JP5270499B2 - Radio wave absorber - Google Patents

Radio wave absorber Download PDF

Info

Publication number
JP5270499B2
JP5270499B2 JP2009212525A JP2009212525A JP5270499B2 JP 5270499 B2 JP5270499 B2 JP 5270499B2 JP 2009212525 A JP2009212525 A JP 2009212525A JP 2009212525 A JP2009212525 A JP 2009212525A JP 5270499 B2 JP5270499 B2 JP 5270499B2
Authority
JP
Japan
Prior art keywords
radio wave
silicon carbide
wave absorber
particle size
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009212525A
Other languages
Japanese (ja)
Other versions
JP2011061166A (en
Inventor
基宏 梅津
達也 塩貝
知之 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2009212525A priority Critical patent/JP5270499B2/en
Publication of JP2011061166A publication Critical patent/JP2011061166A/en
Application granted granted Critical
Publication of JP5270499B2 publication Critical patent/JP5270499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio wave absorber which has processability capable of thinning and has enough radio wave absorption characteristic even if being thin. <P>SOLUTION: A porous silicon carbide radio wave absorber uses a silicon carbide material powder having a mean particle size of 2 &mu;m or less and a particle size distribution of D90/D10&le;10, and contains 300 to 1,000 ppm of the total of ratios of elements, wherein the elements are one or more elements among Al, Fe, Ca, Mg, and Na. Furthermore, the porous silicon carbide radio wave absorber contains 100 to 500 ppm of Al and Fe respectively and 100 ppm or less of one or more elements among Ca, Mg, and Na respectively. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、薄型軽量の多孔質セラミックス電波吸収体に関する。 The present invention relates to a thin and light porous ceramic radio wave absorber.

電波吸収体は、種々のデバイス間のノイズや電波障害を防止するために、様々な装置に用いられている。従来フェライトなどの磁性粉末と誘電粉末または金属短繊維などとを樹脂などで複合化させたものなどが多く用いられている。 Radio wave absorbers are used in various devices to prevent noise and radio wave interference between various devices. Conventionally, a composite of magnetic powder such as ferrite and dielectric powder or short metal fiber with a resin or the like is often used.

しかしながら、電波吸収体として、樹脂を使用した場合は、吸収した電波を熱変換するため発熱して、劣化したり、変形したりする問題があった。 However, when a resin is used as the radio wave absorber, there is a problem that the absorbed radio wave generates heat and deteriorates or deforms due to heat conversion.

そこで、出願人は、樹脂を含まず耐熱性、耐久性に優れた多孔質炭化珪素セラミックスからなり、約25〜45GHzという幅広い範囲の周波数帯の電波を効率的に吸収することができる電波吸収体を提案した。 Therefore, the applicant has a radio wave absorber that is made of porous silicon carbide ceramics that does not contain resin and has excellent heat resistance and durability, and that can efficiently absorb radio waves in a wide frequency range of about 25 to 45 GHz. Proposed.

特開2003−226579号公報JP 2003-226579 A

しかしながら、近年、携帯電話やノートパソコンに見られるように種々の装置が軽量小型化、薄型化されており、特許文献1のような多孔質セラミックスのみからなる電波吸収体の場合には、薄型化するには加工性が不十分であり、また、薄型化しても十分な電波吸収特性が得られない場合があった。 However, in recent years, various devices have been made lighter, smaller, and thinner as seen in mobile phones and notebook computers. In the case of a radio wave absorber made of only porous ceramics as in Patent Document 1, the thickness is reduced. However, workability is insufficient, and sufficient radio wave absorption characteristics may not be obtained even if the thickness is reduced.

また、近年自動車の電子化が進んでおり、車載の電波吸収体には厳しい環境でも使用できる耐久性及び信頼性が必要となっている。したがって、薄型化した場合に壊れ易かったり、電波吸収性が十分でなかったりすると、自動運転を可能にする車載用レーダのような機器が誤作動を起こし、大きな事故に繋がる恐れがある。 Further, in recent years, automobiles have been digitized, and the in-vehicle radio wave absorber is required to have durability and reliability that can be used even in harsh environments. Therefore, if the device is thin when it is thinned or the radio wave absorption property is not sufficient, a device such as an in-vehicle radar that enables automatic operation may malfunction, leading to a serious accident.

本発明は、これらの問題に鑑みてなされたものであり、薄型化が可能な加工性を有し、薄型であっても、十分な電波吸収特性を有する電波吸収体を提供するものである。 The present invention has been made in view of these problems, and provides a radio wave absorber having a workability that can be reduced in thickness and having sufficient radio wave absorption characteristics even when the thickness is low.

本発明は、このような課題を解決するため、以下の(1)〜(4)を提供する。
(1)平均粒子径が2μm以下、粒度分布がD90/D10≦10である炭化珪素原料粉末を用いてなり、Al、Fe、Ca、MgまたはNaの1種以上を元素割合の合計で、300〜1000ppm含有することを特徴とする多孔質炭化珪素電波吸収体。
(2)Al及びFeをそれぞれ100〜500ppm含有することを特徴とする(1)記載の多孔質炭化珪素電波吸収体。
(3)Ca、MgまたはNaの1種以上をそれぞれ100ppm以下含有することを特徴とする(1)または(2)記載の多孔質炭化珪素電波吸収体。
(4)厚さが0.5mm以下の薄板である(1)〜(3)記載の多孔質炭化珪素電波吸収体。
The present invention provides the following (1) to (4) in order to solve such problems.
(1) A silicon carbide raw material powder having an average particle size of 2 μm or less and a particle size distribution of D90 / D10 ≦ 10 is used, and at least one of Al, Fe, Ca, Mg, or Na is used in a total element ratio of 300 A porous silicon carbide radio wave absorber comprising -1000 ppm.
(2) The porous silicon carbide radio wave absorber according to (1), which contains 100 to 500 ppm of Al and Fe, respectively.
(3) The porous silicon carbide radio wave absorber according to (1) or (2), which contains 100 ppm or less of at least one of Ca, Mg, and Na.
(4) The porous silicon carbide radio wave absorber according to (1) to (3), which is a thin plate having a thickness of 0.5 mm or less.

薄型化に十分な強度を有し、薄型であっても、十分な電波吸収特性を有する電波吸収体を提供することができる。 It is possible to provide a radio wave absorber that has sufficient strength for thinning and has sufficient radio wave absorption characteristics even if it is thin.

以下、本発明の電波吸収体について詳細に説明する。 Hereinafter, the radio wave absorber of the present invention will be described in detail.

本発明の電波吸収体は、多孔質炭化珪素からなる。多孔質炭化珪素電波吸収体にマイクロ波からミリ波帯の電波が入射すると、入射波が多孔質構造を有する炭化珪素内部で散乱、反射及び減衰することによって吸収されるため、幅広い周波数帯の電波を効率良く吸収することができる。なかでも、本発明の電波吸収体は、15〜30GHzの周波数の減衰に効果的である。 The radio wave absorber of the present invention is made of porous silicon carbide. When microwave to millimeter wave radio waves are incident on a porous silicon carbide radio wave absorber, the incident waves are absorbed by scattering, reflection and attenuation inside the silicon carbide having a porous structure. Can be efficiently absorbed. Especially, the electromagnetic wave absorber of the present invention is effective for attenuation of a frequency of 15 to 30 GHz.

多孔質炭化珪素は、Al、Fe、Ca、MgまたはNaの1種以上を元素割合の合計で、300〜1000ppm含有する。これらを含むことで、固相焼結において、粒子のネッキング開始温度を低下させる効果がある。これにより、低温焼結で、所望の気孔率を維持したまま、強固な粒子結合が可能となり、加工性も高められる。 Porous silicon carbide contains one or more of Al, Fe, Ca, Mg, or Na in a total element ratio of 300 to 1000 ppm. By including these, in the solid phase sintering, there is an effect of lowering the necking start temperature of the particles. Thereby, it is possible to perform strong particle bonding and maintain workability while maintaining a desired porosity by low-temperature sintering.

特にAl及びFeの両方を含むことにより、低温焼結における粒子結合力を高めることができる。これらを含まない場合は、加工性が低下するため、薄板加工が困難になる。また、高温での焼結を要し、気孔率を制御することが難しくなる。 In particular, by including both Al and Fe, the particle binding force in low-temperature sintering can be increased. When these are not included, the workability is lowered, and thin plate processing becomes difficult. Moreover, sintering at a high temperature is required, and it becomes difficult to control the porosity.

Al及びFeを100〜500ppm含ませることが好ましい。所定量含ませることにより、低温焼結で、所望の気孔率及び粒子結合力を有する多孔質体が得られる。また、これらの量を上記範囲とすることにより、多孔質体を薄板に加工する場合の加工性が高められる。さらに、多孔質体を加工して薄板にした場合でも十分な電波吸収性を維持できる。 It is preferable to contain 100 to 500 ppm of Al and Fe. By including a predetermined amount, a porous body having a desired porosity and particle binding force can be obtained by low-temperature sintering. Moreover, by making these amounts into the above ranges, the workability in processing the porous body into a thin plate can be enhanced. Furthermore, even when the porous body is processed into a thin plate, sufficient radio wave absorption can be maintained.

上記のように、Al及びFeを100〜500ppm含ませることに加えて、Ca、MgまたはNaの1種以上をそれぞれ100ppm以下含有することが好ましい。これらを含ませることで、固相焼結における粒子のネッキング開始温度を低下させることができる。これらの含有量のより好ましい範囲は、0.1〜100ppm、さらに好ましい範囲は1〜100ppmである。 As described above, in addition to containing 100 to 500 ppm of Al and Fe, it is preferable to contain 100 ppm or less of one or more of Ca, Mg, or Na. By including these, the necking start temperature of particles in solid phase sintering can be lowered. A more preferable range of these contents is 0.1 to 100 ppm, and a more preferable range is 1 to 100 ppm.

炭化珪素原料粉末の平均粒子径が、2μm以下であることが好ましい。さらに平均粒子径に加えて、粒度分布が、D90/D10≦10であることがより好ましい。平均粒子径を、2μm以下とすることにより低温焼結が容易になる。粒度分布を上記のように定めるのは、薄板に加工する際の加工性を高めるためである。シャープな粒度分布を有することにより、粒子結合力を高めることができる。また、加工時に多孔質体にかかる負荷を均一にし、割れ難くする効果がある。なお、本発明では、レーザー回折式粒度分布測定により求めたメディアン径(D50)をもってセラミックス粉末成形粒子の平均粒子径とする。またD90及びD10もレーザー回折式粒度分布測定により求めた値である。 The average particle diameter of the silicon carbide raw material powder is preferably 2 μm or less. Further, in addition to the average particle size, the particle size distribution is more preferably D90 / D10 ≦ 10. Low-temperature sintering is facilitated by setting the average particle size to 2 μm or less. The reason why the particle size distribution is determined as described above is to improve workability when processing into a thin plate. By having a sharp particle size distribution, the particle binding force can be increased. In addition, there is an effect of making the load applied to the porous body uniform during processing and making it difficult to break. In the present invention, the median diameter (D50) determined by laser diffraction particle size distribution measurement is used as the average particle diameter of the ceramic powder molded particles. D90 and D10 are also values obtained by laser diffraction particle size distribution measurement.

本発明の電波吸収体は、厚さが0.5mm以下の薄板である。従来の多孔質体の場合、このような薄板を得るには、多孔質体の気孔を樹脂で埋めて強度を高めなければならなかった。しかしながら、上述のように電波吸収体として樹脂を使用した場合は、吸収した電波を熱変換するため発熱して、劣化したり、変形したりするため、多孔質体の気孔を樹脂で埋めることは好ましくない。また、多孔質体の気孔内部で電波が振動することで大きな減衰効果を発揮することから、樹脂で埋めると減衰効果も低下する。本発明は、Al及びFeと、Ca、MgまたはNaとを所定量含有させることにより、気孔を樹脂で埋めなくとも、極めて薄板の電波吸収体を得られることを見出したものである。さらに、これらの含有量に加えて、原料粉末の平均粒子径や粒度分布を特定することで、より加工性を高めることができる。本発明では、厚さが0.3mm以下の薄板の作製が可能である。 The radio wave absorber of the present invention is a thin plate having a thickness of 0.5 mm or less. In the case of a conventional porous body, in order to obtain such a thin plate, the pores of the porous body had to be filled with resin to increase the strength. However, when a resin is used as a radio wave absorber as described above, heat is generated to convert the absorbed radio wave into heat, and it deteriorates or deforms. It is not preferable. In addition, since the radio wave vibrates inside the pores of the porous body and exhibits a great attenuation effect, the attenuation effect is also reduced when it is filled with resin. The present invention has been found that by containing a predetermined amount of Al and Fe and Ca, Mg or Na, an extremely thin radio wave absorber can be obtained without filling pores with resin. Furthermore, in addition to these contents, workability can be further improved by specifying the average particle size and particle size distribution of the raw material powder. In the present invention, it is possible to produce a thin plate having a thickness of 0.3 mm or less.

多孔質体の気孔率は、10〜40%が好ましい。このような範囲であれば、電波吸収性と加工性を両立できるので、薄板の電波吸収体を得ることができる。 The porosity of the porous body is preferably 10 to 40%. Within such a range, both radio wave absorptivity and workability can be achieved, so that a thin radio wave absorber can be obtained.

次に、本発明の電波吸収体の製造方法について説明する。 Next, the manufacturing method of the electromagnetic wave absorber of this invention is demonstrated.

炭化珪素粉末は、上記のような平均粒子径及び粒度分布を有するほか、酸素含有量が3.0質量%以下であることが好ましい。酸素含有量が多いと固相焼結でBやCを添加しても、酸素分を除去できず、粒子結合が不十分になり加工性が低下するためである。また、Al、Fe、Ca、Mg、Na以外の不純物は0.01%以下とすることが好ましい。 The silicon carbide powder preferably has an average particle size and particle size distribution as described above, and an oxygen content of 3.0% by mass or less. This is because if the oxygen content is high, even if B or C is added by solid phase sintering, the oxygen content cannot be removed, particle bonding becomes insufficient, and the workability deteriorates. Further, impurities other than Al, Fe, Ca, Mg, and Na are preferably 0.01% or less.

Al及びFeは、酸化物のほか、種々の化合物の形態で添加することができる。Ca、MgまたはNaは、酸化物のほか、炭酸塩、水酸化物等種々の形態で添加することができる。また、これらの含有量は、炭化珪素の原料粉末に含まれる不純物を含めた量とすることができる。 Al and Fe can be added in the form of various compounds in addition to oxides. Ca, Mg or Na can be added in various forms such as carbonates and hydroxides in addition to oxides. Moreover, these content can be made into the quantity containing the impurity contained in the raw material powder of silicon carbide.

これらの原料粉末を混合した後に、成形する。成形は、一軸加圧やCIP等のプレス成形、スラリーを用いた鋳込み成形等種々の方法を用いることができる。プレス成形の場合は、原料粉末にバインダや可塑剤等を加えてスプレードライ法により造粒した顆粒を用いても良い。 These raw material powders are mixed and then molded. For forming, various methods such as uniaxial pressing, press forming such as CIP, and casting using slurry can be used. In the case of press molding, granules obtained by adding a binder, a plasticizer or the like to the raw material powder and granulated by a spray drying method may be used.

成形後、焼成を行う。焼成は、アルゴン、ヘリウム、窒素など不活性雰囲気にて1600〜2000℃の温度範囲とすることができる。 After molding, firing is performed. Firing can be performed in a temperature range of 1600 to 2000 ° C. in an inert atmosphere such as argon, helium, and nitrogen.

得られた焼結体を加工して厚さ0.5mm以下の薄板形状に加工する。加工は、平面研削等の通常用いられる方法が採用できる。 The obtained sintered body is processed into a thin plate shape having a thickness of 0.5 mm or less. For processing, a commonly used method such as surface grinding can be employed.

以下、試験例を示して本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to test examples.

[試験例1]
平均粒子径0.7μm、粒度分布D90/D10=5.5の炭化珪素粉末に焼結助材として炭素を2%、炭化ホウ素を0.6%添加した。Fe及びAl、並びにCa、Mg及びNaを、表1に示した含有量となるように添加して混合した後、成形圧力50MPaでプレス成形し、成形体を作製した。得られた成形体をAr中にて、1700℃の温度で焼成して、炭化珪素焼結体を作製した。得られた炭化珪素焼結体を、平面研削により、形状5×20×0.3mmに加工した。平均粒子径及び粒度分布は、レーザー回折式粒度分布測定により求めた。
[Test Example 1]
As a sintering aid, 2% carbon and 0.6% boron carbide were added to a silicon carbide powder having an average particle size of 0.7 μm and a particle size distribution D90 / D10 = 5.5. Fe and Al, and Ca, Mg and Na were added and mixed so as to have the contents shown in Table 1, and then press molded at a molding pressure of 50 MPa to produce a molded body. The obtained molded body was fired in Ar at a temperature of 1700 ° C. to produce a silicon carbide sintered body. The obtained silicon carbide sintered body was processed into a shape of 5 × 20 × 0.3 mm by surface grinding. The average particle size and particle size distribution were determined by laser diffraction particle size distribution measurement.

炭化珪素焼結体を試料ホルダーに挿入し、導波管法により、直線導波管(装置:WRJ220)を用いて、20GHzの電波を、各試料に照射した時の電波吸収特性を、ネットワークアナライザを用いて測定した。結果を表1に示す。 A silicon carbide sintered body is inserted into a sample holder, and a radio wave absorption characteristic when a 20 GHz radio wave is irradiated to each sample using a linear waveguide (apparatus: WRJ220) by a waveguide method is measured with a network analyzer. It measured using. The results are shown in Table 1.

その結果、本発明のNo.3〜7、9、10では、10dBを超える減衰量を示し、優れた電波吸収能を発揮していることを確認することができた。
これに対して、本発明の範囲外であるNo.1及び2は、加工中に破損し、No.8、11及び12では、電波吸収性が低下した。
As a result, no. In 3-7, 9 and 10, the attenuation amount exceeding 10 dB was shown, and it was confirmed that excellent radio wave absorption ability was exhibited.
On the other hand, No. which is outside the scope of the present invention. Nos. 1 and 2 were damaged during processing. In 8, 11, and 12, the radio wave absorptivity decreased.

[試験例2]
次に、炭化珪素粉末の平均粒子径及び粒度分布の異なるものを用いて試験を行った。平均粒子径及び粒度分布は、レーザー回折式粒度分布測定により求めた。
[Test Example 2]
Next, tests were performed using different silicon carbide powders having different average particle sizes and particle size distributions. The average particle size and particle size distribution were determined by laser diffraction particle size distribution measurement.

平均粒子径0.4〜2.5μmの炭化珪素粉末に焼結助材として炭素を2%、炭化ホウ素を0.6%添加し、Fe及びAlを、それぞれ300ppm含有するように添加して混合した後、成形圧力50MPaでプレス成形し、成形体を作製した。得られた成形体をAr中にて、1800℃の温度で焼成して、炭化珪素焼結体を作製した。得られた炭化珪素焼結体を、平面研削により、形状5×20×0.3mmに加工した。 2% carbon and 0.6% boron carbide are added to silicon carbide powder with an average particle size of 0.4 to 2.5 μm as a sintering aid, and Fe and Al are added to each contain 300 ppm and mixed. After that, press molding was performed at a molding pressure of 50 MPa to produce a molded body. The obtained molded body was fired in Ar at a temperature of 1800 ° C. to produce a silicon carbide sintered body. The obtained silicon carbide sintered body was processed into a shape of 5 × 20 × 0.3 mm by surface grinding.

炭化珪素焼結体を試料ホルダーに挿入し、導波管法により、直線導波管(装置:WRJ220)を用いて、20GHzの電波を、各試料に照射した時の電波吸収特性を、ネットワークアナライザを用いて測定した。結果を表2に示す。 A silicon carbide sintered body is inserted into a sample holder, and a radio wave absorption characteristic when a 20 GHz radio wave is irradiated to each sample using a linear waveguide (apparatus: WRJ220) by a waveguide method is measured with a network analyzer. It measured using. The results are shown in Table 2.

その結果、本発明のNo.21〜24では、10dBを超える減衰量を示し、優れた電波吸収能を発揮していることを確認することができた。これに対して、本発明の範囲外であるNo.25〜27では、加工性が悪く、電波吸収体を得ることができなかった。 As a result, no. In 21-24, the attenuation amount exceeding 10 dB was shown, and it was confirmed that excellent radio wave absorption ability was exhibited. On the other hand, No. which is outside the scope of the present invention. In 25-27, workability was bad and a radio wave absorber could not be obtained.

Claims (4)

平均粒子径が2μm以下、粒度分布がD90/D10≦10である炭化珪素原料粉末を用いてなり、Al、Fe、Ca、MgまたはNaの1種以上を元素割合の合計で、300〜1000ppm含有することを特徴とする多孔質炭化珪素電波吸収体。 Silicon carbide raw material powder having an average particle size of 2 μm or less and a particle size distribution of D90 / D10 ≦ 10 is used, and contains at least one of Al, Fe, Ca, Mg, or Na in a total element ratio of 300 to 1000 ppm A porous silicon carbide radio wave absorber characterized by comprising: Al及びFeをそれぞれ100〜500ppm含有することを特徴とする請求項1記載の多孔質炭化珪素電波吸収体。 2. The porous silicon carbide radio wave absorber according to claim 1, which contains 100 to 500 ppm of Al and Fe, respectively. Ca、MgまたはNaの1種以上をそれぞれ100ppm以下含有することを特徴とする請求項1または2記載の多孔質炭化珪素電波吸収体。 3. The porous silicon carbide radio wave absorber according to claim 1, comprising at least 100 ppm of at least one of Ca, Mg, and Na. 4. 厚さが0.5mm以下の薄板である請求項1〜3記載の多孔質炭化珪素電波吸収体。 4. The porous silicon carbide wave absorber according to claim 1, wherein the porous silicon carbide wave absorber is a thin plate having a thickness of 0.5 mm or less.
JP2009212525A 2009-09-14 2009-09-14 Radio wave absorber Active JP5270499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009212525A JP5270499B2 (en) 2009-09-14 2009-09-14 Radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009212525A JP5270499B2 (en) 2009-09-14 2009-09-14 Radio wave absorber

Publications (2)

Publication Number Publication Date
JP2011061166A JP2011061166A (en) 2011-03-24
JP5270499B2 true JP5270499B2 (en) 2013-08-21

Family

ID=43948408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009212525A Active JP5270499B2 (en) 2009-09-14 2009-09-14 Radio wave absorber

Country Status (1)

Country Link
JP (1) JP5270499B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084296A1 (en) 2012-11-30 2014-06-05 日本化薬株式会社 Dye-sensitized solar cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851292A (en) * 1994-08-09 1996-02-20 Sumitomo Osaka Cement Co Ltd Porous silicon carbide electric wave absorber
JP2003226579A (en) * 2002-02-04 2003-08-12 Taiheiyo Cement Corp Porous silicon carbide radio wave absorber and method of producing the same

Also Published As

Publication number Publication date
JP2011061166A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
KR102339361B1 (en) Soft-magnetic flat powder and process for producing same
EP2945171A1 (en) Soft magnetic metal powder and soft magnetic metal powder core using the same
EP2520349A1 (en) Filter used for filtering molten metal and preparation method thereof
JP5299983B2 (en) Porous iron powder, method for producing porous iron powder, electromagnetic wave absorber
CN107406272B (en) Hexagonal plate-shaped ferrite powder, method for producing same, and resin composition and molded body using same
CN104470341A (en) Radio wave absorbing sheet for near field
JP2008133166A (en) Hexagonal z-type ferrite sintered body and manufacturing method thereof
JP2009218314A (en) Radio wave absorber
JP2000077222A (en) Porous composite magnetic body and manufacture of the same
JP5270499B2 (en) Radio wave absorber
JP4878255B2 (en) Ferrite-containing ceramic body and method for producing the same
JP3907642B2 (en) Ferrite material and method for producing ferrite material
EP2782436A2 (en) Radio wave invention
KR101714895B1 (en) Ferrite composition for radio wave absorber and radio wave absorber
KR101626659B1 (en) Soft magnetic material composition and manufacturing method thereof, magnetic core, and, coil type electronic component
JP5549063B2 (en) Ferrite material and method for producing ferrite material
JP5240312B2 (en) Ferrite composition for radio wave absorber and ferrite core for radio wave absorber
CN113072371B (en) High-saturation-magnetization low-temperature sintered LiZn ferrite material and preparation method thereof
JP6730546B1 (en) MnCoZn ferrite and method for producing the same
CN112041951B (en) MnCoZn-based ferrite and method for producing same
JP2010037126A (en) Ceramic composition and ceramic sintered compact
JP5687090B2 (en) Silicon nitride sintered body
JP2010111545A (en) Ferrite composition and inductor
JP4028765B2 (en) Electromagnetic wave absorber and high frequency circuit package using the same
JP4028769B2 (en) Electromagnetic wave absorber and high frequency circuit package using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5270499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250