JP5280813B2 - Lyophilized composition containing glycopeptides and method for producing the same - Google Patents

Lyophilized composition containing glycopeptides and method for producing the same Download PDF

Info

Publication number
JP5280813B2
JP5280813B2 JP2008300097A JP2008300097A JP5280813B2 JP 5280813 B2 JP5280813 B2 JP 5280813B2 JP 2008300097 A JP2008300097 A JP 2008300097A JP 2008300097 A JP2008300097 A JP 2008300097A JP 5280813 B2 JP5280813 B2 JP 5280813B2
Authority
JP
Japan
Prior art keywords
freeze
vancomycin
solution
injection
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008300097A
Other languages
Japanese (ja)
Other versions
JP2009149619A (en
Inventor
優 青城
勝彦 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichi Iko Pharmaceutical Co Ltd
Original Assignee
Nichi Iko Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichi Iko Pharmaceutical Co Ltd filed Critical Nichi Iko Pharmaceutical Co Ltd
Priority to JP2008300097A priority Critical patent/JP5280813B2/en
Publication of JP2009149619A publication Critical patent/JP2009149619A/en
Application granted granted Critical
Publication of JP5280813B2 publication Critical patent/JP5280813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本発明は、グリコペプチド類を含有する凍結乾燥組成物およびその製造方法に関し、特に溶解性の改善に効果的である。   The present invention relates to a freeze-dried composition containing glycopeptides and a method for producing the same, and is particularly effective for improving solubility.

従来からグリコペプチド類を有効成分として含有する凍結乾燥製剤は、用時溶解する際にペプチド特有の顕著な泡立ちが認められ、かかる泡立ちによって不溶性異物の判定に誤りが生じたり、また溶解液を注射用シリンジに吸入する時に気泡が混入しやすく、輸液に混ぜる際に有効成分を全て移すことが困難になる問題があった。
特開平9−124481には、シリコンコーティングしたバイアルを製剤容器として用いることにより、再溶解時に発生する泡のバイアル内面への付着を防止し、速やかに澄明となる凍結乾燥製剤が開示されているが、グリコペプチド類を含有する凍結乾燥組成物の場合には溶液中の泡の消失に時間がかかる。
特願2001−548134には、バンコマイシンとポリエチレングリコールを組み合わせることで、製剤の溶解性が向上することが開示されている。
また、特許第2883890号や特許第2983934号ではエタノール、n−プロパノール、酢酸イソプロピルなどの有機溶媒をバンコマイシンとともに凍結乾燥し、再溶解性のよい製剤化を試みているが残留する溶媒があり、実用化には問題があった。
Conventionally, freeze-dried preparations containing glycopeptides as active ingredients have noticeable foaming peculiar to peptides when they are dissolved at the time of use. There is a problem that bubbles are easily mixed when inhaled into a syringe, and that it is difficult to transfer all the active ingredients when mixing in an infusion solution.
Japanese Patent Application Laid-Open No. 9-124481 discloses a freeze-dried preparation that uses a silicon-coated vial as a preparation container to prevent the foam generated at the time of re-dissolution from adhering to the inner surface of the vial and becomes clear quickly. In the case of a lyophilized composition containing glycopeptides, it takes time to eliminate bubbles in the solution.
Japanese Patent Application No. 2001-548134 discloses that the solubility of the preparation is improved by combining vancomycin and polyethylene glycol.
In addition, in Patent Nos. 2883890 and 2983934, an organic solvent such as ethanol, n-propanol, and isopropyl acetate is freeze-dried with vancomycin to try to make a formulation with good resolubility. There was a problem with the conversion.

特開平9−124481号公報Japanese Patent Laid-Open No. 9-124481 特願2001−548134号再公表公報Japanese Patent Application No. 2001-548134 特許第2883890号公報Japanese Patent No. 2883890 特許第2983934号公報Japanese Patent No. 2989344

本発明は、グリコペプチド類を有効成分として含有する凍結乾燥組成物を再溶解する際に生じる泡立ちを、可溶化剤や溶解補助剤等を添加しなくても有意に抑制し得る凍結乾燥組成物およびその製造方法の提供を目的とする。   The present invention provides a freeze-dried composition capable of significantly suppressing foaming that occurs when a freeze-dried composition containing glycopeptides as an active ingredient is redissolved without adding a solubilizer or solubilizing agent. And it aims at provision of the manufacturing method.

本発明者らは、かかる目的を達成すべく鋭意研究を重ねた結果、ポリエチレングリコール等の可溶化剤や溶解補助剤を添加しなくとも、グリコペプチド類を含有する溶液を一旦凍結後に、この凍結物の一部を溶解する工程を経た後に再び凍結させると凍結物のケーキ構造に変化が生じ、用時に再溶解しやすく、泡立ちが少なく、消泡時間も短くなることを見い出した。   As a result of intensive studies to achieve such an object, the present inventors have once frozen a solution containing glycopeptides without adding a solubilizer or solubilizer such as polyethylene glycol. It has been found that when a part of the product is melted and then frozen again, the cake structure of the frozen product is changed, so that it is easily dissolved again at the time of use, there is less foaming, and the defoaming time is shortened.

より具体的に説明すると、本発明に係るグリコペプチド類含有凍結乾燥組成物は、グリコペプチド類を含有する溶液を凍結した凍結物を、凍結物が一部残存する状態にまで加熱部分溶解し、その後に再度凍結し、次に減圧下で乾燥することで得られることを特徴とする。
このようにすると、グリコペプチド類を含有する溶液に従来のような可溶化作用あるいは溶解補助作用を示す添加物を添加する必要がなくなる。
なお、グリコペプチド類を含有する溶液は必要に応じてpHを調整するための酸や塩基を添加してもよい。
More specifically, the freeze-dried composition containing glycopeptides according to the present invention is obtained by partially dissolving a frozen product obtained by freezing a solution containing glycopeptides until the frozen product partially remains, Thereafter, it is obtained by freezing again and then drying under reduced pressure.
In this way, it is not necessary to add a conventional additive that exhibits a solubilizing action or a solubilizing action to a solution containing glycopeptides.
In addition, you may add the acid and base for adjusting pH to the solution containing glycopeptides as needed.

グリコペプチド類として、バンコマイシンを注射剤として用いた場合には、本発明は特に有効に作用する。
バンコマイシンはグリコペプチド系抗生物質である。
バンコマイシンを注射剤として用いる場合には、その塩酸塩の凍結乾燥製剤を注射用水で溶解後に輸液に配合して投与することが多い。
しかし、バンコマイシンの凍結乾燥製剤は用時溶解する際に顕著な泡立ちが認められ、かかる泡立ちによって不溶性異物の判定に誤りが生じたり、また溶解液をバイアルから注射用シリンジに吸入する際に気泡が混入しやすく、輸液に混ぜる際に有効成分を全て移すことが困難になり投与量に誤差が生じる等、注射剤の調製に手間取るという問題があった。
本発明に係る注射用バンコマイシン凍結乾燥製剤の製造方法は、バンコマイシン塩酸塩を溶解した水溶液を、凍結する工程と、前記凍結物を加熱し、凍結物が部分的に残存するように部分溶解する工程と、再度冷却し凍結する工程と、減圧下にて乾燥する工程と、を有することを特徴とする。
このように製造すると、バンコマイシン塩酸塩を溶解した水溶液には、pHの調整を目的とする酸又は塩基以外は添加する必要がない。
また、上記の工程にて製造したバンコマイシンの凍結乾燥製剤は、かさ密度が0.10〜0.20g/mLの範囲にある。
このようにかさ密度が0.10〜0.20g/mLのバンコマイシン又はその薬学的に許容される塩の凍結乾燥組成物は用時溶解時の消泡性に優れる。
ここで、かさ密度は第十五改正日本薬局方 3.粉体物性測定法の3.01かさ密度及びタップ密度測定法に基づいて測定した値である。
The present invention works particularly effectively when vancomycin is used as an injection as a glycopeptide.
Vancomycin is a glycopeptide antibiotic.
When vancomycin is used as an injection, the lyophilized preparation of its hydrochloride is often dissolved in water for injection and then mixed with an infusion solution for administration.
However, vancomycin freeze-dried preparations have noticeable foaming when dissolved at the time of use, and such foaming causes an error in the determination of insoluble foreign matter, and bubbles are generated when the solution is inhaled from a vial into an injection syringe. There is a problem that it takes time to prepare an injection such that it is easy to mix and it becomes difficult to transfer all the active ingredients when mixed in an infusion solution, resulting in an error in dosage.
The method for producing an injectable vancomycin lyophilized preparation according to the present invention includes a step of freezing an aqueous solution in which vancomycin hydrochloride is dissolved, and a step of heating the frozen product to partially dissolve the frozen product partially. And a step of cooling and freezing again, and a step of drying under reduced pressure.
When manufactured in this way, it is not necessary to add an acid or base other than those intended for pH adjustment to the aqueous solution in which vancomycin hydrochloride is dissolved.
The vancomycin freeze-dried preparation produced in the above process has a bulk density in the range of 0.10 to 0.20 g / mL.
Thus, the freeze-dried composition of vancomycin having a bulk density of 0.10 to 0.20 g / mL or a pharmaceutically acceptable salt thereof is excellent in antifoaming property when dissolved at the time of use.
Here, the bulk density is the 15th revised Japanese Pharmacopoeia. This is a value measured based on the 3.01 bulk density and tap density measurement method of the powder physical property measurement method.

本発明は、用時の溶解時に泡立ちが効果的に抑制され、消泡時間も短い。
そのような効果は、凍結乾燥組成物又は凍結乾燥製剤を例えば製剤容器として用いたバイアルに注射用水を添加して、凍結乾燥ケーキの溶解時に発生する泡立ち量を比較することにより、また、溶解後の消泡時間を測定することにより、確認することができる。
In the present invention, foaming is effectively suppressed during dissolution during use, and the defoaming time is short.
Such an effect can be obtained by adding water for injection to a vial using the freeze-dried composition or freeze-dried preparation as, for example, a preparation container, and comparing the amount of foam generated when the freeze-dried cake is dissolved, This can be confirmed by measuring the defoaming time.

バンコマイシンは、グリコペプチド系の抗生物質であり、既に一般に市販されており、医薬品グレードの入手は容易である。
また、例えば米国特許第3067099号記載の方法により製造することもできる。
本発明においてはフリー体を用いても良いが、水に難溶であるため好ましくない。
塩酸、硝酸塩等の塩として用いても良いが、好ましいのは塩酸塩を用いることである。
これは製造コストと安定性が優れているためである。
本発明の凍結乾燥組成物の調製法としては、バンコマイシンまたはその薬学的に許容される塩、および必要に応じてpH調整剤として塩基性物質または酸性物質を水性溶媒に溶解する。
塩基性物質または酸性物質は通常使用されている物質であれば特に制限はなく、塩酸、リン酸、クエン酸、リンゴ酸、酒石酸、コハク酸またはそれらの塩類、水酸化ナトリウム、水酸化カルシウムなどである。
本発明の凍結乾燥組成物は、剤形に応じて常法に準じて製造することができる。
注射剤を製造する場合には例えば以下の方法で製造すればよい。
製造に於いて使用する器具及び材料等は、常法(例えば高圧蒸気滅菌、乾熱滅菌、γ線滅菌等)により予め滅菌しておく。
有効成分を秤量し、溶解用容器に入れ、適当量の溶媒(例えば注射用水)を加えて撹拌しながら溶解する。
溶液の濃度は、溶媒の種類および有効成分の溶媒に対する溶解度および再溶解時の濃度を考慮して決定すればよい。
さらに塩基性物質または酸性物質(例えば0.1から10mol/L水溶液を用いる。)を添加してpHを6.0以下に調整する。
こうして得られた溶液を常法により、無菌ろ過する。
必要に応じて無菌ろ過の前に分解物、汚染物質等の除去を目的とした粗ろ過を行なってもよい。
無菌ろ過液を適宜バイアル、トレー等に分注し、凍結・一部溶解・再凍結を含む予備凍結を実施した後に凍結乾燥すれば、目的とする注射剤が得られる。
また、この凍結乾燥組成物を用時の調製が簡易な、いわゆる点滴用キット製剤として製することも可能である。
すなわち、凍結乾燥組成物入りバイアルを溶解液と組合せ使用時に溶解するタイプ(例えば特開平6−254136)のキット製剤や、凍結乾燥組成物を連通可能な仕切りを有する複室容器の第1室に封入し、溶解液を第2室に封入し、用時に連通させてこの凍結乾燥組成物を溶解して用いるタイプ(例えば特開平4−364851)のキット製剤などがあげられる。
Vancomycin is a glycopeptide antibiotic and is already commercially available, and it is easy to obtain pharmaceutical grades.
Further, it can also be produced, for example, by the method described in US Pat. No. 30,670,099.
In the present invention, a free body may be used, but it is not preferable because it is hardly soluble in water.
Although it may be used as a salt such as hydrochloric acid or nitrate, it is preferable to use hydrochloride.
This is because the manufacturing cost and stability are excellent.
As a method for preparing the lyophilized composition of the present invention, vancomycin or a pharmaceutically acceptable salt thereof and, if necessary, a basic substance or an acidic substance as a pH adjuster are dissolved in an aqueous solvent.
The basic substance or acidic substance is not particularly limited as long as it is a commonly used substance, and includes hydrochloric acid, phosphoric acid, citric acid, malic acid, tartaric acid, succinic acid or salts thereof, sodium hydroxide, calcium hydroxide, etc. is there.
The lyophilized composition of the present invention can be produced according to a conventional method depending on the dosage form.
What is necessary is just to manufacture, for example with the following method, when manufacturing an injection.
Instruments and materials used in production are sterilized in advance by a conventional method (for example, high-pressure steam sterilization, dry heat sterilization, γ-ray sterilization, etc.).
The active ingredient is weighed and placed in a dissolution container, and an appropriate amount of solvent (for example, water for injection) is added and dissolved while stirring.
The concentration of the solution may be determined in consideration of the type of solvent, the solubility of the active ingredient in the solvent, and the concentration at the time of re-dissolution.
Further, a basic substance or an acidic substance (for example, 0.1 to 10 mol / L aqueous solution is used) is added to adjust the pH to 6.0 or less.
The solution thus obtained is aseptically filtered by a conventional method.
If necessary, rough filtration for the purpose of removing decomposition products, contaminants, etc. may be performed before aseptic filtration.
If the sterile filtrate is appropriately dispensed into vials, trays, etc., pre-freezing including freezing, partial thawing and re-freezing is carried out and then freeze-dried, the intended injection is obtained.
Moreover, it is also possible to produce this lyophilized composition as a so-called infusion kit preparation that is easy to prepare at the time of use.
That is, it is enclosed in a first chamber of a multi-chamber container having a partition that can communicate a freeze-dried composition or a kit preparation of a type that dissolves a vial containing a freeze-dried composition in combination with a dissolving solution (for example, JP-A-6-254136). Then, a kit preparation of a type (for example, JP-A-4-3646481) in which the lysate is sealed in the second chamber and communicated at the time of use to dissolve this lyophilized composition is exemplified.

本発明を以下の実施例および試験例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples and test examples, but the present invention is not limited thereto.

注射用水5mLあたり、塩酸バンコマイシン500mgを溶解し、塩酸を加えてpH3.3に調製した液を50mL調製した。
この溶液をメンブランフィルター(0.22μm)で無菌ろ過し、溶液5mLづつを内容積約15mLのバイアルに充てんした。
これを棚状凍結乾燥機を用いて下記の方法に従って凍結乾燥を行った。
〈凍結乾燥方法〉
(1)−40℃まで冷却し、2時間保持してバイアル内容物を凍結する。
(2)0℃まで昇温し1時間保持した後、4℃まで昇温し2時間保持して凍結物の一部を溶解した。
(3)−4℃まで冷却し2時間保持した後、−20℃まで冷却、更に−40℃まで冷却し再凍結した。
(4)減圧しながら−20℃まで昇温後1時間保持し、更に−15℃まで昇温し一次乾燥を行なった。
(5)25℃まで昇温し、2次乾燥を実施後、窒素ガスで真空を解除し、封管し凍結乾燥を完了した。
50 mL of a solution prepared by dissolving 500 mg of vancomycin hydrochloride per 5 mL of water for injection and adjusting the pH to 3.3 by adding hydrochloric acid was prepared.
This solution was aseptically filtered through a membrane filter (0.22 μm), and 5 mL of the solution was filled into a vial having an internal volume of about 15 mL.
This was freeze-dried according to the following method using a shelf-like freeze dryer.
<Freeze drying method>
(1) Cool to −40 ° C. and hold for 2 hours to freeze vial contents.
(2) The temperature was raised to 0 ° C. and held for 1 hour, and then heated to 4 ° C. and held for 2 hours to dissolve a part of the frozen material.
(3) After cooling to −4 ° C. and holding for 2 hours, it was cooled to −20 ° C., further cooled to −40 ° C. and refreezing.
(4) The temperature was raised to −20 ° C. under reduced pressure and held for 1 hour, and the temperature was further raised to −15 ° C. for primary drying.
(5) The temperature was raised to 25 ° C., secondary drying was performed, the vacuum was released with nitrogen gas, and the tube was sealed to complete lyophilization.

注射用水5mLあたり、塩酸バンコマイシン500mgを溶解した液50mLを調製した。
この溶液をメンブランフィルター(0.22μm)で無菌ろ過し、溶液5mLづつを内容積約15mLのバイアルに充てんした。
これを棚状凍結乾燥機を用いて下記の方法に従って凍結乾燥を行った。
〈凍結乾燥方法〉
(1)−40℃まで冷却し、2時間保持してバイアル内容物を凍結する。
(2)4℃まで昇温し3時間保持して凍結物の一部を溶解した。
(3)−4℃まで冷却し2時間保持した後、−20℃まで冷却、更に−40℃まで冷却し再凍結した。
(4)減圧しながら−15℃まで昇温し一次乾燥を行なった。
(5)25℃まで昇温し、2次乾燥を実施後、窒素ガスで真空を解除し、封管し凍結乾燥を完了した。
50 mL of a solution in which 500 mg of vancomycin hydrochloride was dissolved per 5 mL of water for injection was prepared.
This solution was aseptically filtered through a membrane filter (0.22 μm), and 5 mL of the solution was filled into a vial having an internal volume of about 15 mL.
This was freeze-dried according to the following method using a shelf-like freeze dryer.
<Freeze drying method>
(1) Cool to −40 ° C. and hold for 2 hours to freeze vial contents.
(2) The temperature was raised to 4 ° C. and held for 3 hours to dissolve a part of the frozen product.
(3) After cooling to −4 ° C. and holding for 2 hours, it was cooled to −20 ° C., further cooled to −40 ° C. and refreezing.
(4) The temperature was raised to −15 ° C. under reduced pressure to perform primary drying.
(5) The temperature was raised to 25 ° C., secondary drying was performed, the vacuum was released with nitrogen gas, and the tube was sealed to complete lyophilization.

注射用水5mLあたり、塩酸バンコマイシン500mgを溶解した液200mLを調製した。
この溶液をメンブランフィルター(0.22μm)で無菌ろ過し、溶液5mLづつを内容積約15mLのバイアルに充てんした。
これを棚状凍結乾燥機を用いて下記の方法に従って凍結乾燥を行った。
〈凍結乾燥方法〉
(1)−40℃まで冷却し、2時間保持してバイアル内容物を凍結する。
(2)10℃まで昇温し0.5時間保持して凍結物の一部を溶解した。
(3)−4℃まで冷却し2時間保持した後、−20℃まで冷却、更に−40℃まで冷却し再凍結した。
(4)減圧しながら−15℃まで昇温し一次乾燥を行なった。
(5)25℃まで昇温し、2次乾燥を実施後、窒素ガスで真空を解除し、封管し凍結乾燥を完了した。
200 mL of a solution in which 500 mg of vancomycin hydrochloride was dissolved per 5 mL of water for injection was prepared.
This solution was aseptically filtered through a membrane filter (0.22 μm), and 5 mL of the solution was filled into a vial having an internal volume of about 15 mL.
This was freeze-dried according to the following method using a shelf-like freeze dryer.
<Freeze drying method>
(1) Cool to −40 ° C. and hold for 2 hours to freeze vial contents.
(2) The temperature was raised to 10 ° C. and held for 0.5 hour to dissolve a part of the frozen material.
(3) After cooling to −4 ° C. and holding for 2 hours, it was cooled to −20 ° C., further cooled to −40 ° C. and refreezing.
(4) The temperature was raised to −15 ° C. under reduced pressure to perform primary drying.
(5) The temperature was raised to 25 ° C., secondary drying was performed, the vacuum was released with nitrogen gas, and the tube was sealed to complete lyophilization.

(比較例1)
注射用水5mLあたり、塩酸バンコマイシン500mgを溶解した液50mLを調製した。
この溶液をメンブランフィルター(0.22μm)で無菌ろ過し、溶液5mLづつを内容積約15mLのバイアルに充てんした。
これを棚状凍結乾燥機を用いて下記の方法に従って凍結乾燥を行った。
〈凍結乾燥方法〉
(1)−40℃まで冷却し、3時間保持してバイアル内容物を凍結する。
(2)減圧しながら−10℃まで昇温し1時間保持した後、10℃まで昇温し10時間一次乾燥を行なった。
(3)20℃まで昇温し5.5時間2次乾燥を実施後、窒素ガスで真空を解除し、封管し凍結乾燥を完了した。
(Comparative Example 1)
50 mL of a solution in which 500 mg of vancomycin hydrochloride was dissolved per 5 mL of water for injection was prepared.
This solution was aseptically filtered through a membrane filter (0.22 μm), and 5 mL of the solution was filled into a vial having an internal volume of about 15 mL.
This was freeze-dried according to the following method using a shelf-like freeze dryer.
<Freeze drying method>
(1) Cool to −40 ° C. and hold for 3 hours to freeze vial contents.
(2) The temperature was raised to −10 ° C. under reduced pressure and held for 1 hour, and then the temperature was raised to 10 ° C. and primary drying was performed for 10 hours.
(3) After raising the temperature to 20 ° C. and carrying out secondary drying for 5.5 hours, the vacuum was released with nitrogen gas, the tube was sealed, and freeze-drying was completed.

〈評価結果〉
溶解前の凍結乾燥ケーキは、図3に示すように、比較例1は軽質で表面が滑らかな外観をしているが、実施例1及び2は凍結時の氷晶構造が伺える霜柱状の外観を呈している。
次に溶解性を比較した。
図1に示すように各バイアルに注射用水10mLを加えた直後、比較例1は未溶解の凍結乾燥ケーキが溶液表面に浮遊し、水と十分に接触しなかった部分は泡のなかに固形物として残存している。
実施例1,2は、溶液表面に浮遊する未溶解の凍結乾燥ケーキは僅かで、未溶解のケーキも水と十分に接触しているため溶解が進行していく。
また、比較例1と比較すると溶解時の発泡量も少なく、消泡も短時間であることから、溶液が澄明となるのが早い。
図1に示すように実施例1,2は、注射用水10mLを加えて静置4分以内に溶解が完了し、残泡も認められないが、比較例1は溶液表面の泡中に未溶解ケーキが認められる。
図2には、注射用水10mLを加えて静置4分後に10秒間振とう撹拌した後の消泡比較を示す。
<Evaluation results>
As shown in FIG. 3, the freeze-dried cake before melting has a light and smooth appearance in Comparative Example 1, but Examples 1 and 2 have a frost column-like appearance in which the ice crystal structure during freezing can be observed. Presents.
Next, the solubility was compared.
Immediately after adding 10 mL of water for injection to each vial as shown in FIG. 1, in Comparative Example 1, an undissolved freeze-dried cake floated on the surface of the solution, and the portion that did not sufficiently contact with water was a solid substance in the foam. Remains as.
In Examples 1 and 2, there are few undissolved freeze-dried cakes floating on the surface of the solution, and the undissolved cake is sufficiently in contact with water, so that dissolution proceeds.
Moreover, compared with the comparative example 1, since the foaming amount at the time of melt | dissolution is also small and defoaming is also short time, it is quick that a solution becomes clear.
As shown in FIG. 1, in Examples 1 and 2, dissolution was completed within 4 minutes by adding 10 mL of water for injection and no residual bubbles were observed, but Comparative Example 1 was not dissolved in the bubbles on the solution surface. A cake is allowed.
FIG. 2 shows a comparison of defoaming after adding 10 mL of water for injection and shaking and stirring for 4 seconds after standing still for 4 minutes.

[消泡時間の測定]
バイアルに注射用水10mLを加えた直後、振とう機(KM−SHAKER V−DN型、イワキ産業(株))で10秒間(ストローク40mm、240spm)撹拌溶解し、その後、静置して消泡までの時間を測定した。
[Measurement of defoaming time]
Immediately after adding 10 mL of water for injection to the vial, dissolve with stirring for 10 seconds (stroke 40 mm, 240 spm) with a shaker (KM-SHAKER V-DN type, Iwaki Sangyo Co., Ltd.), then leave to stand until defoaming Was measured.

実施例1,2,3は発泡量も少なく、ほぼ1分以内に消泡が確認されたが、比較例1は静置後2時間経過しても細かな残泡が認められた。
参考に、塩酸バンコマイシン原体0.5gに注射用水10mLを加えた場合はゲル状となり溶解に長時間を要した。
In Examples 1, 2, and 3, the amount of foaming was small, and defoaming was confirmed within approximately 1 minute. In Comparative Example 1, fine residual bubbles were observed even after 2 hours had passed after standing.
For reference, when 10 mL of water for injection was added to 0.5 g of vancomycin hydrochloride drug substance, it became a gel and took a long time to dissolve.

[かさ密度測定]
次にかさ密度を比較した。
第十五改正日本薬局方 3.粉体物性測定法の3.01かさ密度及びタップ密度測定法(かさ密度 第1法 定質量法)に準拠して測定を行った。
実施例1,2,3及び比較例1の固形分をバイアル内から取り出し、10号(1.7mm)ふるいを用いて試料の性質を変化させないよう静かに解砕した後、16号(1000μm)ふるいを通した各3gを、乾いた50mLガラス性メスシリンダー(目盛り:0.5mL刻み)に圧密せずに入れ、粉体層の上面を圧密せずに注意してならした後、目盛りの最小単位までのかさ体積を読み取り、次式によりかさ密度ρを計算した。
ρ=M/V
ρ:定質量法によるかさ密度(g/mL)
M:粉体の質量
:粉体のかさ体積(mL)
[Bulk density measurement]
Next, the bulk density was compared.
15th revision Japanese Pharmacopoeia The measurement was performed in accordance with the 3.01 bulk density and tap density measurement method (bulk density first method constant mass method) of the powder physical property measurement method.
The solid contents of Examples 1, 2, 3 and Comparative Example 1 were taken out from the vial and gently broken up using a No. 10 (1.7 mm) sieve so as not to change the properties of the sample, and then No. 16 (1000 μm). Put 3g each through the sieve into a dry 50mL glass graduated cylinder (scale: 0.5mL increments) without compaction, and after carefully touching the top of the powder layer without compaction, the minimum scale The bulk volume up to the unit was read, and the bulk density ρ B was calculated by the following formula.
ρ B = M / V O
ρ B : Bulk density by constant mass method (g / mL)
M: Mass of powder V O : Bulk volume of powder (mL)

実施例1,2,3のかさ密度は、比較例1より大きかった。
即ち、見た目の体積(一定質量のかさ体積)は実施例1,2,3のほうが小さく見えた。
比較例1のかさ密度は、0.087〜0.092g/mL,(平均:0.090g/mL)であったのに対して、実施例1〜3のかさ密度は、最小値:0.120g/mL,最大値:0.162g/mLの範囲に入っている。
従って、本発明に係るグリコペプチド類凍結乾燥組成物は概ね0.10〜0.20g/mLの範囲にあり、本実施例では、0.12〜0.16g/mLの範囲であった。
The bulk density of Examples 1, 2, and 3 was larger than that of Comparative Example 1.
That is, the apparent volume (bulk volume of a constant mass) appeared to be smaller in Examples 1, 2, and 3.
The bulk density of Comparative Example 1 was 0.087 to 0.092 g / mL, (average: 0.090 g / mL), whereas the bulk density of Examples 1 to 3 was the minimum value: 0.0. It is in the range of 120 g / mL, maximum value: 0.162 g / mL.
Therefore, the lyophilized composition of glycopeptides according to the present invention was generally in the range of 0.10 to 0.20 g / mL, and in this example, it was in the range of 0.12 to 0.16 g / mL.

[粒度分布の測定]
次にかさ密度を測定した粉体の粒度分布を比較した。
レーザ散乱回析法粒度分布測定装置(LS 13 320型、TORNADO Dry Powder System BECKMAN COULTER.)で、モード径及びメディアン径の測定を行った。
[Measurement of particle size distribution]
Next, the particle size distributions of the powders whose bulk density was measured were compared.
The mode diameter and median diameter were measured with a laser scattering diffraction particle size distribution analyzer (LS 13 320 type, TORNADO Dry Powder System BECKMAN COULTER.).

実施例1,2,3のモード径及びメディアン径は、比較例1より大きかった。
また、粒度分布は実施例2が単峰性で、実施例1、3及び比較例1は二峰性を示した。
より具体的に説明すると、実施例1〜3は、モード径で約140〜185μm,メディアン径で約120〜145μmであったのに対して、比較例1はそれよりも小さく、モード径:38〜42μm,メディアン径:42〜54μmであった。
The mode diameter and median diameter of Examples 1, 2, and 3 were larger than those of Comparative Example 1.
The particle size distribution of Example 2 was unimodal, and Examples 1, 3 and Comparative Example 1 were bimodal.
More specifically, in Examples 1 to 3, the mode diameter was about 140 to 185 μm and the median diameter was about 120 to 145 μm, whereas Comparative Example 1 was smaller than that, and the mode diameter was 38. The median diameter was 42 to 54 μm.

溶解時の泡立ちを比較した写真を示す。The photograph which compared the foaming at the time of melt | dissolution is shown. 振とう撹拌後の消泡時間を比較した写真を示す。The photograph which compared the defoaming time after shaking stirring is shown. 凍結乾燥後のケーキ比較写真を示す。The cake comparison photograph after freeze-drying is shown.

Claims (3)

グリコペプチド類を含有する溶液を凍結した凍結物を、凍結物が一部残存する状態にまで加熱部分溶解し、その後に再度凍結し、次に減圧下で乾燥することで得られるものであり、
グリコペプチド類は、バンコマイシン又はその薬学的に許容される塩であり、かさ密度が0.10〜0.20g/mLの範囲であることを特徴とするグリコペプチド類凍結乾燥組成物。
A frozen product obtained by freezing a solution containing glycopeptides is obtained by partially dissolving by heating until a part of the frozen product remains, then freezing again, and then drying under reduced pressure .
The glycopeptides are vancomycin or a pharmaceutically acceptable salt thereof, and have a bulk density in the range of 0.10 to 0.20 g / mL .
バンコマイシン塩酸塩を溶解した水溶液を、凍結する工程と、前記凍結物を加熱し、凍結物が部分的に残存するように部分溶解する工程と、再度冷却し凍結する工程と、減圧下にて乾燥する工程と、を有することを特徴とする注射用バンコマイシン凍結乾燥製剤の製造方法。   A step of freezing an aqueous solution in which vancomycin hydrochloride is dissolved, a step of heating the frozen product so that the frozen product partially remains, a step of cooling and freezing again, and drying under reduced pressure And a method for producing a vancomycin lyophilized preparation for injection, which comprises the step of: バンコマイシン塩酸塩を溶解した水溶液には、pHの調整を目的とする酸又は塩基以外は添加されていないことを特徴とする請求項記載の注射用バンコマイシン凍結乾燥製剤の製造方法。 The method for producing a lyophilized preparation for injection according to claim 2 , wherein the aqueous solution in which vancomycin hydrochloride is dissolved is not added except an acid or a base for adjusting pH.
JP2008300097A 2007-11-28 2008-11-25 Lyophilized composition containing glycopeptides and method for producing the same Active JP5280813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008300097A JP5280813B2 (en) 2007-11-28 2008-11-25 Lyophilized composition containing glycopeptides and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007307809 2007-11-28
JP2007307809 2007-11-28
JP2008300097A JP5280813B2 (en) 2007-11-28 2008-11-25 Lyophilized composition containing glycopeptides and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009149619A JP2009149619A (en) 2009-07-09
JP5280813B2 true JP5280813B2 (en) 2013-09-04

Family

ID=40919201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008300097A Active JP5280813B2 (en) 2007-11-28 2008-11-25 Lyophilized composition containing glycopeptides and method for producing the same

Country Status (1)

Country Link
JP (1) JP5280813B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4885275A (en) * 1987-10-15 1989-12-05 Eli Lilly And Company Vancomycin-HCL solutions and the lyophilization thereof
JPH06172177A (en) * 1992-12-10 1994-06-21 Dainippon Pharmaceut Co Ltd Trimethotrexate-lyophilized pharmaceutical
JP3177826B2 (en) * 1995-08-29 2001-06-18 武田薬品工業株式会社 Injectable powder formulation
JP4142149B2 (en) * 1997-07-10 2008-08-27 明治製菓株式会社 Vancomycin lyophilized formulation
WO2001047542A1 (en) * 1999-12-28 2001-07-05 Meiji Seika Kaisha, Ltd. Vancomycin preparations

Also Published As

Publication number Publication date
JP2009149619A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
Ayensu et al. Development and physico-mechanical characterisation of lyophilised chitosan wafers as potential protein drug delivery systems via the buccal mucosa
AU2010232632B2 (en) Lyophilization cakes of proteasome inhibitors
BR112019018420A2 (en) pharmaceutical composition comprising selexipag
KR102140982B1 (en) Manufacture of degarelix
AU2016400468A1 (en) Pharmaceutical preparation of palbociclib and preparation method thereof
JP6542888B2 (en) Carmustine pharmaceutical composition
KR20200064173A (en) Injectable prepararion
JP2006096761A (en) Pharmaceutical composition containing sodium {[3-(2-amino-1,2-dioxoetyl)-2-ethyl-1-(phenylmethyl)-1h-indol-4-yl]oxy}acetate as phospholipase inhibitor
EA036982B1 (en) Process for the preparation of a freeze-dried pharmaceutical composition comprising mitomycin c
JP4142149B2 (en) Vancomycin lyophilized formulation
DK2571488T4 (en) PHARMACEUTICAL COMPOSITION OF THE IBUPROFEN FOR INJECTION
CN105663127A (en) Famotidine composition prepared by freeze-drying method for injection
JP5280813B2 (en) Lyophilized composition containing glycopeptides and method for producing the same
TWI696469B (en) Formulation
CA2913174A1 (en) Stable intravenous formulation
TW201632188A (en) Formulation
KR102224781B1 (en) A method for preparation of organic solvent-free lyophilized cyclophosphamide
JP2017057202A (en) Lyophilized pharmaceutical composition containing bortezomib and method for producing the same
TW201008599A (en) Formulations of canfosfamide and their preparation
KR20180041814A (en) A method for preparation of organic solvent-free lyophilized cyclophosphamide
EP3054924A1 (en) Stable pharmaceutical formulations of caspofungin
JP2017001995A (en) Freeze-dried preparation
WO2017198224A1 (en) Pharmaceutical composition of remimazolam
TW202404594A (en) Pharmaceutical composition
JP2021152005A (en) Apixaban-containing solid dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5280813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250