JP5273097B2 - Ultrasonic sensor - Google Patents

Ultrasonic sensor Download PDF

Info

Publication number
JP5273097B2
JP5273097B2 JP2010133488A JP2010133488A JP5273097B2 JP 5273097 B2 JP5273097 B2 JP 5273097B2 JP 2010133488 A JP2010133488 A JP 2010133488A JP 2010133488 A JP2010133488 A JP 2010133488A JP 5273097 B2 JP5273097 B2 JP 5273097B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
humidity
ultrasonic
threshold value
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010133488A
Other languages
Japanese (ja)
Other versions
JP2010249834A (en
Inventor
杉浦  真紀子
貴彦 吉田
泰行 奥田
孝明 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010133488A priority Critical patent/JP5273097B2/en
Publication of JP2010249834A publication Critical patent/JP2010249834A/en
Application granted granted Critical
Publication of JP5273097B2 publication Critical patent/JP5273097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic sensor for suppressing degradation in detection accuracy as a result of temperature changes. <P>SOLUTION: Provided on a surface of a piezoelectric element 14p is an SAW element 50 that generates a surface elasticity wave of a predetermined frequency through an electrode 51 in accordance with a control signal sent from a circuit element 20, receives through an electrode 52 the surface elasticity wave propagating through the surface of the piezoelectric element 14p, and outputs a predetermined electrical signal. The humidity h is measured based on a change in frequency of the surface elasticity wave sent and received through the electrodes 51 and 52 of the SAW element 50. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、送信素子から送信され被検出体にて反射された超音波を受信素子により受信して検出する超音波センサに関するものである。   The present invention relates to an ultrasonic sensor that receives and detects an ultrasonic wave transmitted from a transmitting element and reflected by a detection target by a receiving element.

従来より、送信素子から送信され被検出体にて反射された超音波を受信素子により受信して検出する超音波センサとして、例えば、下記特許文献1に開示される超音波センサ装置がある。この超音波センサ装置は、1個の送信素子と4個の受信素子とを備えている。送信素子は、その圧電振動子の電極金属膜に交流電圧が印加されることにより、当該圧電振動子とともにメンブレンが所定の超音波帯周波数で共振して超音波を送信する。この超音波が障害物に反射して各受信素子にて受信される。この受信に応じて各受信素子から出力される受信信号の時間差および位相差から、超音波センサ装置に対する障害物の距離と方位が演算される。   Conventionally, as an ultrasonic sensor that receives and detects an ultrasonic wave transmitted from a transmitting element and reflected by a detection target by a receiving element, there is an ultrasonic sensor device disclosed in Patent Document 1 below, for example. This ultrasonic sensor device includes one transmission element and four reception elements. When the AC voltage is applied to the electrode metal film of the piezoelectric vibrator, the transmitting element transmits the ultrasonic wave with the membrane resonating with the piezoelectric vibrator at a predetermined ultrasonic band frequency. This ultrasonic wave is reflected by the obstacle and received by each receiving element. In response to this reception, the distance and direction of the obstacle with respect to the ultrasonic sensor device are calculated from the time difference and phase difference of the reception signals output from the respective receiving elements.

特開2006−242650号公報JP 2006-242650 A

ところで、周囲の湿度が変化すると、送信素子から送信される超音波が減衰して到達音波の音圧が変化する。上記特許文献1の超音波センサ装置では、送信素子から異なる2つの周波数の超音波を送信し、両超音波における減衰係数の差から湿度を演算し、この演算された湿度を、予め設定された動作湿度の補正に用いている。   By the way, when ambient humidity changes, the ultrasonic wave transmitted from the transmitting element attenuates and the sound pressure of the reaching sound wave changes. In the ultrasonic sensor device disclosed in Patent Document 1, ultrasonic waves having two different frequencies are transmitted from the transmitting element, the humidity is calculated from the difference in attenuation coefficient between the two ultrasonic waves, and the calculated humidity is set in advance. Used to correct the operating humidity.

上述した湿度補正機能を、音響整合層と圧電素子とを接合して構成される送信素子および受信素子を有する超音波センサに採用する場合、湿度補償機能として、例えば、受信素子における超音波の受信判定に使用する所定の閾値を湿度に応じて補正することにより、超音波検出における湿度の影響をなくすことが考えられる。   When the above-described humidity correction function is employed in an ultrasonic sensor having a transmitting element and a receiving element configured by joining an acoustic matching layer and a piezoelectric element, as a humidity compensating function, for example, reception of ultrasonic waves in a receiving element It is conceivable to eliminate the influence of humidity in ultrasonic detection by correcting a predetermined threshold used for determination according to humidity.

しかしながら、周囲の湿度変化に応じて適切に上記所定の閾値を設定する必要があるため、このように適切に閾値を設定できない場合には、例えば、各受信素子が超音波を検知できない状態が生じてしまい、時間差および位相差に誤差が含まれるために、障害物に対する検出精度が低下してしまうという問題がある。   However, since it is necessary to set the predetermined threshold value appropriately according to changes in the surrounding humidity, when the threshold value cannot be set appropriately in this way, for example, each receiving element may not be able to detect ultrasonic waves. As a result, errors are included in the time difference and the phase difference, so that there is a problem that the detection accuracy with respect to the obstacle is lowered.

本発明は、上述した課題を解決するためになされたものであり、その目的とするところは、湿度変化による検出精度の低下を抑制し得る超音波センサを提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an ultrasonic sensor that can suppress a decrease in detection accuracy due to a change in humidity.

上記目的を達成するため、特許請求の範囲に記載の請求項1の超音波センサでは、超音波を発振可能な第1の圧電素子とこの第1の圧電素子により発振された超音波を伝達可能な第1の音響整合部材とを有し被検出体に対して前記超音波の送信を行う送信素子と、前記被検出体にて反射された前記超音波を検出可能な第2の圧電素子とこの第2の圧電素子に前記被検出体にて反射された前記超音波を伝達可能な第2の音響整合部材とを有し前記被検出体にて反射された前記超音波の受信を行う受信素子と、前記第1の圧電素子に前記超音波を発振するための電圧を印加するとともに、前記第2の圧電素子から出力される出力電圧が第1閾値以上である場合に当該受信素子による前記超音波の受信を検知する回路素子と、前記送信素子および前記受信素子の周囲の湿度を検出する湿度検出手段と、前記被検出体を検出可能に設定される距離の往復に相当する伝播距離を伝播したときの前記超音波の音圧を、前記湿度検出手段により検出される前記湿度に基づいて演算し、この音圧に応じて前記第2の圧電素子から出力される出力電圧の振幅値が、前記第1閾値より大きく設定される第2閾値よりも小さい場合には前記第1閾値を下げるように調整する閾値調整手段と、を備え、前記第1の圧電素子および前記第2の圧電素子のいずれか一方の表面に表面弾性波素子を設け、前記湿度検出手段は、前記表面弾性波素子において送受信される表面弾性波の周波数変化に基づいて前記湿度を検出することを特徴とする。   In order to achieve the above object, in the ultrasonic sensor according to claim 1, the first piezoelectric element capable of oscillating an ultrasonic wave and the ultrasonic wave oscillated by the first piezoelectric element can be transmitted. A first acoustic matching member that transmits the ultrasonic waves to the detection target, and a second piezoelectric element that can detect the ultrasonic waves reflected by the detection target. The second piezoelectric element has a second acoustic matching member capable of transmitting the ultrasonic wave reflected by the detected object, and receives the ultrasonic wave reflected by the detected object. When a voltage for oscillating the ultrasonic wave is applied to the element and the first piezoelectric element, and the output voltage output from the second piezoelectric element is greater than or equal to a first threshold value, A circuit element for detecting reception of ultrasonic waves, the transmitting element and the front Humidity detecting means for detecting the humidity around the receiving element, and the sound pressure of the ultrasonic wave when propagating a propagation distance corresponding to a round trip of a distance set so as to be able to detect the detected object, the humidity detecting means The amplitude value of the output voltage output from the second piezoelectric element according to the sound pressure is smaller than a second threshold value set larger than the first threshold value. A threshold adjusting means for adjusting the first threshold to be lowered, and a surface acoustic wave element is provided on the surface of either the first piezoelectric element or the second piezoelectric element, and the humidity The detecting means detects the humidity based on a frequency change of a surface acoustic wave transmitted and received in the surface acoustic wave element.

請求項1の発明では、回路素子は、第1の圧電素子に超音波を発振するための電圧を印加するとともに、第2の圧電素子から出力される出力電圧が第1閾値以上である場合に当該受信素子による超音波の受信を検知する。そして、閾値調整手段は、被検出体を検出可能に設定される距離の往復に相当する伝播距離を伝播したときの超音波の音圧を、湿度検出手段により検出される湿度に基づいて演算し、この音圧に応じて第2の圧電素子から出力される出力電圧の振幅値が、第1閾値より大きく設定される第2閾値よりも小さい場合には第1閾値を下げるように調整する。そして、第1の圧電素子および前記第2の圧電素子のいずれか一方の表面に表面弾性波素子が設けられており、湿度検出手段は、表面弾性波素子において送受信される表面弾性波の周波数変化に基づいて湿度を検出する。   In the first aspect of the invention, the circuit element applies a voltage for oscillating ultrasonic waves to the first piezoelectric element, and the output voltage output from the second piezoelectric element is equal to or higher than the first threshold value. The reception of the ultrasonic wave by the receiving element is detected. Then, the threshold adjustment means calculates the sound pressure of the ultrasonic wave when propagating the propagation distance corresponding to the reciprocation of the distance set so that the detection target can be detected based on the humidity detected by the humidity detection means. If the amplitude value of the output voltage output from the second piezoelectric element in accordance with the sound pressure is smaller than the second threshold value set larger than the first threshold value, the first threshold value is adjusted to be lowered. The surface acoustic wave element is provided on the surface of one of the first piezoelectric element and the second piezoelectric element, and the humidity detecting means is configured to change the frequency of the surface acoustic wave transmitted and received in the surface acoustic wave element. Detect humidity based on

送信素子から送信された超音波は、被検出体にて反射されて上記伝播距離を伝播する際、減衰してその音圧が低下する。特に、湿度の変化に伴い超音波がより減衰してその音圧が低下したときには、減衰した超音波に応じて第2の圧電素子から出力電圧が出力されても、この出力電圧が第1閾値を超えないことから本来検知されるべき超音波の受信を検知することができない場合がある。一方、このような未検出をなくすために第1閾値を単純に下げた場合、第2の圧電素子から出力される出力電圧に含まれるノイズ等が第1閾値以上になってしまうと、超音波を受信していないにも関わらず超音波を検知してしまうことになり、検出精度が低下してしまう。   When the ultrasonic wave transmitted from the transmitting element is reflected by the object to be detected and propagates the propagation distance, the sound pressure is reduced. In particular, when the ultrasonic wave is further attenuated with a change in humidity and the sound pressure is reduced, even if an output voltage is output from the second piezoelectric element in accordance with the attenuated ultrasonic wave, the output voltage is the first threshold value. In some cases, it may not be possible to detect reception of ultrasonic waves that should be detected. On the other hand, when the first threshold value is simply lowered to eliminate such undetection, if the noise included in the output voltage output from the second piezoelectric element becomes equal to or higher than the first threshold value, the ultrasonic wave This means that the ultrasonic wave is detected even though it is not received, and the detection accuracy is lowered.

そこで、上記伝播距離を伝播したときの超音波の音圧を、湿度検出手段により検出される湿度に基づいて演算することにより、その湿度状態を考慮した超音波の減衰度合(音圧の減少度合)を推定することができる。そして、この超音波の減衰度合、すなわち、超音波の音圧に応じて第2の圧電素子から出力される出力電圧の振幅値に基づいて第1閾値を下げることにより、湿度変化に応じて第1閾値を適切に調整することができる。   Therefore, by calculating the sound pressure of the ultrasonic wave when propagating through the propagation distance based on the humidity detected by the humidity detecting means, the ultrasonic attenuation level considering the humidity state (the decrease level of the sound pressure). ) Can be estimated. Then, the first threshold is lowered based on the amplitude of the output voltage output from the second piezoelectric element in accordance with the ultrasonic attenuation, that is, the sound pressure of the ultrasonic, so that One threshold can be adjusted appropriately.

特に、閾値調整手段は、上記伝播距離を伝播した超音波の音圧に応じて第2の圧電素子から出力される出力電圧の振幅値が、第1閾値より大きく設定される第2閾値よりも小さい場合に、第1閾値を下げるように調整する。出力電圧の振幅値と第1閾値とを直接比較してしまうと、出力電圧が低下した場合に第1閾値を調整する前に検知すべき超音波を検出できない未検出状態が起こりうる。そこで、上述のように第2の圧電素子から出力される出力電圧の振幅値と、第1閾値より大きく設定される第2閾値とを比較することにより、上記未検出状態をなくすことができる。
したがって、湿度変化による検出精度の低下を抑制することができる。
In particular, the threshold adjustment means is configured to output an amplitude value of the output voltage output from the second piezoelectric element in accordance with the sound pressure of the ultrasonic wave propagated through the propagation distance, than a second threshold value set to be larger than the first threshold value. When it is smaller, the first threshold value is adjusted to be lowered. If the amplitude value of the output voltage is directly compared with the first threshold value, an undetected state in which the ultrasonic wave to be detected before adjusting the first threshold value cannot be detected when the output voltage decreases can occur. Therefore, as described above, the undetected state can be eliminated by comparing the amplitude value of the output voltage output from the second piezoelectric element with the second threshold value set larger than the first threshold value.
Therefore, a decrease in detection accuracy due to humidity change can be suppressed.

特に、表面弾性波素子が第1の圧電素子および第2の圧電素子のいずれか一方の表面に設けられており、湿度検出手段は、上記表面弾性波素子において送受信される表面弾性波の周波数変化に基づいて送信素子および受信素子の周囲の湿度を測定する。表面弾性波素子には通常湿度に応じて変化する膜が設けられており、湿度上昇に伴いこの膜に表面弾性波が吸収されて当該表面弾性波の振幅値が小さくなる。このため、湿度上昇に伴い一方の電極から送信された表面弾性波の振幅値に対して他方の電極にて受信された表面弾性波の振幅値が小さくなる。すなわち、表面弾性波素子における送信時の表面弾性波の振幅値と受信時の表面弾性波の振幅値との差から湿度を測定することができる。   In particular, the surface acoustic wave element is provided on the surface of one of the first piezoelectric element and the second piezoelectric element, and the humidity detecting means is configured to change the frequency of the surface acoustic wave transmitted and received in the surface acoustic wave element. Based on the above, the humidity around the transmitting element and the receiving element is measured. A surface acoustic wave element is usually provided with a film that changes according to humidity. As the humidity rises, the surface acoustic wave is absorbed by this film, and the amplitude value of the surface acoustic wave decreases. For this reason, the amplitude value of the surface acoustic wave received by the other electrode becomes smaller than the amplitude value of the surface acoustic wave transmitted from one electrode as the humidity increases. That is, the humidity can be measured from the difference between the amplitude value of the surface acoustic wave during transmission and the amplitude value of the surface acoustic wave during reception in the surface acoustic wave element.

請求項2の発明では、第1の圧電素子は、複数の圧電素子が積層されて形成される。これにより、第1の圧電素子は、高い音圧の超音波を発振することができる。   In the invention of claim 2, the first piezoelectric element is formed by laminating a plurality of piezoelectric elements. Thereby, the first piezoelectric element can oscillate ultrasonic waves with high sound pressure.

請求項3の発明では、第2の圧電素子は、チタン酸ジルコン酸鉛(PZT)系材料により形成されている。これにより、音圧が低い超音波の受信をすることができ、受信感度を向上させることができる。   In the invention of claim 3, the second piezoelectric element is made of a lead zirconate titanate (PZT) material. Thereby, ultrasonic waves with low sound pressure can be received, and reception sensitivity can be improved.

請求項4の発明では、第1の圧電素子および第2の圧電素子は、ポリフッ化ビニリデン(PVDF)系材料により形成されている。これにより、音響整合部材との音響インピーダンスの差が小さくなるので、超音波振動の減衰を小さくすることができる。また、ポリフッ化ビニリデン(PVDF)系材料は樹脂材料であるため、音響整合部材のインサート成形が容易であり、好適に用いることができる。   In the invention of claim 4, the first piezoelectric element and the second piezoelectric element are made of a polyvinylidene fluoride (PVDF) material. Thereby, since the difference of the acoustic impedance with an acoustic matching member becomes small, attenuation | damping of an ultrasonic vibration can be made small. In addition, since the polyvinylidene fluoride (PVDF) -based material is a resin material, insert molding of the acoustic matching member is easy and can be suitably used.

請求項5の発明では、受信素子を複数備え、これら複数の受信素子がアレイ状に配置される。これにより、各受信素子にて受信される超音波に基づいて被検出体までの距離や方位角が検出できるので、被検出体の位置の3次元検知を行うことができる。   In the invention of claim 5, a plurality of receiving elements are provided, and the plurality of receiving elements are arranged in an array. Thereby, since the distance and azimuth angle to a to-be-detected body can be detected based on the ultrasonic wave received by each receiving element, the three-dimensional detection of the position of the to-be-detected body can be performed.

第1参考例の超音波センサの説明図である。図1(A)は、超音波センサを音響整合部材側から見た平面説明図であり、図1(B)は、図1(A)のA−A矢視断面図である。It is explanatory drawing of the ultrasonic sensor of a 1st reference example. FIG. 1A is an explanatory plan view of the ultrasonic sensor as viewed from the acoustic matching member side, and FIG. 1B is a cross-sectional view taken along the line AA in FIG. 圧電素子からの出力電圧と閾値との関係を示す説明図である。It is explanatory drawing which shows the relationship between the output voltage from a piezoelectric element, and a threshold value. 第1参考例における回路素子による閾値調整処理の流れを示すフローチャートの一部である。It is a part of flowchart which shows the flow of the threshold value adjustment process by the circuit element in a 1st reference example. 第1参考例における回路素子による閾値調整処理の流れを示すフローチャートの一部である。It is a part of flowchart which shows the flow of the threshold value adjustment process by the circuit element in a 1st reference example. 第2参考例における超音波センサの断面図である。It is sectional drawing of the ultrasonic sensor in a 2nd reference example. 第2参考例における回路素子による周波数調整処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the frequency adjustment process by the circuit element in a 2nd reference example. 第1実施形態における超音波センサの一部断面図である。It is a partial cross section figure of the ultrasonic sensor in a 1st embodiment.

[第1参考例]
この発明に係る超音波センサの第1参考例について、図を参照して説明する。ここでは、車両に搭載して障害物センサとして使用する超音波センサを例に説明する。図1は、第1参考例の超音波センサの説明図である。図1(A)は、超音波センサを音響整合部材側から見た平面説明図であり、図1(B)は、図1(A)のA−A矢視断面図である。ここで、図1において、図1(A)の手前方向および、図1(B)の上方向が車両の外部を示す。また、図1(A)の下方向に地面が存在する。なお、各図では、説明のために一部を拡大し、一部を省略して示している。
[First Reference Example]
A first reference example of an ultrasonic sensor according to the present invention will be described with reference to the drawings. Here, an ultrasonic sensor mounted on a vehicle and used as an obstacle sensor will be described as an example. FIG. 1 is an explanatory diagram of an ultrasonic sensor according to a first reference example. FIG. 1A is an explanatory plan view of the ultrasonic sensor as viewed from the acoustic matching member side, and FIG. 1B is a cross-sectional view taken along the line AA in FIG. Here, in FIG. 1, the front direction of FIG. 1 (A) and the upward direction of FIG. 1 (B) indicate the outside of the vehicle. Moreover, the ground exists in the downward direction of FIG. In each figure, for the sake of explanation, a part is enlarged and a part is omitted.

図1(A)および(B)に示すように、超音波センサ10は、超音波を送信する送信素子11と、送信素子11から車両前方に送信され、車両前方に存在する被検出体(障害物)で反射された超音波を検出する受信素子12p、12q、12rと、超音波の伝達を防止する振動減衰部材18と、送信素子11および受信素子12p、12q、12rを外力の負荷や衝撃から保護する第1緩衝材19と、送信素子11を受信素子12p〜12rから区画し、超音波の伝達を遮蔽する振動分離部材90と、超音波の送受信に関する電圧信号の入出力を行う回路素子20と、受信素子12p、12q、12r、送信素子11、第1緩衝材19および振動分離部材90を収容する一端が開口した箱状の筐体31と、を備えている。   As shown in FIGS. 1A and 1B, the ultrasonic sensor 10 includes a transmission element 11 that transmits ultrasonic waves, and a detection object (failure) that is transmitted from the transmission element 11 to the front of the vehicle and exists in front of the vehicle. The receiving elements 12p, 12q, and 12r that detect the ultrasonic waves reflected by the object), the vibration attenuating member 18 that prevents the transmission of the ultrasonic waves, and the transmitting element 11 and the receiving elements 12p, 12q, and 12r are loaded with external force and impact. A first buffer material 19 that protects from transmission, a transmission element 11 that is partitioned from reception elements 12p to 12r, a vibration separating member 90 that shields transmission of ultrasonic waves, and a circuit element that inputs and outputs voltage signals related to transmission and reception of ultrasonic waves 20 and a receiving element 12p, 12q, 12r, a transmitting element 11, a first cushioning material 19, and a box-shaped casing 31 having an open end for accommodating the vibration separating member 90.

各受信素子12p〜12rの構造は同じであるので、ここでは、受信素子12pについて説明する。
受信素子12pは、送信素子11から発振され、障害物で反射された超音波を受信し、圧電素子14pに振動としての超音波を伝達する音響整合部材13pと、超音波を検出する圧電素子14pとが接合されて形成されている。
Since the structures of the receiving elements 12p to 12r are the same, the receiving element 12p will be described here.
The receiving element 12p receives an ultrasonic wave oscillated from the transmitting element 11 and reflected by an obstacle, transmits an ultrasonic wave as vibration to the piezoelectric element 14p, and a piezoelectric element 14p that detects the ultrasonic wave. Are joined together.

圧電素子14pは、例えば、チタン酸ジルコン酸鉛(PZT)からなり、横断面の外形が音響整合部材13pの横断面の外形と等しい四角柱状に形成された圧電体を、対向する面において、PtやCuやAgのスパッタ、めっき、導電ペーストの焼き付けなどにより形成された1組の電極15pにより挟んで形成されている。   The piezoelectric element 14p is made of, for example, lead zirconate titanate (PZT), and a piezoelectric body formed in the shape of a rectangular column whose cross section is equal to the cross section of the acoustic matching member 13p is formed on the opposing surface with Pt. And a pair of electrodes 15p formed by sputtering of Cu or Ag, plating, baking of a conductive paste, or the like.

音響整合部材13pは、空気より音響インピーダンスが大きく、圧電素子14pより音響インピーダンスが小さいポリカーボネート系樹脂などの耐久性に優れた樹脂材料を用いて形成されている。   The acoustic matching member 13p is formed using a resin material having excellent durability such as polycarbonate resin having an acoustic impedance larger than that of air and smaller than that of the piezoelectric element 14p.

音響整合部材13pは、厚さ(超音波の伝達方向の長さ)Lが超音波の音響整合部材13p中における波長λの約1/4となるように形成されている。音響整合部材13pの厚さLを超音波の波長λの約1/4となるように形成することにより、音響整合部材13p内で定在波を発生させることができる。これにより、音響整合部材13p内に入射した超音波と、音響整合部材13pと圧電素子14pとの界面において反射された超音波とが干渉して互いに打ち消し合うことを低減することができるので、圧電素子14pに効率よく超音波を伝達することができる。また、音響整合部材13pの幅を、超音波の空気中における波長の半分以下とすることが望ましい。   The acoustic matching member 13p is formed such that the thickness (length in the transmission direction of ultrasonic waves) L is about ¼ of the wavelength λ in the ultrasonic acoustic matching member 13p. A standing wave can be generated in the acoustic matching member 13p by forming the thickness L of the acoustic matching member 13p to be about 1/4 of the wavelength λ of the ultrasonic wave. As a result, it is possible to reduce the fact that the ultrasonic wave incident into the acoustic matching member 13p and the ultrasonic wave reflected at the interface between the acoustic matching member 13p and the piezoelectric element 14p interfere with each other and cancel each other. An ultrasonic wave can be efficiently transmitted to the element 14p. In addition, it is desirable that the width of the acoustic matching member 13p is set to be equal to or less than half the wavelength of ultrasonic waves in the air.

送信素子11は、受信素子12pの音響整合部材13pと同一材料を用いて同様に構成された音響整合部材13と、超音波を発振する積層圧電素子16とが接合されて形成されている。   The transmitting element 11 is formed by bonding an acoustic matching member 13 that is similarly configured using the same material as the acoustic matching member 13p of the receiving element 12p and a laminated piezoelectric element 16 that oscillates an ultrasonic wave.

積層圧電素子16は、例えば、チタン酸ジルコン酸鉛(PZT)からなり、横断面の外形が音響整合部材13の横断面の外形と等しい四角柱状に形成された圧電体に、1組の電極17が互い違いに櫛歯状に積層形成されて構成されている。これにより、積層圧電素子16は、複数層の圧電素子が積層形成された形状と等価となり、本参考例では、5層の圧電素子が積層形成された形状となっている。ここで、圧電素子の積層数は、要求する音圧に合わせて可変である。   The laminated piezoelectric element 16 is made of, for example, lead zirconate titanate (PZT), and is formed of a pair of electrodes 17 on a piezoelectric body that is formed in a rectangular column shape whose outer cross-sectional shape is equal to the outer cross-sectional shape of the acoustic matching member 13. Are alternately stacked in a comb-like shape. Thus, the laminated piezoelectric element 16 is equivalent to a shape in which a plurality of layers of piezoelectric elements are laminated, and in this reference example, it has a shape in which five layers of piezoelectric elements are laminated. Here, the number of stacked piezoelectric elements is variable according to the required sound pressure.

各圧電素子14pの電極15pおよび積層圧電素子16の電極17は、ワイヤ14a、17aを介して、それぞれ回路素子20に電気的に接続されている。この回路素子20は、車両に設けられたECU(Electronic Control Unit:図示せず)に電気的に接続されている。   The electrode 15p of each piezoelectric element 14p and the electrode 17 of the laminated piezoelectric element 16 are electrically connected to the circuit element 20 via wires 14a and 17a, respectively. The circuit element 20 is electrically connected to an ECU (Electronic Control Unit: not shown) provided in the vehicle.

当該回路素子20は、超音波を送信する時には、ECUから出力された、発信する超音波の音圧、位相を制御するための制御信号に基づいて、積層圧電素子16に対して所定の周波数の電圧信号を出力する(電圧を印加する)。また、回路素子20は、各圧電素子14pから出力される出力電圧が後述する閾値調整処理により調整された閾値Vs以上になる場合に、超音波の受信を検知して所定の演算処理を行い、ECUに対して振動信号として出力する。   When transmitting the ultrasonic wave, the circuit element 20 has a predetermined frequency with respect to the laminated piezoelectric element 16 based on a control signal for controlling the sound pressure and phase of the transmitted ultrasonic wave output from the ECU. Output voltage signal (apply voltage). In addition, when the output voltage output from each piezoelectric element 14p is equal to or higher than a threshold value Vs adjusted by a threshold value adjustment process described later, the circuit element 20 detects reception of ultrasonic waves and performs a predetermined calculation process. The vibration signal is output to the ECU.

回路素子20による超音波の検知について図2を用いて説明する。図2は、圧電素子14pからの出力電圧Voと閾値Vsとの関係を示す説明図である。
図2に示すように、回路素子20から積層圧電素子16に所定の周波数の入力電圧Viが印加されることにより送信素子11から超音波が送信されると、この超音波が被検出体で反射されて各圧電素子14pに受信される。各圧電素子14pは、受信した超音波の音圧に応じた出力電圧をそれぞれ出力する。回路素子20は、圧電素子14pから出力される出力電圧Voが閾値Vs以上になる場合(図2にて点Xの位置)に、その圧電素子14pに対する超音波の受信を検知する。なお、閾値Vsは、ノイズ等に影響されないようにノイズ等に起因する電圧よりも十分大きな値に設定される。
The detection of ultrasonic waves by the circuit element 20 will be described with reference to FIG. FIG. 2 is an explanatory diagram showing the relationship between the output voltage Vo from the piezoelectric element 14p and the threshold value Vs.
As shown in FIG. 2, when an ultrasonic wave is transmitted from the transmitting element 11 by applying an input voltage Vi having a predetermined frequency from the circuit element 20 to the laminated piezoelectric element 16, the ultrasonic wave is reflected by the detection object. And received by each piezoelectric element 14p. Each piezoelectric element 14p outputs an output voltage corresponding to the sound pressure of the received ultrasonic wave. When the output voltage Vo output from the piezoelectric element 14p is equal to or higher than the threshold value Vs (the position of the point X in FIG. 2), the circuit element 20 detects reception of ultrasonic waves with respect to the piezoelectric element 14p. The threshold value Vs is set to a value sufficiently larger than the voltage caused by noise or the like so as not to be affected by noise or the like.

送信素子11の音響整合部材13および各受信素子12p〜12rの音響整合部材13pは、超音波の伝達を防止する振動減衰部材18を介在して、互いに隣り合った各音響整合部材13、13pの中心部の間隔dが、超音波の半波長にほぼ等しくなるようにアレイ状に配置されている。ただし、中心部の間隔は検知エリアの角度に依存するものであり、間隔dが半波長より大きい場合でも、角度を検知することはできる。   The acoustic matching member 13 of the transmitting element 11 and the acoustic matching member 13p of each of the receiving elements 12p to 12r are disposed between the acoustic matching members 13 and 13p adjacent to each other with a vibration damping member 18 that prevents transmission of ultrasonic waves interposed therebetween. It arrange | positions at an array form so that the space | interval d of a center part may become substantially equal to the half wavelength of an ultrasonic wave. However, the interval between the center portions depends on the angle of the detection area, and the angle can be detected even when the interval d is larger than a half wavelength.

振動減衰部材18は、各音響整合部材13pの受信面13jと、音響整合部材13の送信面13sとを覆って、筐体31の開口部に固定されている。この構成を用いると、各音響整合部材13、13pと振動減衰部材18との界面が外部に露出しないため、接合面を介して水などが侵入することを防止することができるので、超音波センサ10の信頼性を向上させることができる。筐体31は、車両の所定の位置、例えば、バンパ100に各音響整合部材13、13pが外方に面するように取り付けられている。   The vibration damping member 18 covers the reception surface 13j of each acoustic matching member 13p and the transmission surface 13s of the acoustic matching member 13, and is fixed to the opening of the housing 31. When this configuration is used, the interface between the acoustic matching members 13 and 13p and the vibration attenuating member 18 is not exposed to the outside, so that water or the like can be prevented from entering through the joint surface. 10 reliability can be improved. The casing 31 is attached to a predetermined position of the vehicle, for example, the bumper 100 so that the acoustic matching members 13 and 13p face outward.

振動減衰部材18は、各音響整合部材13、13pより音響インピーダンスが小さく、減衰定数が高い材料、例えば、シリコンゴムにより形成されている。更に、振動減衰部材18には、弾性率が低い材料および密度が小さい材料が好適に用いられる。例えば、ゴム系材料、発泡樹脂などの気孔を含む樹脂、スポンジなどを用いることができる。   The vibration damping member 18 is made of a material having a smaller acoustic impedance and a higher damping constant than the acoustic matching members 13 and 13p, for example, silicon rubber. Furthermore, a material having a low elastic modulus and a material having a low density are preferably used for the vibration damping member 18. For example, a rubber material, a resin containing pores such as a foamed resin, a sponge, or the like can be used.

このような材料により形成された振動減衰部材18が、各音響整合部材13、13pの間に介在することにより、超音波が各音響整合部材13、13pの間で伝達されてノイズの原因となることを防止することができる。ここで、振動減衰部材18のうち受信面13jおよび送信面13sを覆う部分は、超音波の伝達を大きく阻害しないように、例えば、厚さ1mm以下の厚さに形成されている。   Since the vibration damping member 18 formed of such a material is interposed between the acoustic matching members 13 and 13p, an ultrasonic wave is transmitted between the acoustic matching members 13 and 13p and causes noise. This can be prevented. Here, a portion of the vibration attenuating member 18 that covers the reception surface 13j and the transmission surface 13s is formed to have a thickness of 1 mm or less, for example, so as not to significantly inhibit transmission of ultrasonic waves.

第1緩衝材19は、積層圧電素子16および各圧電素子14pより弾性率の低い材料、例えば、ポッティング材により構成されている。この第1緩衝材19は、送信素子11の積層圧電素子16および音響整合部材13の一部と、各受信素子12p〜12rの圧電素子14pおよび音響整合部材13pの一部とを囲んで、筐体31との間に介在して設けられている。なお、第1緩衝材19は、ウレタンや、ゴム、シリコーンなどの高分子材料により構成されてもよい。   The first buffer material 19 is made of a material having a lower elastic modulus than that of the laminated piezoelectric element 16 and each piezoelectric element 14p, for example, a potting material. The first buffer material 19 surrounds a part of the laminated piezoelectric element 16 and the acoustic matching member 13 of the transmitting element 11 and a part of the piezoelectric element 14p and the acoustic matching member 13p of each of the receiving elements 12p to 12r. It is provided between the body 31 and the body 31. The first buffer material 19 may be made of a polymer material such as urethane, rubber, or silicone.

このような第1緩衝材19を設けることにより、各音響整合部材13、13pに小石などの飛来物の衝突などにより衝撃が加えられたような場合でも、第1緩衝材19が送信素子11および各受信素子12p〜12rに伝達された衝撃を吸収するとともに、送信素子11および各受信素子12p〜12rが筐体31の底面31a側に向かって変位するのを拘束するため、送信素子11および受信素子12p〜12rを保護し、破壊を防ぐことができる。また、積層圧電素子16および各圧電素子14pを劣化させる水分など環境因子を遮断することができるので、信頼性を向上させることができる。   By providing such a first buffer material 19, even when an impact is applied to each acoustic matching member 13, 13 p due to a collision of flying objects such as pebbles, the first buffer material 19 can be In order to absorb the impact transmitted to each of the receiving elements 12p to 12r and restrain the transmitting element 11 and each of the receiving elements 12p to 12r from being displaced toward the bottom surface 31a side of the casing 31, The elements 12p to 12r can be protected and destruction can be prevented. In addition, since environmental factors such as moisture that deteriorates the laminated piezoelectric element 16 and each piezoelectric element 14p can be blocked, the reliability can be improved.

振動分離部材90は、第1緩衝材19より弾性率および音響インピーダンスが高い材料により板状に形成されている。当該振動分離部材90は、送信素子11と隣接する受信素子12p、12rとの間に設けられ、筺体31の底面31aから立設されており、一端が振動減衰部材18により固定されて、送信素子11を囲むように筐体31の内部を区画している。ここで、振動分離部材90の厚さは、積層圧電素子16から各音響整合部材13pへの超音波の振動の伝達を低減するとともに、振動減衰部材18において、各音響整合部材13pの振動を阻害しない厚さに設定されている。   The vibration separating member 90 is formed in a plate shape from a material having a higher elastic modulus and acoustic impedance than the first buffer material 19. The vibration separating member 90 is provided between the transmitting element 11 and the adjacent receiving elements 12p and 12r, is erected from the bottom surface 31a of the housing 31, and one end is fixed by the vibration attenuating member 18, and the transmitting element 11, the interior of the housing 31 is partitioned. Here, the thickness of the vibration separating member 90 reduces the transmission of ultrasonic vibrations from the laminated piezoelectric element 16 to each acoustic matching member 13p, and inhibits the vibration of each acoustic matching member 13p in the vibration damping member 18. The thickness is not set.

このように構成される超音波センサ10を作動状態にすると、回路素子20は、ECUから入力される制御信号に基づいて、各音響整合部材13、13pの共振周波数fに等しくなるように調整された周波数の電圧を、送信素子11の積層圧電素子16に印加する。この電圧印加に応じて積層圧電素子16が振動することにより、共振周波数fに等しい周波数の超音波が音響整合部材13を介して送信面13sから車両外部へ送信される。 With the thus constructed ultrasonic sensor 10 to the operating state, the circuit element 20, the adjustment based on the control signal inputted from the ECU, to be equal to the resonant frequency f c of the acoustic matching member 13,13p The voltage having the frequency is applied to the laminated piezoelectric element 16 of the transmitting element 11. By the laminated piezoelectric element 16 vibrates in response to the applied voltage, the frequency of ultrasonic waves is equal to the resonant frequency f c is sent from the transmitting surface 13s through the acoustic matching member 13 to the outside of the vehicle.

ここで、送信素子11の積層圧電素子16は5層に積層形成されているので、例えば、1層だけの圧電素子に比べて、同じ電圧を印加した場合に、5倍の変位、即ち5倍の音圧を得ることができる。つまり、積層圧電素子16は、高い音圧の超音波を発振することができる。   Here, since the laminated piezoelectric element 16 of the transmitting element 11 is laminated in five layers, for example, when the same voltage is applied as compared with a piezoelectric element having only one layer, the displacement is five times, that is, five times. The sound pressure can be obtained. That is, the laminated piezoelectric element 16 can oscillate ultrasonic waves with high sound pressure.

また、送信素子11を区画する振動分離部材90は第1緩衝材19より弾性率および音響インピーダンスが高い材料により形成されているので、積層圧電素子16から第1緩衝材19を介して伝達される超音波を、振動分離部材90と第1緩衝材19との界面において反射することができる。これにより、送信素子11から高い音圧の超音波を発振しても、送信素子11から各受信素子12p〜12rに超音波が伝達して発生する振動ノイズを低減することができる。   Further, since the vibration separating member 90 that partitions the transmission element 11 is formed of a material having a higher elastic modulus and acoustic impedance than the first buffer material 19, the vibration isolation member 90 is transmitted from the laminated piezoelectric element 16 through the first buffer material 19. Ultrasonic waves can be reflected at the interface between the vibration separating member 90 and the first buffer material 19. Thereby, even if an ultrasonic wave with a high sound pressure is oscillated from the transmitting element 11, vibration noise generated by transmitting the ultrasonic wave from the transmitting element 11 to each of the receiving elements 12p to 12r can be reduced.

上述のように送信素子11から送信された超音波は、被検出体で反射された後、各受信素子12p〜12rの音響整合部材13pの受信面13jにおいて受信される。例えば、受信素子12pの音響整合部材13pの受信面13jにおいて受信された超音波は、当該音響整合部材13pを介して、圧電素子14pに伝達される。   As described above, the ultrasonic wave transmitted from the transmission element 11 is reflected by the detection target, and then received by the reception surface 13j of the acoustic matching member 13p of each of the reception elements 12p to 12r. For example, ultrasonic waves received on the receiving surface 13j of the acoustic matching member 13p of the receiving element 12p are transmitted to the piezoelectric element 14p via the acoustic matching member 13p.

各圧電素子14pは、伝達された超音波の音圧に応じた出力電圧を回路素子20にそれぞれ出力する。回路素子20は、各圧電素子14pから出力される出力電圧の振幅値が後述する閾値調整処理により調整された閾値Vs以上になる場合に、超音波の受信を検知して所定の演算処理を行い、ECUに対して振動信号として出力する。   Each piezoelectric element 14 p outputs an output voltage corresponding to the transmitted sound pressure of the ultrasonic wave to the circuit element 20. When the amplitude value of the output voltage output from each piezoelectric element 14p is equal to or higher than a threshold value Vs adjusted by a threshold value adjustment process described later, the circuit element 20 detects reception of ultrasonic waves and performs a predetermined calculation process. And output as a vibration signal to the ECU.

このとき、各受信素子12p〜12rはアレイ状に配置されているため、送受信間の時間差および受信した超音波の各受信素子12p〜12r間での時間差、または位相差を求めることによって、その各差に基づいて、障害物等の被検出体の位置の3次元検知を行うことができる。   At this time, since the receiving elements 12p to 12r are arranged in an array, the time difference between the transmission and reception and the time difference or phase difference between the receiving elements 12p to 12r of the received ultrasonic waves are obtained. Based on the difference, three-dimensional detection of the position of the detected object such as an obstacle can be performed.

また、各受信素子12p〜12r間には、振動減衰部材18が介在しているため、受信素子13p〜13sごとに超音波を分離して伝達し、検出することができるので、良好なクロストーク特性を得ることができ、超音波の検出精度を向上させることができる。   In addition, since the vibration damping member 18 is interposed between the receiving elements 12p to 12r, ultrasonic waves can be separated and transmitted and detected for each of the receiving elements 13p to 13s. Characteristics can be obtained, and ultrasonic detection accuracy can be improved.

ここで、上述した回路素子20により実行される閾値調整処理の流れについて、図3および図4を用いて詳細に説明する。図3および図4は、回路素子20における閾値調整処理の流れを示すフローチャートである。   Here, the flow of the threshold adjustment process executed by the circuit element 20 described above will be described in detail with reference to FIGS. 3 and 4 are flowcharts showing the flow of threshold adjustment processing in the circuit element 20.

まず、図3のステップS101にて図略の温度センサおよび大気圧センサ等から温度T、大気圧Gおよび飽和蒸気圧Goを取得すると、ステップS103において、第1検出用電圧印加処理がなされる。この処理では、送信素子11の音響整合部材13および各受信素子12p〜12rの音響整合部材13pの共通の共振周波数fよりも僅かに低い周波数(以下、第1周波数fともいう)の第1検出用電圧が送信素子11の積層圧電素子16に短い時間の間だけ印加される。この電圧印加に応じて積層圧電素子16が振動することにより、第1周波数fの超音波が音響整合部材13を介して送信面13sから車両外部へ送信される。なお、第1周波数fは、例えば、共振周波数fに対して3kHz低くなるように設定されている。 First, when the temperature T, the atmospheric pressure G, and the saturated vapor pressure Go are acquired from a temperature sensor and an atmospheric pressure sensor (not shown) in step S101 in FIG. 3, a first detection voltage application process is performed in step S103. In this process, the common resonant frequency f c slightly lower frequency than the acoustic matching member 13p of the acoustic matching member 13 and the respective receiving elements 12p~12r transmission element 11 (hereinafter, also referred to as a first frequency f 1) One detection voltage is applied to the laminated piezoelectric element 16 of the transmission element 11 for a short time. When the laminated piezoelectric element 16 vibrates in response to this voltage application, the ultrasonic wave having the first frequency f 1 is transmitted from the transmission surface 13 s to the outside of the vehicle via the acoustic matching member 13. The first frequency f 1, for example, is set to 3kHz becomes lower than the resonant frequency f c.

次に、ステップS105において、第1振幅値取得処理がなされる。この処理では、ステップS103にて超音波が送信された後に被検出体にて反射され各音響整合部材13pを介して圧電素子14pに伝達されることによりこの圧電素子14pから出力される出力電圧の振幅値を第1振幅値Vとして取得する。 Next, in step S105, a first amplitude value acquisition process is performed. In this process, after the ultrasonic wave is transmitted in step S103, it is reflected by the object to be detected and transmitted to the piezoelectric element 14p via each acoustic matching member 13p, whereby the output voltage output from the piezoelectric element 14p is output. obtaining an amplitude value as a first amplitude V 1.

圧電素子14pに伝達される超音波の音圧Pと、圧電素子14pから出力される出力電圧の振幅値Vとの間には、Sを素子感度とすると、以下に示す式(4)の関係が成立する。
V=S×P ・・・(4)
そして、超音波は、超音波センサ10として被検出体を検出可能に設定される距離の往復に相当する伝播距離(以下、伝播距離rともいう)を伝播する際に減衰することから、吸収係数mと音圧Pとの間には以下の式(3)の関係が成立する。
P=Ae−mr/r ・・・(3)
ここで、Aは、所定の係数であり、例えば、伝播距離r=0.2mにおける既知の初期発振音圧に基づいて設定される。
If S is the element sensitivity between the sound pressure P of the ultrasonic wave transmitted to the piezoelectric element 14p and the amplitude value V of the output voltage output from the piezoelectric element 14p, the relationship of the following equation (4) Is established.
V = S × P (4)
The ultrasonic wave attenuates when propagating a propagation distance (hereinafter also referred to as a propagation distance r) corresponding to a round trip of a distance set so that the detection object can be detected as the ultrasonic sensor 10. The relationship of the following formula | equation (3) is materialized between m and the sound pressure P.
P = Ae− mr / r (3)
Here, A is a predetermined coefficient, and is set based on, for example, a known initial oscillation sound pressure at a propagation distance r = 0.2 m.

上記ステップS105により第1振幅値Vが取得されると、ステップS107において、第1吸収係数演算処理がなされる。この処理では、第1振幅値Vに基づいて上記式(3)および式(4)により第1吸収係数mを演算する。 When the first amplitude V 1 is acquired by the step S105, in step S107, the first absorption coefficient calculation processing is performed. In this process, the first absorption coefficient m 1 is calculated by the above equations (3) and (4) based on the first amplitude value V 1 .

このように第1吸収係数mが演算されると、ステップS109において、第2検出用電圧印加処理がなされる。この処理では、共振周波数fよりも僅かに高い周波数(以下、第2周波数fともいう)の第2検出用電圧が送信素子11の積層圧電素子16に短い時間の間だけ印加される。この電圧印加に応じて積層圧電素子16が振動することにより、第2周波数fの超音波が音響整合部材13を介して送信面13sから車両外部へ送信される。なお、第2周波数fは、例えば、共振周波数fに対して3kHz高くなるように設定されている。 When the first absorption coefficient m 1 is calculated as in step S109, the second detection voltage application processing is performed. In this process, slightly higher frequency than the resonance frequency f c the second detection voltage (hereinafter, a second referred to as frequency f 2) is applied only for a short time to the laminated piezoelectric element 16 of the transmission element 11. By the laminated piezoelectric element 16 vibrates in response to the voltage application, ultrasound of the second frequency f 2 is transmitted from the transmitting surface 13s through the acoustic matching member 13 to the outside of the vehicle. Note that the second frequency f 2, for example, are set to 3kHz higher relative resonant frequency f c.

上述した第1周波数fおよび第2周波数fは、送受信感度を向上させるために、共振周波数f近傍にする必要がある。本第1参考例においては、送信素子11は、音響整合層13と積層圧電素子16とを接合して構成されており、この音響整合層13は、樹脂材料でありQ値が10程度である。そのため、例えば、シリコン基板を用いたメンブレン構造の送信素子(上記特許文献1参照)と比べて、Q値が低くなり共振ピークを低くすることができる。このようにして、1つの送信素子11から共振周波数f近傍の異なる2つの周波数(第1周波数fおよび第2周波数f)の超音波を送信し易くしている。 The first frequency f 1 and the second frequency f 2 described above, in order to improve the reception sensitivity, it is necessary to vicinity of the resonance frequency f c. In the first reference example, the transmitting element 11 is configured by bonding an acoustic matching layer 13 and a laminated piezoelectric element 16. The acoustic matching layer 13 is a resin material and has a Q value of about 10. . Therefore, for example, compared with a transmission element having a membrane structure using a silicon substrate (see Patent Document 1 above), the Q value is lowered and the resonance peak can be lowered. In this manner, are easily transmit ultrasonic waves of two different frequencies near the resonance frequency f c from one transmit element 11 (first frequency f 1 and the second frequency f 2).

次に、ステップS111において、第2振幅値取得処理がなされる。この処理では、ステップS109にて超音波が送信された後に被検出体にて反射され各音響整合部材13pを介して圧電素子14pに伝達されることによりこの圧電素子14pから出力される出力電圧の振幅値を第2振幅値Vとして取得する。 Next, in step S111, second amplitude value acquisition processing is performed. In this process, after the ultrasonic wave is transmitted in step S109, it is reflected by the object to be detected and transmitted to the piezoelectric element 14p through each acoustic matching member 13p, thereby outputting the output voltage output from the piezoelectric element 14p. obtaining an amplitude value as a second amplitude value V 2.

そして、ステップS113において、第2吸収係数演算処理がなされる。この処理では、上述した第1吸収係数演算処理と同様に、第2振幅値Vに基づいて上記式(3)および式(4)により第2吸収係数mを演算する。 In step S113, a second absorption coefficient calculation process is performed. In this process, similarly to the first absorption coefficient calculation process described above, the second absorption coefficient m 2 is calculated by the above equations (3) and (4) based on the second amplitude value V 2 .

次に、図4のステップS115にて湿度演算処理がなされる。この処理では、以下に示す式(2)に第1周波数fおよび第1吸収係数mと、第2周波数fおよび第2吸収係数mと、温度Tとを代入した結果の2式から変数kを演算し、この変数kおよび大気圧Gおよび飽和蒸気圧Goに基づいて以下に示す式(1)により湿度hを演算する。
m=(33+0.2T)f×10−12
+Mf/{k/(2πf)+(2πf)/k} ・・・(2)
k=1.92×(Go/G×h)1.3×10 ・・・(1)
なお、Mは、所定の係数である。
Next, humidity calculation processing is performed in step S115 of FIG. In this process, the following two formulas are obtained by substituting the first frequency f 1 and the first absorption coefficient m 1 , the second frequency f 2 and the second absorption coefficient m 2, and the temperature T into the following formula (2). Then, the variable k is calculated from the following equation, and the humidity h is calculated based on the variable k, the atmospheric pressure G, and the saturated vapor pressure Go by the following equation (1).
m = (33 + 0.2T) f 2 × 10 −12
+ Mf / {k / (2πf) + (2πf) / k} (2)
k = 1.92 × (Go / G × h) 1.3 × 10 5 (1)
Note that M is a predetermined coefficient.

上述のように第1周波数fおよび第1吸収係数mと、第2周波数fおよび第2吸収係数mとから湿度hが演算されると、ステップS117において、吸収係数演算処理がなされる。この処理では、ECUからの制御信号に基づいて回路素子20から積層圧電素子16に印加される電圧の周波数毎に、湿度hに基づいて式(1)および式(2)により、吸収係数mを演算する。 As described above, when the humidity h is calculated from the first frequency f 1 and the first absorption coefficient m 1 and from the second frequency f 2 and the second absorption coefficient m 2 , an absorption coefficient calculation process is performed in step S117. The In this process, for each frequency of the voltage applied from the circuit element 20 to the laminated piezoelectric element 16 based on the control signal from the ECU, the absorption coefficient m is calculated by the equations (1) and (2) based on the humidity h. Calculate.

次に、ステップS119において、最小出力電圧演算処理がなされる。この処理では、上記ステップS117にて演算された吸収係数mに基づいて、超音波が伝播距離rを伝播して圧電素子14pに伝達されたときの音圧Pを、上記式(3)により演算する。そして、この音圧Pに基づいて上記式(4)により最小出力電圧Vuを演算する。このように、最小出力電圧Vuは、その湿度状態を考慮した超音波の減衰度合(音圧Pの減少度合)を推定するように演算される。   Next, in step S119, a minimum output voltage calculation process is performed. In this process, based on the absorption coefficient m calculated in step S117, the sound pressure P when the ultrasonic wave propagates through the propagation distance r and is transmitted to the piezoelectric element 14p is calculated by the above equation (3). To do. Based on this sound pressure P, the minimum output voltage Vu is calculated by the above equation (4). As described above, the minimum output voltage Vu is calculated so as to estimate the attenuation degree of the ultrasonic wave (the reduction degree of the sound pressure P) in consideration of the humidity state.

上述のように最小出力電圧Vuが演算されると、ステップS121において、最小出力電圧Vuが閾値Vsに係数αを乗算して大きくした値以下であるか否かについて判定される。最小出力電圧Vuと閾値Vsに係数αを乗算した値とを比較する理由は、最小出力電圧Vuと閾値Vsとを直接比較してしまうと、最小出力電圧Vuが低下した場合に閾値Vsを調整する前に検知すべき超音波を検出できない状態が起こりうるからである。なお、本第1参考例においては、係数αは、2.0に設定されている。また、閾値Vsに係数αを乗算して大きくした値は、特許請求の範囲に記載の「第2閾値」に相当する。   When the minimum output voltage Vu is calculated as described above, it is determined in step S121 whether or not the minimum output voltage Vu is equal to or less than a value obtained by multiplying the threshold value Vs by the coefficient α. The reason for comparing the minimum output voltage Vu and the value obtained by multiplying the threshold value Vs by the coefficient α is that if the minimum output voltage Vu and the threshold value Vs are directly compared, the threshold value Vs is adjusted when the minimum output voltage Vu decreases. This is because a state in which the ultrasonic wave to be detected before the detection cannot be detected may occur. In the first reference example, the coefficient α is set to 2.0. A value obtained by multiplying the threshold value Vs by the coefficient α corresponds to a “second threshold value” recited in the claims.

最小出力電圧Vuが閾値Vsにαを乗算した値を超える場合には、閾値Vsの調整の必要がないことから、ステップS121にてNoと判定されて、車両のイグニッションスイッチ(IGSW:図略)がON状態であり車両が始動状態であれば(S125でNo)、ステップS101以降の処理が繰り返される。   If the minimum output voltage Vu exceeds the value obtained by multiplying the threshold value Vs by α, it is not necessary to adjust the threshold value Vs. If is in the ON state and the vehicle is in the starting state (No in S125), the processes in and after step S101 are repeated.

一方、湿度hが変化することにより、最小出力電圧Vuが閾値Vsに係数αを乗算した値以下になると(ステップS121でYes)、ステップS123にて閾値減少処理がなされる。この処理では、閾値Vsが最小出力電圧Vuを係数βで除算した値と等しくなるように、減少して設定される。なお、本第1参考例では、係数βは、係数αに等しくなるように設定されているが、これに限らず、係数βは、係数αと異なるように設定されてもよい。   On the other hand, if the minimum output voltage Vu becomes equal to or less than the value obtained by multiplying the threshold value Vs by the coefficient α due to the change in the humidity h (Yes in step S121), the threshold value reduction process is performed in step S123. In this process, the threshold value Vs is set to be decreased so as to be equal to the value obtained by dividing the minimum output voltage Vu by the coefficient β. In the first reference example, the coefficient β is set to be equal to the coefficient α. However, the present invention is not limited to this, and the coefficient β may be set to be different from the coefficient α.

このように、湿度hを考慮して調整された閾値Vsに基づいて超音波を検知することにより、湿度hの変化による超音波センサ10の検出精度の低下を抑制している。なお、ステップS123にて閾値Vsを減少させるように設定して所定時間が経過した場合に、閾値Vsを初期値に戻すか、初期値まで漸増させてもよい。そして、IGSWがOFF状態になると、ステップS125にてYesと判定されて閾値調整処理を終了する。   Thus, by detecting the ultrasonic wave based on the threshold value Vs adjusted in consideration of the humidity h, a decrease in detection accuracy of the ultrasonic sensor 10 due to a change in the humidity h is suppressed. Note that when the threshold value Vs is set to decrease in step S123 and a predetermined time has elapsed, the threshold value Vs may be returned to the initial value or gradually increased to the initial value. When the IGSW is turned off, it is determined Yes in step S125, and the threshold adjustment process is terminated.

以上説明したように、本第1参考例に係る超音波センサ10では、回路素子20は、積層圧電素子16に超音波を発振するための電圧を印加するとともに、圧電素子14pから出力される出力電圧が閾値Vs以上である場合に当該受信素子12p〜12rによる超音波の受信を検知する。そして、回路素子20は、伝播距離rを伝播したときの超音波の音圧Pを、上記湿度演算処理により演算される湿度hに基づいて演算し、この音圧Pから求められる最小出力電圧Vuが、閾値Vsに係数αを乗算した値よりも小さい場合には閾値Vsを下げるように調整する。   As described above, in the ultrasonic sensor 10 according to the first reference example, the circuit element 20 applies a voltage for oscillating ultrasonic waves to the laminated piezoelectric element 16 and outputs from the piezoelectric element 14p. When the voltage is equal to or higher than the threshold value Vs, reception of ultrasonic waves by the receiving elements 12p to 12r is detected. The circuit element 20 calculates the sound pressure P of the ultrasonic wave when propagating the propagation distance r based on the humidity h calculated by the humidity calculation process, and the minimum output voltage Vu obtained from the sound pressure P. Is smaller than the value obtained by multiplying the threshold value Vs by the coefficient α, the threshold value Vs is adjusted to be lowered.

これにより、その湿度状態を考慮した超音波の減衰度合(音圧Pの減少度合)を推定することができる。そして、この超音波の減衰度合、すなわち、超音波の音圧Pから求められる最小出力電圧Vuに応じて閾値Vsを下げるように調整することにより、湿度変化に応じた閾値Vsの適切な調整をすることができる。   As a result, it is possible to estimate the attenuation level of the ultrasonic waves (the decrease level of the sound pressure P) in consideration of the humidity state. Then, by adjusting the threshold value Vs according to the degree of attenuation of the ultrasonic wave, that is, the minimum output voltage Vu obtained from the sound pressure P of the ultrasonic wave, the threshold value Vs is appropriately adjusted according to the humidity change. can do.

特に、上述した閾値調整処理では、伝播距離rを伝播した超音波の音圧Pから求められる最小出力電圧Vuが、閾値Vsに係数αを乗算して大きくした値よりも小さい場合に、閾値Vsを下げるように調整する。これにより、最小出力電圧Vuと閾値Vsとを直接比較することで、最小出力電圧Vuが低下した場合に閾値Vsを調整する前に検知すべき超音波を検出できない状態をなくすことができる。
したがって、湿度変化による検出精度の低下を抑制することができる。
In particular, in the threshold value adjustment process described above, the threshold value Vs is obtained when the minimum output voltage Vu obtained from the sound pressure P of the ultrasonic wave propagated through the propagation distance r is smaller than the value obtained by multiplying the threshold value Vs by the coefficient α. Adjust to lower. Thus, by directly comparing the minimum output voltage Vu and the threshold value Vs, it is possible to eliminate a state in which an ultrasonic wave to be detected before adjusting the threshold value Vs when the minimum output voltage Vu is reduced cannot be detected.
Therefore, a decrease in detection accuracy due to humidity change can be suppressed.

また、本第1参考例に係る超音波センサ10では、上述した閾値調整処理において、湿度演算処理により演算される湿度hに基づいて上記式(1)により変数kを演算し、この変数kに基づいて上記式(2)により吸収係数mを演算し、この吸収係数mに基づいて上記式(3)により超音波の音圧Pを演算し、この音圧Pから求められる最小出力電圧Vuが、閾値Vsに係数αを乗算して大きくした値よりも小さい場合には閾値Vsを下げるように調整する。   Further, in the ultrasonic sensor 10 according to the first reference example, the variable k is calculated by the above equation (1) based on the humidity h calculated by the humidity calculation process in the threshold adjustment process described above, and the variable k is set to the variable k. Based on the above equation (2), the absorption coefficient m is calculated, and on the basis of the absorption coefficient m, the ultrasonic sound pressure P is calculated by the above equation (3), and the minimum output voltage Vu obtained from the sound pressure P is calculated. When the threshold value Vs is smaller than a value obtained by multiplying the threshold value α by the coefficient α, the threshold value Vs is adjusted to be lowered.

このように、上記湿度演算処理により演算される湿度hに加えて超音波の周波数f、温度T、飽和蒸気圧Go、大気圧G等に基づいて、上記式(1)〜(3)により上記伝播距離rを伝播した超音波の音圧Pを演算することにより、超音波の減衰度合(音圧の減少度合)を推定することができる。   Thus, based on the frequency f of the ultrasonic wave, the temperature T, the saturated vapor pressure Go, the atmospheric pressure G and the like in addition to the humidity h calculated by the humidity calculation process, the above formulas (1) to (3) are used. By calculating the sound pressure P of the ultrasonic wave propagated through the propagation distance r, it is possible to estimate the attenuation level of the ultrasonic wave (decrease level of the sound pressure).

また、本第1参考例に係る超音波センサ10では、回路素子20は、第1周波数fの電圧を短時間積層圧電素子16に印加し、この印加により送信素子11から送信された超音波が圧電素子14pに伝達されたときの第1振幅値Vから求められる音圧Pから上記式(3)により第1吸収係数mを演算する。また、回路素子20は、第2周波数fの電圧を短時間積層圧電素子16に印加し、この印加により送信素子11から送信された超音波が圧電素子14pに伝達されたときの第2振幅値Vから求められる音圧Pから上記式(3)により第2吸収係数mを演算する。そして、回路素子20は、第1周波数fおよび第1吸収係数mを上記式(2)に代入して得られる変数kに関する式と、第2周波数fおよび第2吸収係数mを上記式(2)に代入して得られる変数kとに関する式と、上記式(1)に基づいて湿度hを演算する。 In the ultrasonic sensor 10 according to the first reference example, the circuit element 20 applies a voltage of the first frequency f 1 to the multilayer piezoelectric element 16 for a short time, and the ultrasonic wave transmitted from the transmitting element 11 by this application. There calculates a first absorption coefficient m 1 by the equation (3) from the first sound pressure P obtained from the amplitude value V 1 of the time, which is transmitted to the piezoelectric element 14p. Further, the circuit element 20, a second amplitude when the second voltage of the frequency f 2 is applied to the short time the laminated piezoelectric element 16, the ultrasonic wave transmitted from the transmitting device 11 by the application is transmitted to the piezoelectric element 14p The second absorption coefficient m 2 is calculated from the sound pressure P obtained from the value V 2 by the above formula (3). Then, the circuit element 20 calculates the equation regarding the variable k obtained by substituting the first frequency f 1 and the first absorption coefficient m 1 into the above equation (2), the second frequency f 2 and the second absorption coefficient m 2 . The humidity h is calculated on the basis of the equation relating to the variable k obtained by substituting the equation (2) and the equation (1).

これにより、湿度センサ等の特別な部材を設けることなく、湿度hを検出することができる。また、第1周波数fおよび第2周波数fは、音響整合部材13の共振周波数f近傍になっているので、湿度検出の際の送信感度を向上させることができる。その結果、湿度を検出するための製造コストの増大を抑制することができる。 Thereby, the humidity h can be detected without providing a special member such as a humidity sensor. The first frequency f 1 and the second frequency f 2, since turned around the resonance frequency f c of the acoustic matching member 13, it is possible to improve the transmission sensitivity in detecting the humidity. As a result, it is possible to suppress an increase in manufacturing cost for detecting humidity.

また、本第1参考例に係る超音波センサ10では、送信素子11の音響整合部材13は、樹脂材料により形成される。このため、例えば、シリコン基板を用いたメンブレン構造の送信素子(上記特許文献1参照)と比べて、Q値が低くなり共振ピークを低くすることができる。これにより、1つの送信素子11から音響整合部材13の共振周波数f近傍の異なる2つの周波数(第1周波数fおよび第2周波数f)の超音波を送信し易くすることができる。 In the ultrasonic sensor 10 according to the first reference example, the acoustic matching member 13 of the transmission element 11 is formed of a resin material. For this reason, for example, compared to a transmission element having a membrane structure using a silicon substrate (see Patent Document 1 above), the Q value is lowered and the resonance peak can be lowered. Thus, it is possible to easily transmit one ultrasonic resonance frequency f c vicinity two different frequencies (first frequency f 1 and the second frequency f 2) from the transmission element 11 the acoustic matching member 13.

また、本第1参考例に係る超音波センサ10では、積層圧電素子16は複数の圧電素子が積層されて形成されている。これにより、積層圧電素子16は、高い音圧の超音波を発振することができる。   In the ultrasonic sensor 10 according to the first reference example, the laminated piezoelectric element 16 is formed by laminating a plurality of piezoelectric elements. Thereby, the laminated piezoelectric element 16 can oscillate ultrasonic waves with high sound pressure.

また、本第1参考例に係る超音波センサ10では、圧電素子14pは、チタン酸ジルコン酸鉛(PZT)系材料により形成されている。これにより、音圧が低い超音波の受信をすることができ、受信感度を向上させることができる。   In the ultrasonic sensor 10 according to the first reference example, the piezoelectric element 14p is formed of a lead zirconate titanate (PZT) material. Thereby, ultrasonic waves with low sound pressure can be received, and reception sensitivity can be improved.

また、本第1参考例に係る超音波センサ10は、複数の受信素子12p〜12rを備え、各受信素子12p〜12rがアレイ状に配置される。これにより、各受信素子12p〜12rにて受信される超音波に基づいて被検出体までの距離や方位角が検出できるので、被検出体の位置の3次元検知を行うことができる。   The ultrasonic sensor 10 according to the first reference example includes a plurality of receiving elements 12p to 12r, and the receiving elements 12p to 12r are arranged in an array. Thereby, since the distance and azimuth angle to a to-be-detected body can be detected based on the ultrasonic wave received by each receiving element 12p-12r, the three-dimensional detection of the position of a to-be-detected body can be performed.

[第2参考例]
次に、本発明の第2参考例に係る超音波センサについて図5および図6を参照して説明する。図5は、第2参考例における超音波センサ10の断面図である。図6は、第2参考例における回路素子20による周波数調整処理の流れを示すフローチャートである。
[Second Reference Example]
Next, an ultrasonic sensor according to a second reference example of the present invention will be described with reference to FIGS. FIG. 5 is a cross-sectional view of the ultrasonic sensor 10 in the second reference example. FIG. 6 is a flowchart showing the flow of frequency adjustment processing by the circuit element 20 in the second reference example.

本第2参考例に係る超音波センサ10では、第1緩衝材19の誘電率を検出するための一対の電極41が新たに設けられるとともに、回路素子20における閾値調整処理を図3および図4に示すフローチャートに代えて、図6に示すフローチャートに基づいて行う点が、上記第1参考例に係る超音波センサと異なる。したがって、第1参考例の超音波センサと実質的に同一の構成部分には、同一符号を付し、その説明を省略する。   In the ultrasonic sensor 10 according to the second reference example, a pair of electrodes 41 for detecting the dielectric constant of the first buffer material 19 is newly provided, and threshold adjustment processing in the circuit element 20 is performed with reference to FIGS. 3 and 4. 6 is different from the ultrasonic sensor according to the first reference example in that it is performed based on the flowchart shown in FIG. Therefore, substantially the same components as those of the ultrasonic sensor of the first reference example are denoted by the same reference numerals, and description thereof is omitted.

図5に示すように、第1緩衝材19内には一対の電極41の一部が互いに離間した状態で埋設されている。両電極41は、ワイヤ41aを介して、回路素子20にそれぞれ電気的に接続されており、当該回路素子20は、両電極41間の静電容量から第1緩衝材19の誘電率を検出する機能を有する。   As shown in FIG. 5, a part of the pair of electrodes 41 is embedded in the first buffer material 19 in a state of being separated from each other. Both electrodes 41 are electrically connected to the circuit element 20 via wires 41a. The circuit element 20 detects the dielectric constant of the first buffer material 19 from the capacitance between the electrodes 41. It has a function.

以下、本第2参考例における回路素子20における閾値調整処理を図6に示すフローチャートを用いて説明する。
まず、図6のステップS101にて、温度T、大気圧Gおよび飽和蒸気圧Goを取得すると、ステップS115aにおいて、湿度測定処理がなされる。この処理では、第1緩衝材19に埋設された両電極41間の静電容量から第1緩衝材19の誘電率を検出する。第1緩衝材19を構成するポッティング材の誘電率は、3〜6程度であり、水の誘電率は80程度である。そうすると、湿度hが上昇すると、この湿度上昇に応じて誘電率も上昇する。このため、第1緩衝材19の誘電率に基づいて湿度hを測定することができる。
Hereinafter, the threshold value adjustment process in the circuit element 20 in the second reference example will be described with reference to the flowchart shown in FIG.
First, when the temperature T, the atmospheric pressure G, and the saturated vapor pressure Go are acquired in step S101 in FIG. 6, a humidity measurement process is performed in step S115a. In this process, the dielectric constant of the first buffer material 19 is detected from the capacitance between the electrodes 41 embedded in the first buffer material 19. The dielectric constant of the potting material constituting the first buffer material 19 is about 3 to 6, and the dielectric constant of water is about 80. Then, when the humidity h rises, the dielectric constant also rises according to this humidity rise. For this reason, the humidity h can be measured based on the dielectric constant of the first buffer material 19.

このように湿度hが測定されると、この湿度hに基づいて、上記第1参考例と同様に、ステップS117以降の処理がなされて、閾値Vsが湿度hに応じて適切に調整されることとなる。   When the humidity h is measured in this way, the processing after step S117 is performed based on the humidity h, and the threshold value Vs is appropriately adjusted according to the humidity h, as in the first reference example. It becomes.

以上説明したように、本第2参考例に係る超音波センサ10では、第1緩衝材19に埋設された両電極41間の誘電率に基づいて湿度hを測定する。このように、湿度センサ等の特別な部材を設けることなく当該第1緩衝材19に互いに離間した状態で埋設させた一対の電極を設けるだけでよく、湿度測定に関する製造コストの増大を抑制することができる。   As described above, in the ultrasonic sensor 10 according to the second reference example, the humidity h is measured based on the dielectric constant between the electrodes 41 embedded in the first buffer material 19. In this way, it is only necessary to provide a pair of electrodes embedded in the first buffer material 19 in a state of being separated from each other without providing a special member such as a humidity sensor, thereby suppressing an increase in manufacturing cost related to humidity measurement. Can do.

[第1実施形態]
次に、本発明の第1実施形態に係る超音波センサについて図7を参照して説明する。図7は、第1実施形態における超音波センサ10の一部断面図である。なお、説明の便宜上、SAW素子50が設けられる圧電素子14pの部位のみ断面でない状態を示している。
[First Embodiment]
Next, the ultrasonic sensor according to the first embodiment of the present invention will be described with reference to FIG. FIG. 7 is a partial cross-sectional view of the ultrasonic sensor 10 according to the first embodiment. For convenience of explanation, only the portion of the piezoelectric element 14p where the SAW element 50 is provided is not in a cross section.

本第1実施形態に係る超音波センサ10では、上述した一対の電極41に代えて、表面弾性波素子(以下、SAW素子50ともいう)を採用している点が、上記第2参考例に係る超音波センサと異なる。したがって、第2参考例の超音波センサと実質的に同一の構成部分には、同一符号を付し、その説明を省略する。   In the ultrasonic sensor 10 according to the first embodiment, instead of the pair of electrodes 41 described above, a surface acoustic wave element (hereinafter also referred to as a SAW element 50) is employed. Different from the ultrasonic sensor. Therefore, substantially the same components as those of the ultrasonic sensor of the second reference example are denoted by the same reference numerals, and description thereof is omitted.

図7に示すように、SAW素子50は、櫛歯状の一対の電極である電極51および電極52を備え、両電極51、52が所定の距離離間するように圧電素子14pの表面に設けられている。両電極51、52は、図略のワイヤを介して、回路素子20にそれぞれ電気的に接続されている。   As shown in FIG. 7, the SAW element 50 includes an electrode 51 and an electrode 52, which are a pair of comb-like electrodes, and is provided on the surface of the piezoelectric element 14p so that the electrodes 51 and 52 are separated from each other by a predetermined distance. ing. Both electrodes 51 and 52 are electrically connected to the circuit element 20 via unillustrated wires, respectively.

SAW素子50は、回路素子20からの制御信号に応じて、電極51から所定の周波数の表面弾性波を発生させ、圧電素子14pの表面を伝わる表面弾性波を電極52にて受信して所定の電気信号を出力する機能を有する。また、SAW素子50には通常湿度に応じて変化する膜が設けられており、湿度上昇に伴いこの膜に表面弾性波が吸収されて当該表面弾性波の振幅値が小さくなる。   The SAW element 50 generates a surface acoustic wave having a predetermined frequency from the electrode 51 in response to a control signal from the circuit element 20, receives the surface acoustic wave transmitted through the surface of the piezoelectric element 14p by the electrode 52, and receives a predetermined value. It has a function of outputting an electrical signal. Further, the SAW element 50 is provided with a film that normally changes in accordance with the humidity. As the humidity increases, the surface acoustic wave is absorbed into the film, and the amplitude value of the surface acoustic wave becomes small.

以下、本第1実施形態における回路素子20における閾値調整処理を図6に示すフローチャートを用いて説明する。
まず、図6のステップS101にて、温度T、大気圧Gおよび飽和蒸気圧Goを取得すると、ステップS115aにおいて、湿度測定処理がなされる。この処理では、上記第2参考例と異なり、回路素子20からの制御信号に応じてSAW素子50における両電極51、52間にて送受信される表面弾性波の周波数変化に基づいて、湿度hを測定する。
Hereinafter, the threshold value adjustment process in the circuit element 20 in the first embodiment will be described with reference to the flowchart shown in FIG.
First, when the temperature T, the atmospheric pressure G, and the saturated vapor pressure Go are acquired in step S101 in FIG. 6, a humidity measurement process is performed in step S115a. In this process, unlike the second reference example, the humidity h is set based on the frequency change of the surface acoustic wave transmitted and received between the electrodes 51 and 52 in the SAW element 50 in accordance with the control signal from the circuit element 20. taking measurement.

SAW素子50には湿度に応じて変化する膜が設けられていることから、湿度上昇に伴い電極51から送信された表面弾性波の振幅値に対して電極52にて受信された表面弾性波の振幅値が小さくなる。すなわち、SAW素子50における送信時の表面弾性波の振幅値と受信時の表面弾性波の振幅値との差から湿度hを測定することができる。   Since the SAW element 50 is provided with a film that changes according to humidity, the surface acoustic wave received by the electrode 52 with respect to the amplitude value of the surface acoustic wave transmitted from the electrode 51 as the humidity increases. The amplitude value becomes smaller. That is, the humidity h can be measured from the difference between the amplitude value of the surface acoustic wave during transmission and the amplitude value of the surface acoustic wave during reception in the SAW element 50.

このように湿度hが測定されると、上記第2参考例と同様にステップS117以降の処理がなされ、閾値Vsが湿度hに応じて適切に調整されることとなる。   When the humidity h is measured in this way, the processing after step S117 is performed as in the second reference example, and the threshold value Vs is appropriately adjusted according to the humidity h.

以上説明したように、本第1実施形態に係る超音波センサ10では、SAW素子50が圧電素子14pの表面に設けられている。SAW素子50の両電極51、52間において送受信される表面弾性波の周波数変化に基づいて湿度hが測定される。このように湿度hを測定してもよい。   As described above, in the ultrasonic sensor 10 according to the first embodiment, the SAW element 50 is provided on the surface of the piezoelectric element 14p. The humidity h is measured based on the frequency change of the surface acoustic wave transmitted and received between both electrodes 51 and 52 of the SAW element 50. Thus, the humidity h may be measured.

なお、SAW素子50を圧電素子14p以外の素子等の表面に設けて、SAW素子50において送受信される表面弾性波の周波数変化に基づいて湿度hを測定してもよい。   Note that the SAW element 50 may be provided on the surface of an element other than the piezoelectric element 14p, and the humidity h may be measured based on the frequency change of the surface acoustic wave transmitted and received in the SAW element 50.

なお、本発明は上記実施形態および参考例に限定されるものではなく、以下のように具体化してもよく、その場合でも、上記実施形態および参考例と同等の作用・効果が得られる。
(1)積層圧電素子16および各圧電素子14pは、チタン酸ジルコン酸鉛(PZT)により形成されることに限らず、例えば、ポリフッ化ビニリデン(PVDF)系材料により形成されてもよい。これにより、各音響整合部材13、13pとの音響インピーダンスの差が小さくなるので、超音波振動の減衰を小さくすることができる。また、ポリフッ化ビニリデン(PVDF)系材料は樹脂材料であるため、各音響整合部材13、13pのインサート成形が容易であり、好適に用いることができる。
The present invention is not limited to the above-described embodiment and reference examples, and may be embodied as follows. Even in this case, the same operations and effects as those of the above-described embodiment and reference examples can be obtained.
(1) The laminated piezoelectric element 16 and each piezoelectric element 14p are not limited to being formed of lead zirconate titanate (PZT), and may be formed of, for example, a polyvinylidene fluoride (PVDF) material. Thereby, since the difference of acoustic impedance with each acoustic matching member 13 and 13p becomes small, attenuation | damping of ultrasonic vibration can be made small. In addition, since the polyvinylidene fluoride (PVDF) -based material is a resin material, insert molding of the acoustic matching members 13 and 13p is easy, and can be suitably used.

(2)上記実施形態および参考例では、振動減衰部材18により受信面13jおよび送信面13sが覆われているが、これに限定されるものではない。例えば、振動減衰部材18は、受信面13jおよび送信面13s近傍の側面において、各音響整合部材13、13pを固定し、受信面13jおよび送信面13sを外部に露出させる構成を採用することもできる。また、この構成において露出した受信面13jおよび送信面13sを塗料などの別部材により被覆してもよい。 (2) In the embodiment and the reference example, the reception surface 13j and the transmission surface 13s are covered with the vibration damping member 18, but the present invention is not limited to this. For example, the vibration attenuating member 18 may employ a configuration in which the acoustic matching members 13 and 13p are fixed on the side surfaces near the reception surface 13j and the transmission surface 13s, and the reception surface 13j and the transmission surface 13s are exposed to the outside. . In addition, the exposed receiving surface 13j and transmitting surface 13s in this configuration may be covered with another member such as paint.

(3)振動分離部材90は、筐体31と一体的に形成することもできる。これによれば、部品点数を低減することができるとともに、振動分離部材90の位置精度を向上させることができる。 (3) The vibration separating member 90 can also be formed integrally with the housing 31. According to this, the number of parts can be reduced, and the positional accuracy of the vibration separating member 90 can be improved.

(4)各音響整合部材13、13pの形状は、横断面が略正方形の四角柱状に限らず、例えば、円柱でもよい。これによれば、各音響整合部材13、13pの不要振動を抑制することができる。 (4) The shape of each acoustic matching member 13, 13p is not limited to a quadrangular prism having a substantially square cross section, and may be, for example, a cylinder. According to this, the unnecessary vibration of each acoustic matching member 13, 13p can be suppressed.

(5)送信素子および受信素子の数および配置は、用途に応じて任意である。例えば、距離検知を行うなら、送信素子と受信素子を1個ずつ配置すればよい。また、角度検知を行うなら、送信素子1個と受信素子2個を配置すればよい。これにより、受信素子を配置した方向の角度検知を行うことができる。 (5) The number and arrangement of transmitting elements and receiving elements are arbitrary depending on the application. For example, if distance detection is performed, one transmitting element and one receiving element may be arranged. For angle detection, one transmitting element and two receiving elements may be arranged. Thereby, the angle detection of the direction which has arrange | positioned the receiving element can be performed.

10…超音波センサ
11…送信素子
12p、12q、12r…受信素子
13…音響整合部材(第1の音響整合部材)
13p…音響整合部材(第2の音響整合部材)
14p…圧電素子(第2の圧電素子)
16…積層圧電素子(第1の圧電素子)
20…回路素子(湿度検出手段、閾値調整手段)
41…電極(湿度検出手段)
50…SAW素子(表面弾性波素子)
h…湿度
P…音圧
r…伝播距離
Vs…閾値
Vu…最小出力電圧
DESCRIPTION OF SYMBOLS 10 ... Ultrasonic sensor 11 ... Transmitting element 12p, 12q, 12r ... Receiving element 13 ... Acoustic matching member (1st acoustic matching member)
13p ... Acoustic matching member (second acoustic matching member)
14p: Piezoelectric element (second piezoelectric element)
16: Multilayer piezoelectric element (first piezoelectric element)
20 ... Circuit element (humidity detection means, threshold value adjustment means)
41 ... Electrode (humidity detection means)
50 ... SAW element (surface acoustic wave element)
h ... humidity P ... sound pressure r ... propagation distance Vs ... threshold value Vu ... minimum output voltage

Claims (5)

超音波を発振可能な第1の圧電素子とこの第1の圧電素子により発振された超音波を伝達可能な第1の音響整合部材とを有し被検出体に対して前記超音波の送信を行う送信素子と、
前記被検出体にて反射された前記超音波を検出可能な第2の圧電素子とこの第2の圧電素子に前記被検出体にて反射された前記超音波を伝達可能な第2の音響整合部材とを有し前記被検出体にて反射された前記超音波の受信を行う受信素子と、
前記第1の圧電素子に前記超音波を発振するための電圧を印加するとともに、前記第2の圧電素子から出力される出力電圧が第1閾値以上である場合に当該受信素子による前記超音波の受信を検知する回路素子と、
前記送信素子および前記受信素子の周囲の湿度を検出する湿度検出手段と、
前記被検出体を検出可能に設定される距離の往復に相当する伝播距離を伝播したときの前記超音波の音圧を、前記湿度検出手段により検出される前記湿度に基づいて演算し、この音圧に応じて前記第2の圧電素子から出力される出力電圧の振幅値が、前記第1閾値より大きく設定される第2閾値よりも小さい場合には前記第1閾値を下げるように調整する閾値調整手段と、を備え、
前記第1の圧電素子および前記第2の圧電素子のいずれか一方の表面に表面弾性波素子を設け、
前記湿度検出手段は、前記表面弾性波素子において送受信される表面弾性波の周波数変化に基づいて前記湿度を検出することを特徴とする超音波センサ。
A first piezoelectric element capable of oscillating an ultrasonic wave and a first acoustic matching member capable of transmitting the ultrasonic wave oscillated by the first piezoelectric element, and transmitting the ultrasonic wave to an object to be detected. A transmitting element to perform,
A second piezoelectric element capable of detecting the ultrasonic wave reflected by the detected object and a second acoustic matching capable of transmitting the ultrasonic wave reflected by the detected object to the second piezoelectric element. A receiving element for receiving the ultrasonic wave reflected by the object to be detected.
When the voltage for oscillating the ultrasonic wave is applied to the first piezoelectric element, and the output voltage output from the second piezoelectric element is equal to or higher than a first threshold value, A circuit element for detecting reception;
Humidity detecting means for detecting the humidity around the transmitting element and the receiving element;
Based on the humidity detected by the humidity detecting means, the sound pressure of the ultrasonic wave when propagating a propagation distance corresponding to the reciprocation of the distance set so that the detected object can be detected is calculated. A threshold value that is adjusted to lower the first threshold value when the amplitude value of the output voltage output from the second piezoelectric element is smaller than the second threshold value that is set to be larger than the first threshold value according to the pressure. Adjusting means,
A surface acoustic wave element is provided on the surface of one of the first piezoelectric element and the second piezoelectric element,
The said humidity detection means detects the said humidity based on the frequency change of the surface acoustic wave transmitted / received in the said surface acoustic wave element, The ultrasonic sensor characterized by the above-mentioned.
前記第1の圧電素子は、複数の圧電素子が積層されて形成されることを特徴とする請求項1に記載の超音波センサ。   The ultrasonic sensor according to claim 1, wherein the first piezoelectric element is formed by stacking a plurality of piezoelectric elements. 前記第2の圧電素子は、チタン酸ジルコン酸鉛(PZT)系材料により形成されていることを特徴とする請求項1または2に記載の超音波センサ。   The ultrasonic sensor according to claim 1, wherein the second piezoelectric element is made of a lead zirconate titanate (PZT) -based material. 前記第1の圧電素子および前記第2の圧電素子は、ポリフッ化ビニリデン(PVDF)系材料により形成されていることを特徴とする請求項1または2に記載の超音波センサ。   The ultrasonic sensor according to claim 1, wherein the first piezoelectric element and the second piezoelectric element are made of a polyvinylidene fluoride (PVDF) material. 前記受信素子を複数備え、これら複数の前記受信素子がアレイ状に配置されることを特徴とする請求項1〜4のいずれか一項に記載の超音波センサ。   The ultrasonic sensor according to claim 1, comprising a plurality of the receiving elements, wherein the plurality of receiving elements are arranged in an array.
JP2010133488A 2010-06-11 2010-06-11 Ultrasonic sensor Expired - Fee Related JP5273097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010133488A JP5273097B2 (en) 2010-06-11 2010-06-11 Ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010133488A JP5273097B2 (en) 2010-06-11 2010-06-11 Ultrasonic sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008108465A Division JP4557040B2 (en) 2008-04-18 2008-04-18 Ultrasonic sensor

Publications (2)

Publication Number Publication Date
JP2010249834A JP2010249834A (en) 2010-11-04
JP5273097B2 true JP5273097B2 (en) 2013-08-28

Family

ID=43312291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010133488A Expired - Fee Related JP5273097B2 (en) 2010-06-11 2010-06-11 Ultrasonic sensor

Country Status (1)

Country Link
JP (1) JP5273097B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261152B2 (en) * 2008-11-27 2013-08-14 日立アロカメディカル株式会社 Ultrasonic transducer
DE102012200230A1 (en) * 2012-01-10 2013-07-11 Robert Bosch Gmbh Device and method for detecting the environment of a vehicle
JP6073646B2 (en) 2012-10-29 2017-02-01 株式会社デンソー Correction value setting device and distance detection device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235392A (en) * 1988-07-25 1990-02-05 Tokyo Keiki Co Ltd Ultrasonic distance meter
JPH0457779U (en) * 1990-08-17 1992-05-18
US5739416A (en) * 1996-09-18 1998-04-14 California Instiute Of Technology Fast, high sensitivity dewpoint hygrometer
JP2000214140A (en) * 1999-01-20 2000-08-04 Kubota Corp Sensor
JP2001108745A (en) * 1999-10-13 2001-04-20 Matsushita Electric Ind Co Ltd On-vehicle radar unit
JP4715236B2 (en) * 2005-03-01 2011-07-06 株式会社デンソー Ultrasonic sensor device
JP2007024770A (en) * 2005-07-20 2007-02-01 Denso Corp Device for detecting obstruction

Also Published As

Publication number Publication date
JP2010249834A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
US8009518B2 (en) Ultrasonic sensor with piezoelectric elements and vibration isolator
US8616061B2 (en) Ultrasonic sensor
US8098000B2 (en) Ultrasonic sensor
US7497121B2 (en) Ultrasonic sensor
JP4468262B2 (en) Obstacle detection device
JP4301298B2 (en) Ultrasonic sensor and method for manufacturing ultrasonic sensor
JP4557040B2 (en) Ultrasonic sensor
JP2007147319A (en) Obstacle detection device
US7726192B2 (en) Ultrasonic sensor
JP2008309513A (en) Ultrasonic sensor
JP2008096113A (en) Obstacle detecting device
JP2006242650A (en) Ultrasonic sensor device
JP2008309512A (en) Self-diagnosis method of ultrasonic sensor
JP4544285B2 (en) Ultrasonic sensor
JP5573455B2 (en) Ultrasonic device
JP5273097B2 (en) Ultrasonic sensor
JP4494493B2 (en) Ultrasonic sensor
JP5411072B2 (en) Ultrasonic sensor
US20060232165A1 (en) Ultrasonic transmitter-receiver
JP4509207B2 (en) Ultrasonic sensor
US11474220B2 (en) Ultrasonic device and ultrasonic measuring apparatus
JP5201087B2 (en) Transceiver and ultrasonic sensor using the same
US20220191623A1 (en) Ultrasonic sensor
WO2017141402A1 (en) Ultrasonic transmission/reception apparatus, wall member, and method for attaching ultrasonic sensor to wall member
JP2023065084A (en) ultrasonic sensor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R151 Written notification of patent or utility model registration

Ref document number: 5273097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees