flat plate L2, L32 Planoconvex lens L3, L33 Biconvex lens L4 Biconcave lens L5, L35 Both Convex lens L6, L36 Biconcave lens L7 Biconvex lens L8, L38 Planoconvex lens L9 Biconvex lens L10 Meniscus lens (concave lens)
L11 Plano-convex lens L12 Plano-convex lens L13 Meniscus lens L34 Plano-concave lens L37 Plano-convex lens L39 Meniscus lens L40 Plano-convex lens L41 Meniscus lens (concave lens)

Claims (3)

物体側から順に、正屈折力の第1群、正屈折力の第2群、負屈折力の第3群、正屈折力の第4群そして正屈折力の第5群で構成され、
前記第1群は、像側に凸面を向けた平凸レンズを含み、物体面からの発散光束を、より発散の小さな光束に変換し、
前記第2群は、最も物体側のレンズ面が物体側に凸面を向けた接合レンズで構成され
前記第3群は、最も像側のレンズ面が像側に凹面を向けた接合レンズで構成され
前記第4群は、最も物体側に配置され像側レンズ面が像側に凸面を向けたレンズと、最も像側に配置され物体側レンズ面が物体側に凸面を向けたレンズとを含み、前記第3群からの発散光束を収斂光束に変換し、
前記第5群は、凸レンズと凹レンズが接合され、かつ前記接合面が負屈折力である接合レンズを含み、前記接合面における光束径が前記第1群から第4群までの間における光束径よりも大きくなっており、
無限遠設計で前記第4群と前記第5群との間に中間結像面を有する液浸細径対物光学系。
In order from the object side, the first group of positive refractive power, the second group of positive refractive power, the third group of negative refractive power, the fourth group of positive refractive power, and the fifth group of positive refractive power,
The first group includes a plano-convex lens having a convex surface facing the image side, and converts a divergent light beam from the object surface into a light beam having a smaller divergence;
The second group includes a cemented lens in which the lens surface closest to the object side has a convex surface facing the object side,
The third group is composed of a cemented lens in which the lens surface closest to the image side has a concave surface facing the image side,
The fourth group includes a lens arranged closest to the object side and having an image side lens surface having a convex surface facing the image side, and a lens arranged closest to the image side and having the object side lens surface having a convex surface facing the object side, Converting the divergent beam from the third group into a convergent beam,
The fifth group includes a cemented lens in which a convex lens and a concave lens are cemented and the cemented surface has a negative refractive power, and a beam diameter at the cemented surface is larger than a beam diameter between the first group and the fourth group. Is also growing,
An immersion small-diameter objective optical system having an intermediate imaging plane between the fourth group and the fifth group with an infinity design.
以下の条件式(1)を満足する請求項1に記載の無限遠設計で中間結像面を持つ液浸細径対物光学系。
(1) 0.15 < F12/(L13・NA) < 0.25
ただし、
12 :第1群から第2群までを合わせた焦点距離
13 :物体面から第3群の像側面までの光軸距離
NA :本液浸細径対物光学系の物体側開口数
The immersion small-diameter objective optical system having an intermediate imaging surface with an infinity design according to claim 1, which satisfies the following conditional expression (1).
(1) 0.15 <F 12 / (L 13 · NA) <0.25
However,
F 12 : Focal length of the first group to the second group L 13 : Optical axis distance from the object surface to the image side surface of the third group NA: Object side numerical aperture of the main immersion immersion objective optical system
以下の条件式(2)から(5)を満足する請求項1または請求項2に記載の無限遠設計で中間結像面を持つ液浸細径対物光学系。
(2) 12 < F/F12 < 14
(3) 1.7 < φ/φ12 < 2.5
(4) 1.75 < n12 < 1.90
(5) 80 < ν < 95
ただし、
12 :第1群から第2群までを合わせた焦点距離
:第5群の焦点距離
φ12 :第1群と第2群のレンズのうち最も小さなレンズ径
φ :第5群のレンズのうち最も大きなレンズ径
12 :第1群と第2群のレンズのうち最も大きな屈折率(d線)
ν :第5群の負屈折力の接合面を持つ接合レンズの凸レンズのアッベ数(d線)
The immersion small-diameter objective optical system having an intermediate image plane with an infinity design according to claim 1 or 2, wherein the following conditional expressions (2) to (5) are satisfied.
(2) 12 <F 5 / F 12 <14
(3) 1.7 <φ 5 / φ 12 <2.5
(4) 1.75 <n 12 < 1.90
(5) 80 <ν 5 <95
However,
F 12 : Focal length of the first group to the second group F 5 : Focal length of the fifth group φ 12 : The smallest lens diameter among the lenses of the first group and the second group φ 5 : of the fifth group Largest lens diameter among lenses n 12 : The largest refractive index (d-line) among the lenses of the first group and the second group
ν 5 : Abbe number (d line) of the convex lens of the cemented lens having the cemented surface having the negative refractive power of the fifth group
JP2008295713A 2008-11-19 2008-11-19 Immersion objective optical system with an intermediate imaging plane and designed at infinity Expired - Fee Related JP5281873B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008295713A JP5281873B2 (en) 2008-11-19 2008-11-19 Immersion objective optical system with an intermediate imaging plane and designed at infinity
US12/619,119 US8107170B2 (en) 2008-11-19 2009-11-16 Objective optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008295713A JP5281873B2 (en) 2008-11-19 2008-11-19 Immersion objective optical system with an intermediate imaging plane and designed at infinity

Publications (2)

Publication Number Publication Date
JP2010122443A JP2010122443A (en) 2010-06-03
JP5281873B2 true JP5281873B2 (en) 2013-09-04

Family

ID=42323846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008295713A Expired - Fee Related JP5281873B2 (en) 2008-11-19 2008-11-19 Immersion objective optical system with an intermediate imaging plane and designed at infinity

Country Status (1)

Country Link
JP (1) JP5281873B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117647880B (en) * 2024-01-29 2024-04-05 长春长光智欧科技有限公司 Immersion type high numerical aperture wide spectrum micro objective optical system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241671A (en) * 2004-02-24 2005-09-08 Olympus Corp Microscope system and object unit
JP2005309412A (en) * 2004-03-25 2005-11-04 Olympus Corp Laser scanning type microscope

Also Published As

Publication number Publication date
JP2010122443A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
US8107170B2 (en) Objective optical system
JP5185578B2 (en) Small-diameter objective optical system
US7215478B1 (en) Immersion objective optical system
US7046450B2 (en) Liquid-immersion objective optical system
JP4727252B2 (en) Small objective optical system
CN110764226B (en) Large-view-field micro microscope objective
US20050200947A1 (en) Microscope system and objective unit
JP4504153B2 (en) Immersion objective optical system
JP2007133071A (en) Microscope objective lens of liquid immersion system
JP5993250B2 (en) Immersion microscope objective lens and microscope using the same
CN108196359B (en) Objective lens group for two-photon fluorescence endoscope
JP4098492B2 (en) Immersion microscope objective lens
JP4457666B2 (en) Microscope objective lens
JP2019191269A (en) Microscope objective lens
JP4748508B2 (en) Microscope objective lens
JP5281873B2 (en) Immersion objective optical system with an intermediate imaging plane and designed at infinity
JP5449947B2 (en) Objective optical system
JP2005080769A (en) Condensing optical system, confocal optical system, and scanning type confocal endoscope
JP4744123B2 (en) Infinity designed objective optical system and infinity optical unit
US20190324257A1 (en) Microscope objective
WO2013069263A1 (en) Objective lens for endoscope, and endoscope
JP2019191272A (en) Liquid-immersion microscope objective lens
JP7194007B2 (en) dry objective lens
JP2023032561A (en) Liquid immersion microscope objective lens
JP2009037060A (en) Liquid immersion microscope objective lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R151 Written notification of patent or utility model registration

Ref document number: 5281873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees