JP5280922B2 - Plugged honeycomb structure and diesel particulate filter using the same - Google Patents

Plugged honeycomb structure and diesel particulate filter using the same Download PDF

Info

Publication number
JP5280922B2
JP5280922B2 JP2009087451A JP2009087451A JP5280922B2 JP 5280922 B2 JP5280922 B2 JP 5280922B2 JP 2009087451 A JP2009087451 A JP 2009087451A JP 2009087451 A JP2009087451 A JP 2009087451A JP 5280922 B2 JP5280922 B2 JP 5280922B2
Authority
JP
Japan
Prior art keywords
honeycomb structure
plugged honeycomb
segment
plugged
inclined surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009087451A
Other languages
Japanese (ja)
Other versions
JP2010234333A (en
Inventor
好雅 大宮
祐 松本
貴志 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2009087451A priority Critical patent/JP5280922B2/en
Publication of JP2010234333A publication Critical patent/JP2010234333A/en
Application granted granted Critical
Publication of JP5280922B2 publication Critical patent/JP5280922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ハニカム構造体、およびそれを用いたディーゼルパティキュレートフィルタに関する。より詳しくは、耐エロージョン性能が向上しながらも、DPF再生時の熱応力の分布を均等化する端部形状を持ち、製造時の損耗や強度低下の問題、DPF再生時の再生限界低下、圧力損失増加等の問題も改善される目封止ハニカム構造体、及びそれを用いたディーゼルパティキュレートフィルタに関する。   The present invention relates to a honeycomb structure and a diesel particulate filter using the honeycomb structure. More specifically, while having improved erosion resistance, it has an end shape that equalizes the distribution of thermal stress during DPF regeneration, problems of wear and strength reduction during production, reduction of regeneration limit during DPF regeneration, pressure The present invention relates to a plugged honeycomb structure in which problems such as an increase in loss are also improved, and a diesel particulate filter using the plugged honeycomb structure.

従来より、内燃機関、ボイラー、化学反応機器、及び燃料電池用改質器等の触媒作用を利用する触媒用担体や、排ガス中の微粒子、特にディーゼル微粒子の捕集フィルタ(ディーゼルパティキュレートフィルタ:以下、「DPF」ということがある)等に、セラミックスからなるハニカム構造体が用いられている。   Conventionally, a catalyst carrier utilizing catalytic action such as an internal combustion engine, a boiler, a chemical reaction device, and a reformer for a fuel cell, and a filter for collecting particulates in exhaust gas, particularly diesel particulates (diesel particulate filter: In some cases, a honeycomb structure made of ceramics is used.

このような目的に使用されるハニカム構造体は、一般に、多孔質の隔壁によって区画された流体の流路となる複数のセルを有し、特に、微粒子捕集フィルタとして用いられる場合には、端面が市松模様状を呈するように、隣接するセルが互いに反対側の端部において目封止された構造を有する。このような構造を有するハニカム構造体において、被処理流体は流入孔側端面が封止されていないセル、即ち流出孔側端面が封止されているセルに流入し、多孔質の隔壁を通って隣のセル、即ち、流入孔側端面が封止され、流出孔側端面が封止されていないセルから排出される。この際、隔壁がフィルタとなり、例えば、DPFとして使用した場合には、ディーゼルエンジンから排出されるスート(スス)等の粒子状物質(パティキュレート・マター:以下「PM」ということがある)が隔壁に捕捉され隔壁上に堆積する。   A honeycomb structure used for such a purpose generally has a plurality of cells serving as fluid flow paths partitioned by porous partition walls, and particularly when used as a particulate collection filter, the end face Has a structure in which adjacent cells are plugged at opposite ends so that a checkered pattern is formed. In the honeycomb structure having such a structure, the fluid to be treated flows into a cell in which the end surface on the inflow hole side is not sealed, that is, a cell in which the end surface on the outflow hole side is sealed, and passes through the porous partition wall. It discharges | emits from the cell by which the adjacent cell, ie, the inflow hole side end surface, is sealed, and the outflow hole side end surface is not sealed. At this time, the partition wall serves as a filter, and for example, when used as a DPF, particulate matter (particulate matter: hereinafter referred to as “PM”) such as soot discharged from a diesel engine is separated from the partition wall. And is deposited on the partition wall.

ディーゼル機関においては、上記のようなハニカム構造体は、通常、DPFとしてエンジン下流側の排ガスの流通路中に配設され、エンジンから排出される排ガスを通過させ浄化する機能を果たす。この時、排ガス上流側から流れてくる、流通路内壁の錆等の剥れ、溶接屑、DPF組み付け時に流通路に入り込んだゴミ等の固体、或いは凝縮水のような液体が、排ガスと共に高速で流通路の内壁、或いは流通路中に配設されたハニカム構造体に衝突することにより、これらを損耗せしめることがある。図3は、このような従来の目封止ハニカム構造体での問題を模式的に説明する斜視図である。DPFの軸方向8が横向きとなるように、例えば、図3の流入孔側端面11の縁部である領域Aを下方に配置した場合に、特に固体の異物は、エンジン振動によりDPFの流入孔側端面において跳ねるため、DPFの領域Aのような下方に位置する部分の目封止部等をえぐり、捕集効率の低下を招くことがある。この作用は通常エロージョンと呼ばれ、流通路及びハニカム構造体の長期耐久性を維持する観点から、大きな問題となっていた。   In a diesel engine, the honeycomb structure as described above is usually disposed as a DPF in the exhaust gas flow path on the downstream side of the engine, and functions to pass and purify the exhaust gas discharged from the engine. At this time, the rust on the inner wall of the flow passage that flows from the upstream side of the exhaust gas, welding debris, solids such as dust that entered the flow passage when the DPF is assembled, or liquid such as condensed water, together with the exhaust gas, at high speed By colliding with the inner wall of the flow passage or the honeycomb structure disposed in the flow passage, these may be worn out. FIG. 3 is a perspective view schematically illustrating a problem with such a conventional plugged honeycomb structure. For example, when the region A, which is the edge of the inflow hole side end face 11 in FIG. 3, is disposed below such that the axial direction 8 of the DPF is lateral, particularly solid foreign matter is caused by the engine vibration due to engine vibration. Since it bounces at the side end face, it may go through the plugged portion of the lower portion such as the region A of the DPF, leading to a decrease in collection efficiency. This action is usually called erosion, and has been a serious problem from the viewpoint of maintaining the long-term durability of the flow passage and the honeycomb structure.

エロージョン問題解決のため、従来、損耗を受ける恐れのある流通路内壁或いはハニカム構造体の上流側に、金網やじゃま板を設け、異物が直接高速で衝突することを防ぐ工夫がなされてきたが、固体や液体の異物を十分なレベルまで除去することができず、長期耐久性に問題があった。即ち、排ガスの流れの上流側から飛来してきた異物により、流通路内壁表面の損傷やハニカム構造体の損耗が発生することがあった。そこで、より確実に流通路内の異物による損耗を防ぎ、浄化装置の耐久性を強化することのできる工夫が求められており、例えば、特許文献1には、ハニカム構造体の上流側の流通路上に、排ガスの流れ変更手段及び異物捕集部を設けた流通路が開示されている。   In order to solve the erosion problem, conventionally, a metal net or a baffle plate has been provided on the inner wall of the flow passage which may be subject to wear or on the upstream side of the honeycomb structure to prevent foreign matter from directly colliding at high speed. Solid or liquid foreign matter could not be removed to a sufficient level, and there was a problem in long-term durability. That is, the foreign matter flying from the upstream side of the exhaust gas flow may cause damage to the inner wall surface of the flow passage or wear of the honeycomb structure. Thus, there is a need for a device that can more reliably prevent wear caused by foreign matter in the flow passage and enhance the durability of the purification device. For example, Patent Document 1 discloses a method for improving the flow passage on the upstream side of the honeycomb structure. In addition, a flow passage provided with exhaust gas flow changing means and a foreign matter collecting part is disclosed.

特開平9−206526号公報JP-A-9-206526

上記特許文献1に開示されたガス流通路は、排ガスの流れ変更手段により排ガスの流れを流通路の外周方向へ向け、流通路内壁に設置された、排ガスの上流方向に向いた開口部を有するポケット状の異物捕集部によって、排ガス中の異物を物理的に捕集するものであり、流通路内を異物が跳ねることによるエロージョン問題に対して効果を奏するものであるが、排ガスの流通路を流れ方向に長く設計する必要があり、排ガス浄化装置全体が大きくなってしまうという問題があった。また、流通路径を変えずにポケットをつけると、流通路断面が小さくなるため圧力損失が上がり、エンジン出力低下の懸念があり、流通路径を大きくしてポケットをつけると、流通路断面が大きくなり、車両床下搭載時の最低地上高確保のため、車高を上げなくてはならなくなる。車体への搭載スペースに制約がある点を考えると、排ガス浄化装置は可能な限り小さく設計されることが望ましく、特許文献1に開示された流通路はその意味で十分とは言えなかった。   The gas flow passage disclosed in Patent Document 1 has an opening facing the upstream direction of the exhaust gas, which is installed on the inner wall of the flow passage, with the exhaust gas flow changing means directing the flow of the exhaust gas toward the outer periphery of the flow passage. The pocket-shaped foreign matter collecting part physically collects foreign matter in the exhaust gas, and is effective against the erosion problem caused by foreign matter splashing in the flow passage. There is a problem that the entire exhaust gas purification device becomes large. In addition, if the pocket is attached without changing the flow passage diameter, the flow passage cross section becomes smaller and pressure loss increases, and there is a concern that the engine output may decrease.If the pocket is made with a larger flow passage diameter, the flow passage cross section becomes larger. In order to secure the minimum ground clearance when mounted under the vehicle floor, the vehicle height must be raised. Considering that the space for mounting on the vehicle body is limited, it is desirable that the exhaust gas purification device be designed as small as possible, and the flow passage disclosed in Patent Document 1 is not sufficient in that sense.

本発明はかかる従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、エロージョン抑制効果及びサイズダウンを両立させた排ガス浄化装置において用いられ、形状加工による浄化性能及び強度の低下が抑えられ、原料収率やコストの面でも優れた目封止ハニカム構造体及びそれを用いたDPFを提供することにある。   The present invention has been made in view of the problems of the prior art, and the problem is that the present invention is used in an exhaust gas purification apparatus that achieves both an erosion suppressing effect and a size reduction, and purification performance and strength by shape processing. It is an object of the present invention to provide a plugged honeycomb structure in which a decrease in the above is suppressed, and which is excellent in terms of raw material yield and cost, and a DPF using the plugged honeycomb structure.

本発明者らは、上記課題解決のため鋭意検討した結果、多孔質の隔壁によって区画された流体の流路となる複数のセルを有し、隣接するセルが互いに反対側となる一方の端部において目封止された構造を有した、隣接する複数のハニカムセグメントを接合材層を介して一体的に接合した目封止ハニカム構造体において、流体の流入孔側端面に、目封止ハニカム構造体の中心部側から外周部側に向かって目封止ハニカム構造体の軸方向の長さが減少するように傾斜した傾斜面を少なくとも一部有した傾斜セグメントとされた構成とすることによって、傾斜面を有した切り欠き部がエロージョン抑制に効果的に働きつつも、切り欠き部の体積分の省スペースを実現可能であることに想到した。   As a result of diligent studies to solve the above problems, the present inventors have a plurality of cells serving as fluid flow paths partitioned by porous partition walls, and one end portion where adjacent cells are opposite to each other. In the plugged honeycomb structure in which a plurality of adjacent honeycomb segments are integrally bonded via a bonding material layer, the plugged honeycomb structure is formed on the end surface of the fluid inflow hole. By adopting a configuration in which the inclined segment has at least a part of an inclined surface inclined so as to reduce the axial length of the plugged honeycomb structure from the center side to the outer peripheral side of the body, The present inventors have conceived that a cut-out portion having an inclined surface can effectively save space corresponding to the volume of the cut-out portion while effectively working to suppress erosion.

更に本発明者らは、目封止ハニカム構造体に切り欠き部を形成することによって引き起こされることが想定される、流入ガスの乱流に伴うDPF再生時の再生限界低下、圧力損失増加等の諸問題についても鋭意検討し、切り欠き部の形状の少なくとも一部を傾斜面として整流作用を付与することにより、切り欠き部での流入ガスの乱流を抑制し、解決できることに想到し、本発明を完成させた。即ち、本発明によれば、十分な浄化性能と強度を備え、所望の端面形状を有する目封止ハニカム構造体及びそれを用いたDPF、即ち、以下の目封止ハニカム構造体及びそれを用いたDPFが提供される。   Furthermore, the present inventors are assumed to be caused by forming a notch in the plugged honeycomb structure, such as a decrease in regeneration limit and an increase in pressure loss at the time of DPF regeneration due to turbulent flow of the inflowing gas. We have also studied various problems and conceived that turbulent flow of the inflowing gas at the notch can be suppressed and solved by providing a rectifying action with at least a part of the shape of the notch as an inclined surface. Completed the invention. That is, according to the present invention, a plugged honeycomb structure having sufficient purification performance and strength and having a desired end face shape and a DPF using the plugged honeycomb structure, that is, the following plugged honeycomb structure and the following are used. DPF was provided.

[1] 多孔質の隔壁により区画された流体の流路となる複数のセルを有し、隣接する前記セルが互いに反対側となる一方の端部において目封止された複数のハニカムセグメントからなり、複数の前記ハニカムセグメントが互いに隣接され、隣接する前記ハニカムセグメントどうしの接合面において接合材層を介して一体的に接合されたディーゼルパティキュレートフィルタ用の目封止ハニカム構造体であって、当該目封止ハニカム構造体の外周
部側に配置された前記ハニカムセグメントの少なくとも一部が、前記流体の流入孔側端面に、当該目封止ハニカム構造体の中心部側から前記外周部側に向かって当該目封止ハニカム構造体の軸方向の長さが減少するように傾斜した傾斜面を少なくとも一部有した傾斜セグメントとされ、前記傾斜面は、前記目封止ハニカム構造体の外周部分の一部に設けられている目封止ハニカム構造体。
[1] A plurality of cells having a plurality of cells that serve as fluid flow paths partitioned by porous partition walls, and the adjacent cells are plugged at one end opposite to each other. A plugged honeycomb structure for a diesel particulate filter in which a plurality of the honeycomb segments are adjacent to each other, and are integrally bonded to each other at a bonding surface between the adjacent honeycomb segments via a bonding material layer, At least a part of the honeycomb segment arranged on the outer peripheral side of the plugged honeycomb structure is directed to the end surface on the fluid inflow hole side from the central side of the plugged honeycomb structure to the outer peripheral side. the axial length of the plugged honeycomb structure is a ramp segment having at least a portion inclined inclined surface so as to reduce Te, the inclined surface A plugged honeycomb structure provided on a part of the outer peripheral portion of the plugged honeycomb structure.

[2] 前記傾斜セグメントが、1個以上隣接するように設けられた前記[1]に記載の目封止ハニカム構造体。 [2] The plugged honeycomb structure according to [1], wherein one or more inclined segments are provided adjacent to each other.

[3] 前記傾斜面が開始する傾斜開始位置は、前記接合面に形成され、前記傾斜開始位置から前記傾斜開始位置が形成された前記接合面に沿った前記ハニカム構造体の外周壁までの距離Lと前記傾斜面の高さHとの比H/Lが0.05〜1.5の範囲である前記[1]または[2]に記載の目封止ハニカム構造体。 [3] The inclination start position where the inclined surface starts is formed on the joining surface, and the distance from the inclination starting position to the outer peripheral wall of the honeycomb structure along the joining surface where the inclination starting position is formed The plugged honeycomb structure according to the above [1] or [2], wherein the ratio H / L between L and the height H of the inclined surface is in the range of 0.05 to 1.5.

[4] 前記傾斜セグメントの前記流入孔側端面に、前記傾斜面と平坦面とを含み、前記平坦面が当該目封止ハニカム構造体の中心部側に設けられ、前記傾斜面は前記外周部側に設けられた前記[1]〜[3]のいずれかに記載の目封止ハニカム構造体。 [4] The inflow hole side end surface of the inclined segment includes the inclined surface and a flat surface, and the flat surface is provided on the center side of the plugged honeycomb structure, and the inclined surface is the outer peripheral portion. The plugged honeycomb structure according to any one of [1] to [3], provided on a side.

[5] 前記傾斜セグメントの前記流入孔側端面に、前記傾斜面と平坦面とを含み
前記平坦面が前記外周部側に設けられ、前記傾斜面は前記中心部側に設けられた前記[1]〜[3]のいずれかに記載の目封止ハニカム構造体。
[5] The inflow hole side end surface of the inclined segment includes the inclined surface and a flat surface, the flat surface is provided on the outer peripheral portion side, and the inclined surface is provided on the central portion side. ] The plugged honeycomb structure according to any one of [3] to [3].

[6] 前記傾斜面は、前記流体を整流するための流線形状とされた前記[1]〜[5]のいずれかに記載の目封止ハニカム構造体。 [6] The plugged honeycomb structure according to any one of [1] to [5], wherein the inclined surface has a streamline shape for rectifying the fluid.

[7] 前記傾斜面は、前記流出孔側に引っ込む凹湾曲面である前記[6]に記載の目封止ハニカム構造体。 [7] The plugged honeycomb structure according to [6], wherein the inclined surface is a concave curved surface that is retracted toward the outflow hole.

[8] 前記傾斜面は、前記流入孔側端面の方向に出っ張る凸湾曲面である前記[6]に記載の目封止ハニカム構造体。 [8] The plugged honeycomb structure according to [6], wherein the inclined surface is a convex curved surface protruding in the direction of the end surface on the inflow hole side.

[9] 前記[1]〜[8]のいずれかに記載の目封止ハニカム構造体に排ガス浄化用触媒成分を担持させたディーゼルパティキュレートフィルタ。 [9] A diesel particulate filter in which the plugged honeycomb structure according to any one of [1] to [8] is loaded with a catalyst component for exhaust gas purification.

[10] 前記[1]〜[8]のいずれかに記載の目封止ハニカム構造体の製造方法であって、前記傾斜セグメントとされる予定の、前記傾斜面に応じた目封し深さの長目封止部が形成されたハニカムセグメントを、前記長目封止部よりも深さの小さい目封止部の形成された、軸方向長さが等しい前記平坦セグメントへ接合した後、前記ハニカムセグメントの長目封止部形成側端部を前記傾斜面の形状に応じて切削することで、前記傾斜面を有する目封止ハニカム構造体を形成する目封止ハニカム構造体の製造方法。 [10] The method for manufacturing a plugged honeycomb structure according to any one of [1] to [8], wherein the plugged depth corresponding to the inclined surface, which is to be the inclined segment After bonding the honeycomb segment in which the long plugging portion is formed to the flat segment in which the plugging portion having a depth smaller than the long plugging portion is formed and having the same axial length, A method for manufacturing a plugged honeycomb structure in which a plugged honeycomb structure having the inclined surface is formed by cutting an end portion on the long plugged portion forming side of the honeycomb segment according to the shape of the inclined surface.

[11] 前記[1]〜[8]のいずれかに記載の目封止ハニカム構造体の製造方法であって、あらかじめ軸方向長さが等しい前記平坦セグメントに前記傾斜面を有した傾斜セグメントを、前記平坦セグメントへ接合することで、前記傾斜面を備えた切り欠き部を有する目封止ハニカム構造体を形成する目封止ハニカム構造体の製造方法。 [11] The method for manufacturing a plugged honeycomb structure according to any one of [1] to [8], wherein an inclined segment having the inclined surface on the flat segment having an equal axial length in advance is provided. A method for manufacturing a plugged honeycomb structure in which a plugged honeycomb structure having a notch with the inclined surface is formed by joining to the flat segment.

本発明の目封止ハニカム構造体及びそれを用いたDPFは、エロージョン対策として流体の流入孔側端面において傾斜面を有した切り欠き部を形成し、傾斜面の整流作用で流入ガスの乱流を抑制し、ガスの乱流に伴う切り欠き部でのPMの堆積分布の偏りを防止することにより、DPF再生時の熱応力の分布を均等化する端部形状を持ち、圧力損失増加、DPF再生時の再生限界低下等の問題を改善することができる。   The plugged honeycomb structure of the present invention and the DPF using the same form a notch having an inclined surface at the end surface on the fluid inflow hole side as a measure against erosion, and the turbulent flow of the inflowing gas by the rectifying action of the inclined surface And has an end shape that equalizes the distribution of thermal stress at the time of DPF regeneration by preventing the uneven deposition distribution of PM at the notch due to gas turbulence, increasing pressure loss, DPF Problems such as lowering of the reproduction limit during reproduction can be improved.

本発明の目封止ハニカム構造体の一実施形態を模式的に示す斜視図である。1 is a perspective view schematically showing an embodiment of a plugged honeycomb structure of the present invention. 本発明の目封止ハニカム構造体の、傾斜面を有した傾斜セグメントの一実施形態を模式的に示す一部拡大斜視図である。1 is a partially enlarged perspective view schematically showing one embodiment of an inclined segment having an inclined surface of a plugged honeycomb structure of the present invention. 本発明の目封止ハニカム構造体の、傾斜面を有した傾斜セグメントの他の実施形態を模式的に示す一部拡大斜視図である。FIG. 3 is a partially enlarged perspective view schematically showing another embodiment of an inclined segment having an inclined surface of the plugged honeycomb structure of the present invention. 従来の目封止ハニカム構造体の一実施形態を模式的に示す斜視図である。It is a perspective view which shows typically one Embodiment of the conventional plugged honeycomb structure. 切り欠き部を有した目封止ハニカム構造体の一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of the plugged honeycomb structure which has a notch part. 本発明の目封止ハニカム構造体を搭載した排ガス浄化装置の一実施形態を模式的に示す断面図である。1 is a cross-sectional view schematically showing an embodiment of an exhaust gas purification apparatus equipped with a plugged honeycomb structure of the present invention. 本発明の目封止ハニカム構造体を搭載した排ガス浄化装置の別の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically another embodiment of the exhaust gas purification apparatus carrying the plugged honeycomb structure of this invention. 本発明の目封止ハニカム構造体を搭載した排ガス浄化装置の更に別の実施形態を模式的に示す断面図である。[Fig. 6] Fig. 6 is a cross-sectional view schematically showing still another embodiment of an exhaust gas purifying apparatus equipped with a plugged honeycomb structure of the present invention. 平坦な切り欠き部を有した目封止ハニカム構造体の一例に排ガスが流れ込む様子を模式的に示す断面図である。It is sectional drawing which shows typically a mode that waste gas flows into an example of the plugged honeycomb structure which has a flat notch part. 平坦な切り欠き部を有した目封止ハニカム構造体の一例に排ガスが流れ込む様子を模式的に示す切り欠き部周辺の一部拡大断面図である。FIG. 3 is a partially enlarged cross-sectional view of the periphery of a notch portion schematically showing how exhaust gas flows into an example of a plugged honeycomb structure having a flat notch portion. 本発明の目封止ハニカム構造体の他の実施形態に排ガスが流れ込む様子を模式的に示す断面図である。It is sectional drawing which shows typically a mode that waste gas flows into other embodiment of the plugged honeycomb structure of this invention. 本発明の目封止ハニカム構造体の、傾斜面を有した傾斜セグメントの寸法を説明するための、接合面に沿った一部拡大断面図である。It is a partially expanded sectional view along the joining surface for demonstrating the dimension of the inclination segment which has the inclined surface of the plugged honeycomb structure of this invention. 本発明の目封止ハニカム構造体の切り欠き部の傾斜面の一実施形態を示す模式的断面図である。1 is a schematic cross-sectional view showing an embodiment of an inclined surface of a cutout portion of a plugged honeycomb structure of the present invention. 本発明の目封止ハニカム構造体の切り欠き部の傾斜面の一実施形態を示す模式的断面図である。1 is a schematic cross-sectional view showing an embodiment of an inclined surface of a cutout portion of a plugged honeycomb structure of the present invention. 本発明の目封止ハニカム構造体の切り欠き部の傾斜面の一実施形態を示す模式的断面図である。1 is a schematic cross-sectional view showing an embodiment of an inclined surface of a cutout portion of a plugged honeycomb structure of the present invention. 本発明の目封止ハニカム構造体の切り欠き部の傾斜面の一実施形態を示す模式的断面図である。1 is a schematic cross-sectional view showing an embodiment of an inclined surface of a cutout portion of a plugged honeycomb structure of the present invention. 本発明の目封止ハニカム構造体の切り欠き部の傾斜面の一実施形態を示す模式的断面図である。1 is a schematic cross-sectional view showing an embodiment of an inclined surface of a cutout portion of a plugged honeycomb structure of the present invention. 本発明の目封止ハニカム構造体の切り欠き部の傾斜面の一実施形態を示す模式的断面図である。1 is a schematic cross-sectional view showing an embodiment of an inclined surface of a cutout portion of a plugged honeycomb structure of the present invention. 長目封止部形成側端部切削前の目封止ハニカム構造体を模式的に示す軸方向における部分断面図である。It is a fragmentary sectional view in the direction of an axis showing typically a plugged honeycomb structure before cutting a long plugged part formation side edge part. 長目封止部形成側端部切削後の目封止ハニカム構造体を模式的に示す軸方向における部分断面図である。It is a fragmentary sectional view in the direction of an axis showing typically a plugged honeycomb structure after cutting a long plugged part formation side edge part. 本発明の目封止ハニカム構造体の一実施形態を切り欠き部形成方向から見た模式的正面図である。1 is a schematic front view of an embodiment of a plugged honeycomb structure of the present invention as viewed from a notch formation direction. 本発明の目封止ハニカム構造体の別の実施形態を切り欠き部形成方向から見た模式的正面図である。It is the typical front view which looked at another embodiment of the plugged honeycomb structure of this invention from the notch part formation direction. ハニカムセグメントを積み上げる工程を模式的に示す工程図である。It is process drawing which shows the process which piles up a honeycomb segment typically. ハニカムセグメント積層体の一実施形態を模式的に示す斜視図である。1 is a perspective view schematically showing an embodiment of a honeycomb segment laminate.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

図1は、本発明の目封止ハニカム構造体の一実施形態を模式的に示す斜視図であり、図2Aは、本発明の目封止ハニカム構造体の傾斜面を有した傾斜セグメントの一実施形態を模式的に示す一部拡大斜視図である。図2Bは、本発明の目封止ハニカム構造体における、目封止ハニカム構造体の流入孔側端面からの深さDを傾斜開始位置とした傾斜面を有した場合の傾斜セグメントの他の実施形態を模式的に示す一部拡大斜視図である。図3は、従来の目封止ハニカム構造体を模式的に示す斜視図である。   FIG. 1 is a perspective view schematically showing an embodiment of the plugged honeycomb structure of the present invention, and FIG. 2A shows one of the inclined segments having the inclined surfaces of the plugged honeycomb structure of the present invention. It is a partial expansion perspective view showing an embodiment typically. FIG. 2B shows another implementation of the inclined segment in the plugged honeycomb structure of the present invention having an inclined surface with the depth D from the end surface on the inflow hole side of the plugged honeycomb structure as an inclination start position. It is a partially expanded perspective view which shows a form typically. FIG. 3 is a perspective view schematically showing a conventional plugged honeycomb structure.

排ガス浄化装置においてDPFとして用いられる目封止ハニカム構造体としては、従来、例えば図3に示すように、多孔質の隔壁6によって区画された流体の流路となる複数のセル5を有するハニカムセグメント(平坦セグメント1b)が、接合材層3を介して複数個一体的に接合され、所望の形状に形成された後、隣接するセル5が互いに反対側となる流通端部において目封止され、目封止部25の形成された目封止ハニカム構造体150等、軸方向8端部に凹凸のない円筒形状の目封止ハニカム構造体150が用いられていた。   Conventionally, as a plugged honeycomb structure used as a DPF in an exhaust gas purification apparatus, for example, as shown in FIG. 3, a honeycomb segment having a plurality of cells 5 serving as fluid flow paths partitioned by porous partition walls 6 is used. A plurality of (flat segments 1b) are integrally bonded via the bonding material layer 3 and formed into a desired shape, and then the adjacent cells 5 are plugged at the flow ends opposite to each other, A cylindrical plugged honeycomb structure 150 having no irregularities at its eight axial ends is used, such as a plugged honeycomb structure 150 in which the plugged portions 25 are formed.

なお、本明細書中で目封止ハニカム構造体の軸方向8とは、目封止ハニカム構造体の流入孔側端面から流出孔側端面へ向かう目封止ハニカム構造体の中心軸方向のことを言う。   In the present specification, the axial direction 8 of the plugged honeycomb structure refers to the central axis direction of the plugged honeycomb structure from the inflow hole side end surface to the outflow hole side end surface of the plugged honeycomb structure. Say.

本発明の目封止ハニカム構造体としては、例えば、図1に示すように、多孔質の隔壁6によって区画された流体の流路となる複数のセル5を有し、隣接するセル5が互いに反対側となる一方の端部において目封止された目封止部25の形成された複数のハニカムセグメント1(1a,1b)が接合材層3を介して一体的に接合され、所望の形状に形成された接合型の目封止ハニカム構造体100であって、流体の流入孔側端面11の一部に傾斜面7を有した切り欠き部2を有し、切り欠き部2を構成する所定のセル5においても、隣接するセル5が互いに反対側となる一方の端部において目封止された目封止ハニカム構造体100がある。そしてこの傾斜面7は、目封止ハニカム構造体の中心部側から外周部側に向かって、目封止ハニカム構造体の軸方向8の長さが減少するように傾斜している。   As the plugged honeycomb structure of the present invention, for example, as shown in FIG. 1, the plugged honeycomb structure has a plurality of cells 5 serving as fluid flow paths partitioned by porous partition walls 6, and adjacent cells 5 are mutually connected. A plurality of honeycomb segments 1 (1a, 1b) in which plugged portions 25 plugged at one end on the opposite side are formed are integrally bonded via a bonding material layer 3 to have a desired shape. The plug-type honeycomb structure 100 of the joining type formed in the above has a notch portion 2 having an inclined surface 7 on a part of the end surface 11 on the fluid inflow hole side to constitute the notch portion 2. Also in the predetermined cell 5, there is a plugged honeycomb structure 100 in which adjacent cells 5 are plugged at one end opposite to each other. And this inclined surface 7 inclines so that the length of the axial direction 8 of a plugged honeycomb structure may decrease toward the outer peripheral part side from the center part side of a plugged honeycomb structure.

図2Aは、傾斜面7を有した傾斜セグメント1aの切り欠き部2を模式的に示す一部拡大斜視図である。傾斜面7を設けたことにより、排ガスの整流作用を有し、乱流の発生を防ぐことにより圧力損失の低下や、PMの堆積分布の偏在に伴う再生処理時のクラックの発生を防ぐことができる。   FIG. 2A is a partially enlarged perspective view schematically showing the cutout portion 2 of the inclined segment 1 a having the inclined surface 7. By providing the inclined surface 7, it has a rectifying action of exhaust gas and prevents the occurrence of turbulent flow, thereby preventing the pressure loss from decreasing and the occurrence of cracks during regeneration processing due to the uneven distribution of PM deposition distribution. it can.

図9は、本発明の目封止ハニカム構造体の、傾斜面を有した傾斜セグメントの寸法を説明するための、接合面に沿った一部拡大断面図である。本発明の目封止ハニカム構造体において、例えば図9に示すように、傾斜面が開始する傾斜開始位置40は、接合面に形成された場合、傾斜開始位置から傾斜開始位置40が形成された接合面に沿ったハニカム構造体の外周壁までの距離Lと前記傾斜面の高さHとの比H/Lが0.05〜1.5の範囲であることが好ましい。なお、目封止ハニカム構造体に排ガス浄化用触媒を担持させたDPFにあって、触媒は、ハニカム壁厚方向に僅かながら寸法を増大させるのみであるため、上記H及びLのミリ単位の寸法には影響なく、H/Lの規定等は全て触媒担持後のDPFにおいても有効である。   FIG. 9 is a partially enlarged cross-sectional view along the joining surface for explaining the dimensions of the inclined segment having the inclined surface of the plugged honeycomb structure of the present invention. In the plugged honeycomb structure of the present invention, for example, as shown in FIG. 9, when the inclination start position 40 where the inclined surface starts is formed on the joining surface, the inclination start position 40 is formed from the inclination start position. The ratio H / L of the distance L to the outer peripheral wall of the honeycomb structure along the bonding surface and the height H of the inclined surface is preferably in the range of 0.05 to 1.5. In the DPF in which the exhaust gas purification catalyst is supported on the plugged honeycomb structure, the catalyst only slightly increases the size in the honeycomb wall thickness direction. The H / L regulations are all valid for the DPF after supporting the catalyst.

本発明の目封止ハニカム構造体100の全体の形状としては、排ガス浄化フィルタとして好適な、円筒形状、オーバル形状等所望の形状であって、流体の流入孔側端面に傾斜面7を有した切り欠き部2を有する形状とすることができる。本発明の目封止ハニカム構造体100において、切り欠き部2およびその傾斜面7は、用途及び目的に応じて所望の位置及び所望の大きさに形成され、同時に、切り欠き部2を含む流入孔側端面全域において所定のセル5に目封止が施され、形状加工による浄化性能の低下が抑えられている。この傾斜面7を有した切り欠き部2は目封止ハニカム構造体100の外周部を構成するハニカムセグメントの単位で傾斜セグメントとして設けることが好ましい。   The overall shape of the plugged honeycomb structure 100 of the present invention is a desired shape such as a cylindrical shape or an oval shape suitable as an exhaust gas purification filter, and has an inclined surface 7 on the end surface on the fluid inflow hole side. It can be set as the shape which has the notch part 2. FIG. In the plugged honeycomb structure 100 of the present invention, the notch 2 and the inclined surface 7 thereof are formed in a desired position and a desired size according to the application and purpose, and at the same time, the inflow including the notch 2. A predetermined cell 5 is plugged in the entire end surface on the hole side, and a decrease in purification performance due to shape processing is suppressed. The cutout portion 2 having the inclined surface 7 is preferably provided as an inclined segment in units of honeycomb segments constituting the outer peripheral portion of the plugged honeycomb structure 100.

接合成形された目封止ハニカム構造体100を構成するハニカムセグメント1の材料としては、セラミックが好ましく、また、炭化珪素、珪素−炭化珪素系複合材料、コージェライト、ムライト、アルミナ、スピネル、炭化珪素−コージェライト系複合材料、リチウムアルミニウムシリケート、チタン酸アルミニウム、鉄−クロム−アルミニウム系合金からなる群から選択される少なくとも1種であることが好ましい。特に、これらの材料の中でも、融点が高く、耐熱性に優れていると言う点でDPFに適した、炭化珪素又は珪素−炭化珪素系複合材料が好適に用いられる。炭化珪素は、上記材料中、熱膨張率が比較的大きい。このため、炭化珪素を骨材として形成されるハニカム構造体は、ハニカム構造体全体の外径が大きなものの場合、使用時に熱衝撃により欠陥が生じることがあったが、複数のハニカムセグメント1が接合材層3を介して一体的に接合された構造においては、炭化珪素の膨張収縮が接合材層3により緩衝され、ハニカムセグメント1の欠陥の発生を防止することができる。   The material of the honeycomb segment 1 constituting the bonded and plugged honeycomb structure 100 is preferably ceramic, and silicon carbide, silicon-silicon carbide based composite material, cordierite, mullite, alumina, spinel, silicon carbide. -It is preferable that it is at least 1 sort (s) selected from the group which consists of a cordierite type composite material, lithium aluminum silicate, an aluminum titanate, and an iron-chromium-aluminum type alloy. In particular, among these materials, silicon carbide or silicon-silicon carbide based composite material suitable for DPF in terms of high melting point and excellent heat resistance is preferably used. Silicon carbide has a relatively large coefficient of thermal expansion among the above materials. For this reason, when the honeycomb structure formed using silicon carbide as an aggregate has a large outer diameter, the honeycomb structure may have defects due to thermal shock during use. In the structure bonded integrally through the material layer 3, the expansion and contraction of silicon carbide is buffered by the bonding material layer 3, and the occurrence of defects in the honeycomb segment 1 can be prevented.

また、接合材層3の材料としては、無機繊維、コロイダルシリカ、粘土、SiC粒子、有機バインダ、発泡樹脂等の充填材を水等の分散媒に分散させてスラリー状にしたものを用いることができる。   Moreover, as a material for the bonding material layer 3, a material in which a filler such as inorganic fiber, colloidal silica, clay, SiC particles, an organic binder, and a foamed resin is dispersed in a dispersion medium such as water is used. it can.

図5A〜5Cは、本発明の目封止ハニカム構造体を搭載した排ガス浄化装置の各実施形態を模式的に示す断面図である。尚、図5A及び5Bにおいては、図中向かって左側が排ガスの流入孔側端面であり、図中向かって右側が排ガスの流出孔側となる。図5Aに示す排ガス浄化装置110では、コンテナ15内のハニカム触媒体9の後段に、傾斜面を有した切り欠き部2の形成された目封止ハニカム構造体100がDPF18として設置されている。この時DPF18は、排ガス浄化装置が車体に搭載された際に傾斜面を有した切り欠き部2が排ガスの流れの上流側に面し、且つ排ガス浄化装置110の下側(地面側)を向くように位置決めされることが好ましい。   5A to 5C are cross-sectional views schematically showing embodiments of the exhaust gas purifying apparatus equipped with the plugged honeycomb structure of the present invention. 5A and 5B, the left side in the figure is the exhaust gas inflow hole side end face, and the right side in the figure is the exhaust gas outflow hole side. In the exhaust gas purifying apparatus 110 shown in FIG. 5A, the plugged honeycomb structure 100 in which the notch portion 2 having an inclined surface is formed is installed as the DPF 18 at the subsequent stage of the honeycomb catalyst body 9 in the container 15. At this time, in the DPF 18, the notch 2 having an inclined surface faces the upstream side of the exhaust gas flow when the exhaust gas purification device is mounted on the vehicle body, and faces the lower side (ground side) of the exhaust gas purification device 110. It is preferable to be positioned as described above.

排ガスの流れの上流側から流れて来る固体や液体の異物は、重力に従って、排ガス浄化装置110の下側に下りて行く。そのため、コンテナ15の内壁及びDPF18の流入孔側端面11は、特にその下側に損傷が集中しやすい。切り欠き部2を下側に向けてDPF18を設置することによって、コンテナ15下部に異物を跳ねさせるスペースができ、DPF18の端面に異物が直接衝突する頻度を低減すると共に、衝突時の衝撃を軽減する効果がある。即ち、本発明の目封止ハニカム構造体100を用いれば、従来のように、排ガス浄化装置の流通路上に金網や異物捕集ポケット等の余分な設備を備えなくとも、エロージョンによる耐久性悪化を抑制することができ、排ガス浄化装置における省スペース化、省コスト化を実現することができる。   The solid or liquid foreign matter flowing from the upstream side of the exhaust gas flow descends to the lower side of the exhaust gas purification device 110 according to gravity. Therefore, damage tends to concentrate particularly on the inner wall of the container 15 and the end surface 11 on the inflow hole side of the DPF 18. By installing the DPF 18 with the notch 2 facing downward, a space for allowing foreign matter to bounce at the bottom of the container 15 is created, reducing the frequency of foreign matter directly colliding with the end surface of the DPF 18 and reducing the impact at the time of collision. There is an effect to. That is, if the plugged honeycomb structure 100 of the present invention is used, the durability deterioration due to erosion can be prevented even if an extra facility such as a wire mesh or a foreign matter collecting pocket is not provided on the flow path of the exhaust gas purifying device as in the prior art. Therefore, it is possible to realize space saving and cost saving in the exhaust gas purification apparatus.

図5Bに示す排ガス浄化装置120では、コンテナ15のハニカム触媒体9の後段に、傾斜面7を有した切り欠き部2の形成されたム構造体100がDPF18として設置されており、更に、排ガスと共に上流から流れ込みDPF18の損耗の原因となる異物を捕集するための異物捕集ポケット13が設けられ、DPF18の切り欠き部2を、異物を異物捕集ポケット13へと逃がす誘導路として機能させている。このような構成とすることによって、流れ込む多くの異物を、DPF18の流入孔側端面11に衝突させることなく、異物捕集ポケット13へと回収することができる。この時DPF18は、図5Aに示す排ガス浄化装置110と同様、排ガス浄化装置120が車体に搭載された際に切り欠き部2が排ガスの流れの上流側に面し、且つ排ガス浄化装置120の下側(地面側)を向くように位置決めされることが好ましい。   In the exhaust gas purifying apparatus 120 shown in FIG. 5B, the structure 100 having the notched portion 2 having the inclined surface 7 is installed as the DPF 18 at the subsequent stage of the honeycomb catalyst body 9 of the container 15. In addition, a foreign matter collecting pocket 13 is provided for collecting foreign matter that flows from upstream and causes wear of the DPF 18, and the notch 2 of the DPF 18 functions as a guide path for letting the foreign matter escape to the foreign matter collecting pocket 13. ing. By adopting such a configuration, it is possible to collect a large amount of foreign matter flowing into the foreign matter collecting pocket 13 without colliding with the inflow hole side end surface 11 of the DPF 18. At this time, like the exhaust gas purification device 110 shown in FIG. 5A, the DPF 18 has the notch 2 facing the upstream side of the flow of exhaust gas when the exhaust gas purification device 120 is mounted on the vehicle body, and the bottom of the exhaust gas purification device 120. It is preferable to be positioned to face the side (ground side).

また、本発明の目封止ハニカム構造体100は、限られたスペース内においてエロージョン抑制効果を発揮するだけでなく、図5Cに示すように、特殊な形状のコンテナ15にも対応可能であるという利点を有する。例えば車体下部のように、利用できるスペースに制約がある場合には、排ガス浄化装置そのものを小さく設計すると同時に、車体に搭載後の排ガス浄化装置の周辺にデッドスペースを発生させないことも、省スペースの有効な手立てである。即ち、車体へ排ガス浄化装置を搭載させる際に、排ガス浄化装置のコンテナ形状をあらかじめ搭載箇所の空間形状に合わせて変形させておけば、無駄な空間が発生せず、限られたスペースを最大限に活用することができるが、そのためには、コンテナ形状にあわせた形状のハニカム構造体が必要となり、本発明の目封止ハニカム構造体100が好適に用いられる。   Further, the plugged honeycomb structure 100 of the present invention not only exhibits an erosion suppressing effect in a limited space, but also can be applied to a specially shaped container 15 as shown in FIG. 5C. Have advantages. For example, when the space that can be used is limited, such as at the bottom of the vehicle body, the exhaust gas purification device itself is designed to be small, and at the same time, no dead space is generated around the exhaust gas purification device after being mounted on the vehicle body. This is an effective measure. In other words, when the exhaust gas purification device is mounted on the vehicle body, if the container shape of the exhaust gas purification device is deformed in advance according to the space shape of the mounting location, no wasteful space is generated and the limited space is maximized. However, for this purpose, a honeycomb structure having a shape corresponding to the container shape is required, and the plugged honeycomb structure 100 of the present invention is preferably used.

図4は、傾斜面のない平坦な切り欠き部2を有した目封止ハニカム構造体の一例を模式的に示す斜視図である。図6は、図4に示すような切り欠き部2を有した目封止ハニカム構造体151の一例に排ガスが流れ込む様子を模式的に示す断面図であり、図8は、本発明の目封止ハニカム構造体の一の実施形態に排ガスが流れ込む様子を模式的に示す断面図である。このように切り欠き部2を設けることにより、エロージョンの問題を回避できる。ところが、この時、図6に示される目封止ハニカム構造体151においては、切り欠き部2の端部により排ガスには乱流が発生し、切り欠き部2の角部14を避けるようにして流れるため、図6中、切り欠き部2の角部14の下側に位置するセルには、排ガスが流れ込みにくくなる。従って、該セル5の隔壁へのPMの堆積が少なくなり、短セグメント1c内におけるPMの堆積量が不均一になることがある。PMの堆積量の不均一が増大すると思われる過酷な運転時には、堆積したPMを燃焼させてフィルタの再生処理を行う際に、PM堆積量の差から生じる熱応力の偏在が、クラックの発生へとつながる可能性がある。   FIG. 4 is a perspective view schematically showing an example of a plugged honeycomb structure having a flat cutout 2 having no inclined surface. FIG. 6 is a cross-sectional view schematically showing how exhaust gas flows into an example of a plugged honeycomb structure 151 having notches 2 as shown in FIG. 4, and FIG. It is sectional drawing which shows typically a mode that exhaust gas flows into one Embodiment of a stop honeycomb structure. Thus, by providing the notch part 2, the problem of erosion can be avoided. However, at this time, in the plugged honeycomb structure 151 shown in FIG. 6, a turbulent flow is generated in the exhaust gas by the end portion of the cutout portion 2, and the corner portion 14 of the cutout portion 2 is avoided. Since it flows, in FIG. 6, it becomes difficult for exhaust gas to flow into the cell located below the corner 14 of the notch 2. Therefore, the PM deposition on the partition walls of the cell 5 is reduced, and the PM deposition amount in the short segment 1c may be non-uniform. In severe operation, where the amount of accumulated PM is expected to increase, when the accumulated PM is burned and the filter is regenerated, the uneven thermal stress caused by the difference in the amount of accumulated PM leads to the generation of cracks. May lead to

図7は、DPFの再生処理を行う際に、図6中の切り欠き部2周辺にクラックが生じる様子を示す、切り欠き部周辺の一部拡大断面図である。図7に示すように、切り欠き部2において、平坦セグメント1bと、短セグメント1cとの間の多孔質の隔壁内へはPMの堆積が少なく、DPFの再生処理時における温度の不均衡の原因となる。またこのとき短セグメント1cに接しない領域51と、接合材層3を介して切り欠き部を有した短セグメント1cに接する領域52とに発生する熱応力の偏在により、クラック50が発生するものと考えられる。   FIG. 7 is a partially enlarged cross-sectional view of the periphery of the notch portion, showing how cracks are generated around the notch portion 2 in FIG. 6 when the DPF regeneration process is performed. As shown in FIG. 7, in the cutout portion 2, there is little accumulation of PM in the porous partition wall between the flat segment 1 b and the short segment 1 c, causing a temperature imbalance during the DPF regeneration process. It becomes. Further, at this time, cracks 50 are generated due to uneven distribution of thermal stress generated in the region 51 not in contact with the short segment 1c and the region 52 in contact with the short segment 1c having the notch portion through the bonding material layer 3. Conceivable.

しかしながら、図8に示すような、切り欠き部2に傾斜面7を設けることにより、排ガスの整流作用を持たせることとなり、排ガスの乱流の発生と、それに伴うPMの堆積分布が不均一となることを抑制することができる。このため、平坦セグメントと1b傾斜セグメント1aの間の熱応力の偏在と、それに伴うクラックの発生を防ぐことができる。このような設計とすることによって、フィルタ面積の減少を最小限に抑え、使用時の排ガスの乱流によるスート堆積の偏在を調整し、圧力損失の増加を抑制することができる。   However, the provision of the inclined surface 7 in the notch 2 as shown in FIG. 8 gives the exhaust gas rectification action, and the occurrence of exhaust gas turbulence and the accompanying PM deposition distribution are non-uniform. It can be suppressed. For this reason, the uneven distribution of thermal stress between the flat segment and the 1b inclined segment 1a and the occurrence of cracks associated therewith can be prevented. By adopting such a design, it is possible to minimize the reduction of the filter area, adjust the uneven distribution of soot deposition due to the turbulent flow of exhaust gas during use, and suppress an increase in pressure loss.

本発明の複数のハニカムセグメント1(1a,1b)が接合材層3を介して一体的に接合されてなる接合型の目封止ハニカム構造体100は、図11及び図12に示すように、傾斜セグメント1aとされる予定の長目封止部24の形成されたハニカムセグメント1を、長目封止部24よりも深さの小さい目封止部25の形成された平坦セグメント1bへ接合した後、ハニカムセグメント1の長目封止部形成側端部を所望の傾斜面と対応する形状に切削することで、製造することができる。尚、図11は長目封止部形成側端部切削前の目封止ハニカム構造体を模式的に示す軸方向における部分断面図であり、図12は、長目封止部形成側端部切削後の目封止ハニカム構造体を模式的に示す軸方向における部分断面図である。図11及び図12においては、作図の都合上、切り欠き部形成予定側と反対の端部における目封止部25は図から捨象したが、いずれのハニカムセグメント1(1a,1b)においても、隣接するセル5は互いに反対側となる流通端部において目封止されており、切り欠き部形成予定側と反対の端部においては、ハニカムセグメント1(1a,1b)による目封止部深さの差異は無く、一定の深さを持つ目封止部25が形成されている。   As shown in FIGS. 11 and 12, a bonded plugged honeycomb structure 100 in which a plurality of honeycomb segments 1 (1a, 1b) of the present invention are integrally bonded through a bonding material layer 3 is as shown in FIGS. The honeycomb segment 1 in which the long plugging portion 24 scheduled to be the inclined segment 1a is joined to the flat segment 1b in which the plugging portion 25 having a depth smaller than that of the long plugging portion 24 is formed. Then, it can manufacture by cutting the long sealing part formation side edge part of the honeycomb segment 1 in the shape corresponding to a desired inclined surface. FIG. 11 is a partial cross-sectional view in the axial direction schematically showing the plugged honeycomb structure before cutting the end portion of the long plug portion forming side, and FIG. 12 shows the end portion of the long plug portion forming side. FIG. 3 is a partial cross-sectional view in the axial direction schematically showing a plugged honeycomb structure after cutting. In FIG.11 and FIG.12, although the plugging part 25 in the edge part opposite to a notch part formation plan side was abbreviated from the figure on account of drawing, in any honeycomb segment 1 (1a, 1b), Adjacent cells 5 are plugged at the flow end portions opposite to each other, and the plugged portion depth by the honeycomb segment 1 (1a, 1b) is formed at the end portion opposite to the notch forming scheduled side. There is no difference, and the plugged portion 25 having a certain depth is formed.

目封止部を形成するには、まず、乾燥後のハニカムセグメント1の一方の端面(切り欠き部形成予定側の端面)にマスクテープを貼着させ、目封止部形成予定箇所にのみ、レーザーによって孔を開け、平坦セグメント1bとなるものに関しては、ハニカムセグメント1のマスクの施された側の端部を0.5〜2.0mmの範囲の深さの目封止スラリーに浸漬させ、目封止部25を形成する。傾斜セグメント1aとなるものに関しては、平坦セグメント1bとなるものと同様にして、ハニカムセグメント1のマスクの施された側の端部を所定の深さの目封止スラリーに浸漬させ、長目封止部24を形成する。この時、浸漬させる目封止スラリーの深さは、求める目封止ハニカム構造体の切り欠き部2の深さや傾斜面7の勾配に応じて、適宜決定することができる。   In order to form the plugged portion, first, a mask tape is attached to one end surface of the honeycomb segment 1 after drying (the end surface on the side where the cutout portion is scheduled to be formed), and only at the portion where the plugged portion is to be formed With respect to what becomes a flat segment 1b by opening a hole with a laser, the end of the honeycomb segment 1 on the masked side is immersed in a plugging slurry having a depth in the range of 0.5 to 2.0 mm, A plugging portion 25 is formed. As for the inclined segment 1a, in the same manner as the flat segment 1b, the end of the honeycomb segment 1 on the masked side is dipped in a plugging slurry having a predetermined depth, and the long segment is sealed. A stop 24 is formed. At this time, the depth of the plugging slurry to be immersed can be appropriately determined according to the depth of the notch 2 of the plugged honeycomb structure to be obtained and the gradient of the inclined surface 7.

更に、いずれのハニカムセグメント1においても、隣接するセル5が互いに反対側となる流通端部において目封止されるよう、他方の端面(切り欠き部形成予定側と反対の端面)にもマスクテープを貼着させ、目封止部形成予定箇所にのみ、レーザーによって孔を開け、その端部を、0.5〜2.0mmの範囲の深さの目封止スラリーに浸漬させ、目封止部25を形成する。次に、それぞれのハニカムセグメント1を所望の個数及び組み合わせに従って積み上げ、各ハニカムセグメント1の両端が揃うように互いに接合した後、加圧、乾燥し、ハニカムセグメント積層体30を得る(図16参照)。このとき、エロージョン抑制のための切り欠き部2を形成するという観点から、傾斜セグメント1aがハニカム構造体の隅部を構成するように、傾斜セグメント1aとなるハニカムセグメント1をハニカムセグメント積層体30の角に配置することが好ましい(図13参照)。また、複数の傾斜セグメント1aによって切り欠き部2を形成する場合には、傾斜セグメント1aとなる複数のハニカムセグメント1は、互いに隣接するように配置されることが好ましい(図14参照)。尚、図13は、本発明の目封止ハニカム構造体の一実施形態を切り欠き部形成方向から見た模式的正面図であり、図14は、本発明の目封止ハニカム構造体の別の実施形態を切り欠き部形成方向から見た模式的正面図である。図13及び図14においては、作図の都合上、セル5、隔壁6、及び目封止部25は図から捨象した。   Further, in any honeycomb segment 1, the mask tape is also applied to the other end surface (the end surface opposite to the notch forming side) so that the adjacent cells 5 are plugged at the flow end portions on the opposite side. And a hole is formed by a laser only at a place where the plugging portion is to be formed, and the end portion is immersed in a plugging slurry having a depth in the range of 0.5 to 2.0 mm. A portion 25 is formed. Next, the honeycomb segments 1 are stacked according to a desired number and combination, joined to each other so that both ends of the honeycomb segments 1 are aligned, and then pressed and dried to obtain a honeycomb segment laminate 30 (see FIG. 16). . At this time, from the viewpoint of forming the cutout portion 2 for suppressing erosion, the honeycomb segment 1 that becomes the inclined segment 1a is formed in the honeycomb segment laminated body 30 so that the inclined segment 1a forms the corner of the honeycomb structure. It is preferable to arrange at a corner (see FIG. 13). Moreover, when forming the notch part 2 with the some inclination segment 1a, it is preferable that the some honeycomb segment 1 used as the inclination segment 1a is arrange | positioned so that it may mutually adjoin (refer FIG. 14). FIG. 13 is a schematic front view of one embodiment of the plugged honeycomb structure of the present invention viewed from the notch formation direction, and FIG. 14 shows another plugged honeycomb structure of the present invention. It is the typical front view which looked at this embodiment from the notch part formation direction. In FIG. 13 and FIG. 14, the cells 5, the partition walls 6, and the plugging portions 25 are omitted from the drawings for the convenience of drawing.

次いで、得られたハニカムセグメント積層体30に必要に応じて外周加工を施し、長目封止部24の形成されたハニカムセグメント1の形成側端部(切り欠き部形成予定部)を、所望の傾斜面7に対応する形状で、長目封止部24が所定の深さ残るようにエンドミル26にて切削することによって、目封止部27を有する傾斜セグメント1aを形成し、所望の傾斜面7を有した目封止ハニカム構造体100を得る。このような製造方法においては、接合、外周加工までは、従来の目封止ハニカム構造体103の製造方法における技術を用いることができるため好ましい。また、図13、図14にそれぞれ示すように、ハニカムセグメント積層体30(図16参照)に外周加工を施した後、外周壁41を設けることが強度向上のため、好ましい。   Next, the obtained honeycomb segment laminated body 30 is subjected to outer peripheral processing as necessary, and the formation side end portion (notched portion formation planned portion) of the honeycomb segment 1 in which the long plug portions 24 are formed is formed in a desired shape. The inclined segment 1a having the plugging portions 27 is formed by cutting with an end mill 26 in a shape corresponding to the inclined surfaces 7 so that the long plugging portions 24 remain at a predetermined depth, and a desired inclined surface is formed. A plugged honeycomb structure 100 having 7 is obtained. In such a manufacturing method, since the technique in the manufacturing method of the conventional plugged honeycomb structure 103 can be used until joining and outer periphery processing, it is preferable. Further, as shown in FIGS. 13 and 14, it is preferable to provide the outer peripheral wall 41 after the outer periphery processing is performed on the honeycomb segment laminated body 30 (see FIG. 16) for improving the strength.

また、複数のハニカムセグメント1(1a、1b)が接合材層3を介して一体的に接合されてなる接合型の目封止ハニカム構造体100は、傾斜セグメント1aとして、あらかじめ傾斜面7が形成された傾斜セグメント1aを、平坦セグメント1bへ接合し、必要に応じてその外周を加工することでも製造することができる。   Further, in a joint type plugged honeycomb structure 100 in which a plurality of honeycomb segments 1 (1a, 1b) are integrally joined via a joining material layer 3, an inclined surface 7 is previously formed as the inclined segment 1a. The inclined segment 1a thus formed can be manufactured by joining to the flat segment 1b and processing the outer periphery thereof as necessary.

まず、あらかじめ傾斜面7が作製された傾斜セグメント1a及び平坦セグメント1bの各接合面に接合材を塗布し、順次所望の個数及び組み合わせに従って積み上げ(図15参照)、切り欠き部形成予定側と反対の端面が揃うように互いに接合した後、加圧、乾燥し、ハニカムセグメント積層体30を得る(図16参照)。この時、エロージョン抑制のための切り欠き部2を形成するという観点から、傾斜セグメント1aがハニカム構造体106の隅部を構成するように、傾斜セグメント1aをハニカムセグメント積層体30の角に配置することが好ましい(図13参照)。また、複数の傾斜セグメント1aによって切り欠き部2を形成する場合には、複数の傾斜セグメント1aは、互いに隣接するように配置されることが好ましい(図14参照)。尚、図15は、ハニカムセグメントを積み上げる工程を模式的に示す工程図であり、図16は、ハニカムセグメント積層体の一実施形態を模式的に示す斜視図である。   First, a joining material is applied to each joining surface of the inclined segment 1a and the flat segment 1b on which the inclined surface 7 has been prepared in advance, and sequentially stacked according to a desired number and combination (see FIG. 15), opposite to the notch formation scheduled side. After joining them so that their end faces are aligned, pressurization and drying are performed to obtain a honeycomb segment laminate 30 (see FIG. 16). At this time, from the viewpoint of forming the cutout portion 2 for suppressing erosion, the inclined segment 1a is arranged at the corner of the honeycomb segment laminated body 30 so that the inclined segment 1a constitutes a corner portion of the honeycomb structure 106. It is preferable (see FIG. 13). Moreover, when forming the notch part 2 with the some inclination segment 1a, it is preferable that the some inclination segment 1a is arrange | positioned so that it may mutually adjoin (refer FIG. 14). FIG. 15 is a process diagram schematically showing the process of stacking the honeycomb segments, and FIG. 16 is a perspective view schematically showing one embodiment of the honeycomb segment laminate.

次いで、得られたハニカムセグメント積層体30に必要に応じて外周加工を施し、所望の目封止ハニカム構造体100を得る。このような製造方法においては、切削等の後工程を必要としないため、原料収率及びコストの点で好ましい。尚、この時傾斜セグメント1aは、あらかじめ傾斜セグメント1aに適した軸方向長さに作製したハニカムセグメント1に目封止部25を形成することで作製してもよいが、平坦セグメント1bとなるハニカムセグメント1と同じ軸方向長さのハニカムセグメント1に長目封止部24を形成し、長目封止部形成側端部を、ハニカムセグメント1全体が傾斜セグメント1aに適した軸方向長さとなるように切断することで作製してもよい。   Next, the obtained honeycomb segment laminated body 30 is subjected to outer periphery processing as necessary to obtain a desired plugged honeycomb structure 100. Such a manufacturing method is preferable in terms of raw material yield and cost because it does not require a post-process such as cutting. At this time, the inclined segment 1a may be manufactured by forming the plugging portion 25 in the honeycomb segment 1 that has been prepared in advance with an axial length suitable for the inclined segment 1a. The long plugging portion 24 is formed in the honeycomb segment 1 having the same axial length as that of the segment 1, and the end of the long plugging portion forming side has an axial length suitable for the inclined segment 1a. You may produce by cut | disconnecting like this.

本発明の目封止ハニカム構造体の製造方法によれば、用途や目的に応じて、少なくとも一部に傾斜面を有し、所望の位置及び大きさに切り欠き部が形成された目封止ハニカム構造体を得ることができる。そのような目封止ハニカム構造体をDPFとして用いると、浄化装置内の限られたスペースにおいてエロージョン抑制効果を発揮するほか、特殊な形状のコンテナにも対応可能である等、車載用フィルタとして、様々な効果を発揮する。更に、本発明の目封止ハニカム構造体の製造方法によれば、形状加工による浄化性能及び強度の低下が抑えられ、原料収率やコストの面でも優れた目封止ハニカム構造体を得ることができる。また更に、DPF再生処理時のPMの堆積分布の偏在を抑制することにより、クラックの発生を防止することができる。   According to the method for manufacturing a plugged honeycomb structure of the present invention, according to the use and purpose, at least a part of the plugged surface has an inclined surface and a notch is formed at a desired position and size. A honeycomb structure can be obtained. When such a plugged honeycomb structure is used as a DPF, in addition to exhibiting an erosion suppressing effect in a limited space in the purification device, it can also be used for a specially shaped container. Exhibits various effects. Furthermore, according to the method for manufacturing a plugged honeycomb structure of the present invention, a decrease in purification performance and strength due to shape processing can be suppressed, and a plugged honeycomb structure excellent in terms of raw material yield and cost can be obtained. Can do. Furthermore, the occurrence of cracks can be prevented by suppressing the uneven distribution of the PM deposition distribution during the DPF regeneration process.

図6は、本発明の目封止ハニカム構造体の一実施形態に排ガスが流れ込む様子を模式的に示す断面図であり、図7は、本発明の目封止ハニカム構造体の別の実施形態に排ガスが流れ込む様子を模式的に示す断面図である。この時、図6及び図7に示すように、排ガスは、切り欠き部の角部14を避けるようにして流れるため、図6中、切り欠き部の角部14の下側のセル5には、排ガスが流れ込みにくくなり、従って、該セル5の隔壁へのPMの堆積が少なくなり、ハニカムセグメント1内におけるPMの堆積量が不均一になることがある。その結果、堆積したPMを燃焼させてフィルタの再生処理を行う際に、PM堆積量の差から生じる熱応力の偏在が、クラックの発生へとつながる可能性がある。   FIG. 6 is a cross-sectional view schematically showing how exhaust gas flows into one embodiment of the plugged honeycomb structure of the present invention, and FIG. 7 shows another embodiment of the plugged honeycomb structure of the present invention. It is sectional drawing which shows typically a mode that waste gas flows in into. At this time, as shown in FIGS. 6 and 7, since the exhaust gas flows so as to avoid the corner 14 of the notch, in FIG. 6, the cell 5 below the corner 14 of the notch As a result, the exhaust gas is less likely to flow, and therefore, the amount of PM deposited on the partition walls of the cells 5 is reduced, and the amount of PM deposited in the honeycomb segment 1 may become uneven. As a result, when the accumulated PM is burned and the filter is regenerated, the uneven distribution of thermal stress resulting from the difference in the amount of PM deposition may lead to the generation of cracks.

そこで、本発明の目封止ハニカム構造体においては、図8に示すように、傾斜セグメント1aは、当該目封止ハニカム構造体の外周部を構成するように配置されたものであり、傾斜セグメント1aの傾斜開始点が形成された目封止ハニカム構造体の中心部側から目封止ハニカム構造体の外周部側へ、傾斜セグメント1aの外周部側の軸方向長さが短くなるように傾斜する傾斜面とされている。すなわち、図8は、ハニカム構造体を軸方向に切断した断面図であり、傾斜セグメントの切り欠き部側の端部が傾斜面となっている。   Therefore, in the plugged honeycomb structure of the present invention, as shown in FIG. 8, the inclined segments 1a are arranged so as to constitute the outer peripheral portion of the plugged honeycomb structure. Inclination from the central part side of the plugged honeycomb structure in which the inclination start point 1a is formed to the outer peripheral part side of the plugged honeycomb structure so that the axial length on the outer peripheral part side of the inclined segment 1a is shortened It is supposed to be an inclined surface. That is, FIG. 8 is a cross-sectional view of the honeycomb structure cut in the axial direction, and the end of the inclined segment on the notch portion side is an inclined surface.

当該目封止ハニカム構造体の外周部を構成するセグメント数のうち、傾斜セグメントの数は、1〜3個とすることが好ましい。傾斜セグメントの数は、1〜2個とすることが更に好ましい。また、傾斜セグメントが、2〜3個の場合、隣接するように設けられることが好ましい。例えば図14の目封止ハニカム構造体107に示すように複数の傾斜セグメント1aを隣接するように設けることが好ましい。傾斜セグメント1aの数が複数である場合、傾斜面7はこの複数の傾斜セグメント1aにまたがって連続した傾斜を有するように設けることが好ましい。   Of the number of segments constituting the outer peripheral portion of the plugged honeycomb structure, the number of inclined segments is preferably 1 to 3. The number of inclined segments is more preferably 1 to 2. Moreover, when there are two or three inclined segments, it is preferable that the inclined segments are adjacent to each other. For example, as shown in a plugged honeycomb structure 107 in FIG. 14, it is preferable to provide a plurality of inclined segments 1a adjacent to each other. When the number of the inclined segments 1a is plural, the inclined surface 7 is preferably provided so as to have a continuous inclination across the plural inclined segments 1a.

図9に示すように、前記傾斜面が開始する傾斜開始点は、前記接合面を少なくとも一部含むように形成され、前記傾斜開始点から前記ハニカム構造体の外周壁41までの、前記傾斜開始点が形成された接合面に沿った直線の距離Lと前記傾斜面の高さHとの比H/Lが0.05〜1.5を満たすことが好ましい。   As shown in FIG. 9, the inclination start point at which the inclined surface starts is formed so as to include at least a part of the joining surface, and the inclination start from the inclination start point to the outer peripheral wall 41 of the honeycomb structure is performed. It is preferable that the ratio H / L of the straight line distance L along the joining surface where the points are formed and the height H of the inclined surface satisfies 0.05 to 1.5.

本発明の目封止ハニカム構造体において、傾斜面の構造は特に限定するものではなく、上述したよう乱流の発生に伴うPMの堆積分布の不均一を抑制できる整流効果を有する傾斜面であれば良い。例として、図10A〜10Eに傾斜面の各実施形態を示す。図10A〜図10Eは、それぞれハニカム構造体を軸方向にて傾斜面を含むように切断した断面図である。   In the plugged honeycomb structure of the present invention, the structure of the inclined surface is not particularly limited, and may be an inclined surface having a rectifying effect that can suppress the non-uniformity of PM deposition distribution due to the occurrence of turbulence as described above. It ’s fine. As an example, each embodiment of an inclined surface is shown to FIG. 10A to 10E are cross-sectional views in which the honeycomb structure is cut so as to include an inclined surface in the axial direction.

図10Aは、目封止ハニカム構造体100の傾斜セグメント1aの中心部側面が、平坦セグメントの端面とほぼ一致しており、目封止ハニカム構造体の外周部側において、傾斜セグメントの軸方向8長さが短くなるように端面が傾斜面として形成されている。   FIG. 10A shows that the central side surface of the inclined segment 1a of the plugged honeycomb structure 100 substantially coincides with the end face of the flat segment, and the axial direction 8 of the inclined segment is on the outer peripheral side of the plugged honeycomb structure. The end surface is formed as an inclined surface so that the length is shortened.

図10Bは、目封止ハニカム構造体101の傾斜セグメント1aの目封止ハニカム構造体の中心部側における軸方向8長さが、平坦セグメントよりも短くなっており、さらに、目封止ハニカム構造体の外周部側へ向かって、傾斜セグメントの軸方向長さが短くなるように端面が傾斜面として形成されている。   FIG. 10B shows that the length 8 in the axial direction of the inclined segment 1a of the plugged honeycomb structure 101 on the center portion side of the plugged honeycomb structure is shorter than that of the flat segment. The end surface is formed as an inclined surface so that the axial length of the inclined segment becomes shorter toward the outer peripheral side of the body.

図10Cは、目封止ハニカム構造体102の傾斜セグメント1aの目封止ハニカム構造体の中心部側における軸方向8長さが、平坦セグメントよりも短くなっており、平坦セグメントの端面と平行な平坦面を有し、さらに、外周部側面へ向かって、外周部側面において、傾斜セグメントの軸方向8長さが短くなるように端面が傾斜面として形成されている。   FIG. 10C shows that the length 8 in the axial direction of the inclined segment 1a of the plugged honeycomb structure 102 on the center side of the plugged honeycomb structure is shorter than that of the flat segment, and is parallel to the end surface of the flat segment. The end surface is formed as an inclined surface so that the length of the inclined segment 8 in the axial direction becomes shorter on the outer peripheral side surface toward the outer peripheral side surface.

図10Dは、目封止ハニカム構造体103の傾斜セグメント1aの目封止ハニカム構造体の中心部側における軸方向8長さが、平坦セグメントよりも短くなっており、そこから外周部側が軸方向8長さが短くなるように傾斜面が形成され、さらに平坦セグメントの端面と平行な平坦面が外周部側面まで形成されている。   FIG. 10D shows that the length 8 in the axial direction of the inclined segment 1a of the plugged honeycomb structure 103 on the center side of the plugged honeycomb structure is shorter than that of the flat segment, and the outer peripheral side thereof extends in the axial direction. 8 An inclined surface is formed so that the length is shortened, and a flat surface parallel to the end surface of the flat segment is formed to the outer peripheral side surface.

図10Eは、目封止ハニカム構造体104の傾斜セグメント1aの目封止ハニカム構造体の中心部側における軸方向8長さが、平坦セグメントよりも短くなっており、そこから傾斜面として外周部側面まで凹状の湾曲面が形成されている。この湾曲面は更に曲率が最大となる凹湾曲ノーズが目封止ハニカム構造体の中心部側に位置し、流線形状とされている。この湾曲面が流線形状となっているため、排ガスの乱流を防ぐ整流作用に優れている。   FIG. 10E shows that the length 8 in the axial direction of the inclined segment 1a of the plugged honeycomb structure 104 on the central portion side of the plugged honeycomb structure is shorter than that of the flat segment, and the outer peripheral portion as an inclined surface therefrom. A concave curved surface is formed up to the side surface. The curved surface has a concave curved nose with a maximum curvature, which is located on the center side of the plugged honeycomb structure, and has a streamline shape. Since this curved surface has a streamline shape, it has an excellent rectifying action for preventing turbulent exhaust gas flow.

図10Fは、目封止ハニカム構造体105の傾斜セグメント1aの目封止ハニカム構造体105の中心部側における軸方向8長さが、平坦セグメントよりも短くなっており、そこから傾斜面として外周部側面まで凸状の湾曲面が形成されている。この湾曲面は更に曲率が最大となる凸湾曲ノーズが目封止ハニカム構造体の外周部側に位置し、流線形状とされている。この湾曲面が流線形状となっているため、排ガスの乱流を防ぐ整流作用に優れている。   FIG. 10F shows that the length 8 in the axial direction of the inclined segment 1a of the plugged honeycomb structure 105 on the center side of the plugged honeycomb structure 105 is shorter than that of the flat segment, and the outer periphery as an inclined surface therefrom. A convex curved surface is formed up to the side surface. The curved surface further has a convex curve nose with the maximum curvature located on the outer peripheral side of the plugged honeycomb structure, and has a streamline shape. Since this curved surface has a streamline shape, it has an excellent rectifying action for preventing turbulent exhaust gas flow.

本発明の目封止ハニカム構造体に上述した排ガス浄化用触媒成分を担持させたDPFは、排ガス浄化装置内において、省スペース化を実現すると共にエロージョン抑制効果を持ちながらも、DPF再生時の熱応力の分布を均等化する端部形状を持ち、過酷な運転条件下におけるDPF再生時再生限界低下、圧力損失増加等の問題も改善される。   The DPF in which the above-described exhaust gas purifying catalyst component is supported on the plugged honeycomb structure of the present invention achieves space saving in the exhaust gas purifying device and has the effect of suppressing erosion, but also the heat during DPF regeneration. It has an end shape that equalizes the stress distribution, and problems such as a decrease in regeneration limit and an increase in pressure loss during DPF regeneration under severe operating conditions are also improved.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

実施例1〜実施例12として、傾斜面のある傾斜セグメントを切り欠き部として有した目封止ハニカム構造体を作成した。また、比較例1、比較例2として、傾斜面がなく、軸方向の長さを短くした短セグメントを切り欠き部として有した目封止ハニカム構造体を作成した。これら目封止ハニカム構造体に対して、それぞれ30g/Lの触媒をコートしたものをDPFとして用い、圧力損失試験および再生限界試験を行った。   As Example 1 to Example 12, plugged honeycomb structures having inclined segments with inclined surfaces as cutout portions were prepared. Further, as Comparative Example 1 and Comparative Example 2, plugged honeycomb structures having no inclined surface and having a short segment with a short axial length as a notch were prepared. These plugged honeycomb structures were each subjected to a pressure loss test and a regeneration limit test using a DPF coated with 30 g / L of catalyst.

各実施例、比較例で用いた目封止ハニカム構造体の切り欠き部を考慮しない全体的な外径寸法としては、目封止ハニカム構造体の軸方向の長さ:152mm、最外径の直径が144mmの円柱状のものを使用した。   As an overall outer diameter dimension not considering the notch portion of the plugged honeycomb structure used in each example and comparative example, the length in the axial direction of the plugged honeycomb structure: 152 mm, the outermost diameter A cylindrical shape having a diameter of 144 mm was used.

切り欠き部を構成するハニカムセグメントの位置と個数は、比較例1、実施例1〜6においては、図13の目封止ハニカム構造体106の傾斜セグメント1aと同じ位置となるように1個とした。また比較例2、実施例7〜12において切り欠き部を構成するセグメントは、図14の目封止ハニカム構造体107の外周部に隣接する2つの傾斜セグメント1aと同じ位置となるように2個とした。各実施例、各比較例の寸法条件の詳細を、表1に示す。   In Comparative Example 1 and Examples 1 to 6, the position and the number of the honeycomb segments constituting the notch portions are one so as to be the same position as the inclined segment 1a of the plugged honeycomb structure 106 in FIG. did. Further, in Comparative Example 2 and Examples 7 to 12, two segments constituting the cutout portion are positioned at the same position as the two inclined segments 1a adjacent to the outer peripheral portion of the plugged honeycomb structure 107 in FIG. It was. Table 1 shows details of the dimensional conditions of each example and each comparative example.

Figure 0005280922
Figure 0005280922

具体的なD,L,Hの寸法については、図2A,図2B、図9に示すような接合面42での断面図を用いて説明する。表1中、実施例におけるDは目封止ハニカム構造体の流入孔側端面11からの傾斜開始位置40までの深さを示す。図4で示すような形状の、傾斜面7のない切り欠き部2を有した比較例1、2のように、傾斜面7がない切り欠き部2の場合は、切り欠き部2の流入孔側端面11からの深さをDとするものとする。表1中、Lは、傾斜開始位置40から傾斜開始位置40が形成された接合面42に沿った目封止ハニカム構造体の外周壁41までの距離を示すものとする。具体的には、図13、14で示されるような目封止ハニカム構造体106の流入孔側端面11から見た平面図の傾斜セグメント1aの辺長L,L’で2つの辺長のうち、短い方をLとする。傾斜面のない切り欠き部2を短セグメント1cとして有した比較例1,2の場合は、図13、図14の傾斜セグメント1aを、切り欠き部2が形成されたセグメント1cに置き換えた場合の外周壁までの辺長L,L’のうち、短い方の辺長をLとする。傾斜面7の高低差Hとしては、図9に示すように、接合面42における傾斜開始位置と、切り欠き部の底面までの高さを示すものとする。傾斜面のない比較例1,2については、高低差Hを0mmとする。   Specific dimensions of D, L, and H will be described with reference to cross-sectional views at the joint surface 42 as shown in FIGS. 2A, 2B, and 9. In Table 1, D in Examples indicates the depth from the inflow hole side end face 11 of the plugged honeycomb structure to the inclination start position 40. In the case of the cutout portion 2 having no inclined surface 7 as in Comparative Examples 1 and 2 having the cutout portion 2 without the inclined surface 7 having the shape as shown in FIG. 4, the inflow hole of the cutout portion 2. The depth from the side end face 11 is assumed to be D. In Table 1, L represents a distance from the inclination start position 40 to the outer peripheral wall 41 of the plugged honeycomb structure along the joining surface 42 where the inclination start position 40 is formed. Specifically, of the two side lengths of the side lengths L and L ′ of the inclined segment 1a in the plan view as seen from the end surface 11 on the inlet side of the plugged honeycomb structure 106 as shown in FIGS. , L is the shorter one. In the case of Comparative Examples 1 and 2 having the notched portion 2 having no inclined surface as the short segment 1c, the inclined segment 1a in FIGS. 13 and 14 is replaced with the segment 1c in which the notched portion 2 is formed. Of the side lengths L and L ′ to the outer peripheral wall, the shorter side length is L. As shown in FIG. 9, the height difference H of the inclined surface 7 indicates the inclination start position on the joint surface 42 and the height to the bottom surface of the notch. For Comparative Examples 1 and 2 having no inclined surface, the height difference H is set to 0 mm.

各実施例、比較例で用いた目封止ハニカム構造体を構成するハニカムセグメントとして、軸方向に垂直な断面形状が、一辺の長さ36mmの正方形である四角柱状ハニカムセグメントを用いた。また、各実施例、比較例で用いた目封止ハニカム構造体として、切り欠き部を有するハニカムセグメントを角部に配置するようにした。平坦セグメントと、角部に配置した切り欠き部を有するハニカムセグメント(傾斜セグメント、短セグメント)とを合計16個隣接し、接合面に接合材を塗布した接合材層を介して積層し、加圧しながら140℃にて2時間乾燥させることにより、ハニカムセグメント積層体を得た。更にこのハニカムセグメント積層体を円柱状に切削加工し、コーティング材を塗布し、700℃で2時間乾燥硬化させ、目封止ハニカム構造体を得た。具体的には、以下に記載する。   As the honeycomb segment constituting the plugged honeycomb structure used in each example and comparative example, a square columnar honeycomb segment having a cross section perpendicular to the axial direction and a square having a side length of 36 mm was used. In addition, as the plugged honeycomb structures used in the examples and comparative examples, honeycomb segments having cutout portions are arranged at the corners. A total of 16 flat segments and honeycomb segments (inclined segments, short segments) having cutout portions arranged at the corners are adjacent to each other and laminated through a bonding material layer in which a bonding material is applied to the bonding surface, and pressed. However, the honeycomb segment laminate was obtained by drying at 140 ° C. for 2 hours. Further, this honeycomb segment laminate was cut into a cylindrical shape, coated with a coating material, dried and cured at 700 ° C. for 2 hours to obtain a plugged honeycomb structure. Specifically, it is described below.

SiC粉末及び金属Si粉末を80:20の質量割合で混合し、これに造孔材、有機バインダー、界面活性剤及び水を添加して、可塑性の坏土を得た。この坏土を押出成形し、乾燥させてハニカムセグメントとされるハニカム状成形体を得た。このハニカム状成形体を乾燥させた後、ハニカム状成形体を、大気雰囲気中、約400℃で脱脂し、更に、Ar雰囲気において約1450℃で焼成して、成形体中のSiC粒子をSiで結合させることにより、ハニカムセグメントを得た。   SiC powder and metal Si powder were mixed at a mass ratio of 80:20, and a pore former, an organic binder, a surfactant and water were added thereto to obtain a plastic clay. This kneaded material was extruded and dried to obtain a honeycomb-shaped formed body that was a honeycomb segment. After the honeycomb formed body is dried, the honeycomb formed body is degreased at about 400 ° C. in an air atmosphere, and further fired at about 1450 ° C. in an Ar atmosphere, so that SiC particles in the formed body are made of Si. A honeycomb segment was obtained by bonding.

次いで、このハニカム状焼成体の外壁に下地材を塗布して、自然乾燥させ、隔壁の厚さが12mil(305μm)、セル形状が正方形、セル密度が約46.5セル/cm(300セル/平方インチ)、断面形状が一辺36mmの正方形、軸方向の長さが152mmである四角柱状のハニカムセグメントを得た。下地材は、SiC粉末、シリカゾル水溶液及び水を混合したものである。 Next, a base material is applied to the outer wall of the honeycomb-shaped fired body, and is naturally dried. The partition wall thickness is 12 mil (305 μm), the cell shape is square, and the cell density is about 46.5 cells / cm 2 (300 cells). / Square inch), a square column-shaped honeycomb segment having a cross-sectional square shape of 36 mm on a side and an axial length of 152 mm was obtained. The base material is a mixture of SiC powder, silica sol aqueous solution and water.

実施例1〜12で使用した切り欠き部を構成する傾斜セグメントとしては、後述するような所望の傾斜面とするため、上述した四角柱状のハニカムセグメントをエンドミルで切削加工することにより製作した。比較例1、2で使用した切り欠き部を有した短セグメントとしては、上述した平坦セグメントを、切削加工により、軸方向の長さを122mmとした以外は、同様の製造方法で製作した。   The inclined segments constituting the notch portions used in Examples 1 to 12 were manufactured by cutting the above-described square columnar honeycomb segments with an end mill in order to obtain a desired inclined surface as described later. As the short segment having the notch used in Comparative Examples 1 and 2, the above-described flat segment was manufactured by the same manufacturing method except that the length in the axial direction was 122 mm by cutting.

[目封止用スラリーの調製]炭化珪素粉末及び金属珪素粉末を75:25の質量割合で混合し、これにメチルセルロース、ヒドロキシプロポキシルメチルセルロース、焼結助剤、造孔材及び水を添加して混練し、目封止用スラリーを得た。焼結助剤として、炭酸ストロンチウムを用いた。造孔材として、発泡樹脂を用いた。   [Preparation of slurry for plugging] Silicon carbide powder and metal silicon powder were mixed at a mass ratio of 75:25, and methyl cellulose, hydroxypropoxyl methyl cellulose, a sintering aid, a pore former and water were added thereto. The mixture was kneaded to obtain a plugging slurry. Strontium carbonate was used as a sintering aid. A foamed resin was used as the pore former.

[目封止ハニカムセグメントの作製]平坦セグメント、短セグメント及び傾斜セグメントの一の端面のセルの開口に、市松模様状(千鳥模様状)に交互にマスクを施した。具体的には、ハニカム構造体の一の端面全体に粘着性フィルムを貼着し、その粘着性フィルムのうち目封止部を形成したいセルに相当する部分のみをレーザによって穴を開けた。そして、マスクを施した端面の側を、容器に入れた目封止用スラリーに浸漬し、穴に対応した位置のセル内に目封止用スラリーを充填した。このとき、傾斜セグメントについては、目封止用スラリーの液面と、傾斜面とが平行である状態でこの液面に浸漬し、目封止用スラリーを充填した。他の端面については、一の端面において目封止部を形成しなかったセルが、開けた穴に対応した位置になるように、同様にして、フィルムでマスクを施し、マスクを施した端面の側を炭化珪素を含有する目封止用スラリーに浸漬し、穴に対応した位置のセル内に目封止用スラリーを充填した。その後、目封止用スラリーを充填したハニカムセグメントを熱風乾燥機で乾燥した。   [Preparation of Plugged Honeycomb Segment] Masks were alternately formed in a checkered pattern (staggered pattern) in the opening of the cell on one end face of the flat segment, the short segment, and the inclined segment. Specifically, an adhesive film was attached to the entire end face of the honeycomb structure, and only a portion corresponding to a cell in which the plugging portion was to be formed was punched with a laser. And the end surface side which gave the mask was immersed in the slurry for plugging put in the container, and the plugging slurry was filled in the cell of the position corresponding to the hole. At this time, the inclined segment was immersed in the liquid surface in a state where the liquid level of the plugging slurry and the inclined surface were parallel, and filled with the plugging slurry. For the other end face, in the same manner, a mask was formed with a film so that the cells where the plugged portion was not formed on one end face would be in a position corresponding to the opened hole. The side was immersed in a plugging slurry containing silicon carbide, and the plugging slurry was filled into the cells at positions corresponding to the holes. Thereafter, the honeycomb segment filled with the plugging slurry was dried with a hot air dryer.

[ハニカムセグメント接合体の作製]次に、各ハニカムセグメントの周面に、アルミノシリケートファイバ、コロイダルシリカ、ポリビニルアルコール、及び炭化珪素を混練してなる接合用スラリーを塗布し、平坦セグメントと、切り欠き部を有したハニカムセグメントとを互いに組み付けて圧着した後、加熱乾燥して、全体形状が四角柱状のハニカムセグメント接合体を得た。   [Preparation of bonded honeycomb segment] Next, a slurry for bonding formed by kneading aluminosilicate fiber, colloidal silica, polyvinyl alcohol, and silicon carbide was applied to the peripheral surface of each honeycomb segment, and flat segments and notches were cut. The honeycomb segments having parts were assembled and pressure-bonded to each other, and then dried by heating to obtain a bonded honeycomb segment assembly having an overall shape of a quadrangular prism.

そして、そのハニカムセグメント接合体を、円柱形状に研削加工した後、その周面を、ハニカムセグメント成形体と同材料からなる外周コート層で被覆し、乾燥により硬化させ、セグメント構造を有する円柱形状の目封止ハニカム構造体を得た。   Then, after the honeycomb segment bonded body is ground into a cylindrical shape, the peripheral surface thereof is covered with an outer peripheral coat layer made of the same material as the honeycomb segment molded body, and is cured by drying, so that the cylindrical shape having a segment structure is formed. A plugged honeycomb structure was obtained.

(評価)
圧力損失測定試験:
排気量2000ccの直噴ターボ付きディーゼルエンジン(TDI)を使用して排ガスを発生させ、圧力損失試験を行った。表1の各比較例、実施例に示すような目封止ハニカム構造体に30g/Lの触媒をコートしたものをDPFとして用いた。この各DPFに対してスートをスス堆積量を8g/L堆積させた。エンジン回転数を3000rpm、エンジントルクを50Nm、ガス流量3.5〜4.5m/minとして、排ガス温度250〜350℃の条件下で、DPFにススを堆積させていき、スス堆積量との関係においてDPFの排ガス流通方向前後における圧力損失を測定した。圧力損失は、ススを8g/Lまで堆積させた時点での各圧力損失値(kPa)を用い、比較例1の圧力損失値(kPa)を基準とした場合の実施例1〜6の圧力損失変化率[%]および、比較例2の圧力損失値(kPa)を基準とした場合の実施例7〜12の圧力損失変化率[%]の結果を表1に示した。
(Evaluation)
Pressure loss measurement test:
Exhaust gas was generated using a diesel engine (TDI) with a direct injection turbo with a displacement of 2000 cc, and a pressure loss test was performed. A DPF having a plugged honeycomb structure coated with 30 g / L of catalyst as shown in each comparative example and example in Table 1 was used. A soot deposition amount of 8 g / L was deposited on each DPF. The engine rotation speed is 3000 rpm, the engine torque is 50 Nm, the gas flow rate is 3.5 to 4.5 m 3 / min, and the soot is deposited on the DPF under the exhaust gas temperature of 250 to 350 ° C. In relation, the pressure loss of the DPF before and after the exhaust gas flow direction was measured. Pressure loss is the pressure loss of Examples 1 to 6 when each pressure loss value (kPa) at the time of depositing soot to 8 g / L is used and the pressure loss value (kPa) of Comparative Example 1 is used as a reference. Table 1 shows the results of the pressure loss change rate [%] of Examples 7 to 12 when the change rate [%] and the pressure loss value (kPa) of Comparative Example 2 are used as a reference.

再生限界試験:
切り欠き部の傾斜面の有無や、傾斜面の位置、寸法等の条件を変化させて、切り欠き部を下方とした状態で試験を行う。表1の各比較例、実施例に示すような目封止ハニカム構造体に30g/Lの触媒をコートしたものをDPFとして用いた。順次、スス(PM)の堆積量を増加させてフィルタの再生(PMの燃焼)を行い、クラックが発生する限界を確認した(PM量ステップアップ再生試験)。排気量2000ccの直噴ターボ付きディーゼルエンジン(TDI)を使用し、エンジン回転数を2000rpm、エンジントルクを60Nmに保った状態で、DPFにスートを堆積させた。次に、ポストインジェクションによって、DPFの入口におけるガス温度を650℃まで昇温させ、DPFの前後の圧力損失が落ち始めたところで、エンジン運転条件をアイドル状態とし、同時にポストインジェクションを停止した。この後、高酸素濃度と低排気流量によって、DPFの内部温度が急上昇した。DPFへの堆積スート量を変化させていき、DPF出口端面にクラックが発生するスート量の比較を行った。クラック発生の有無は、DPFの軸方向に垂直な断面方向に分断されるリングオフクラックの発生有無をCTスキャンを用いて観察した。DPF出口端面にクラックが発生した際のスート量をそのDPFの再生限界値とした。比較例1のクラック発生時のスス堆積量(g/L)を基準値とした場合の実施例1〜6の基準値との差(g/L)および、比較例2のクラック発生時のスス堆積量(g/L)を基準値とした場合の実施例7〜12の基準値との差(g/L)の結果を表1に示した。
Regeneration limit test:
The test is performed with the notch part in the downward direction by changing the conditions such as the presence or absence of the inclined surface of the notch part and the position and size of the inclined surface. A DPF having a plugged honeycomb structure coated with 30 g / L of catalyst as shown in each comparative example and example in Table 1 was used. The amount of soot (PM) deposited was increased successively to regenerate the filter (PM combustion), and the limit of cracking was confirmed (PM amount step-up regeneration test). A diesel engine with a direct-injection turbo (TDI) with a displacement of 2000 cc was used, soot was deposited on the DPF while maintaining the engine speed at 2000 rpm and the engine torque at 60 Nm. Next, the gas temperature at the inlet of the DPF was raised to 650 ° C. by post-injection, and when the pressure loss before and after the DPF began to drop, the engine operating condition was set to the idle state, and at the same time, the post-injection was stopped. Thereafter, the internal temperature of the DPF increased rapidly due to the high oxygen concentration and the low exhaust flow rate. The amount of soot deposited on the DPF was varied, and the amount of soot that generated cracks on the DPF outlet end face was compared. Regarding the presence or absence of cracks, the presence or absence of ring-off cracks divided in the cross-sectional direction perpendicular to the axial direction of the DPF was observed using a CT scan. The soot amount when a crack occurred on the end face of the DPF was defined as the regeneration limit value of the DPF. The difference (g / L) from the reference value of Examples 1-6 when the soot accumulation amount (g / L) at the time of crack occurrence in Comparative Example 1 is used as the reference value, and the soot at the time of crack occurrence in Comparative Example 2 The results of the difference (g / L) from the reference values of Examples 7 to 12 when the deposition amount (g / L) is used as the reference value are shown in Table 1.

比較例1、2として、図4に示すような傾斜面のない短セグメント1cを有した目封止ハニカム構造体151を用いて、再生限界試験を行った。具体的には、表1に示すような寸法のものを使用した。比較例1と実施例1〜6はLを20mmとし、比較例2と実施例7〜12はLを36mmとし、その他の条件を変化させ、上述した圧力損失試験、再生限界試験を行った。   As Comparative Examples 1 and 2, a regeneration limit test was performed using a plugged honeycomb structure 151 having a short segment 1c having no inclined surface as shown in FIG. Specifically, those having dimensions as shown in Table 1 were used. In Comparative Example 1 and Examples 1-6, L was 20 mm, in Comparative Example 2 and Examples 7-12, L was 36 mm, and other conditions were changed, and the above-described pressure loss test and regeneration limit test were performed.

圧力損失試験、再生限界試験の結果、実施例1〜12の傾斜面を有した切り欠き部を設けた目封止ハニカム構造体を用いた場合においては、傾斜面のない平坦な切り欠き部を有した目封止ハニカム構造体を用いた比較例1および比較例2と比較して、圧力損失の低下や、再生限界の向上等が見られた。   As a result of the pressure loss test and the regeneration limit test, in the case of using the plugged honeycomb structure provided with the notched portion having the inclined surface of Examples 1 to 12, a flat notched portion without the inclined surface is used. Compared with Comparative Example 1 and Comparative Example 2 using the plugged honeycomb structure, the pressure loss was reduced and the regeneration limit was improved.

更に、実施例6においては、図1に示すように、傾斜面7の開始位置40が目封止ハニカム構造体100の流入孔端面11にあり、このときの損失係数が最小となり、再生限界試験でのスス堆積量も最大となった。   Further, in Example 6, as shown in FIG. 1, the start position 40 of the inclined surface 7 is on the end face 11 of the inflow hole of the plugged honeycomb structure 100, and the loss coefficient at this time is minimized, and the regeneration limit test is performed. The amount of soot accumulation at the site was also the largest.

このように、各実施例において示されたように、傾斜面の高さHとの比をH/Lが0.05〜1.5とすることが好ましい。このような値とすることによって、切り欠き部を備えたことによるエロージョン抑制効果及びサイズダウンを両立しつつも、切り欠き部での乱流の発生を防ぎ、DPF再生時の再生限界低下、圧力損失増加等の問題も改善されることが示された。   Thus, as shown in each Example, it is preferable that H / L is 0.05-1.5 as a ratio with the height H of the inclined surface. By setting such a value, while maintaining both the erosion suppressing effect and the size reduction due to the provision of the notch part, the occurrence of turbulent flow at the notch part is prevented, the regeneration limit is lowered during the regeneration of the DPF, the pressure It was shown that problems such as increased loss were also improved.

本発明の目封止ハニカム構造体及びそれを用いたDPFは、排ガス浄化装置内において、省スペース化を実現すると共にエロージョン抑制効果を持ちながらも、DPF再生時の熱応力の分布を均等化する端部形状を持ち、過酷な運転条件下におけるDPF再生時再生限界低下、圧力損失増加等の問題も改善されるため、産業上の利用可能性が大なるものである。   The plugged honeycomb structure of the present invention and the DPF using the same equalize the distribution of thermal stress during regeneration of the DPF while achieving space saving and suppressing erosion in the exhaust gas purification device. Since it has an end shape and problems such as a decrease in regeneration limit during DPF regeneration under severe operating conditions and an increase in pressure loss are improved, industrial applicability increases.

1:ハニカムセグメント、1a:傾斜セグメント、1b:平坦セグメント、1c:短セグメント、2:切り欠き部、3:接合材層、4:平坦面、5:セル、6:隔壁、7:傾斜面、8:軸方向、9:ハニカム触媒体、11:流入孔側端面、12:流出孔側端面、13:異物捕集ポケット、14:切り欠き部の角部、15:コンテナ、18:DPF、24:長目封止部、25:目封止部、26:エンドミル、27:長目封止部。30:ハニカムセグメント積層体、40:傾斜開始位置、41:外周壁、42:接合面、50:クラック、51:領域、52:領域、100、101、102、103、104、105、106、107:目封止ハニカム構造体、110,120,130:排ガス浄化装置。 1: honeycomb segment, 1a: inclined segment, 1b: flat segment, 1c: short segment, 2: notch, 3: bonding material layer, 4: flat surface, 5: cell, 6: partition wall, 7: inclined surface, 8: Axial direction, 9: Honeycomb catalyst body, 11: Inlet hole side end face, 12: Outlet hole side end face, 13: Foreign substance collecting pocket, 14: Corner part of notch, 15: Container, 18: DPF, 24 : Long-sealed portion, 25: plugged portion, 26: end mill, 27: long-sealed portion. 30: Honeycomb segment laminated body, 40: Inclination start position, 41: Outer peripheral wall, 42: Bonding surface, 50: Crack, 51: Region, 52: Region, 100, 101, 102, 103, 104, 105, 106, 107 : Plugged honeycomb structure, 110, 120, 130: exhaust gas purification device.

Claims (3)

多孔質の隔壁により区画された流体の流路となる複数のセルを有し、隣接する前記セルが互いに反対側となる一方の端部において目封止された複数のハニカムセグメントからなり、複数の前記ハニカムセグメントが互いに隣接され、隣接する複数の前記ハニカムセグメントどうしの接合面において接合材層を介して一体的に接合されたディーゼルパティキュレートフィルタ用の目封止ハニカム構造体であって、
当該目封止ハニカム構造体の外周側に配置された前記ハニカムセグメントの少なくとも一部が、前記流体の流入孔側端面に、当該目封止ハニカム構造体の中心側から外周側に向かって当該目封止ハニカム構造体の軸方向の長さが減少するように傾斜した傾斜面を少なくとも一部有した傾斜セグメントとされ
前記傾斜面は、前記目封止ハニカム構造体の外周部分の一部に設けられている目封止ハニカム構造体。
A plurality of cells serving as fluid flow paths partitioned by porous partition walls, the adjacent cells being composed of a plurality of honeycomb segments plugged at one end opposite to each other; A plugged honeycomb structure for a diesel particulate filter in which the honeycomb segments are adjacent to each other, and are integrally bonded via a bonding material layer at the bonding surfaces of the plurality of adjacent honeycomb segments,
At least a part of the honeycomb segment arranged on the outer peripheral side of the plugged honeycomb structure has an end face on the fluid inflow hole side toward the outer peripheral side from the center side of the plugged honeycomb structure. An inclined segment having at least a part of an inclined surface inclined so as to reduce the axial length of the sealed honeycomb structure ,
The inclined surface is a plugged honeycomb structure provided in a part of an outer peripheral portion of the plugged honeycomb structure.
前記傾斜面が開始する傾斜開始位置は、前記接合面に形成され、
前記傾斜開始位置から前記傾斜開始位置が形成された前記接合面に沿った前記ハニカム構造体の外周壁までの距離Lと前記傾斜面の高さHとの比H/Lが0.05〜1.5の範囲である請求項1に記載の目封止ハニカム構造体。
An inclination start position where the inclined surface starts is formed on the joint surface,
The ratio H / L of the distance L from the inclination start position to the outer peripheral wall of the honeycomb structure along the joining surface where the inclination start position is formed and the height H of the inclined surface is 0.05 to 1. The plugged honeycomb structure according to claim 1, which is in a range of .5.
請求項1または2に記載の目封止ハニカム構造体に排ガス浄化用触媒成分を担持させたディーゼルパティキュレートフィルタ。   A diesel particulate filter in which the plugged honeycomb structure according to claim 1 or 2 is loaded with a catalyst component for exhaust gas purification.
JP2009087451A 2009-03-31 2009-03-31 Plugged honeycomb structure and diesel particulate filter using the same Active JP5280922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009087451A JP5280922B2 (en) 2009-03-31 2009-03-31 Plugged honeycomb structure and diesel particulate filter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087451A JP5280922B2 (en) 2009-03-31 2009-03-31 Plugged honeycomb structure and diesel particulate filter using the same

Publications (2)

Publication Number Publication Date
JP2010234333A JP2010234333A (en) 2010-10-21
JP5280922B2 true JP5280922B2 (en) 2013-09-04

Family

ID=43089196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087451A Active JP5280922B2 (en) 2009-03-31 2009-03-31 Plugged honeycomb structure and diesel particulate filter using the same

Country Status (1)

Country Link
JP (1) JP5280922B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126572A (en) * 1984-07-16 1986-02-05 株式会社日本自動車部品総合研究所 Ceramic product and manufacture
JP3971027B2 (en) * 1998-06-25 2007-09-05 イビデン株式会社 Ceramic structure bonding apparatus and bonding method
JP4680437B2 (en) * 2001-07-13 2011-05-11 日本碍子株式会社 Honeycomb structure
WO2006095835A1 (en) * 2005-03-10 2006-09-14 Ngk Insulators, Ltd. Honeycomb structure and method of manufacturing the same
CN101346184B (en) * 2006-07-03 2012-07-11 日本碍子株式会社 Honeycomb structure and method for manufacturing the same

Also Published As

Publication number Publication date
JP2010234333A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
US7138002B2 (en) Honeycomb structure and process for production thereof
JP4698585B2 (en) Honeycomb structure and exhaust gas purification device
KR100874398B1 (en) Honeycomb Structure
US7316722B2 (en) Honeycomb structure
US7169203B2 (en) Honeycomb structure
JP5252916B2 (en) Honeycomb structure
JP5328174B2 (en) Plugged honeycomb structure
JP6548528B2 (en) Plugged honeycomb structure and plugged honeycomb segment
JP6246683B2 (en) Honeycomb filter
JP2006281134A (en) Honeycomb structure
KR20130135929A (en) Sealed honeycomb structure
JPWO2012133847A1 (en) Plugged honeycomb structure and exhaust gas purification device
JP2006326381A (en) Honeycomb structure
JP2007014886A (en) Honeycomb structure
JP5129086B2 (en) Plugged honeycomb structure and manufacturing method thereof
US8236404B2 (en) Honeycomb structure
JP6602028B2 (en) Honeycomb structure
JP2012184658A (en) Exhaust gas purifying device
JP5280922B2 (en) Plugged honeycomb structure and diesel particulate filter using the same
JP5202416B2 (en) Plugged honeycomb structure and manufacturing method thereof
JP5006952B2 (en) Plugged honeycomb structure and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5280922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150