JP5274146B2 - Thermoelectric semiconductor comprising magnesium, silicon and tin and method for producing the same - Google Patents

Thermoelectric semiconductor comprising magnesium, silicon and tin and method for producing the same Download PDF

Info

Publication number
JP5274146B2
JP5274146B2 JP2008205583A JP2008205583A JP5274146B2 JP 5274146 B2 JP5274146 B2 JP 5274146B2 JP 2008205583 A JP2008205583 A JP 2008205583A JP 2008205583 A JP2008205583 A JP 2008205583A JP 5274146 B2 JP5274146 B2 JP 5274146B2
Authority
JP
Japan
Prior art keywords
thermoelectric semiconductor
silicon
magnesium
tin
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008205583A
Other languages
Japanese (ja)
Other versions
JP2010037641A (en
Inventor
幸宏 磯田
嘉一 篠原
義雄 今井
貴寛 永井
博文 藤生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuba Corp
National Institute for Materials Science
Original Assignee
Mitsuba Corp
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corp, National Institute for Materials Science filed Critical Mitsuba Corp
Priority to JP2008205583A priority Critical patent/JP5274146B2/en
Publication of JP2010037641A publication Critical patent/JP2010037641A/en
Application granted granted Critical
Publication of JP5274146B2 publication Critical patent/JP5274146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、マグネシウム、珪素、スズからなるp型の熱電半導体およびその製造方法の技術分野に属するものである。   The present invention belongs to the technical field of a p-type thermoelectric semiconductor made of magnesium, silicon, and tin and a method for manufacturing the same.

今日、マグネシウム(Mg)、珪素(Si)、スズ(Sn)の金属からなる固溶体を焼結して製造した金属間化合物として、一般化学式
MgSi1−ZSn
であらわされるものが知られている。そしてこの金属間化合物において、Z=0.4〜0.6の範囲のものが熱電特性に優れることが既に報告されている(特許文献1)。
ところが前記範囲の金属間化合物の焼結体の中には単相のものができていなかったが、短時間の焼結反応で安定した熱電半導体として利用できる単相の金属間化合物の焼結体を簡単に生成することが要求される。さらにはこれら金属間化合物の焼結体の熱電半導体としての特性がさらに向上することも要求されており、そこで、化学式、
MgSi0.5Sn0.5
の焼結体にドーパントとしてアンチモン(Sb)やビスマス(Bi)を添加することでゼーべック係数αがマイナスになる良型の安定したn型の熱電半導体を得ることができることが報告されている(非特許文献1、特許文献2)。
特開2005−133202号公報 「日本金属学会講演概要」,2005年秋期(137回)大会,345頁 特開2007−146283号公報
Today, as an intermetallic compound produced by sintering a solid solution composed of magnesium (Mg), silicon (Si), and tin (Sn) metals, the general chemical formula Mg 2 Si 1-Z Sn Z
What is represented is known. And in this intermetallic compound, the thing of the range of Z = 0.4-0.6 has already been reported that it is excellent in a thermoelectric characteristic (patent document 1).
However, among the sintered bodies of intermetallic compounds in the above range, single-phase sintered bodies were not made, but single-phase sintered bodies of intermetallic compounds that can be used as stable thermoelectric semiconductors in a short-time sintering reaction. Is required to be generated easily. Furthermore, it is required that the properties of these intermetallic compounds as a thermoelectric semiconductor be further improved.
Mg 2 Si 0.5 Sn 0.5
It has been reported that by adding antimony (Sb) or bismuth (Bi) as a dopant to the sintered body, a good and stable n-type thermoelectric semiconductor having a negative Seebeck coefficient α can be obtained. (Non-patent Document 1, Patent Document 2).
JP 2005-133202 A “Outline of the Japan Institute of Metals”, Autumn 2005 (137th), 345 pages JP 2007-146283 A

ところが前記ドーパントを添加した半導体は、何れもn型であってp型ではなく、熱電素子化に向けてp型伝導を示す高性能なMg−Si−Sn系半導体材料の開発が望まれるが、化学量論組成でMgSi0.5Sn0.5のものを単純にドーパントの添加によってp型化することは、高性能化ということを絡めた場合に困難である。
そこで本発明の発明者等は、一般化学式MgSi1−YSnで示される熱電半導体において、
1.98≦X≦2.01
0.72≦Y≦0.95
の範囲のものが室温においてp型の熱電半導体になることを発見した(特願2008−72838号)。しかしながらこのものは、絶対温度400K付近を超えるとn型になって安定性、実用性に欠けるという問題があり、ここに本発明が解決しようとする課題がある。
However, the semiconductors to which the dopant is added are all n-type and not p-type, and it is desired to develop a high-performance Mg-Si-Sn-based semiconductor material that exhibits p-type conduction toward the thermoelectric device. It is difficult to simply convert a stoichiometric composition of Mg 2 Si 0.5 Sn 0.5 into a p-type by adding a dopant in the case of high performance.
Therefore, the inventors of the present invention, in the thermoelectric semiconductor represented by the general chemical formula Mg X Si 1-Y Sn Y ,
1.98 ≦ X ≦ 2.01
0.72 ≦ Y ≦ 0.95
It has been found that those in the range become p-type thermoelectric semiconductors at room temperature (Japanese Patent Application No. 2008-72838). However, there is a problem that this product becomes n-type when the absolute temperature exceeds about 400K and lacks stability and practicality, and there is a problem to be solved by the present invention.

本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、請求項1の発明は、原料のマグネシウム、珪素、スズを液−固相反応せしめて一般化学式
MgSi1−YSn
で示される熱電半導体を焼結して製造するにあたり、該熱電半導体はp型であって、焼結体組成が、
1.98≦X≦2.01
0.72≦Y≦0.95
であり、ドーパントとして、1Aのアルカリ金属、1B族の銅(Cu)、銀(Ag)、金(Au)の少なくとも何れか一つの金属を添加して得ることを特徴とするマグネシウム、珪素、スズからなる熱電半導体の製造方法である。
請求項2の発明は、原料のマグネシウム、珪素、スズを液−固相反応せしめて一般化学式
MgSi1−YSn
で示されるものを焼結して製造した熱電半導体において、該熱電半導体はp型であって、焼結体組成が、
1.98≦X≦2.01
0.72≦Y≦0.95
であり、ドーパントとして、1Aのアルカリ金属、1B族の銅(Cu)、銀(Ag)、金(Au)の少なくとも何れか一つの金属を添加して得ることを特徴とするマグネシウム、珪素、スズからなる熱電半導体である。
請求項3の発明は、1Aのアルカリ金属は、カルボン酸塩として添加されることを特徴とする請求項1記載のマグネシウム、珪素、スズからなる熱電半導体の製造方法である。
請求項4の発明は、1Aのアルカリ金属は、カルボン酸塩として添加されることを特徴とする請求項2記載のマグネシウム、珪素、スズからなる熱電半導体である。
The present invention was created with the object of solving these problems in view of the above circumstances. The invention of claim 1 is a liquid-solid phase reaction of raw materials magnesium, silicon, and tin. General chemical formula Mg X Si 1-Y Sn Y
When the thermoelectric semiconductor represented by is manufactured by sintering, the thermoelectric semiconductor is p-type, and the sintered body composition is
1.98 ≦ X ≦ 2.01
0.72 ≦ Y ≦ 0.95
Magnesium, silicon obtained by adding at least any one metal of 1A group alkali metal, 1B group copper (Cu), silver (Ag), gold (Au) as a dopant, This is a method for producing a thermoelectric semiconductor made of tin.
According to the second aspect of the present invention, the general chemical formula Mg X Si 1-Y Sn Y is obtained by subjecting raw materials magnesium, silicon and tin to a liquid-solid phase reaction.
In the thermoelectric semiconductor manufactured by sintering what is represented by the thermoelectric semiconductor is p-type, and the sintered body composition is
1.98 ≦ X ≦ 2.01
0.72 ≦ Y ≦ 0.95
Magnesium, silicon obtained by adding at least any one metal of 1A group alkali metal, 1B group copper (Cu), silver (Ag), gold (Au) as a dopant, It is a thermoelectric semiconductor made of tin.
The invention according to claim 3 is the method for producing a thermoelectric semiconductor comprising magnesium, silicon, and tin according to claim 1, wherein the group 1A alkali metal is added as a carboxylate.
The invention according to claim 4 is the thermoelectric semiconductor composed of magnesium, silicon, and tin according to claim 2, wherein the group 1A alkali metal is added as a carboxylate.

請求項1または2の発明とすることにより、マグネシウム、珪素、そしてスズを原料とした一般化学式
MgSi1−YSn
で示される金属間化合物の焼結体について、n型でなく、p型の熱電半導体を、高温領域においてもp型を維持した安定性が高いものを得ることができることになる。
請求項3または4の発明とすることにより、ドーパントとして用いることができる反応性が高い1Aの金属を、取扱いやすいものとして用いることができることになる。
According to the invention of claim 1 or 2, the general chemical formula Mg X Si 1-Y Sn Y using magnesium, silicon, and tin as raw materials
As for the sintered body of the intermetallic compound represented by the above, it is possible to obtain a p-type thermoelectric semiconductor which is not n-type and has high stability while maintaining p-type even in a high temperature region.
By making it the invention of Claim 3 or 4, the highly reactive 1A group metal which can be used as a dopant can be used as what is easy to handle.

本発明は、マグネシウム(Mg)、ケイ素(Si)、そしてスズ(Sn)の金属間化合物の焼結体からなる熱電半導体であって、一般化学式
MgSi1−YSn
で表され、この場合にX、Yは、
1.98≦X≦2.01
0.72≦Y≦0.95
のものが室温においてp型の熱電半導体であるという前述した知見に基づき、これを高温にしても安定したp型の熱半導体に維持できないか、ということでドーパントの添加について検討したところ、ドーパントとして1Aのアルカリ金属、1Bの金、銀、銅の金属を添加したものは、比抵抗(キャリア濃度)の制御が可能になって高温でも安定したp型特性の熱電半導体を得ることができることを見出し、ここに本発明を完成した。
The present invention is a thermoelectric semiconductor comprising a sintered body of an intermetallic compound of magnesium (Mg), silicon (Si), and tin (Sn), and has a general chemical formula Mg X Si 1-Y Sn Y
In this case, X and Y are
1.98 ≦ X ≦ 2.01
0.72 ≦ Y ≦ 0.95
Based on the above-described knowledge that the semiconductor is a p-type thermoelectric semiconductor at room temperature, whether or not it can be maintained as a stable p-type thermal semiconductor even at a high temperature, the addition of a dopant was examined. Those added with Group 1A alkali metals and Group 1B gold, silver, and copper metals can control the specific resistance (carrier concentration) and obtain a thermoelectric semiconductor with stable p-type characteristics even at high temperatures. The present invention was completed here.

本発明において用いられるドーパントは、具体的には1A族(アルカリ金属)のリチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、1B族の銅(Cu)、銀(Ag)、金(Au)の単独または複数を混合したものを用いることができる。
この場合において、1A属のアルカリ金属は、単体で用いても良いが、単体では反応性が高く取り扱いに特に注意が必要なこともあり、そこで酢酸やステアリン酸として例示されるカルボン酸の塩として用いても効果があることが確認された。
Specifically, the dopants used in the present invention include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and group 1B copper (Cu). ), Silver (Ag), gold (Au), or a mixture of a plurality of them.
In this case, the alkali metal belonging to Group 1A may be used alone, but the single substance is highly reactive and may require special attention in handling. Therefore, as a salt of carboxylic acid exemplified as acetic acid or stearic acid, It was confirmed that it was effective even when used.

前記目的とする金属間化合物の合成方法であるが、原料をセットした状態の概略図を図1に、また金属間化合物を合成し、熱電特性を測定するまでの手順のフローチャートを図2に示す。
前記化学組成
MgSi1−YSn
において、Y=0.75としたときの合成条件および焼結条件を図3(A)の表図で示す。
熱電半導体の具体的な合成方法としては、予め空焼きしたカーボンボードについて紙ウエスでカーボン粉をよく拭き取ったものを用意し、このものに、図1に示すように、Mg、Si、Snを充填することになるが、Mgについては角形状、丸形状、球形状等、任意の粒状でよいが約2〜10mmの大きさにしたものを用いる。Snについては平均粒径が約1〜3mm程度にした小粒状のものを用いる。さらにSiについては数十μm程度の微粉末としたものを用いる。そしてこのSiにドーパントの粉末を良く混ぜてSi−ドーパント混合物にしたものについて、まず全体の1/3〜1/2程度をカーボンボードに底が見えなくなるよう均等状に敷く。ついでその上面に、Snの全体の1/3〜1/2を均等状に散らす。その上面に、Mgの粒を並べる。このとき、互いに重なり合わないようにすることが好ましい。更にその上に、残りのSi−ドーパント混合物およびSnを、Mgを覆い隠すようにして均等状に被せる。
FIG. 1 shows a schematic diagram of the state in which raw materials are set, and FIG. 2 shows a flowchart of a procedure for synthesizing an intermetallic compound and measuring thermoelectric properties. .
The chemical composition Mg X Si 1-Y Sn Y
In FIG. 3A, the synthesis conditions and the sintering conditions when Y = 0.75 are shown in the table of FIG.
As a specific method for synthesizing a thermoelectric semiconductor, prepare a carbon board that has been pre-baked and wiped off with a paper waste and filled with Mg, Si, and Sn as shown in FIG. However, Mg may have any granular shape such as a square shape, a round shape, a spherical shape, etc., but a size of about 2 to 10 mm is used. As for Sn, small particles having an average particle diameter of about 1 to 3 mm are used. Further, Si used is a fine powder of about several tens of μm. And about this what mixed the powder of dopant well with Si and made Si-dopant mixture, first, about 1/3 to 1/2 of the whole is spread evenly so that the bottom cannot be seen on the carbon board. Next, 1/3 to 1/2 of the entire Sn is uniformly distributed on the upper surface. On the upper surface, Mg grains are arranged. At this time, it is preferable not to overlap each other. Furthermore, the remaining Si-dopant mixture and Sn are covered evenly so as to cover the Mg.

しかる後、カーボン蓋でカーボンボードの蓋をし、ジルコニウム(Zr)箔で包み込み、針金で縛った状態で電気炉に投入し、合成反応をさせる。合成反応の条件としては図3(A)に示すように、0.1MPa(メガパスカル)のAr(アルゴン)−H(水素3%)雰囲気下、絶対温度1173K(900℃)で4時間加熱し、液−固相反応をさせる。そして得られた固溶体を粉砕し分級して得られた38〜75μm(マイクロメートル)の粉末をカーボンダイスに入れ、ホットプレスにより加圧して焼結する。 After that, the carbon board is covered with a carbon lid, wrapped with zirconium (Zr) foil, and bound with a wire and placed in an electric furnace to cause a synthesis reaction. As a condition for the synthesis reaction, as shown in FIG. 3A, heating was performed at an absolute temperature of 1173 K (900 ° C.) for 4 hours in an Ar (argon) -H 2 (hydrogen 3%) atmosphere of 0.1 MPa (megapascal). And a liquid-solid phase reaction is performed. Then, the obtained solid solution is pulverized and classified, and 38-75 μm (micrometer) powder obtained is put into a carbon die and pressed by a hot press and sintered.

さらに前記Y=0.75としたときの焼結条件は図3(A)の表図で示すように、原料粒径が前記38〜75μmにしたものを内容形状が円柱状になるホットプレスに充填し、絶対温度1023K(750℃)の電気炉にて0.2MPaのAr雰囲気下でプレス圧50MPaの加圧条件で5時間のあいだ焼結し、このようにして目的とする単相の金属間化合物の焼結体を生成した。しかる後、カーボンダイスから取り出した焼結体を切り出し、研磨をしたものについて必要な熱電特性の測定をした。
同様にして前記化学組成としてY=0.95としたときの合成条件及び焼結条件を図3(B)に示すが、この場合の合成手順、焼結手順についてはY=0.75のものと同様にした。
Further, as shown in the table of FIG. 3A, the sintering condition when Y = 0.75 is a hot press in which the raw material particle diameter is 38 to 75 μm and the content shape is cylindrical. Filled and sintered in an electric furnace with an absolute temperature of 1023 K (750 ° C.) in a 0.2 MPa Ar atmosphere for 5 hours under a press pressure of 50 MPa, and thus the desired single-phase metal A sintered body of an intermetallic compound was produced. Thereafter, the sintered body taken out from the carbon die was cut out and the necessary thermoelectric properties were measured for the polished one.
Similarly, the synthesis conditions and the sintering conditions when Y = 0.95 as the chemical composition are shown in FIG. 3B. The synthesis procedure and the sintering procedure in this case are Y = 0.75. And so on.

次に、ドーパントとしてLiを用いて得た熱電半導体のものについて図4に示す表図に基づいて説明する。ここにおいて、図4に示すような原料組成になるようMg、Si、Snをそれぞれ秤量すると共に、ドーパントとしてステアリン酸リチウム、酢酸リチウムの粉末を、添加割合が図4に示す量(ppm換算)になるよう秤量し、これらについて前述した手法に基づいて焼結体を製造し、該製造した焼結体について熱電特性を調べたところ、本発明が実施されていたものは全てのものがp型の伝導型を示した。
これらのゼーベック係数α(μV/K)、比抵抗ρ(Ωm)、熱伝導率κ(W/mK)、性能指数Z(/K)の熱電特性を図4の表図に示した。
また、図5(A)にLi添加量とゼーベック係数αとの関係、同図(B)にLi添加量と比抵抗ρとの関係、図6(A)にLi添加量と熱伝導率κとの関係、同図(B)にLi添加量と性能指数Zとの関係のグラフ図をそれぞれ示す。尚、図4〜6にSnを含有しない金属間化合物MgSiにドーパントとしてステアリン酸リチウムを添加しないもの、したものについて同様にして焼結体を製造したものを参考例として記載する。
Next, a thermoelectric semiconductor obtained using Li as a dopant will be described with reference to a table shown in FIG. Here, Mg, Si, and Sn are weighed so as to have the raw material composition as shown in FIG. 4, and the powders of lithium stearate and lithium acetate as dopants are added to the amounts shown in FIG. 4 (in terms of ppm). The sintered body was manufactured based on the above-described method, and the thermoelectric characteristics of the manufactured sintered body were examined. As a result, all the samples in which the present invention was implemented were p-type. The conductivity type was shown.
The thermoelectric characteristics of these Seebeck coefficient α (μV / K), specific resistance ρ (Ωm), thermal conductivity κ (W / mK), and figure of merit Z (/ K) are shown in the table of FIG.
5A shows the relationship between the Li addition amount and the Seebeck coefficient α, FIG. 5B shows the relationship between the Li addition amount and the specific resistance ρ, and FIG. 6A shows the Li addition amount and the thermal conductivity κ. The graph of the relationship between Li addition amount and the figure of merit Z is shown in FIG. Incidentally, it describes those without addition of lithium stearate as a dopant Sn intermetallic compound Mg 2 Si containing no in Figure 4-6, the those produced sintered body in the same manner for those as a reference example.

さらに組成がMg2.00Si0.25Sn0.75の焼結体を、ドーパントとして酢酸リチウムを25000ppm、35000ppm添加して得たものの温度Tとゼーベック係数との関係を図7(A)に、同じくドーパントを添加したて得たものの温度(1000/T)と比抵抗との関係を図7(B)に示す。
また上記組成の焼結体について、酢酸リチウムを25000ppm添加して得たものの温度(1000/T)と熱伝導率との関係を図8(A)に、同じくドーパントを添加して得たものの温度と性能指数との関係を図8(B)に示す。
この結果から、ドーパントとして酢酸リチウムを用いたものは、300Kの室温から750Kの高温に至るまでゼーベック係数がプラスの値を示していることが観測され、これによって高温でも安定したp型の伝導型を維持できることが確認された。
Further, FIG. 7A shows the relationship between the temperature T and the Seebeck coefficient of a sintered body having a composition of Mg 2.00 Si 0.25 Sn 0.75 added with 25000 ppm and 35000 ppm of lithium acetate as a dopant. Similarly, FIG. 7B shows the relationship between the temperature (1000 / T) obtained by adding the dopant and the specific resistance.
In addition, regarding the sintered body having the above composition, the relationship between the temperature (1000 / T) obtained by adding 25,000 ppm of lithium acetate and the thermal conductivity is shown in FIG. FIG. 8B shows the relationship between and the figure of merit.
From this result, it is observed that the one using lithium acetate as a dopant shows a positive value of the Seebeck coefficient from a room temperature of 300 K to a high temperature of 750 K, and thereby a stable p-type conductivity type even at a high temperature. It was confirmed that

次に、ドーパントとして銀を用い、図9に示す配合組成で熱電半導体を製造し、これらについて前記同様に熱電特性を調べたところ、何れも伝導型はp型であった。図9に熱電特性を示す。
そして次に、焼結体組成としてMg2.00Si0.25Sn0.75、Mg2.00Si0.05Sn0.95の熱電半導体について、ドーパントであるAg(金属粉末)添加量とゼーベック係数との関係、Ag添加量と比抵抗との関係を図10(A)(B)にそれぞれ示す。さらにAg添加量と熱伝導率との関係、Ag添加量と性能指数との関係を図11(A)(B)にそれぞれ示す。尚、図9〜11にSnを含有しない金属間化合物MgSiにドーパントとして銀を添加しないもの、したものについて同様にして焼結体を製造したものを参考例として記載する。
Next, thermoelectric semiconductors were produced using the compounding composition shown in FIG. 9 using silver as a dopant, and the thermoelectric characteristics were examined in the same manner as described above. As a result, the conductivity type was p-type. FIG. 9 shows the thermoelectric characteristics.
Next, with respect to thermoelectric semiconductors of Mg 2.00 Si 0.25 Sn 0.75 and Mg 2.00 Si 0.05 Sn 0.95 as sintered body compositions, the addition amount of Ag (metal powder) as a dopant and FIGS. 10A and 10B show the relationship with the Seebeck coefficient and the relationship between the Ag addition amount and the specific resistance, respectively. Furthermore, the relationship between Ag addition amount and thermal conductivity, and the relationship between Ag addition amount and a figure of merit are shown in FIGS. 11A and 11B, respectively. Incidentally, it describes those without addition of silver as a dopant to the intermetallic compound Mg 2 Si containing no Sn in Figure 9-11, the those produced sintered body in the same manner for those as a reference example.

さらにドーパントとしてセシウム(Cs)を用いて熱電半導体を製造したが、この場合の具体的な添加物としては酢酸セシウムを用いた。そして図11に示すように組成がMg2.00Si0.25Sn0.75となる焼結体を、セシウム添加量を異ならして熱電半導体を得たところ、これらの伝導型は何れもp型であった。図12に熱電特性を示す。 Further, a thermoelectric semiconductor was produced using cesium (Cs) as a dopant, and cesium acetate was used as a specific additive in this case. Then, as shown in FIG. 11, when a sintered body having a composition of Mg 2.00 Si 0.25 Sn 0.75 was obtained with different amounts of cesium added, thermoelectric semiconductors were obtained. It was a mold. FIG. 12 shows the thermoelectric characteristics.

またこれらの結果から、Mgの組成をわずかに変化させることでn型、p型の各熱電特性を示すMg−Si−Snの半導体を得られたことにもなる。
このことは、Si、Snの組成が同じものにおいて、Mgの添加割合を僅かに変化させることで、n型だけでなく、p型の熱電半導体を、作製面上で大きな違いなく製造できることになって、製造効率に優れ、しかも熱電素子としての使用温度が同じものにでき、そのうえp−n一体型のものを成形時に同じ接合技術が使用でき、さらには直接接合することができることになる。
In addition, from these results, an Mg—Si—Sn semiconductor exhibiting n-type and p-type thermoelectric characteristics can be obtained by slightly changing the Mg composition.
This means that not only n-type but also p-type thermoelectric semiconductors can be manufactured on the fabrication surface by changing the addition ratio of Mg slightly in the same composition of Si and Sn. In addition, the manufacturing temperature is excellent and the use temperature as the thermoelectric element can be made the same. Moreover, the same joining technique can be used for the pn integrated type at the time of molding, and further, direct joining can be performed.

MgSi1−YSnの固溶体を製造するに際し、原料のセット状態を示す概略図である。Upon producing a solid solution of Mg X Si 1-Y Sn Y , it is a schematic diagram showing the set state of the material. 熱電半導体を得る工程図である。It is process drawing which obtains a thermoelectric semiconductor. (A)(B)はMgSi1−YSnの化学組成においてY=0.75としたときと、Y=0.95としたときの合成条件、焼結条件をそれぞれ示す表図である。(A) and (B) are tables showing the synthesis conditions and the sintering conditions when Y = 0.75 and Y = 0.95 in the chemical composition of Mg X Si 1-Y Sn Y , respectively. is there. ドーパントとしてLi塩の添加量を変化して添加したときの焼結体組成と測定した熱電特性の結果を示す表図である。It is a table | surface figure which shows the result of the thermoelectric characteristic measured when the addition amount of Li salt was changed as a dopant, and was added. (A)(B)はドーパントとしてLi塩を添加して得た焼結体のLi塩添加量とゼーベック係数との関係、Li添加量と比抵抗との関係をそれぞれ示したグラフ図である。(A) (B) is the graph which each showed the relationship between Li salt addition amount and Seebeck coefficient of the sintered compact obtained by adding Li salt as a dopant, and the relationship between Li addition amount and specific resistance. (A)(B)はドーパントとしてLi塩を添加して得た焼結体のLi塩添加量と熱伝導率との関係、Li添加量と性能指数との関係をそれぞれ示したグラフ図である。(A) (B) is the graph which each showed the relationship between Li salt addition amount and thermal conductivity of the sintered compact obtained by adding Li salt as a dopant, and the relationship between Li addition amount and a figure of merit. . (A)(B)はドーパントとしてLi塩を添加して得た焼結体の温度とゼーベック係数、温度と比抵抗との関係をそれぞれ示すグラフ図である。(A) and (B) are graphs showing the temperature and Seebeck coefficient of a sintered body obtained by adding Li salt as a dopant, and the relationship between temperature and specific resistance, respectively. (A)(B)はドーパントとしてLi塩を添加して得た焼結体の温度と熱伝導率、温度と性能指数との関係をそれぞれ示すグラフ図である。(A) (B) is a graph which shows the relationship between the temperature and thermal conductivity of a sintered compact obtained by adding Li salt as a dopant, and temperature and a figure of merit, respectively. ドーパントとしてAgの添加量を変化して添加したときの焼結体組成と測定した熱電特性の結果を示す表図である。It is a table | surface figure which shows the result of the thermoelectric characteristic measured when the addition amount of Ag was changed as a dopant, and it added. (A)(B)はドーパントとしてAgを添加して得た焼結体のAg添加量とゼーベック係数との関係、Ag添加量と比抵抗との関係をそれぞれ示したグラフ図である。(A) (B) is the graph which showed the relationship between Ag addition amount and Seebeck coefficient of the sintered compact obtained by adding Ag as a dopant, and the relationship between Ag addition amount and specific resistance, respectively. (A)(B)はドーパントとしてAgを添加して得た焼結体のAg添加量と熱伝導率との関係、Ag添加量と性能指数との関係をそれぞれ示したグラフ図である。(A) (B) is the graph which showed the relationship between Ag addition amount and thermal conductivity of the sintered compact obtained by adding Ag as a dopant, and the relationship between Ag addition amount and a performance index, respectively. ドーパントとしてCs量を変化して添加したときの焼結体組成と測定した熱電特性の結果を示す表図である。It is a table | surface figure which shows the result of the thermoelectric characteristic which measured the sintered compact composition when changing and adding Cs amount as a dopant.

Claims (4)

原料のマグネシウム、珪素、スズを液−固相反応せしめて一般化学式
MgSi1−YSn
で示される熱電半導体を焼結して製造するにあたり、
該熱電半導体はp型であって、焼結体組成が、
1.98≦X≦2.01
0.72≦Y≦0.95
であり、
ドーパントとして、1Aのアルカリ金属、1B族の銅(Cu)、銀(Ag)、金(Au)の少なくとも何れか一つの金属を添加して得ることを特徴とするマグネシウム、珪素、スズからなる熱電半導体の製造方法。
General chemical formula Mg X Si 1-Y Sn Y by liquid-solid phase reaction of raw materials magnesium, silicon and tin
In manufacturing the thermoelectric semiconductor shown in
The thermoelectric semiconductor is p-type, and the sintered body composition is
1.98 ≦ X ≦ 2.01
0.72 ≦ Y ≦ 0.95
And
It is made of magnesium, silicon, or tin, which is obtained by adding at least one metal of 1A group alkali metal, 1B group copper (Cu), silver (Ag), and gold (Au) as a dopant. Thermoelectric semiconductor manufacturing method.
原料のマグネシウム、珪素、スズを液−固相反応せしめて一般化学式
MgSi1−YSn
で示されるものを焼結して製造した熱電半導体において、
該熱電半導体はp型であって、焼結体組成が、
1.98≦X≦2.01
0.72≦Y≦0.95
であり、
ドーパントとして、1Aのアルカリ金属、1B族の銅(Cu)、銀(Ag)、金(Au)の少なくとも何れか一つの金属を添加して得ることを特徴とするマグネシウム、珪素、スズからなる熱電半導体。
General chemical formula Mg X Si 1-Y Sn Y by liquid-solid phase reaction of raw materials magnesium, silicon and tin
In the thermoelectric semiconductor manufactured by sintering what is shown in
The thermoelectric semiconductor is p-type, and the sintered body composition is
1.98 ≦ X ≦ 2.01
0.72 ≦ Y ≦ 0.95
And
It is made of magnesium, silicon, or tin, which is obtained by adding at least one metal of 1A group alkali metal, 1B group copper (Cu), silver (Ag), and gold (Au) as a dopant. Thermoelectric semiconductor.
1Aのアルカリ金属は、カルボン酸塩として添加されることを特徴とする請求項1記載のマグネシウム、珪素、スズからなる熱電半導体の製造方法。 The method for producing a thermoelectric semiconductor comprising magnesium, silicon, and tin according to claim 1, wherein the group 1A alkali metal is added as a carboxylate. 1Aのアルカリ金属は、カルボン酸塩として添加されることを特徴とする請求項2記載のマグネシウム、珪素、スズからなる熱電半導体。 The thermoelectric semiconductor comprising magnesium, silicon, and tin according to claim 2, wherein the group 1A alkali metal is added as a carboxylate.
JP2008205583A 2008-08-08 2008-08-08 Thermoelectric semiconductor comprising magnesium, silicon and tin and method for producing the same Active JP5274146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008205583A JP5274146B2 (en) 2008-08-08 2008-08-08 Thermoelectric semiconductor comprising magnesium, silicon and tin and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205583A JP5274146B2 (en) 2008-08-08 2008-08-08 Thermoelectric semiconductor comprising magnesium, silicon and tin and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010037641A JP2010037641A (en) 2010-02-18
JP5274146B2 true JP5274146B2 (en) 2013-08-28

Family

ID=42010485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205583A Active JP5274146B2 (en) 2008-08-08 2008-08-08 Thermoelectric semiconductor comprising magnesium, silicon and tin and method for producing the same

Country Status (1)

Country Link
JP (1) JP5274146B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445276B2 (en) * 2010-03-31 2014-03-19 宇部興産株式会社 Thermoelectric conversion material comprising magnesium, tin and silicon and method for producing the same
JP5944711B2 (en) * 2012-03-22 2016-07-05 日本碍子株式会社 Thermoelectric material and manufacturing method thereof
JP5960654B2 (en) 2013-07-25 2016-08-02 国立研究開発法人物質・材料研究機構 P-type semiconductor comprising magnesium, silicon, tin, germanium and method for producing the same
JP7251187B2 (en) * 2018-02-27 2023-04-04 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion material
JPWO2021079644A1 (en) * 2019-10-25 2021-04-29

Also Published As

Publication number Publication date
JP2010037641A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP5079559B2 (en) Thermoelectric semiconductor comprising magnesium, silicon and tin and method for producing the same
JP4726747B2 (en) Sintered body of intermetallic compound composed of magnesium, silicon and tin and method for producing the same
Li et al. Enhanced thermoelectric performance of Yb-single-filled skutterudite by ultralow thermal conductivity
Cai et al. Preparation and thermoelectric properties of Al-doped ZnO ceramics
JP5157269B2 (en) Thermoelectric material and manufacturing method thereof
TWI775887B (en) Thermoelectric conversion material and method for producing thermoelectric conversion material
JP5274146B2 (en) Thermoelectric semiconductor comprising magnesium, silicon and tin and method for producing the same
JP2015528208A (en) Thermoelectric materials based on tetrahedral copper ore structure for thermoelectric devices
JP2012521648A (en) Self-organized thermoelectric material
JP6176885B2 (en) P-type thermoelectric material, thermoelectric element, and method for producing p-type thermoelectric material
JP4726452B2 (en) Magnesium-metal compound
JP4865531B2 (en) Yb-AE-Fe-Co-Sb (AE: Ca, Sr, Ba, Ag) based thermoelectric conversion material
JP2000106460A (en) Thermoelectric semiconductor material and manufacture thereof
US9666782B2 (en) P-type semiconductor composed of magnesium, silicon, tin, and germanium, and method for manufacturing the same
JP6762543B2 (en) Thermoelectric material
JP2014165247A (en) Method of producing thermoelectric conversion material
JP5482229B2 (en) Thermoelectric material and manufacturing method thereof
KR102269404B1 (en) Selenium content increased thermal element
JP5784888B2 (en) Method for producing BiTe-based thermoelectric material
JP2013521630A (en) Thermoelectric materials, preparation of these thermoelectric materials, and thermoelectric elements containing these thermoelectric materials
JP6292664B2 (en) Thermoelectric conversion material
JP5126723B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP2006037149A (en) Raw material for thermoelectric conversion material, method for producing thermoelectric conversion material, and thermoelectric conversion material
JP2022018710A (en) Semiconductor material for thermoelectric conversion and thermoelectric conversion element using the same
JP2016178249A (en) Type-2 clathrate compound and thermoelectric conversion element including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5274146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250