JP5279459B2 - Congestion detector - Google Patents

Congestion detector Download PDF

Info

Publication number
JP5279459B2
JP5279459B2 JP2008289829A JP2008289829A JP5279459B2 JP 5279459 B2 JP5279459 B2 JP 5279459B2 JP 2008289829 A JP2008289829 A JP 2008289829A JP 2008289829 A JP2008289829 A JP 2008289829A JP 5279459 B2 JP5279459 B2 JP 5279459B2
Authority
JP
Japan
Prior art keywords
congestion
degree
determining
dimensional shape
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008289829A
Other languages
Japanese (ja)
Other versions
JP2010117216A (en
Inventor
真身 野口
直哉 木村
真規人 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Precision Co Ltd
Original Assignee
Mitsubishi Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Precision Co Ltd filed Critical Mitsubishi Precision Co Ltd
Priority to JP2008289829A priority Critical patent/JP5279459B2/en
Publication of JP2010117216A publication Critical patent/JP2010117216A/en
Application granted granted Critical
Publication of JP5279459B2 publication Critical patent/JP5279459B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えばエスカレータ乗降口やエレベータホール等の、人が集まる場所において、人の混雑状態を検知する装置に関する。   The present invention relates to an apparatus for detecting a crowded state of people at a place where people gather, such as an escalator entrance / exit and an elevator hall.

下記特許文献1には、単眼カメラ画像における変化領域を人だけのアウトライン画像として抽出し、その画像上の面積から人の密集具合(密度)を算出するとともに、画像上での変化領域の移動量から移動速度を算出することが記載されている。なお、変化領域については、あらかじめ撮影しておいた無人の背景画像と入力画像とで差分処理し、変化のあった領域を抽出している。   In Patent Document 1 below, a change area in a monocular camera image is extracted as an outline image of only a person, and the density (density) of the person is calculated from the area on the image, and the amount of movement of the change area on the image It is described that the moving speed is calculated from the above. Note that the changed area is subjected to differential processing between an unattended background image and an input image that have been taken in advance, and the changed area is extracted.

エスカレータのステップなど背景物体が動いている場合や、日照変化などにより背景の輝度が見かけ上変化した場合、上記の手法ではそれらを変化領域として抽出してしまうことがある。この場合、人ではない領域が変化領域に含まれることから、人の密度や移動速度の計測値に誤差が生じ、混雑状態を正しく検知することはできない。   When a background object such as an escalator step is moving, or when the background brightness is apparently changed due to a change in sunlight, the above method may extract them as a change area. In this case, since the area that is not a person is included in the change area, an error occurs in the measurement value of the density or movement speed of the person, and the congestion state cannot be detected correctly.

また、撮影される二次元画像は、三次元実空間内のものを放射状の平行ではない光線で二次元平面に写像したものであり、そのため、二次元の画像上での見かけの計測値は、実空間での物理量そのままではなく、混雑状態が正しく検知できるとは言えない。   In addition, the two-dimensional image to be photographed is the one in the three-dimensional real space mapped to a two-dimensional plane with radial non-parallel rays, so the apparent measurement value on the two-dimensional image is It cannot be said that the physical state in the real space is detected as it is, and the congestion state can be detected correctly.

下記特許文献2には、ステレオカメラで撮影された監視空間の画像を用いて、ステレオ画像処理により、カメラに写った物体の像を構成する各画像ブロックについて三次元空間における高さを算出し、算出された高さが所定の範囲内にある画像ブロックの合計の面積に基づいて混雑度を判定することが記載されている。さらに、そのようにして抽出された画像ブロックからなる領域を床面に平行な仮想平面に三次元的に投影し、投影された面積の大小から混雑度を判定することも記載されている。いずれも、二次元平面内の情報から混雑度を判定するもので、三次元空間における情報から直接、混雑度を判定するものではない。   In Patent Document 2 below, the height in the three-dimensional space is calculated for each image block constituting the image of the object captured by the camera by stereo image processing using the image of the monitoring space photographed by the stereo camera, It describes that the degree of congestion is determined based on the total area of image blocks whose calculated height is within a predetermined range. Furthermore, it is also described that the area composed of the image blocks extracted in this way is projected three-dimensionally on a virtual plane parallel to the floor surface, and the degree of congestion is determined from the size of the projected area. In either case, the degree of congestion is determined from information in a two-dimensional plane, and the degree of congestion is not determined directly from information in a three-dimensional space.

特開2007−55727号公報JP 2007-55727 A 特開2001−34883号公報JP 2001-34883 A

本発明の目的は、混雑度をより正確に把握することが可能な混雑検知装置を提供することにある。   An object of the present invention is to provide a congestion detection device capable of more accurately grasping the degree of congestion.

前述の目的は、所定の監視空間を撮影する複数の撮像装置と、複数の撮像装置によって得られた画像に対してステレオ画像処理を適用することにより監視空間内の人物集団の三次元形状を決定するステレオ画像処理手段と、決定された三次元形状に基づき混雑度を決定する混雑度決定手段とを具備する混雑検知装置により達成される。   The above-mentioned purpose is to determine a three-dimensional shape of a group of persons in a monitoring space by applying a stereo image processing to a plurality of imaging devices that capture a predetermined monitoring space and images obtained by the plurality of imaging devices. The present invention is achieved by a congestion detection device including a stereo image processing unit that performs a congestion degree determination unit that determines a congestion degree based on the determined three-dimensional shape.

前述の目的は、所定の監視空間を撮影する複数の撮像装置と、異なる時刻において複数の撮像装置によって得られた画像に基づき、監視空間内の人物集団の動きを表わす複数のベクトルを決定する手段と、決定された複数のベクトルから、監視空間内の人物集団全体の動きの大きさ及び動きのばらつきの度合いの少なくとも1つを算出する手段と、算出された人物集団全体の動きの大きさ及び動きのばらつきの度合いに基づき混雑度を決定する混雑度決定手段とを具備する混雑検知装置によっても達成される。   The aforementioned object is to determine a plurality of vectors representing the movement of a person group in a monitoring space based on a plurality of imaging devices that photograph a predetermined monitoring space and images obtained by the plurality of imaging devices at different times. And means for calculating at least one of the magnitude of the movement of the entire human population in the monitoring space and the degree of variation of the movement from the plurality of determined vectors, and the calculated magnitude of the movement of the entire human population, and This can also be achieved by a congestion detection device including a congestion degree determination unit that determines a congestion degree based on the degree of variation in motion.

複数の撮像装置を用いることによって得られる三次元空間の情報から直接、混雑度を判定するので、混雑度をより正確に判定することができる。   Since the degree of congestion is determined directly from the information in the three-dimensional space obtained by using a plurality of imaging devices, the degree of congestion can be determined more accurately.

また、監視空間を適切に定めることにより、エスカレータのステップなどの変化する背景を検知対象から容易に除外することができる。   In addition, by appropriately defining the monitoring space, a changing background such as an escalator step can be easily excluded from the detection target.

図1は本発明の一実施形態に係る混雑検知装置における、カメラの配置と監視空間の設定の一例を示す図である。図示した例では、エスカレータ10の乗降口に、エスカレータ10の手すり12や床面14を含まない範囲で監視空間16が設定される。監視空間16の上方には2台のカメラ18,20が設置され、監視空間16内の人物集団を撮影する。   FIG. 1 is a diagram showing an example of camera arrangement and monitoring space setting in a congestion detection apparatus according to an embodiment of the present invention. In the illustrated example, the monitoring space 16 is set in a range that does not include the handrail 12 and the floor surface 14 of the escalator 10 at the entrance of the escalator 10. Two cameras 18 and 20 are installed above the monitoring space 16 to photograph a group of people in the monitoring space 16.

図2は本発明の一実施形態に係る混雑検知装置の構成を示し、図3は図2中のコンピュータ22における処理の概略フローチャートを示す。図2において、2台のカメラ18,20で撮影された画像はコンピュータ22に取り込まれる(図3ステップ1000)。コンピュータ22は、取り込んだ画像にステレオ画像処理を適用し、すなわち、三角測量の原理に基づいてカメラ18,20からの距離を計算して監視空間16内の人物集団の三次元形状を決定する(ステップ1002)。   FIG. 2 shows a configuration of a congestion detection apparatus according to an embodiment of the present invention, and FIG. 3 shows a schematic flowchart of processing in the computer 22 in FIG. In FIG. 2, images taken by the two cameras 18 and 20 are captured by the computer 22 (step 1000 in FIG. 3). The computer 22 applies stereo image processing to the captured image, that is, calculates the distance from the cameras 18 and 20 based on the principle of triangulation, and determines the three-dimensional shape of the person group in the monitoring space 16 ( Step 1002).

図4は、三角測量の原理に基づき三次元座標を得る原理を説明する図である。図4に示すように、被写体の1点P(X,Y,Z)を2台のカメラで撮影する。左側のカメラの撮像面に像pl(xl,yl)が結像し、右側の撮像装置の撮像面にpr(xr,yr)が結像する。2つの撮像装置間での対応点を探索することにより点P(X,Y,Z)の位置を求める。このとき、両方の撮像装置の焦点距離をF、両撮像装置間の距離をBとすると、点Pの三次元座標X,Y,Zは以下の式により求まる。   FIG. 4 is a diagram for explaining the principle of obtaining three-dimensional coordinates based on the principle of triangulation. As shown in FIG. 4, one point P (X, Y, Z) of the subject is photographed with two cameras. An image pl (xl, yl) is imaged on the imaging surface of the left camera, and pr (xr, yr) is imaged on the imaging surface of the right imaging device. The position of the point P (X, Y, Z) is obtained by searching for a corresponding point between the two imaging devices. At this time, if the focal length of both imaging devices is F and the distance between both imaging devices is B, the three-dimensional coordinates X, Y, Z of the point P can be obtained by the following equations.

X=B(xl+xr)/2d
Y=B(yl+yr)/2d
Z=BF/d
ただし、d=xl−xr
X = B (xl + xr) / 2d
Y = B (yl + yr) / 2d
Z = BF / d
Where d = xl−xr

図4中の破線26はエピポーラ線と呼ばれ、この線上にplの対応点prが存在するので、この線上で対応点の探索が行なわれる。探索にあたっては、例えば、それぞれの点の近傍の領域における対応画素間の輝度の差の合計が最小となるものを対応点とする。   The broken line 26 in FIG. 4 is called an epipolar line, and there is a corresponding point pr of pl on this line, so the corresponding point is searched for on this line. In the search, for example, a point having the smallest sum of luminance differences between corresponding pixels in a region in the vicinity of each point is set as the corresponding point.

このようにして決定された三次元座標の集まりとして、監視空間16を占める人物集団の三次元形状が決定されるので、それから人物集団の体積が決定される。人物集団の体積を監視空間16の体積で除算することにより体積占有率が決定される(ステップ1004)。なお、複数の人物を個別に分離する必要はないが、人物を個別に分離することにより監視空間内の人数を算出することもできる。また、体積に所定の密度を乗算することにより、監視空間16を占める人物集団の重量を決定することもできる。カメラから見て裏側になる部分はカメラに写らないので三次元座標を得ることができないが、図1に示した例では監視空間16の上方に(例えば天井に埋め込んで)カメラ18,20が配置されるので混雑度の判定には充分な情報が得られる。   Since the three-dimensional shape of the person group occupying the monitoring space 16 is determined as a group of the three-dimensional coordinates determined in this way, the volume of the person group is determined therefrom. The volume occupancy is determined by dividing the volume of the person group by the volume of the monitoring space 16 (step 1004). Although it is not necessary to separate a plurality of persons individually, it is possible to calculate the number of persons in the monitoring space by separating the persons individually. Further, the weight of the person group occupying the monitoring space 16 can be determined by multiplying the volume by a predetermined density. Since the portion on the back side when viewed from the camera is not reflected on the camera, three-dimensional coordinates cannot be obtained. However, in the example shown in FIG. 1, the cameras 18 and 20 are arranged above the monitoring space 16 (for example, embedded in the ceiling). Therefore, sufficient information can be obtained for determining the degree of congestion.

三次元形状のデータが得られているので、体積占有率を計算する代わりに、床面14に平行で床面14から所定の高さにある仮想面による断面の面積を算出して、それを監視空間の底面積で除算して占有率としても良い。この場合であっても、放射状の平行でない光線で二次元平面に写像したものから求める従来手法よりも正確な値が得られる。カメラ18,20の台数は2台で充分であるが、対応付けの精度を高める、などのために、3台以上のカメラを用いても良い。   Since the data of the three-dimensional shape is obtained, instead of calculating the volume occupation ratio, the area of the cross section by the virtual plane parallel to the floor surface 14 and at a predetermined height from the floor surface 14 is calculated, The occupation ratio may be obtained by dividing by the bottom area of the monitoring space. Even in this case, a more accurate value can be obtained than the conventional method obtained from a non-parallel light beam mapped to a two-dimensional plane. Although two cameras 18 and 20 are sufficient, three or more cameras may be used to increase the accuracy of association.

次に、時系列に沿った複数のステレオ画像から人物集団各点の三次元フローを算出する(ステップ1006)。具体的には、上記のようにして決定された三次元形状を構成する各点を異なる時刻のものとの間で対応付けることで、三次元フローを求めることができる。なお、「関晃仁、奥富正敏、“ステレオ動画像を用いた動的シーンのモーションと奥行きの同時推定”、画像の認識・理解シンポジウムMIRU2006、pp.352−357」には、三次元座標とフローを同時に求める手法が記載されており、これに従って、三次元形状の算出(ステップ1002)と三次元フローの算出(ステップ1006)を同時に行っても良い。別個に行う場合でも、ステップ1004の体積占有率の算出はステップ1008の平均速度算出の後に行っても良い。   Next, the three-dimensional flow of each point of the person group is calculated from a plurality of stereo images along the time series (step 1006). Specifically, a three-dimensional flow can be obtained by associating each point constituting the three-dimensional shape determined as described above with one at a different time. In addition, “Jin Seki, Masatoshi Okutomi,“ Simultaneous estimation of motion and depth of dynamic scenes using stereo video ”, Image Recognition and Understanding Symposium MIRU 2006, pp. 352-357, includes three-dimensional coordinates and flow. Is calculated at the same time, and the calculation of the three-dimensional shape (step 1002) and the calculation of the three-dimensional flow (step 1006) may be performed simultaneously. Even when it is performed separately, the calculation of the volume occupation ratio in step 1004 may be performed after the average speed calculation in step 1008.

三次元フローは、図5に略図として示すように、基準となる三次元形状を構成する各点、または一定間隔に定められたその代表点を始点とし、その後の時刻の三次元形状における対応点を終点とする複数のベクトルで表わされる。ステップ1008(図3)においては、それらベクトルの長さの平均値(または平均ベクトルの長さ)を、監視空間16内の人物集団の平均速度とする。   As shown schematically in FIG. 5, the three-dimensional flow starts from each point constituting a reference three-dimensional shape, or a representative point determined at a fixed interval, and the corresponding point in the three-dimensional shape at a subsequent time. It is expressed by a plurality of vectors with ending at. In step 1008 (FIG. 3), the average value of the lengths of these vectors (or the length of the average vector) is set as the average speed of the person group in the monitoring space 16.

ステップ1010においては、ステップ1004において求めた占有率とステップ1008において求めた平均速度から混雑状態を判定する。例えば、占有率が所定値以上あり、平均速度が所定値以下である場合は、人が多く、動きが遅いことから混雑状態であるとみなす。最も簡単には混雑状態と正常状態の2段階に判別すればよいが、図6に示すように、判定レベルを多段階に設定しても良い。また、その多段階の設定方法は図6に示したものに限るものではなく、占有率と平均速度の2次元座標系において任意に設定可能である。混雑度を数値で表わすこともできる。   In step 1010, the congestion state is determined from the occupation rate obtained in step 1004 and the average speed obtained in step 1008. For example, when the occupation ratio is equal to or higher than a predetermined value and the average speed is equal to or lower than the predetermined value, it is regarded as being congested because there are many people and the movement is slow. Although the determination is most simply made in two stages of a congested state and a normal state, the determination level may be set in multiple stages as shown in FIG. The multi-stage setting method is not limited to that shown in FIG. 6 and can be arbitrarily set in a two-dimensional coordinate system of occupation ratio and average speed. The degree of congestion can also be expressed numerically.

本実施形態によれば、ステレオ視により所定の監視空間内の三次元形状を求めることにより、背景が変動している場合であっても、背景と人とを正確に分離することができ、その結果、背景に影響されることなく占有率や移動速度を正しく算出することができる。また、三次元形状を求めているため、監視空間に対して体積に基づいた占有率を求めることができるとともに、三次元フローにより実空間での物理的な動きを直接求めているため、混雑度が正しく計測できる。   According to the present embodiment, by obtaining the three-dimensional shape in the predetermined monitoring space by stereo vision, the background and the person can be accurately separated even when the background is fluctuating, As a result, it is possible to correctly calculate the occupation ratio and the moving speed without being affected by the background. In addition, since the three-dimensional shape is obtained, the occupation rate based on the volume can be obtained for the monitoring space, and the physical movement in the real space is directly obtained by the three-dimensional flow. Can be measured correctly.

上記のように占有率と平均速度の組み合わせで混雑度を判定することに代えて、占有率のみ、または平均速度のみに基いて混雑度を判定することもできる。また、人物集団の動きを表わす複数のベクトルから平均速度を算出する代わりに、或いはそれと共に、動きを表わすベクトルのばらつきの度合いを算出し、それに基いて、またはそれと占有率等との組み合わせで混雑度を判定することもできる。   Instead of determining the degree of congestion based on the combination of the occupation rate and the average speed as described above, the degree of congestion can also be determined based on only the occupation rate or only the average speed. Also, instead of or together with calculating the average velocity from a plurality of vectors representing the movement of a person group, the degree of variation of the vector representing the movement is calculated, and based on this, or in combination with the occupation ratio, etc. The degree can also be determined.

速度ベクトルのばらつきの度合いは、例えば以下のようにして算出される。   The degree of variation of the velocity vector is calculated as follows, for example.

Figure 0005279459
Figure 0005279459

ここで、λ1は監視空間内で最もばらつきの大きい方向(第1主成分の軸の方向)におけるばらつきを表わしているので、これを速度ベクトルのばらつきの度合いとする。速度ベクトルのばらつきが大きいことは、混雑していて人の流れがスムーズでないことを意味し、速度ベクトルのばらつきが小さいことは、逆に混雑していなくて人の流れがスムーズであることを意味するから、ばらつきの度合いが大きい程混雑度が高い、という判定になる。 Here, λ 1 represents the variation in the direction in which the variation is the largest in the monitoring space (the direction of the axis of the first principal component), and this is the degree of variation in the velocity vector. A large variation in the velocity vector means that it is crowded and the flow of people is not smooth, and a small variation in the velocity vector means that the flow of people is not crowded and the flow of people is smooth. Therefore, the greater the degree of variation, the higher the degree of congestion.

動きを表わすベクトルの取扱いとしては、三次元ベクトルを使用する代わりに、水平方向の成分のみの二次元ベクトル、すなわち、三次元ベクトルを水平な面上に鉛直方向に投影したものを使用しても良い。   Instead of using a three-dimensional vector, you can use a two-dimensional vector with only a horizontal component, that is, a projection of a three-dimensional vector on a horizontal surface in the vertical direction. good.

混雑度の判定は、上記に代えて、或いは上記に加えて、人物集団の体積に密度を乗じて算出される重量、人物集団に含まれる人物を個別に分離することにより算出される人数などに基いて行っても良い。   The determination of the degree of congestion may be performed on the weight calculated by multiplying the volume of the person group by the density instead of the above or on the number of persons calculated by separately separating the persons included in the person group. You may go on a basis.

ステップ1010(図3)における混雑度の判定結果は表示器24(図2)に表示される。混雑状態と判定されたときは、警報が出力または他の装置へ伝達される(ステップ1012)。   The determination result of the degree of congestion in step 1010 (FIG. 3) is displayed on the display 24 (FIG. 2). If it is determined that the traffic is congested, an alarm is output or transmitted to another device (step 1012).

監視空間10(図1)を複数の部分空間に分割し、それぞれの部分空間において上記のようにして混雑度を判定し、その結果に基づいて混雑の偏りを判定することもできる。   It is also possible to divide the monitoring space 10 (FIG. 1) into a plurality of partial spaces, determine the degree of congestion in each partial space as described above, and determine the congestion bias based on the result.

監視空間の設定の一例を示す図である。It is a figure which shows an example of the setting of the monitoring space. 本発明の一実施形態に係る混雑度検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the congestion detection apparatus which concerns on one Embodiment of this invention. 図2のコンピュータ22における処理のフローチャートである。It is a flowchart of the process in the computer 22 of FIG. ステレオ画像処理の原理を説明する図である。It is a figure explaining the principle of a stereo image process. 人物集団の動きを表わす複数のベクトルを説明する図である。It is a figure explaining the some vector showing the motion of a person group. 占有率および平均速度に基づく混雑度の判定を説明する図である。It is a figure explaining determination of the congestion degree based on an occupation rate and an average speed.

Claims (4)

所定の監視空間を撮影する複数の撮像装置と、
複数の撮像装置によって得られた画像に対してステレオ画像処理を適用することにより監視空間内の人物集団の三次元形状を決定するステレオ画像処理手段と、
決定された三次元形状に基づき混雑度を決定する混雑度決定手段とを具備し、
前記ステレオ画像処理手段は、異なる時刻において前記複数の撮像装置によって得られた画像に基づき、前記監視空間内の人物集団の動きを表わす、基準となる三次元形状を構成する各点、または一定間隔に定められたその代表点を始点とし、その後の時刻の三次元形状における対応点を終点とする複数のベクトルをさらに決定し、
決定された複数のベクトルから、監視空間内の人物集団全体の動きの大きさ及び動きのばらつきの度合いの少なくとも1つを算出する手段をさらに具備し、
前記混雑度決定手段は、前記三次元形状と、前記算出された人物集団全体の動きの大きさ及び動きのばらつきの度合いの少なくとも一方とに基づき混雑度を決定する混雑検知装置。
A plurality of imaging devices for photographing a predetermined monitoring space;
Stereo image processing means for determining a three-dimensional shape of a group of persons in the surveillance space by applying stereo image processing to images obtained by a plurality of imaging devices;
A congestion degree determining means for determining a congestion degree based on the determined three-dimensional shape ,
The stereo image processing means is configured to represent points of a reference three-dimensional shape representing a movement of a group of persons in the monitoring space based on images obtained by the plurality of imaging devices at different times, or at regular intervals. And further determining a plurality of vectors starting from the representative point determined in step 3 and ending at the corresponding point in the three-dimensional shape at the subsequent time,
Means for calculating at least one of the magnitude of motion and the degree of motion variation of the entire human population in the monitoring space from the determined vectors;
The congestion degree determining means is a congestion detection device for determining a congestion degree based on the three-dimensional shape and at least one of the calculated magnitude of movement of the entire person group and the degree of variation in movement .
所定の監視空間を撮影する複数の撮像装置と、
異なる時刻において複数の撮像装置によって得られた画像に基づき、監視空間内の人物集団の動きを表わす、基準となる三次元形状を構成する各点、または一定間隔に定められたその代表点を始点とし、その後の時刻の三次元形状における対応点を終点とする複数のベクトルを決定する手段と、
決定された複数のベクトルから、監視空間内の人物集団全体の動きの大きさ及び動きのばらつきの度合いの少なくとも1つを算出する手段と、
算出された人物集団全体の動きの大きさ及び動きのばらつきの度合いの少なくとも1つに基づき混雑度を決定する混雑度決定手段とを具備する混雑検知装置。
A plurality of imaging devices for photographing a predetermined monitoring space;
Based on images obtained by multiple imaging devices at different times, each point that constitutes a reference three-dimensional shape that represents the movement of a group of people in the surveillance space , or a representative point that is set at regular intervals And a means for determining a plurality of vectors whose end points are corresponding points in the three-dimensional shape at a subsequent time
Means for calculating at least one of the magnitude of motion and the degree of motion variation of the entire human population in the monitoring space from the determined plurality of vectors;
A congestion detection device comprising: a congestion degree determining means for determining a congestion degree based on at least one of the calculated magnitude of movement of the entire person group and the degree of variation in movement.
前記混雑度決定手段が決定した混雑度が所定の閾値を超えるとき、警報を出力する手段をさらに具備する請求項1または2記載の混雑検知装置。 3. The congestion detection apparatus according to claim 1, further comprising means for outputting an alarm when the congestion level determined by the congestion level determination unit exceeds a predetermined threshold. 前記監視空間は複数の部分空間に分割されており、前記混雑度決定手段は個々の部分空間ごとに混雑度を決定し、さらに個々の部分空間ごとに決定された混雑度に基づき混雑の偏りを判定する請求項1〜のいずれか1項記載の混雑検知装置。 The monitoring space is divided into a plurality of partial spaces, and the congestion degree determining means determines the congestion degree for each individual partial space, and further reduces the congestion bias based on the congestion degree determined for each individual partial space. The congestion detection device according to any one of claims 1 to 3 .
JP2008289829A 2008-11-12 2008-11-12 Congestion detector Expired - Fee Related JP5279459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008289829A JP5279459B2 (en) 2008-11-12 2008-11-12 Congestion detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008289829A JP5279459B2 (en) 2008-11-12 2008-11-12 Congestion detector

Publications (2)

Publication Number Publication Date
JP2010117216A JP2010117216A (en) 2010-05-27
JP5279459B2 true JP5279459B2 (en) 2013-09-04

Family

ID=42304980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008289829A Expired - Fee Related JP5279459B2 (en) 2008-11-12 2008-11-12 Congestion detector

Country Status (1)

Country Link
JP (1) JP5279459B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10133937B2 (en) 2014-12-24 2018-11-20 Hitachi Kokusai Electric Inc. Crowd monitoring system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334207A (en) * 1997-05-29 1998-12-18 Matsushita Electric Ind Co Ltd Human stream measuring instrument
JP3243234B2 (en) * 1999-07-23 2002-01-07 松下電器産業株式会社 Congestion degree measuring method, measuring device, and system using the same
JP3571628B2 (en) * 2000-08-31 2004-09-29 三菱電機株式会社 Image processing device
JP3710748B2 (en) * 2001-12-28 2005-10-26 松下電器産業株式会社 Traffic control system
JP2005157635A (en) * 2003-11-25 2005-06-16 Matsushita Electric Ind Co Ltd Congestion level measuring device, facility control system and congestion level measuring method
JP4646933B2 (en) * 2007-03-01 2011-03-09 技研トラステム株式会社 Congestion level discrimination system

Also Published As

Publication number Publication date
JP2010117216A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
EP3321888A1 (en) Projected image generation method and device, and method for mapping image pixels and depth values
JP4341564B2 (en) Object judgment device
EP1526477B1 (en) Image processing apparatus
CN107079093B (en) Calibration device
JP5917327B2 (en) Escalator monitoring system
WO2017158647A1 (en) Passenger counting device, system, method and program, and vehicle travel amount calculation unit, method and program
JPH1166319A (en) Method and device for detecting traveling object, method and device for recognizing traveling object, and method and device for detecting person
EP2372652B1 (en) Method for estimating a plane in a range image and range image camera
JP5300694B2 (en) Detection device
KR20180063524A (en) Method and Apparatus for Detecting Risk of Forward Vehicle Using Virtual Lane
KR20200142087A (en) Passenger conveyor inspection system that determines the circulation time of the handrail
KR102550673B1 (en) Method for visitor access statistics analysis and apparatus for the same
JP4914870B2 (en) Congestion degree measuring device, congestion degree measuring method, congestion degree measuring program, and recording medium recording the program
JP5279459B2 (en) Congestion detector
JP6409769B2 (en) 3D shape measuring apparatus, 3D shape measuring method, and 3D shape measuring program
KR20160118783A (en) Method and Apparatus for counting the number of person
KR101640527B1 (en) Method and Apparatus for Monitoring Video for Estimating Size of Single Object
JP2007199766A (en) Face image recording device
JP4825350B2 (en) Passing object counting device and counting method
JP2005157635A (en) Congestion level measuring device, facility control system and congestion level measuring method
JP5864231B2 (en) Moving direction identification device
JP7079466B2 (en) Human attribute recognition system and program
JP2004144644A (en) Topography recognition device, topography recognition means, and moving quantity detection method of moving body
KR101976495B1 (en) Method and Apparatus for Estimating Mounting Height of Camera
WO2019116518A1 (en) Object detection device and object detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5279459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees