JP5270115B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP5270115B2
JP5270115B2 JP2007165158A JP2007165158A JP5270115B2 JP 5270115 B2 JP5270115 B2 JP 5270115B2 JP 2007165158 A JP2007165158 A JP 2007165158A JP 2007165158 A JP2007165158 A JP 2007165158A JP 5270115 B2 JP5270115 B2 JP 5270115B2
Authority
JP
Japan
Prior art keywords
gas
hole
rectifying member
inflow
outflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007165158A
Other languages
Japanese (ja)
Other versions
JP2009004253A (en
Inventor
秀樹 上松
浩也 石川
昌宏 柴田
圭三 古崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2007165158A priority Critical patent/JP5270115B2/en
Publication of JP2009004253A publication Critical patent/JP2009004253A/en
Application granted granted Critical
Publication of JP5270115B2 publication Critical patent/JP5270115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a solid-oxide fuel cell designed to uniform gas concentration. <P>SOLUTION: The solid-oxide fuel cell includes a unit cell 1 having a fuel electrode 4 in contact with fuel gas at one side of a solid electrolyte material 2 and an air electrode 6 in contact with an oxide gas at another side thereof. An inlet hole 54 for supplying fuel gas is disposed at the side of the fuel electrode 4 in face to face with an outlet hole 38 for exhausting the fuel gas by interposing the unit cell 1. Further, a rectifying member 40 is formed to dispersedly settle the fuel gas from the outlet hole 54 on the surface of the fuel electrode 4. A gas-inlet layer 62 and a gas-outlet layer 44 are formed in communication with the inlet hole 54 and the outlet hole 38, respectively. At the same time, the fuel electrode 4 is disposed at the gas-outlet layer 44, the rectifying member 40 is made of a platy material while the rectifying member 40 separating the gas-inlet layer 62 from the gas-outlet layer 44, and a plurality of perforating holes 46 are formed on the rectifying member 40. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、固体電解質体の一方の側に燃料ガスに接する燃料極を他方の側に酸化剤ガスに接する空気極を設けた固体電解質型燃料電池に関する。   The present invention relates to a solid oxide fuel cell in which a fuel electrode in contact with a fuel gas is provided on one side of a solid electrolyte body and an air electrode in contact with an oxidant gas is provided on the other side.

従来より、固体電解質型燃料電池では、固体電解質体の一方の側に燃料ガスに接する燃料極を他方の側に酸化剤ガスに接する空気極を設けた単セルを構成し、一つの単セルでは高い電圧が得られないので、例えば、平板型の固体電解質型燃料電池では、単セルとインターコネクタ板とを交互に積層してスタック化している。   Conventionally, in a solid oxide fuel cell, a single cell is provided in which a fuel electrode in contact with fuel gas is provided on one side of a solid electrolyte body and an air electrode in contact with oxidant gas is provided on the other side. Since a high voltage cannot be obtained, for example, in a flat solid oxide fuel cell, single cells and interconnector plates are alternately stacked to form a stack.

燃料ガスや酸化剤ガスは、積層方向と直交する横方向から燃料極や空気極に接するように燃料極や空気極の表面に沿って流れ、使用に供された燃料ガスや酸化剤ガスは、同様に横方向から排出される。そして、発電時には単セル自体が抵抗発熱するが、上流側が燃料が濃いので発熱が大きく、下流側は燃料が薄くなって発熱が小さくなる。このため、温度分布に差が生じ、熱応力等により、単セルが破損する場合がある。   Fuel gas and oxidant gas flow along the surface of the fuel electrode and air electrode so as to come into contact with the fuel electrode and air electrode from the lateral direction perpendicular to the stacking direction. Similarly, it is discharged from the lateral direction. The unit cell itself generates resistance heat during power generation, but the upstream side is rich in fuel, so the heat is large, and the downstream side is thin and the heat is small. For this reason, a difference occurs in the temperature distribution, and the single cell may be damaged due to thermal stress or the like.

そこで、特許文献1にあるように、同一面内に複数の単セルを設けて、面内の温度分布に応じて単セルの形状、サイズを異ならせて、温度分布が均一になるようにしている。また、特許文献2にあるように、燃料ガスの流路と、酸化剤ガスの流路とが直交するガスフロータイプの固体電解質型燃料電池において、酸化剤ガスの流れを折り返すことにより、あるいは、燃料ガスの流れを折り返すことにより、温度分布が均一になるようにしている。
特開2002−270198号公報 特開2002−208417号公報
Therefore, as disclosed in Patent Document 1, a plurality of single cells are provided in the same plane, and the shape and size of the single cells are varied according to the temperature distribution in the plane so that the temperature distribution is uniform. Yes. Further, as disclosed in Patent Document 2, in the gas flow type solid oxide fuel cell in which the flow path of the fuel gas and the flow path of the oxidant gas are orthogonal to each other, by folding the flow of the oxidant gas, or The temperature distribution is made uniform by turning back the flow of the fuel gas.
JP 2002-270198 A JP 2002-208417 A

しかしながら、こうした特許文献1のものでも特許文献2のものでも、上流側では燃料が濃く、下流側では燃料が薄くなることに違いはなく、同一セル面内での発電量の不均一を解消できない。そのため、温度分布の均一化に限界があり、同一セル面内での発電量の不均一の解消や、セルの破損等に対する耐久性の改善が十分でないという問題があった。   However, in both Patent Document 1 and Patent Document 2, there is no difference in that the fuel is dense on the upstream side and the fuel is thin on the downstream side, and it is not possible to eliminate the uneven generation of power in the same cell plane. . For this reason, there is a limit to uniform temperature distribution, and there has been a problem that the non-uniformity in the amount of power generation within the same cell plane and the improvement in durability against cell breakage are not sufficient.

また、セルの発電量を決定する際、下流側の特性を基準として算出するので、セルの出力密度を低く設定しなければならず、セルが大型化してしまうという問題もあった。
本発明の課題は、ガス濃度の均一化を図った固体電解質型燃料電池を提供することにある。
Further, since the power generation amount of the cell is determined based on the characteristics on the downstream side, the output density of the cell has to be set low, resulting in a problem that the cell becomes large.
An object of the present invention is to provide a solid oxide fuel cell in which the gas concentration is made uniform.

かかる課題を達成すべく、本発明は課題を解決するため次の手段を取った。即ち、
固体電解質体の一方の側に燃料ガスに接する燃料極を他方の側に酸化剤ガスに接する空気極を設けた単セルを備えた固体電解質型燃料電池において、
少なくとも前記燃料極又は前記空気極の一方の極側で、前記単セルを間に前記ガスが供給される流入孔と前記ガスが排出される流出孔とを対向して配置すると共に、前記流入孔からの前記ガスを前記極の表面に分散して導く整流部材を設ける。
In order to achieve this problem, the present invention has taken the following measures in order to solve the problem. That is,
In a solid oxide fuel cell comprising a single cell provided with a fuel electrode in contact with fuel gas on one side of the solid electrolyte body and an air electrode in contact with oxidant gas on the other side,
The inflow hole through which the gas is supplied and the outflow hole through which the gas is discharged are disposed opposite to each other between the unit cells on at least one of the fuel electrode and the air electrode, and the inflow hole the gas from Ru provided a rectifying member that guides distributed on the surface of the electrode.

さらに、前記流入孔に連通したガス流入層と前記流出孔に連通したガス流出層とを形成すると共に、前記ガス流出層に前記極を配置し、また、前記整流部材は板状で、前記ガス流入層と前記ガス流出層とを前記整流部材により積層方向に仕切ると共に、前記整流部材に複数の通過孔を形成し、前記流入孔と前記流出孔とは、前記整流部材を隔てて配置されたことを特徴とする固体電解質型燃料電池がそれである。その際、前記ガス流入層に改質触媒を配置した構成としてもよい。あるいは、前記ガス流入層に金属メッシュ又は発泡金属を配置した構成としてもよい。また、前記整流部材は導電性を有し、かつ、前記整流部材の少なくとも一部が前記整流部材との間に前記ガス流入層を形成するインターコネクタ板及び前記極に接している構成としてもよい。 Further, a gas inflow layer communicating with the inflow hole and a gas outflow layer communicating with the outflow hole are formed, the pole is disposed in the gas outflow layer, the rectifying member is plate-shaped, and the gas The inflow layer and the gas outflow layer are partitioned in the stacking direction by the rectifying member, and a plurality of passage holes are formed in the rectifying member, and the inflow hole and the outflow hole are arranged with the rectifying member being separated from each other. This is a solid oxide fuel cell. In that case, it is good also as a structure which has arrange | positioned the reforming catalyst in the said gas inflow layer. Or it is good also as a structure which has arrange | positioned the metal mesh or the foam metal in the said gas inflow layer. The rectifying member may be conductive, and at least a part of the rectifying member may be in contact with the interconnector plate and the pole that form the gas inflow layer with the rectifying member. .

更には、前記整流部材の前記流入孔側には、前記整流部材の前記流出孔側よりも多くの前記通過孔を形成した構成としてもよい。あるいは、前記整流部材の前記流入孔側に形成した前記通過孔の断面積は、前記整流部材の前記流出孔側に形成した前記通過孔の断面積よりも大きい構成としてもよい。また、前記整流部材の縁側に形成した前記通過孔の断面積は、前記整流部材の中央側に形成した前記通過孔の断面積よりも大きい構成としてもよい。前記流出孔の総断面積≧前記流入孔の総断面積≧前記通過孔の総断面積となる関係に形成してもよい。   Furthermore, it is good also as a structure which formed more passage holes in the said inflow hole side of the said baffle member than the said outflow hole side of the said baffle member. Or the cross-sectional area of the said through-hole formed in the said inflow hole side of the said baffle member is good also as a structure larger than the cross-sectional area of the said through-hole formed in the said outflow hole side of the said baffle member. The cross-sectional area of the passage hole formed on the edge side of the rectifying member may be larger than the cross-sectional area of the passage hole formed on the center side of the rectifying member. The total cross-sectional area of the outflow holes ≧ the total cross-sectional area of the inflow holes ≧ the total cross-sectional area of the passage holes may be satisfied.

また、前記流入孔に連通したガス流入層と前記流出孔に連通したガス流出層とを形成すると共に、前記ガス流出層に前記極を配置し、かつ、前記ガス流入層に金属メッシュ又は発泡金属からなる前記整流部材を配置した構成としてもよい。   In addition, a gas inflow layer communicating with the inflow hole and a gas outflow layer communicating with the outflow hole are formed, the electrode is disposed in the gas outflow layer, and a metal mesh or a foam metal is formed in the gas inflow layer. It is good also as a structure which has arrange | positioned the said rectification | straightening member which consists of.

本発明の固体電解質型燃料電池は、整流部材がガスを極の表面に分散して導くので、ガス濃度の均一化を図ることができ、これにより、温度分布が均一化されてセルの破損等を防止できるという効果を奏する。   In the solid oxide fuel cell of the present invention, the rectifying member distributes and guides the gas to the surface of the electrode, so that the gas concentration can be made uniform, thereby making the temperature distribution uniform and damaging the cell. The effect that can be prevented.

また、複数の通過孔を設けた板状の整流部材によりガス流入層とガス流出層とを仕切ることにより、極の表面にガスを分散して導くことができる。更に、従来技術は、発電に必要な燃料(または空気)を電極面に対して、平行に供給しているが、複数の通過孔を設けた板状の整流部材によりガス流入層とガス流出層とに仕切ることにより供給するガスを電極面に対して垂直方向に供給することができるので、ガス濃度の均一化を図ることができる。   Further, the gas can be distributed and guided to the surface of the electrode by partitioning the gas inflow layer and the gas outflow layer by a plate-like rectifying member having a plurality of passage holes. Further, the conventional technology supplies fuel (or air) necessary for power generation in parallel to the electrode surface, but the gas inflow layer and the gas outflow layer are formed by a plate-like rectifying member provided with a plurality of passage holes. Since the gas to be supplied can be supplied in a direction perpendicular to the electrode surface, the gas concentration can be made uniform.

また、ガス流入層に改質触媒を配置することにより、小型化を図ることができる。また、通過孔の配置や断面積の大きさを変えることにより、よりガス濃度の均一化を図ることができる。   Further, it is possible to reduce the size by arranging the reforming catalyst in the gas inflow layer. Further, the gas concentration can be made more uniform by changing the arrangement of the passage holes and the size of the cross-sectional area.

流出孔の総断面積≧流入孔の総断面積≧通過孔の総断面積となる関係に形成することにより、流入孔から流出孔へガスが流れる際に、各通過孔に分散して流れ整流効果をより確実に得ることができる。   By forming the relationship such that the total cross-sectional area of the outflow hole ≧ the total cross-sectional area of the inflow hole ≧ the total cross-sectional area of the through-hole, when gas flows from the inflow hole to the outflow hole, The effect can be obtained more reliably.

以下本発明を実施するための最良の形態を図面に基づいて詳細に説明する。
図1に示すように、1は単セルで、単セル1は、平板状の固体酸化物を用いた固体電解質体2を備え、固体電解質体2の一方の側に燃料極4が、固体電解質体2の他方の側に空気極6が設けられている。
The best mode for carrying out the present invention will be described below in detail with reference to the drawings.
As shown in FIG. 1, 1 is a single cell, and the single cell 1 includes a solid electrolyte body 2 using a flat solid oxide, and a fuel electrode 4 is provided on one side of the solid electrolyte body 2. An air electrode 6 is provided on the other side of the body 2.

空気極6は、気相の酸素が電子と反応して酸素イオンになる場であり、酸素が空気極6上に吸着・解離し、電子と反応場において結合し、酸素イオンとなる。空気極6には多孔質体が用いられ、その材料としては、例えば、各種の金属、金属の酸化物、金属の複酸化物等を用いることができる。   The air electrode 6 is a field where oxygen in the gas phase reacts with electrons to become oxygen ions, and oxygen is adsorbed and dissociated on the air electrode 6 and combined with electrons in the reaction field to become oxygen ions. A porous body is used for the air electrode 6, and as the material, for example, various metals, metal oxides, metal double oxides, and the like can be used.

金属としては、Pt、Au、Ag、Pd、Ir、Ru及びRh等の金属又は2種以上の金属を含有する合金が挙げられる。更に、金属の酸化物としては、La、Sr、Ce、Co、Mn及びFe等の酸化物(La23、SrO、Ce23、Co23、MnO2及びFeO等)が挙げられる。また、複酸化物としては、少なくともLa、Pr、Sm、Sr、Ba、Co、Fe及びMn等を含有する複酸化物(La1-xSrxCoO3系複酸化物、La1-xSrxFeO3系複酸化物、La1-xSrxCo1-yFey3系複酸化物、La1-xSrxMnO3系複酸化物、Pr1-xBaxCoO3系複酸化物及びSm1-xSrxCoO3系複酸化物等)が挙げられる。 Examples of the metal include metals such as Pt, Au, Ag, Pd, Ir, Ru, and Rh, or alloys containing two or more metals. Furthermore, examples of the metal oxide include oxides such as La, Sr, Ce, Co, Mn and Fe (La 2 O 3 , SrO, Ce 2 O 3 , Co 2 O 3 , MnO 2 and FeO). It is done. As the double oxide, a double oxide containing at least La, Pr, Sm, Sr, Ba, Co, Fe, Mn, etc. (La 1-x Sr x CoO 3 -based double oxide, La 1-x Sr x FeO 3 -based double oxide, La 1-x Sr x Co 1-y Fe y O 3 -based double oxide, La 1-x Sr x MnO 3 -based double oxide, Pr 1-x Ba x CoO 3 -based double oxide Oxide and Sm 1-x Sr x CoO 3 -based double oxide).

固体電解質体2は、空気極6から燃料極4に酸素イオンを運ぶ働きをし、空気極6において生成する酸素イオンは固体電解質体2に移動し、固体電解質体2の酸素空孔と位置を交換しながら燃料極4側に移動する。固体電解質体2は酸素イオン導電性酸化物であり、電子導電性はなく、気相の水素と酸素とを物理的に隔離する。   The solid electrolyte body 2 functions to carry oxygen ions from the air electrode 6 to the fuel electrode 4. The oxygen ions generated in the air electrode 6 move to the solid electrolyte body 2, and the oxygen vacancies and positions of the solid electrolyte body 2 are moved. It moves to the fuel electrode 4 side while exchanging. The solid electrolyte body 2 is an oxygen ion conductive oxide, has no electronic conductivity, and physically separates hydrogen and oxygen in the gas phase.

固体電解質体2の材料としては、例えばZrO2系セラミック、LaGaO3系セラミック、BaCeO3系セラミック、SrCeO3系セラミック、SrZrO3系セラミック、及びCaZrO3系セラミック等が挙げられる。 Examples of the material of the solid electrolyte body 2 include ZrO 2 ceramics, LaGaO 3 ceramics, BaCeO 3 ceramics, SrCeO 3 ceramics, SrZrO 3 ceramics, and CaZrO 3 ceramics.

燃料極4は、水素が酸素イオンと反応して水蒸気と電子を生成する反応場であり、水素は燃料極4上に吸着・解離して水素原子になり、更に固体電解質体2の酸素イオンと反応して水蒸気になる。   The fuel electrode 4 is a reaction field in which hydrogen reacts with oxygen ions to generate water vapor and electrons. Hydrogen is adsorbed and dissociated on the fuel electrode 4 to form hydrogen atoms, and further, oxygen ions of the solid electrolyte body 2 Reacts to steam.

燃料極4には多孔質体が用いられ、その材料としては、例えば、Ni及びFe等の金属と、Sc、Y等の希土類元素のうちの少なくとも1種により安定化されたジルコニア等のZrO2系セラミック、CeO2系セラミック等のセラミックのうちの少なくとも1種との混合物などが挙げられる。 A porous body is used for the fuel electrode 4, and examples of the material thereof include ZrO 2 such as zirconia stabilized by at least one of metals such as Ni and Fe and rare earth elements such as Sc and Y. Examples thereof include a mixture with at least one of ceramics such as ceramics and CeO 2 ceramics.

また、Pt、Au、Ag、Pd、Ir、Ru、Rh、Ni及びFe等の金属が挙げられる。これらの金属は1種のみでもよいし、2種以上の金属の合金でもよい。更に、これらの金属や合金と、上記セラミックの各々の少なくとも1種との混合物(サーメットを含む)が挙げられる。また、Ni及びFe等の金属の酸化物と、上記セラミックの各々の少なくとも1種との混合物などが挙げられる。   Moreover, metals, such as Pt, Au, Ag, Pd, Ir, Ru, Rh, Ni, and Fe, are mentioned. These metals may be used alone or in an alloy of two or more metals. Furthermore, a mixture (including cermet) of these metals and alloys and at least one of each of the above ceramics can be mentioned. Moreover, the mixture of metal oxides, such as Ni and Fe, and at least 1 type of each of the said ceramic etc. are mentioned.

本実施形態では、燃料極4の厚さを厚く形成して、燃料極4で支持するように構成されており、いわゆる支持膜式といわれる構成である。図2に示すように、単セル1は、金属製のセパレータ8に取り付けられており、セパレータ8はほぼ矩形に形成されて、中央には矩形状の貫通窓9が形成されている。貫通窓9は空気極6よりも大きく、固体電解質体2よりも小さく形成されており、空気極6が貫通窓9を通して臨むように単セル1がセパレータ8に取り付けられている。   In the present embodiment, the fuel electrode 4 is formed to be thick and supported by the fuel electrode 4, which is a so-called support film type. As shown in FIG. 2, the single cell 1 is attached to a metal separator 8, the separator 8 is formed in a substantially rectangular shape, and a rectangular through window 9 is formed in the center. The through window 9 is larger than the air electrode 6 and smaller than the solid electrolyte body 2, and the single cell 1 is attached to the separator 8 so that the air electrode 6 faces through the through window 9.

また、セパレータ8には、4個の取付孔10がセパレータ8の四隅にそれぞれ貫通形成されると共に、セパレータ8には、セパレータ8の縁に沿って、4個の流路孔11−1〜11−4が四隅の各取付孔10の中間に貫通形成されている。   The separator 8 has four mounting holes 10 penetratingly formed at the four corners of the separator 8, and the separator 8 has four channel holes 11-1 to 11-11 along the edge of the separator 8. -4 is formed in the middle of each mounting hole 10 at the four corners.

セパレータ8には、中央に中抜き孔12が形成された枠状の絶縁板13が積層されており、電気絶縁性を有する絶縁板13にも取付孔14及び流路孔15−1〜15−4が、セパレータ8の取付孔10及び流路孔11−1〜11−4と同じ位置に設けられている。絶縁板13には空気極フレーム16が積層されており、空気極フレーム16は中央に中抜き孔17が形成された枠状に形成されると共に、その周囲に取付孔18及び流路孔19−1〜19−4がセパレータ8の取付孔10及び流路孔11−1〜11−4と同じ位置に設けられている。   The separator 8 is laminated with a frame-shaped insulating plate 13 having a hollow 12 formed in the center. The insulating plate 13 having electrical insulation also has a mounting hole 14 and channel holes 15-1 to 15-. 4 is provided at the same position as the mounting hole 10 and the flow path holes 11-1 to 11-4 of the separator 8. An air electrode frame 16 is laminated on the insulating plate 13, and the air electrode frame 16 is formed in a frame shape in which a hollow hole 17 is formed in the center, and a mounting hole 18 and a flow path hole 19-are formed around the air hole frame 16. 1-19-4 are provided at the same positions as the mounting hole 10 and the flow path holes 11-1 to 11-4 of the separator 8.

本実施形態では、複数の流路孔19−1〜19−4のうちの単セル1を間に対向する2つの流路孔19−1,19−2に連通して流入孔20と流出孔22とが形成されている。流入孔20と流出孔22とは、空気極フレーム16の絶縁板13側の平坦面が溝状に窪まされて、流路孔19−1,19−2と空気極フレーム16の中抜き孔17とが連通されるように形成されている。尚、複数の流路孔19−1〜19−4のうち、添字−1の流路孔19−1には流入孔20が連通し、添字−2の流路孔19−2には、流出孔22が連通していることを示す。前述及び後述する各流路孔11−1,11−2,15−1,15−2,26−1,26−2,36−1,36−2,42−1,42−2,52−1,52−2,58−1,58−2についても同様である。   In the present embodiment, the inflow hole 20 and the outflow hole communicate with the two flow path holes 19-1 and 19-2 facing the single cell 1 among the plurality of flow path holes 19-1 to 19-4. 22 is formed. The inflow hole 20 and the outflow hole 22 are formed such that the flat surface on the insulating plate 13 side of the air electrode frame 16 is recessed in a groove shape, and the flow hole 19-1, 19-2 and the hollow hole 17 in the air electrode frame 16. And are communicated with each other. Of the plurality of flow path holes 19-1 to 19-4, the inflow hole 20 communicates with the subscript-1 flow path hole 19-1, and the subscript-2 flow path hole 19-2 has an outflow. It shows that the hole 22 communicates. Each channel hole 11-1, 11-2, 15-1, 15-2, 26-1, 26-2, 36-1, 36-2, 42-1, 42-2, 52- mentioned above and later. The same applies to 1, 52-2, 58-1, and 58-2.

空気極フレーム16には平板状のインターコネクタ板24が積層されており、インターコネクタ板24は電気導電性を有する金属板等により形成されている。インターコネクタ板24にも取付孔25及び流路孔26−1〜26−4が形成されており、セパレータ8の取付孔10及び流路孔11−1〜11−4と同じ位置に設けられている。   A flat interconnector plate 24 is laminated on the air electrode frame 16, and the interconnector plate 24 is formed of a metal plate having electrical conductivity. The interconnector plate 24 also has attachment holes 25 and flow passage holes 26-1 to 26-4, which are provided at the same positions as the attachment holes 10 and the flow passage holes 11-1 to 11-4 of the separator 8. Yes.

インターコネクタ板24と空気極6との間には、電気導電性を有する金属メッシュや目の粗い発泡金属等からなる集電体28が配置されて、インターコネクタ板24と空気極6とが集電体28を介して導通されている。   Between the interconnector plate 24 and the air electrode 6, a current collector 28 made of an electrically conductive metal mesh, a coarse foam metal or the like is disposed, and the interconnector plate 24 and the air electrode 6 are collected. Conduction is made through the electric body 28.

絶縁板13の中抜き孔12と空気極フレーム16の中抜き孔17とが、単セル1、セパレータ8、インターコネクタ板24により閉塞されて、ガス流出入層30が形成されており、ガス流出入層30に露出した空気極6に、ガス流出入層30内の酸化剤ガスが接することができるように構成されている。   The insulating plate 13 and the air electrode frame 16 are closed by the single cell 1, the separator 8, and the interconnector plate 24 to form a gas inflow / outflow layer 30. The oxidant gas in the gas inflow / outflow layer 30 can be in contact with the air electrode 6 exposed to the inflow layer 30.

また、セパレータ8の燃料極4側の面には、中央に中抜き孔32が形成された枠状のガス流出層用フレーム34が重ね合わされ、セパレータ8とガス流出層用フレーム34とが積層されている。   Further, a frame-like gas outflow layer frame 34 having a hollow hole 32 formed in the center is overlaid on the surface of the separator 8 on the fuel electrode 4 side, and the separator 8 and the gas outflow layer frame 34 are laminated. ing.

中抜き孔32は、燃料極4よりも大きく形成されて、中抜き孔32内に燃料極4が収納できるように形成されている。ガス流出層用フレーム34の厚さは、固体電解質体2と燃料極4との合計厚さとほぼ同じに形成されている。   The hollow hole 32 is formed larger than the fuel electrode 4 so that the fuel electrode 4 can be accommodated in the hollow hole 32. The thickness of the gas outflow layer frame 34 is substantially the same as the total thickness of the solid electrolyte body 2 and the fuel electrode 4.

ガス流出層用フレーム34にも複数の取付孔35及び流路孔36−1〜36−4が、セパレータ8の取付孔10及び流路孔11−1〜11−4と同じ位置に設けられている。複数の流路孔36−1〜36−4のうちの一つの流路孔36−3に連通して流出孔38が形成されている。流出孔38はセパレータ8と反対側の平坦面が溝状に窪まされて、流路孔36−3とガス流出層用フレーム34の中抜き孔32とが連通されるように形成されている。ガス流出層用フレーム34の流出孔38は、空気極フレーム16の流出孔22とは位相が90度異なるように形成されている。流出孔38は、1個に限らず、並列に複数個形成してもよい。尚、複数の流路孔36−1〜36−4のうち、添字−3の流路孔36−3は流出孔38に連通していることを示す。前述及び後述する各流路孔11−3,15−3,19−3,26−3,42−3,52−3,58−3についても同様である。   The gas outflow layer frame 34 also has a plurality of mounting holes 35 and flow path holes 36-1 to 36-4 provided at the same positions as the mounting holes 10 and the flow path holes 11-1 to 11-4 of the separator 8. Yes. An outflow hole 38 is formed in communication with one flow path hole 36-3 among the plurality of flow path holes 36-1 to 36-4. The outflow hole 38 is formed so that the flat surface opposite to the separator 8 is recessed in a groove shape so that the flow path hole 36-3 and the hollow hole 32 of the gas outflow layer frame 34 communicate with each other. The outflow hole 38 of the gas outflow layer frame 34 is formed so as to be 90 degrees out of phase with the outflow hole 22 of the air electrode frame 16. The number of outflow holes 38 is not limited to one, and a plurality of outflow holes 38 may be formed in parallel. Of the plurality of flow path holes 36-1 to 36-4, the flow path hole 36-3 with the suffix “-3” communicates with the outflow hole 38. The same applies to the flow path holes 11-3, 15-3, 19-3, 26-3, 42-3, 52-3, and 58-3 described above and later.

ガス流出層用フレーム34には、更に、板状の整流部材40が重ね合わされて、ガス流出層用フレーム34と整流部材40とが積層されている。整流部材40にも取付孔41及び流路孔42−1〜42−4が、セパレータ8の取付孔10及び流路孔11−1〜11−4と同じ位置に設けられている。   The gas outflow layer frame 34 is further laminated with a plate-like rectifying member 40, and the gas outflow layer frame 34 and the rectifying member 40 are laminated. The rectifying member 40 is also provided with attachment holes 41 and flow passage holes 42-1 to 42-4 at the same positions as the attachment holes 10 and the flow passage holes 11-1 to 11-4 of the separator 8.

ガス流出層用フレーム34の中抜き孔32が、単セル1、セパレータ8、整流部材40により閉塞されて、ガス流出層44が形成されており、ガス流出層44に固体電解質体2と燃料極4とが収納されている。整流部材40は電気導電性を有する金属等により形成されており、整流部材40は燃料極4の表面に接触するように配置されている。また、整流部材40には、燃料極4の表面に対向して多数の通過孔46がほほ均等に分散して配置されている。   The gas outflow layer frame 34 is closed by the single cell 1, the separator 8, and the rectifying member 40 to form a gas outflow layer 44, and the solid electrolyte body 2 and the fuel electrode are formed in the gas outflow layer 44. 4 is stored. The rectifying member 40 is formed of an electrically conductive metal or the like, and the rectifying member 40 is disposed so as to contact the surface of the fuel electrode 4. In addition, a large number of through holes 46 are arranged in the rectifying member 40 so as to face the surface of the fuel electrode 4 and are almost uniformly distributed.

整流部材40には、中央に中抜き孔48が形成された枠状のガス流入層用フレーム50が重ね合わされて、整流部材40とガス流入層用フレーム50とが積層されている。ガス流入層用フレーム50の中抜き孔48は、ガス流出層用フレーム34の中抜き孔32とほぼ同じ大きさに形成されている。   A rectifying member 40 and a gas inflow layer frame 50 are stacked on the rectifying member 40 by superimposing a frame-like gas inflow layer frame 50 having a hollow 48 formed in the center. The hole 48 of the gas inflow layer frame 50 is formed to have substantially the same size as the hole 32 of the gas outflow layer frame 34.

ガス流入層用フレーム50にも複数の取付孔51及び流路孔52−1〜52−4が、セパレータ8の取付孔10及び流路孔11−1〜11−4と同じ位置に設けられている。複数の流路孔52−1〜52−4のうちの一つの流路孔52−4に連通して流入孔54が形成されている。流入孔54は整流部材40と反対側の平坦面が溝状に窪まされて、流路孔52−4とガス流入層用フレーム50の中抜き孔48とが連通されるように形成されている。ガス流入層用フレーム50の流入孔54は、ガス流出層用フレーム34の流出孔38と単セル1を間にして対向して形成されている。流入孔54は、1個に限らず、並列に複数個形成してもよい。   The gas inflow layer frame 50 is also provided with a plurality of mounting holes 51 and channel holes 52-1 to 52-4 at the same positions as the mounting holes 10 and the channel holes 11-1 to 11-4 of the separator 8. Yes. An inflow hole 54 is formed in communication with one of the plurality of flow path holes 52-1 to 52-4. The inflow hole 54 is formed so that the flat surface opposite to the rectifying member 40 is recessed in a groove shape so that the flow path hole 52-4 and the hollow hole 48 of the gas inflow layer frame 50 communicate with each other. . The inflow hole 54 of the gas inflow layer frame 50 is formed to face the outflow hole 38 of the gas outflow layer frame 34 with the single cell 1 in between. The number of inflow holes 54 is not limited to one, and a plurality of inflow holes 54 may be formed in parallel.

尚、複数の流路孔52−1〜52−4のうち、添字−4の流路孔52−4は流入孔54に連通していることを示す。前述及び後述する各流路孔11−4,15−4,19−4,26−4,36−4,42−4,58−4についても同様である。また、流出孔38、流入孔54、通過孔46との流路断面積の大きさが、流出孔38の総断面積≧流入孔54の総断面積≧通過孔46の総断面積となる関係に形成するとよい。   Of the plurality of flow path holes 52-1 to 52-4, the subscript-4 flow path hole 52-4 communicates with the inflow hole 54. The same applies to the flow path holes 11-4, 15-4, 19-4, 26-4, 36-4, 42-4, and 58-4 described above and later. Further, the relationship in which the size of the cross-sectional area of the outflow hole 38, the inflow hole 54, and the passage hole 46 is such that the total cross-sectional area of the outflow hole 38 ≧ total cross-sectional area of the inflow hole 54 ≧ total cross-sectional area of the passage hole 46. It is good to form.

ガス流入層用フレーム50には、平板状のインターコネクタ板56が重ね合わされて、ガス流入層用フレーム50とインターコネクタ板56とが積層されている。インターコネクタ板56は電気導電性を有する金属板等により形成されている。インターコネクタ板56にも取付孔57及び流路孔58−1〜58−4が形成されており、セパレータ8の取付孔10及び流路孔11−1〜11−4と同じ位置に設けられている。   On the gas inflow layer frame 50, a flat interconnector plate 56 is overlapped, and the gas inflow layer frame 50 and the interconnector plate 56 are laminated. The interconnector plate 56 is formed of a metal plate having electrical conductivity. The interconnector plate 56 also has attachment holes 57 and flow passage holes 58-1 to 58-4, which are provided at the same positions as the attachment holes 10 and the flow passage holes 11-1 to 11-4 of the separator 8. Yes.

整流部材40とインターコネクタ板56との間には、電気導電性を有する金属メッシュや目の粗い発泡金属等からなる集電体60が配置されて、整流部材40とインターコネクタ板56とが集電体60を介して導通されている。尚、集電体60を設けることなく、燃料極4とインターコネクタ板56とを整流部材40及びガス流入層用フレーム50を介して導通するようにしてもよいが、整流部材40の厚さが薄いので、その際には、電気抵抗が増加する。   Between the rectifying member 40 and the interconnector plate 56, a current collector 60 made of a metal mesh having electrical conductivity or a foam metal having a coarse opening is disposed, and the rectifying member 40 and the interconnector plate 56 are collected. Conduction is made through the electric body 60. Although the current collector 60 may not be provided, the fuel electrode 4 and the interconnector plate 56 may be electrically connected to each other via the rectifying member 40 and the gas inflow layer frame 50. Since it is thin, the electrical resistance increases at that time.

ガス流入層用フレーム50の中抜き孔48は、整流部材40とインターコネクタ板56とにより閉塞されて、ガス流入層62が形成されている。尚、集電体60に、メタンガスを改質する改質触媒を担持するようにしてもよい。これにより、燃料ガスとして都市ガスを用いた際に、燃料ガスに含まれるメタンガスを改質できる。   The hollow hole 48 of the gas inflow layer frame 50 is closed by the rectifying member 40 and the interconnector plate 56 to form a gas inflow layer 62. The current collector 60 may carry a reforming catalyst for reforming methane gas. Thereby, when city gas is used as fuel gas, methane gas contained in fuel gas can be reformed.

インターコネクタ板24、空気極フレーム16、絶縁板13、セパレータ8、ガス流出層用フレーム34、整流部材40、ガス流入層用フレーム50、インターコネクタ板56の各取付孔25,18,14,10,35,41,51,57には、それぞれ図示しないボルトが挿入され、また、これらの各流路孔26,19,15,11,36,42,52,58にも図示しないボルトが絶縁されて挿入され、これらが積層固定されている。尚、これらが複数交互に積層されて燃料電池が構成されている。   Mounting holes 25, 18, 14, 10 of the interconnector plate 24, the air electrode frame 16, the insulating plate 13, the separator 8, the gas outflow layer frame 34, the rectifying member 40, the gas inflow layer frame 50, and the interconnector plate 56. , 35, 41, 51, 57 are respectively inserted with bolts (not shown), and these passage holes 26, 19, 15, 11, 36, 42, 52, 58 are also insulated with bolts (not shown). These are inserted and fixed in layers. A plurality of these are alternately stacked to constitute a fuel cell.

また、空気極フレーム16の流入孔20に連通する各流路孔26−1,19−1,15−1,11−1,36−1,42−1,52−1,58−1には、酸化剤ガスが供給されて、流入孔20からガス流出入層30に流入する。空気極フレーム16の流出孔22に連通する各流路孔26−2,19−2,15−2,11−2,36−2,42−2,52−2,58−2には、ガス流出入層30からの消費された酸化剤ガスが流出する。   In addition, each flow passage hole 26-1, 19-1, 15-1, 11-1, 36-1, 42-1, 52-1, 58-1 communicating with the inflow hole 20 of the air electrode frame 16 The oxidant gas is supplied and flows into the gas inflow / outflow layer 30 from the inflow hole 20. Gas passage holes 26-2, 19-2, 15-2, 11-2, 36-2, 42-2, 52-2, and 58-2 communicating with the outflow holes 22 of the air electrode frame 16 have gasses. The consumed oxidant gas from the inflow / outflow layer 30 flows out.

更に、ガス流入層用フレーム50の流入孔54に連通する各流路孔26−4,19−4,15−4,11−4,36−4,42−4,52−4,58−4には、燃料ガスが供給されて、流入孔54からガス流入層62に流入する。ガス流出層用フレーム34の流出孔38に連通している各流路孔26−3,19−3,15−3,11−3,36−3,42−3,52−3,58−3からは、ガス流出層44からの消費された燃料ガスが流出する。尚、各取付孔10,14,18,25,35,41,51,57では、ガスの給排は行われない。   Furthermore, each flow path hole 26-4, 19-4, 15-4, 11-4, 36-4, 42-4, 52-4, 58-4 communicating with the inflow hole 54 of the gas inflow layer frame 50. Is supplied with fuel gas and flows into the gas inflow layer 62 from the inflow hole 54. Each flow path hole 26-3, 19-3, 15-3, 11-3, 36-3, 42-3, 52-3, 58-3 communicating with the outflow hole 38 of the gas outflow layer frame 34. The fuel gas consumed from the gas outflow layer 44 flows out from the exhaust gas. In addition, in each attachment hole 10,14,18,25,35,41,51,57, gas supply / discharge is not performed.

次に、前述した本実施形態の固定電解質型燃料電池の作動について説明する。
まず、空気極フレーム16の流入孔20に、本実施形態では、空気を用いた酸化剤ガスが供給されると、酸化剤ガスは流入孔20からガス流出入層30に流入する。そして、空気極6に接した酸化剤ガスは、酸素が電子と反応して酸素イオンになり、生成された酸素イオンが固体電解質体2に移動し、固体電解質体2の酸素空孔と位置を交換しながら燃料極4側に移動する。空気のうち、酸素が消費された酸化剤ガスはガス流出入層30から流出孔22を通り、排出される。
Next, the operation of the above-described stationary electrolyte fuel cell of the present embodiment will be described.
First, in this embodiment, when oxidant gas using air is supplied to the inflow hole 20 of the air electrode frame 16, the oxidant gas flows into the gas inflow / outflow layer 30 from the inflow hole 20. The oxidant gas that is in contact with the air electrode 6 reacts with electrons to form oxygen ions, and the generated oxygen ions move to the solid electrolyte body 2, and the oxygen vacancies and positions of the solid electrolyte body 2 are moved. It moves to the fuel electrode 4 side while exchanging. Of the air, the oxidant gas in which oxygen has been consumed passes through the outflow hole 22 from the gas inflow / outflow layer 30 and is discharged.

一方、ガス流入層用フレーム50の流入孔54に流入した燃料ガスは、流入孔54からガス流入層62に流入する。そして、整流部材40の各通過孔46を通り、ガス流出層44内の燃料極4に供給される。   On the other hand, the fuel gas flowing into the inflow hole 54 of the gas inflow layer frame 50 flows into the gas inflow layer 62 from the inflow hole 54. Then, the gas passes through each passage hole 46 of the rectifying member 40 and is supplied to the fuel electrode 4 in the gas outflow layer 44.

燃料極4に供給された燃料ガスは、本実施形態では燃料ガスとして用いた水素が酸素イオンと反応して水蒸気と電子を生成する。その際、1モルの水素が消費されると、1モルの水蒸気が生成される。水素が消費され、生成された水蒸気が一部の未消費の燃料ガスに混じり合いながら、ガス流出層44及びガス流出層用フレーム34の流出孔38から、排出される。   In the present embodiment, the fuel gas supplied to the fuel electrode 4 reacts with oxygen ions to generate water vapor and electrons by hydrogen used as the fuel gas. In this case, when 1 mol of hydrogen is consumed, 1 mol of water vapor is generated. Hydrogen is consumed, and the generated water vapor is discharged from the gas outflow layer 44 and the outflow hole 38 of the gas outflow layer frame 34 while mixing with some unconsumed fuel gas.

ガスが流入孔54から流出孔38に流れる間に、流入孔54に近い側の燃料極4では、燃料ガス濃度がほぼ100%の燃料ガスが燃料極4に接して消費され、かわりに生成された水蒸気が燃料ガスに混じり合う。水蒸気が混合した分、燃料ガス中の燃料ガス濃度が低下する。   While the gas flows from the inflow hole 54 to the outflow hole 38, in the fuel electrode 4 on the side close to the inflow hole 54, the fuel gas having a fuel gas concentration of almost 100% is consumed in contact with the fuel electrode 4 and is generated instead. Water vapor mixes with the fuel gas. The fuel gas concentration in the fuel gas is reduced by the amount of water vapor mixed.

流出孔38に近づくほど、燃料ガスには上流側で生成された水蒸気が混じり合っているので、燃料ガス中の燃料ガス濃度が低くなる。しかし、流入孔54からガス流入層62に流入した燃料ガスは、ガス流入層62から各通過孔46に供給される。各通過孔46は、本実施形態では、燃料極4の表面に対向してほぼ均等に分散した配置されているので、各通過孔46からは、燃料ガス濃度がほぼ100%の燃料ガスが燃料極4に供給される。   The closer to the outflow hole 38, the lower the concentration of the fuel gas in the fuel gas because the fuel gas is mixed with water vapor generated upstream. However, the fuel gas that has flowed into the gas inflow layer 62 from the inflow hole 54 is supplied from the gas inflow layer 62 to the passage holes 46. In the present embodiment, the through holes 46 are arranged substantially evenly and facing the surface of the fuel electrode 4, so that fuel gas having a fuel gas concentration of almost 100% is fueled from the through holes 46. Supplied to the pole 4.

流出孔38に近づくに従って、より多くの水蒸気が生成されて燃料ガスに混じり合い、燃料ガス濃度が低下するが、各通過孔46から燃料ガス濃度がほぼ100%の燃料ガスが燃料極4に供給されるので、燃料極4内での燃料ガスの燃料ガス濃度の低下が抑制される。従って、燃料極4の各部分での発電量のばらつきを抑制できるので、温度分布の不均衡を抑制できる。これにより、温度分布の不均衡による単セル1の破損を防止できる。   As it approaches the outflow hole 38, more water vapor is generated and mixed with the fuel gas, and the fuel gas concentration decreases. However, the fuel gas having a fuel gas concentration of approximately 100% is supplied to the fuel electrode 4 from each through hole 46. Therefore, a decrease in the fuel gas concentration of the fuel gas in the fuel electrode 4 is suppressed. Therefore, since the variation in the amount of power generation in each part of the fuel electrode 4 can be suppressed, the temperature distribution imbalance can be suppressed. Thereby, damage of the single cell 1 by the imbalance of temperature distribution can be prevented.

流出孔38の総断面積≧流入孔54の総断面積≧通過孔46の総断面積となる関係に形成することにより、ガス流入層62の圧力がガス流出層44の圧力よりも低くなることを防止でき、流入孔54から流出孔38へガスが流れる際に、各通過孔46に分散して流れ整流効果をより確実に得ることができる。   By forming the relationship such that the total cross-sectional area of the outflow hole 38 ≧ the total cross-sectional area of the inflow hole 54 ≧ the total cross-sectional area of the passage hole 46, the pressure of the gas inflow layer 62 becomes lower than the pressure of the gas outflow layer 44. When the gas flows from the inflow hole 54 to the outflow hole 38, the gas is dispersed in the respective through holes 46, and the flow rectifying effect can be obtained more reliably.

本実施形態では、図3(イ)に示すように、整流部材40に燃料極4の表面に対向して通過孔46をほぼ均等に分散して配置しているが、これに限らず、図3(ロ)に示すように、整流部材40の流入孔54側には、即ち、整流部材40の中心を基準に流入孔54に近い領域には、通過孔46の配置が密となるように多くの通過孔46を形成し、整流部材40の流出孔38側には、即ち、整流部材40の中心を基準に流出孔38に近い領域には、流入孔54側よりも通過孔46の配置が粗になるように少ない数の通過孔46を形成するようにしてもよい。これにより、流入孔54に近い側(上流側)に多くの燃料ガスを供給して、燃料ガス濃度をより均一化できる。   In the present embodiment, as shown in FIG. 3 (a), the passage holes 46 are disposed in the rectifying member 40 so as to face the surface of the fuel electrode 4 and are distributed almost evenly. As shown in FIG. 3B, the passage holes 46 are arranged densely on the inflow hole 54 side of the rectifying member 40, that is, in a region close to the inflow hole 54 with respect to the center of the rectifying member 40. Many passage holes 46 are formed, and the passage holes 46 are arranged on the outlet hole 38 side of the rectifying member 40, that is, in a region closer to the outlet hole 38 with respect to the center of the rectifying member 40 than on the inlet hole 54 side. A small number of passage holes 46 may be formed so as to be rough. As a result, a large amount of fuel gas is supplied to the side close to the inflow hole 54 (upstream side), and the fuel gas concentration can be made more uniform.

また、図3(ハ)に示すように、整流部材40の流入孔54側では、即ち、整流部材40の中心を基準に流入孔54に近い領域では、通過孔46の断面積を大きく形成し、整流部材40の流出孔38側では、即ち、整流部材40の中心を基準に流出孔38に近い領域では、通過孔46の断面積を小さく形成してもよい。これによっても、流入孔54に近い側(上流側)に多くの燃料ガスを供給して、燃料ガス濃度をより均一化できる。   Further, as shown in FIG. 3C, the cross-sectional area of the passage hole 46 is formed large on the inflow hole 54 side of the rectifying member 40, that is, in a region close to the inflow hole 54 with respect to the center of the rectifying member 40. The cross-sectional area of the passage hole 46 may be made small on the outflow hole 38 side of the rectifying member 40, that is, in a region close to the outflow hole 38 with respect to the center of the rectifying member 40. This also makes it possible to supply more fuel gas to the side closer to the inflow hole 54 (upstream side) and to make the fuel gas concentration more uniform.

更に、図3(ニ)に示すように、整流部材40の縁側に形成した通過孔46の断面積を、即ち、整流部材40の最外部に形成した通過孔46の断面積を、整流部材40の中央側に形成した通過孔46の断面積よりも、即ち、整流部材40の中心に一番近くに形成した通過孔46の断面積よりも、大きく形成してもよい。これにより、流入孔54から流出孔38に至る流路から離れた縁側の燃料極4の表面に燃料ガスを確実に供給する。よって、燃料ガス濃度をより均一化できる。   Further, as shown in FIG. 3 (d), the cross-sectional area of the passage hole 46 formed on the edge side of the rectifying member 40, that is, the cross-sectional area of the passage hole 46 formed on the outermost part of the rectifying member 40 is changed to the rectifying member 40. It may be formed larger than the cross-sectional area of the passage hole 46 formed on the center side of the passage, that is, larger than the cross-sectional area of the passage hole 46 formed closest to the center of the rectifying member 40. Thereby, the fuel gas is reliably supplied to the surface of the fuel electrode 4 on the edge side away from the flow path from the inflow hole 54 to the outflow hole 38. Therefore, the fuel gas concentration can be made more uniform.

前述した実施形態では、ガス流入層用フレーム50には中抜き孔48を形成したが、図4に示すように、整流部材40の各通過孔46に連通するように、流入孔74から流出孔38に向かって複数の溝72を形成して、ガス流入層を形成するようにしても同様に実施可能である。   In the embodiment described above, the hollow hole 48 is formed in the gas inflow layer frame 50, but as shown in FIG. 4, the outflow hole 74 extends from the inflow hole 74 so as to communicate with each passage hole 46 of the rectifying member 40. The present invention can be similarly implemented by forming a plurality of grooves 72 toward 38 to form a gas inflow layer.

また、前述した実施形態では、整流部材40とインターコネクタ板56との間に集電体60を配置したが、これに限らず、整流部材40により集電体を兼用するようにしてもよい。例えば、図5に示すように、電気導電性を有する板状の整流部材40に燃料極4側に突出し燃料極4に接するディンプル部76とインターコネクタ板56側に突出しインターコネクタ板56に接するディンプル部78とを複数形成すると共に、前述したと同様に複数の通過孔46を形成する。これにより、整流部材40のディンプル部76,78を介して、燃料極4とインターコネクタ板56とが導通され、部品点数を低減できる。尚、このようなディンプル部76,78を設けた整流部材40は、燃料極4側に限らず、空気極6側でも同様に実施可能である。   In the above-described embodiment, the current collector 60 is disposed between the rectifying member 40 and the interconnector plate 56. However, the present invention is not limited thereto, and the current collector may be shared by the rectifying member 40. For example, as shown in FIG. 5, a dimple portion 76 that protrudes toward the fuel electrode 4 and contacts the fuel electrode 4 and a dimple that protrudes toward the interconnector plate 56 and contacts the interconnector plate 56 on the plate-like rectifying member 40 having electrical conductivity. A plurality of portions 78 are formed, and a plurality of passage holes 46 are formed in the same manner as described above. Accordingly, the fuel electrode 4 and the interconnector plate 56 are electrically connected via the dimple portions 76 and 78 of the rectifying member 40, and the number of parts can be reduced. Note that the rectifying member 40 provided with such dimple portions 76 and 78 is not limited to the fuel electrode 4 side, and can be similarly implemented on the air electrode 6 side.

次に、前述した本実施形態と異なる第2実施形態の固体電解質型燃料電池について、図6、図7によって説明する。尚、前述した実施形態と同じ部材については同一番号を付して詳細な説明を省略する。以下同様。   Next, a solid oxide fuel cell according to a second embodiment different from the above-described embodiment will be described with reference to FIGS. The same members as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. The same applies below.

本第2実施形態では、前述したガス流入層用フレーム50を用いることなく、整流部材80のほぼ中央に、燃料極4の表面に対向して、燃料極4側に突出した突部82を形成している。突部82には、前述したと同様の多数の通過孔84をほぼ均等に分散して配置している。   In the second embodiment, without using the gas inflow layer frame 50 described above, a projecting portion 82 that protrudes toward the fuel electrode 4 side is formed at substantially the center of the rectifying member 80 so as to face the surface of the fuel electrode 4. doing. In the protrusion 82, a large number of passage holes 84 similar to those described above are arranged almost uniformly.

整流部材80と燃料極4との間には、突部82の外周よりも大きな枠状の集電体86を設けている。整流部材80には直接、板状のインターコネクタ板88が重ね合わされて、整流部材80とインターコネクタ板88とが積層されている。   Between the rectifying member 80 and the fuel electrode 4, a frame-shaped current collector 86 larger than the outer periphery of the protrusion 82 is provided. A plate-like interconnector plate 88 is directly superimposed on the rectifying member 80, and the rectifying member 80 and the interconnector plate 88 are laminated.

このインターコネクタ板88と整流部材80の突部82とによりガス流入層90が形成されており、本第2実施形態では、ガス流入層90にはメタンガスを改質する改質触媒92が収納されている。改質触媒92は、多孔性のNi−TSZ板により形成されている。尚、改質触媒92は必要に応じて設ければよい。インターコネクタ板88には、流路孔58−4とガス流入層90とを連通する溝状の流入孔94が形成されている。   The interconnector plate 88 and the protrusion 82 of the rectifying member 80 form a gas inflow layer 90. In the second embodiment, the gas inflow layer 90 contains a reforming catalyst 92 for reforming methane gas. ing. The reforming catalyst 92 is formed of a porous Ni-TSZ plate. The reforming catalyst 92 may be provided as necessary. The interconnector plate 88 is formed with a groove-like inflow hole 94 that communicates the flow path hole 58-4 with the gas inflow layer 90.

この第2実施形態の固体電解質型燃料電池でも、流入孔94に供給された燃料ガスは、流入孔94からガス流入層90に流入し、改質触媒92を通って、各通過孔84から燃料極4に供給される。燃料ガスが燃料極4で消費されて、ガス流出層44から流出孔38を通り、排出される。   Also in the solid oxide fuel cell according to the second embodiment, the fuel gas supplied to the inflow hole 94 flows into the gas inflow layer 90 from the inflow hole 94, passes through the reforming catalyst 92, and then the fuel from each through hole 84. Supplied to the pole 4. The fuel gas is consumed at the fuel electrode 4 and discharged from the gas outflow layer 44 through the outflow hole 38.

流出孔38に近づくに従って、より多くの水蒸気が生成されて燃料ガスに混じり合い、燃料ガス濃度が低下するが、各通過孔84から燃料ガス濃度がほぼ100%の燃料ガスが燃料極4に供給されるので、燃料極4内での燃料ガスの燃料ガス濃度の低下が抑制される。従って、燃料極4の各部分での発電量のばらつきを抑制できるので、温度分布の不均衡を解消できる。   As it approaches the outflow hole 38, more water vapor is generated and mixed with the fuel gas, and the fuel gas concentration decreases. However, the fuel gas having a fuel gas concentration of approximately 100% is supplied to the fuel electrode 4 from each passage hole 84. Therefore, a decrease in the fuel gas concentration of the fuel gas in the fuel electrode 4 is suppressed. Accordingly, variation in the amount of power generation in each part of the fuel electrode 4 can be suppressed, and thus the temperature distribution imbalance can be eliminated.

次に、第3実施形態の固体電解質型燃料電池について、図8によって説明する。
本第3実施形態では、図8(イ)に示すように、ガス流出層用フレーム100の中抜き孔102は、燃料極4を収納でき、燃料極4の大きさより僅かに大きく形成して、燃料極4とガス流出層用フレーム100との間には大きな隙間ができないように形成している。
Next, a solid oxide fuel cell according to a third embodiment will be described with reference to FIG.
In the third embodiment, as shown in FIG. 8 (a), the hollow hole 102 of the gas outflow layer frame 100 can accommodate the fuel electrode 4, and is formed slightly larger than the size of the fuel electrode 4. A large gap is not formed between the fuel electrode 4 and the gas outflow layer frame 100.

また、ガス流入層用フレーム104は、その中抜き孔106がガス流出層用フレーム100の中抜き孔102よりも、流入孔54側に大きく形成されている。この中抜き孔106により形成されるガス流入層には、電気導電性を有する金属メッシュや発泡金属からなる整流部材108が配置されている。尚、整流部材108内のガスの流動抵抗は、燃料極4内のガスの流動抵抗よりも小さくなるように、整流部材108は目を荒く形成する。   In addition, the gas inflow layer frame 104 is formed such that the hollow hole 106 is larger on the inflow hole 54 side than the hollow hole 102 in the gas outflow layer frame 100. In the gas inflow layer formed by the hollow hole 106, a rectifying member 108 made of an electrically conductive metal mesh or foam metal is disposed. The flow regulating member 108 is formed so that the flow resistance of the gas in the flow regulating member 108 is smaller than the flow resistance of the gas in the fuel electrode 4.

流入孔54に供給された燃料ガスは、ガス流入層の整流部材108内を通って燃料極4に供給される。燃料ガスは整流部材108を通って燃料極4の表面に供給され、流出孔38に近づくに従って、より多くの水蒸気が生成されて燃料ガスに混じり合い、燃料ガス濃度が低下するが、整流部材108内を通って燃料ガス濃度がほぼ100%の燃料ガスが燃料極4の表面に分散して供給されるので、燃料極4内での燃料ガスの燃料ガス濃度の低下が抑制される。しかも、整流部材108に金属メッシュや発泡金属を用いることにより、前述した実施形態の通過孔46,84よりも細かく燃料ガス濃度の均一化を図ることができる。従って、燃料極4の各部分での発電量のばらつきを抑制できるので、温度分布の不均衡を解消できる。尚、この際、整流部材108にメタンガスを改質する改質触媒を担持するようにしてもよい。   The fuel gas supplied to the inflow hole 54 is supplied to the fuel electrode 4 through the rectifying member 108 in the gas inflow layer. The fuel gas is supplied to the surface of the fuel electrode 4 through the rectifying member 108, and as it approaches the outflow hole 38, more water vapor is generated and mixed with the fuel gas, and the fuel gas concentration decreases. Since fuel gas having a fuel gas concentration of approximately 100% is distributed and supplied to the surface of the fuel electrode 4 through the inside, a decrease in the fuel gas concentration of the fuel gas in the fuel electrode 4 is suppressed. In addition, by using a metal mesh or foam metal for the rectifying member 108, the fuel gas concentration can be made more uniform than the passage holes 46 and 84 of the above-described embodiment. Accordingly, variation in the amount of power generation in each part of the fuel electrode 4 can be suppressed, and thus the temperature distribution imbalance can be eliminated. At this time, a reforming catalyst for reforming methane gas may be carried on the rectifying member 108.

また、図8(ロ)に示すように、ガス流入層用フレーム110の中抜き孔112の大きさを、流出孔38側では、燃料極4の中程までの大きさとして、燃料極4の流出孔38側の一部表面はガス流入層用フレーム110により覆われるように形成する。これにより、下流側に過剰の燃料ガスが供給されるのを防止できる。   Further, as shown in FIG. 8B, the size of the hollow hole 112 of the gas inflow layer frame 110 is set to the middle size of the fuel electrode 4 on the outflow hole 38 side. A part of the surface on the outflow hole 38 side is formed to be covered with the gas inflow layer frame 110. Thereby, it is possible to prevent excessive fuel gas from being supplied to the downstream side.

更に、図8(ハ)に示すように、中抜き孔112に連接して、流出孔38側に燃料極4の表面に対向する溝114を形成する。中抜き孔112と溝114にも整流部材108を配置する。溝114を介して、より下流側の燃料極4に燃料ガスが供給されるが、溝114の流路断面積は小さく、下流側への燃料ガスの供給は絞られるので、下流側へ過剰な燃料ガスが供給されるのを防止すると共に、燃料ガス濃度の均一化を図ることができる。   Further, as shown in FIG. 8C, a groove 114 is formed on the outflow hole 38 side so as to face the surface of the fuel electrode 4 so as to be connected to the hollow hole 112. The straightening member 108 is also disposed in the hollow hole 112 and the groove 114. The fuel gas is supplied to the fuel electrode 4 on the further downstream side through the groove 114, but the flow passage cross-sectional area of the groove 114 is small and the supply of the fuel gas to the downstream side is restricted. It is possible to prevent the fuel gas from being supplied and to make the fuel gas concentration uniform.

尚、前述した実施形態では、燃料極4側に整流部材40を設けた場合を例としたが、これに限らず、空気極6側のガス流出入層30を前述した整流部材40と同様の整流部材によりガス流入層とガス流出層とに仕切っても、同様に実施可能である。また、板状の整流部材40に限らず、金属メッシュや発泡金属からなる整流部材をガス流入層に設けても同様に実施可能である。   In the above-described embodiment, the case where the rectifying member 40 is provided on the fuel electrode 4 side is taken as an example. However, the present invention is not limited thereto, and the gas inflow / outflow layer 30 on the air electrode 6 side is the same as that of the rectifying member 40 described above. The same can be implemented by dividing the gas inflow layer and the gas outflow layer by the rectifying member. Further, not only the plate-like rectifying member 40 but also a rectifying member made of a metal mesh or foam metal is provided in the gas inflow layer.

以上本発明はこの様な実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得る。   The present invention is not limited to such embodiments as described above, and can be implemented in various modes without departing from the gist of the present invention.

本発明の一実施形態としての固体電解質型燃料電池の断面図である。It is sectional drawing of the solid oxide fuel cell as one Embodiment of this invention. 本実施形態の固体電解質型燃料電池の分解斜視図である。It is a disassembled perspective view of the solid oxide fuel cell of this embodiment. 本実施形態の整流部材の例を示す正面図である。It is a front view which shows the example of the baffle member of this embodiment. 本実施形態のガス流入層用フレームの他の例を示す斜視図である。It is a perspective view which shows the other example of the flame | frame for gas inflow layers of this embodiment. 本実施形態の整流部材の別の例を示す固体電解質型燃料電池の燃料極側の断面図である。It is sectional drawing by the side of the fuel electrode of the solid oxide fuel cell which shows another example of the rectification | straightening member of this embodiment. 第2実施形態としての固体電解質型燃料電池の断面図である。It is sectional drawing of the solid oxide fuel cell as 2nd Embodiment. 第2実施形態の固体電解質型燃料電池の分解斜視図である。It is a disassembled perspective view of the solid oxide fuel cell of 2nd Embodiment. 第3実施形態の固体電解質型燃料電池の断面図である。It is sectional drawing of the solid oxide fuel cell of 3rd Embodiment.

符号の説明Explanation of symbols

1…単セル 2…固体電解質体
4…燃料極 6…空気極
8…セパレータ
10,14,18,25,35,41,51,57…取付孔
11−1〜11−4,15−1〜15−4,19−1〜19−4,26−1〜26−4,36−1〜36−4,42−1〜42−4,52−1〜52−4,58−1〜58−4…流路孔
13…絶縁板 16…空気極フレーム
20…流入孔 22…流出孔
24,56,88…インターコネクタ板
28,60,86…集電体
30…ガス流出入層
34,100…ガス流出層用フレーム
38…流出孔
40,80,108…整流部材
44…ガス流出層 46,84…通過孔
50,104,110…ガス流入層用フレーム
54,74,94…流入孔
62,90…ガス流入層
82…突部
DESCRIPTION OF SYMBOLS 1 ... Single cell 2 ... Solid electrolyte body 4 ... Fuel electrode 6 ... Air electrode 8 ... Separator 10, 14, 18, 25, 35, 41, 51, 57 ... Mounting hole 11-1 to 11-4, 15-1 15-4, 19-1 to 19-4, 26-1 to 26-4, 36-1 to 36-4, 42-1 to 42-4, 52-1 to 52-4, 58-1 to 58- 4 ... Channel hole 13 ... Insulating plate 16 ... Air electrode frame 20 ... Inflow hole 22 ... Outflow hole 24, 56, 88 ... Interconnector plates 28, 60, 86 ... Current collector 30 ... Gas inflow / outflow layer 34, 100 ... Gas outflow layer frame 38 ... Outflow holes 40, 80, 108 ... Rectifying member 44 ... Gas outflow layer 46, 84 ... Passing holes 50, 104, 110 ... Gas inflow layer frames 54, 74, 94 ... Inflow holes 62, 90 ... Gas inflow layer 82 ... Projection

Claims (6)

固体電解質体の一方の側に燃料ガスに接する燃料極を他方の側に酸化剤ガスに接する空気極を設けた単セルを備えた固体電解質型燃料電池において、
少なくとも前記燃料極又は前記空気極の一方の極側で、前記単セルを間に前記ガスが供給される流入孔と前記ガスが排出される流出孔とを配置すると共に、前記流入孔からの前記ガスを前記極の表面に分散して導く整流部材を設け、
前記流入孔に連通したガス流入層と前記流出孔に連通したガス流出層とを形成すると共に、前記ガス流出層に前記極を配置し、また、前記整流部材は板状で、前記ガス流入層と前記ガス流出層とを前記整流部材により積層方向に仕切ると共に、前記整流部材に複数の通過孔を形成し、
前記流入孔と前記流出孔とは、前記整流部材を隔てて配置されたことを特徴とする固体電解質型燃料電池。
In a solid oxide fuel cell comprising a single cell provided with a fuel electrode in contact with fuel gas on one side of the solid electrolyte body and an air electrode in contact with oxidant gas on the other side,
An inflow hole through which the gas is supplied and an outflow hole through which the gas is discharged are disposed between the single cells on at least one side of the fuel electrode or the air electrode, and the outflow hole from the inflow hole A rectifying member is provided to guide and distribute the gas to the surface of the pole
A gas inflow layer communicating with the inflow hole and a gas outflow layer communicating with the outflow hole are formed, the pole is disposed in the gas outflow layer, the rectifying member is plate-shaped, and the gas inflow layer And the gas outflow layer are partitioned in the stacking direction by the rectifying member, and a plurality of passage holes are formed in the rectifying member,
The solid electrolyte fuel cell according to claim 1, wherein the inflow hole and the outflow hole are disposed with the rectifying member therebetween.
前記ガス流入層に改質触媒を配置したことを特徴とする請求項1に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to claim 1, wherein a reforming catalyst is disposed in the gas inflow layer. 前記整流部材の前記流入孔側には、前記整流部材の前記流出孔側よりも多くの前記通過孔を形成したことを特徴とする請求項1又は2に記載の固体電解質型燃料電池。   3. The solid oxide fuel cell according to claim 1, wherein more passage holes are formed on the inflow hole side of the rectification member than on the outflow hole side of the rectification member. 前記整流部材の前記流入孔側に形成した前記通過孔の断面積は、前記整流部材の前記流出孔側に形成した前記通過孔の断面積よりも大きいことを特徴とする請求項1ないし請求項3のいずれか一項に記載の固体電解質型燃料電池。   The cross-sectional area of the through hole formed on the inflow hole side of the rectifying member is larger than the cross-sectional area of the through hole formed on the outflow hole side of the rectifying member. 4. The solid oxide fuel cell according to any one of 3 above. 前記整流部材の縁側に形成した前記通過孔の断面積は、前記整流部材の中央側に形成した前記通過孔の断面積よりも大きいことを特徴とする請求項1ないし請求項4のいずれか一項に記載の固体電解質型燃料電池。   5. The cross-sectional area of the passage hole formed on the edge side of the rectifying member is larger than the cross-sectional area of the passage hole formed on the center side of the rectifying member. The solid oxide fuel cell according to Item. 前記流出孔の総断面積≧前記流入孔の総断面積≧前記通過孔の総断面積となる関係に形成したことを特徴とする請求項1ないし請求項5のいずれか一項に記載の固体電解質型燃料電池。   6. The solid according to claim 1, wherein the solid cross-sectional area of the outflow hole is equal to or greater than the total cross-sectional area of the inflow hole ≧ the total cross-sectional area of the passage hole. Electrolytic fuel cell.
JP2007165158A 2007-06-22 2007-06-22 Solid oxide fuel cell Active JP5270115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007165158A JP5270115B2 (en) 2007-06-22 2007-06-22 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007165158A JP5270115B2 (en) 2007-06-22 2007-06-22 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2009004253A JP2009004253A (en) 2009-01-08
JP5270115B2 true JP5270115B2 (en) 2013-08-21

Family

ID=40320405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007165158A Active JP5270115B2 (en) 2007-06-22 2007-06-22 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5270115B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190746A (en) * 2011-03-14 2012-10-04 Denso Corp Fuel cell stack and fuel cell
JP6072554B2 (en) * 2013-01-31 2017-02-01 日本特殊陶業株式会社 Fuel cell
JP7087616B2 (en) * 2018-04-13 2022-06-21 日産自動車株式会社 Fuel cell stack
JP6820993B2 (en) * 2018-10-19 2021-01-27 日本碍子株式会社 Electrochemical equipment
JP7317547B2 (en) * 2019-03-29 2023-07-31 大阪瓦斯株式会社 FUEL CELL STRUCTURE, FUEL CELL MODULE AND FUEL CELL DEVICE INCLUDING THE SAME

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440968A1 (en) * 1990-02-08 1991-08-14 Asea Brown Boveri Ag Element for obtaining a possible uniform temperature distribution on the surface of a plate-like ceramic high temperature fuel cell
JPH03266365A (en) * 1990-03-15 1991-11-27 Nkk Corp Separator of solid electrolytic type fuel cell
JPH05325997A (en) * 1992-05-14 1993-12-10 Tokyo Gas Co Ltd Stack structure of solid electrolyte fuel cell
JP2002141081A (en) * 2000-11-06 2002-05-17 Mitsubishi Heavy Ind Ltd Flat plate solid oxide fuel cell
US6942943B2 (en) * 2003-02-10 2005-09-13 Fuelcell Energy, Inc. Catalyst and/or electrolyte loaded plate and method of making same
JP2005203258A (en) * 2004-01-16 2005-07-28 Mitsubishi Materials Corp Solid oxide fuel cell
JP4666279B2 (en) * 2004-06-22 2011-04-06 日産自動車株式会社 Solid oxide fuel cell stack and solid oxide fuel cell
JP4373378B2 (en) * 2005-07-19 2009-11-25 日本電信電話株式会社 Stack structure of planar solid oxide fuel cell

Also Published As

Publication number Publication date
JP2009004253A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
US7968245B2 (en) High utilization stack
JP6360794B2 (en) Fuel cell
EP3279989B1 (en) Flat plate type fuel cell
JP5270115B2 (en) Solid oxide fuel cell
WO2018029994A1 (en) Hydrogen processing device
US20200036015A1 (en) Electrochemical cell and cell stack device
JP5254588B2 (en) Solid oxide fuel cell module
US7632594B2 (en) Solid oxide fuel cell with improved gas exhaust
JP5242971B2 (en) Solid oxide fuel cell
JP6532668B2 (en) Fuel cell system
US11316181B2 (en) Fuel cell unit structure and method of controlling fuel cell unit structure
JP3999934B2 (en) Solid oxide fuel cell
JP5178056B2 (en) Fuel cell structure, fuel cell, and electrode layer precursor green sheet
JP2007026925A (en) Stack structure of flat solid oxide fuel cell
WO2013042283A1 (en) Polymer electrolyte fuel cell and fuel cell system provided with same
JP2006269409A (en) Solid oxide fuel cell, sofc
JP2012209122A (en) Solid oxide fuel battery cell, fuel cell module having the same, and fuel cell device
JP5245205B2 (en) Solid oxide fuel cell
JP4285522B2 (en) FUEL CELL, FUEL CELL STACK, FUEL CELL DEVICE, AND ELECTRONIC DEVICE
JP2008021596A (en) Solid-oxide fuel cell module
JP2009245679A (en) Stack structure of cylindrical solid oxide fuel cell
JP5573813B2 (en) Power generator
JP6512749B2 (en) Fuel cell
JP2006236597A (en) Separator for fuel cell and solid oxide fuel cell
JP4228895B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5270115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250