JP5269524B2 - Distributed control method for each substation in the power system - Google Patents

Distributed control method for each substation in the power system Download PDF

Info

Publication number
JP5269524B2
JP5269524B2 JP2008221349A JP2008221349A JP5269524B2 JP 5269524 B2 JP5269524 B2 JP 5269524B2 JP 2008221349 A JP2008221349 A JP 2008221349A JP 2008221349 A JP2008221349 A JP 2008221349A JP 5269524 B2 JP5269524 B2 JP 5269524B2
Authority
JP
Japan
Prior art keywords
substation
power
voltage
transmission
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008221349A
Other languages
Japanese (ja)
Other versions
JP2010057311A (en
Inventor
亮介 波多野
武 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2008221349A priority Critical patent/JP5269524B2/en
Publication of JP2010057311A publication Critical patent/JP2010057311A/en
Application granted granted Critical
Publication of JP5269524B2 publication Critical patent/JP5269524B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of an electric power system, which performs distributed control of substations of an electric power system. <P>SOLUTION: In an electric power system 10 with a plurality of substations A-T connected from the power transmission end to the power reception end, a controller is added to each of the substations A-T. Letting an active power and reactive power at the power transmission end of each substation A-T be a load of the substation, the controller of each substation A-T calculates the load of the corresponding substation from the power reception end to the power transmission end, and then calculates a transmission voltage which can supply the calculated load at each substation A-T. When any transmission voltage calculated for each substation A-T comes out of a predetermined range, a substation adjacent to the substation of which the transmission voltage comes out of the predetermined range is asked to make voltage adjustment and to perform an adjustment operation of a phase modifier to keep the transmission voltage within the predetermined range. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、電力系統の各変電所の分散制御方法に関し、特に電力系統の各変電所の送電電圧等を分散制御する技術に関するものである。   The present invention relates to a distributed control method for each substation in a power system, and more particularly to a technique for performing distributed control of a transmission voltage or the like of each substation in a power system.

従来、電力系統を制御する方法として、電力系統を集中制御する方法がある(例えば非特許文献1、2、特許文献1参照)。
電力系統を集中制御する場合には、情報を中央に集中させるので、系統構成の状態全体を把握(開閉器の開閉状況を確認し、計算機の中に系統の情報を収集)し、解析し、つぎの状態を決定することになる。そのため、すべての情報を元に行列計算を行い、解を求めることになる。そして、再計算を毎回行うので、精度は高くなる。
この場合には、放射状の電力系統において、送電線故障が発生した場合、その送電線路から末端側まで停電する。このため、この停電を復旧させるには、別の電力系統に接続することになるため、故障復旧の際には、新たな接続先の選定を行うが、この時、過負荷の有無や電力系統の末端までの電圧が規定値内に抑えられることを検討しなければならない。
故障復旧以外では、同じアルゴリズムを使用して、常時の系統状態を余裕のある状態にもってゆくことができ、変電所間の負荷、送電電圧等の問い合わせの重要度を適切に管理し、問い合わせに使用するデータを一元管理することになる。
近藤潤次、安芸裕久、山口浩、村田晃伸、石井格著、「階層的協調制御による配電系統の電圧調節」電学論B126巻10号、2006年社団法人電気学会発行 糟谷武則、井上汎、小田博史、飯塚茂著、「地方供給系統における事故時復旧操作方式の開発」電学論B、109巻4号、平成元年社団法人電気学会発行 特開2002−165367号公報
Conventionally, as a method of controlling the power system, there is a method of centrally controlling the power system (see, for example, Non-Patent Documents 1 and 2 and Patent Document 1).
In the case of centralized control of the power system, the information is concentrated in the center, so grasp the overall system configuration status (check the switching status of the switch, collect system information in the computer), analyze it, The next state will be determined. Therefore, a matrix calculation is performed based on all information to obtain a solution. And since recalculation is performed every time, accuracy becomes high.
In this case, when a power transmission line failure occurs in the radial power system, a power failure occurs from the power transmission line to the end side. For this reason, in order to restore this power failure, it is necessary to connect to another power system. Therefore, a new connection destination is selected at the time of failure recovery. It must be considered that the voltage up to the end of can be kept within the specified value.
Other than fault recovery, the same algorithm can be used to bring the normal grid state into a state with sufficient margins, and the importance of inquiries such as loads between substations and transmission voltages can be appropriately managed. The data to be used will be centrally managed.
Junji Kondo, Hirohisa Aki, Hiroshi Yamaguchi, Masanobu Murata, Satoshi Ishii, “Voltage Adjustment of Distribution System by Hierarchical Coordination Control”, Electrical Engineering B, Vol. 126, No. 10, published by The Institute of Electrical Engineers of Japan, 2006 Takenori Sugaya, Hiroshi Inoue, Hiroshi Oda, Shigeru Iizuka, “Development of a Disaster Recovery Operation Method in a Local Supply System”, Electrology B, Vol. 109, No. 4, published by the Institute of Electrical Engineers of Japan in 1989 JP 2002-165367 A

しかし、上述の集中制御方法では、管理する電力系統のすべての情報が必要という問題がある。さらに、情報が一極集中となるため、中央となる部分の装置の動作に対する信頼性は非常に高くなければならない。
また、集中制御の場合には、すべての情報が収集されているため、分散制御と同様な計算もアルゴリズムを組み込めば可能となるが、多くの変電所を集中制御するためには、システムが複雑化し設備の構成(建設)や設備の更新および保守が困難になると考えられる。すなわち、基本的なアルゴリズムは単純でありながら、それを構成する方法が複雑化し問題が発生する懸念がある。
そこで、本発明の課題は、上述の問題を解決し、中央となる部分にすべての情報を収集するのではなく、電力系統の各変電所の送電電圧等を分散制御することができる電力系統の各変電所の制御方法を提供することである。
However, the above-described centralized control method has a problem that all information on the power system to be managed is necessary. Furthermore, since the information is concentrated, the reliability of the operation of the central portion of the apparatus must be very high.
In the case of centralized control, since all information is collected, calculation similar to distributed control can be performed by incorporating an algorithm. However, in order to centrally control many substations, the system is complicated. It is considered that the construction (construction) of equipment and the renewal and maintenance of equipment become difficult. That is, although the basic algorithm is simple, there is a concern that the method of configuring the algorithm is complicated and a problem occurs.
Therefore, an object of the present invention is to solve the above-mentioned problem, and not to collect all the information in the central part, but to distribute the power transmission voltage etc. of each substation of the power system. It is to provide a control method for each substation.

上記課題を解決するため、請求項1記載の発明は、複数の変電所を送電端側から受電端側まで接続した電力系統において、前記複数の変電所の各々に制御装置を付加し、前記各変電所の送電端における有効電力および無効電力を前記各変電所の負荷とし、受電端側の末端となる変電所において、制御装置が変電所の負荷を供給できる送電電圧を算出し、算出した送電電圧のデータを送電端側の隣の変電所に送信し、ついで、送電電圧のデータが送信された各変電所において、制御装置が、送信された送電電圧のデータに対応して変電所の負荷を算出し、上記変電所において前記算出した負荷を供給できる送電電圧を算出し、この送電電圧の算出が行われた変電所が送電端側の端の変電所でない場合には、算出した送電電圧のデータを送電端側の隣の変電所に送信し、さらに、前記算出した各変電所の送電電圧が所定の範囲から外れるときに、前記各変電所の隣の変電所に対し電圧調整および調相設備の調整運転を依頼して前記送電電圧を前記所定の範囲に収めることを特徴とする電力系統の各変電所の分散制御方法である。 In order to solve the above-mentioned problem, the invention according to claim 1 is a power system in which a plurality of substations are connected from a power transmission end side to a power receiving end side, and a control device is added to each of the plurality of substations. the active and reactive power at the sending end of the substation and the load of each substation, the substation as a terminal of the receiving end, the control unit calculates the transmission voltage that can supply the load of the substation, was calculated Transmits the transmission voltage data to the adjacent substation on the transmission end side, and then, at each substation where the transmission voltage data is transmitted, the control unit responds to the transmitted transmission voltage data by the substation. Calculate a load, calculate a transmission voltage that can supply the calculated load at the substation, and if the substation where the calculation of the transmission voltage is not a substation at the end of the transmission end, Voltage data to the transmission end The sending to the next substation, further, when the transmission voltage of each substation with the calculated deviates from a predetermined range, the adjustment operation of the voltage regulator and phase modifying equipment to substation next to each substation The distributed control method for each substation of the power system is characterized in that the transmission voltage is requested to fall within the predetermined range.

請求項1記載の発明により、複数の変電所を送電端側から受電端側まで接続した電力系統において、受電端側の末端となる変電所に付加された制御装置が前記受電端側の末端となる変電所の負荷と、この負荷を供給できる送電電圧とを算出し、ついで、送電端側の各変電所の制御装置において、受電端側の変電所が算出した送電電圧に対応する有効電力および無効電力である負荷を算定し、この負荷を供給できる送電電圧を算出する操作が、受電端側から送電端側に向かって順次行われる。さらに、前記算出した各変電所の送電電圧が所定の範囲から外れるときに、前記各変電所の隣の変電所に対し電圧調整および調相設備の調整運転を依頼して前記送電電圧を所定の範囲に収める。このため、各変電所の送電電圧を常に所定の範囲に収めることができる。 According to the first aspect of the present invention, in a power system in which a plurality of substations are connected from the power transmission end side to the power receiving end side, a control device added to the substation serving as the terminal on the power receiving end side is connected to the terminal on the power receiving end side. The substation load and the transmission voltage that can supply this load are calculated, and then the active power corresponding to the transmission voltage calculated by the substation on the receiving end side in the control device of each substation on the transmission end side and An operation of calculating a load that is reactive power and calculating a transmission voltage that can supply the load is sequentially performed from the power receiving end side toward the power transmitting end side . Further, when the calculated transmission voltage of each substation is out of a predetermined range, the substation adjacent to each substation is requested to perform voltage adjustment and adjustment operation of the phase adjusting equipment, and the transmission voltage is set to a predetermined value. Fit in range. For this reason, the transmission voltage of each substation can be always kept in a predetermined range.

請求項2記載の発明は、請求項1記載の電力系統の各変電所の分散制御方法において、前記算出した各変電所の送電電圧が所定の範囲から外れるときに、前記各変電所の制御装置が前記各変電所の電圧調整および調相設備の調整を行うと共に、前記調整が前記各変電所内のみで実施できない場合、前記各変電所の隣の変電所に対し電圧調整および調相設備の調整運転を依頼し、依頼を受けた変電所は、依頼された調整運転が可能である場合はこの調整運転を実行することによって、依頼された調整運転が不可である場合はさらに隣の変電所へ依頼を行うことによって前記送電電圧を前記所定の範囲に収めることを特徴とする電力系統の各変電所の分散制御方法である。 The invention according to claim 2 is the distributed control method for each substation of the power system according to claim 1, wherein when the calculated transmission voltage of each substation is out of a predetermined range, the control device for each substation Adjusts the voltage and phase adjustment equipment of each substation, and if the adjustment cannot be performed only within each substation, the voltage adjustment and adjustment of the phase adjustment equipment to the substation adjacent to each substation. The substation that has requested the operation and the requested substation performs the adjustment operation if the requested adjustment operation is possible. If the requested adjustment operation is not possible, the substation is further transferred to the adjacent substation. wherein by to making a request that the transmission voltage is distributed control method for each substation of the power system, characterized in that accommodated in the predetermined range.

請求項2記載の発明により、前記算出した各変電所の送電電圧が所定の範囲から外れるときに、前記各変電所自体の電圧調整および調相設備の調整により前記各変電所の送電電圧を所定の範囲に収めることができる場合には、隣の変電所に電圧調整および調相設備の調整を依頼する必要がない。また、依頼された調整運転が不可である変電所は、さらに隣の変電所へ依頼を行うことで、依頼された調整運転を実現させる。 According to the second aspect of the present invention, when the calculated transmission voltage of each substation is out of a predetermined range, the transmission voltage of each substation is predetermined by adjusting the voltage of each substation itself and adjusting the phase adjusting equipment. If it can be within the range, it is not necessary to ask the adjacent substation for voltage adjustment and phase adjustment equipment adjustment. In addition, the substation where the requested adjustment operation is impossible makes a request to the adjacent substation to realize the requested adjustment operation.

さらに、請求項3記載の発明は、複数の変電所を送電端側から受電端側まで接続した電力系統において、前記複数の変電所の各々に制御装置を付加し、前記各変電所の送電端における有効電力および無効電力を前記各変電所の負荷とし、前記制御装置が前記各変電所の負荷を受電端側から順次送電端側まで算出し、ついで、前記各変電所において前記算出した負荷を供給できる送電電圧を算出し、さらに、前記算出した各変電所の送電電圧が所定の範囲から外れるときに、前記各変電所の隣の変電所に対し電圧調整および調相設備の調整運転を依頼して前記送電電圧を前記所定の範囲に収め、さらに、前記受電側(受電端側を含む。)の変電所の負荷を増減する場合に事前に、前記受電側の変電所の制御装置により、前記受電側の変電所の負荷並びに送電側の変電所と前記受電側の変電所とを接続する送電線の電気定数を基にして、前記受電側の変電所に送電する送電側の変電所の送電端における負荷を算出し、算出した負荷の値を前記送電側の変電所の制御装置に通報し、前記負荷の算出並びに通報を順次前記送電端側の変電所まで繰り返し、つぎに、前記送電端側の変電所の制御装置により、前記通報された負荷を供給できる前記送電端側の変電所の送電端の電圧を受電側の変電所の制御装置に通報し、前記電圧の通報を前記負荷を増減する受電側の変電所まで繰り返すことを特徴とする電力系統の各変電所の分散制御方法である。 Furthermore, in the power system in which a plurality of substations are connected from the power transmission end side to the power receiving end side, a control device is added to each of the plurality of substations, and the power transmission end of each substation is provided. The active power and reactive power at the substations are set as loads of the substations, and the control device calculates the loads of the substations from the power receiving end side to the power transmission end side, and then calculates the calculated loads at the substations. Calculate the transmission voltage that can be supplied, and when the calculated transmission voltage of each substation is out of the predetermined range, request the substation next to each substation to perform voltage adjustment and phase adjustment equipment adjustment operation Then, the power transmission voltage is stored in the predetermined range, and when the load on the power receiving side (including the power receiving end side) is increased or decreased in advance, by the control device for the power receiving side substation, Negative power station substation And, based on the electrical constant of the transmission line connecting the power transmission side substation and the power receiving side substation, calculate the load at the power transmission end of the power transmission side substation transmitting power to the power receiving side substation, Report the calculated load value to the power transmission side substation control device, repeat the load calculation and notification to the power transmission end side substation, and then transmit the power transmission side substation control device. To notify the control device of the power receiving substation of the power transmitting end substation capable of supplying the reported load to the power receiving substation control device, and to increase or decrease the load of the voltage reporting substation It is a distributed control method of each substation of the electric power system characterized by repeating until.

請求項3記載の発明により、複数の変電所を送電端側から受電端側まで接続した電力系統において、前記複数の変電所に付加された制御装置が前記各変電所の負荷を受電端側から順次送電端側まで算出し、ついで、前記各変電所において前記算出した負荷を供給できる送電電圧を算出する。さらに、前記算出した各変電所の送電電圧が所定の範囲から外れるときに、前記各変電所の隣の変電所に対し電圧調整および調相設備の調整運転を依頼して前記送電電圧を所定の範囲に収める。このため、各変電所の送電電圧を常に所定の範囲に収めることができる。さらに、前記受電側の変電所の負荷を増減する場合に事前に、前記受電側の変電所の制御装置により、前記受電側の変電所の負荷並びに送電側の変電所と前記受電側の変電所とを接続する送電線の電気定数を基にして、前記受電側の変電所に送電する送電側の変電所の送電端における負荷を算出する。このため、変電所の負荷を増減する場合に、その負荷を増減する変電所側にて前記負荷の増減による各変電所の送電電圧が所定の範囲内に収まるかどうか事前に検討することができる。 According to the third aspect of the present invention, in the power system in which a plurality of substations are connected from the power transmission end side to the power receiving end side, the control device added to the plurality of substations receives the load of each substation from the power receiving end side. The calculation is sequentially performed up to the power transmission end side, and then the transmission voltage that can supply the calculated load at each substation is calculated. Further, when the calculated transmission voltage of each substation is out of a predetermined range, the substation adjacent to each substation is requested to perform voltage adjustment and adjustment operation of the phase adjusting equipment, and the transmission voltage is set to a predetermined value. Fit in range. For this reason, the transmission voltage of each substation can be always kept in a predetermined range. Further, when increasing or decreasing the load on the power receiving side substation, the power receiving side substation load and the power transmitting side substation and the power receiving side substation are controlled in advance by the power receiving side substation control device. The load at the power transmission end of the power transmission side substation that transmits power to the power receiving side substation is calculated based on the electrical constant of the power transmission line connecting the power transmission line to the power transmission side. For this reason, when increasing or decreasing the load of the substation, it is possible to examine in advance whether the transmission voltage of each substation by the increase or decrease of the load falls within a predetermined range at the substation side that increases or decreases the load. .

請求項1記載の発明によれば、電力系統の各変電所の必要となる情報(負荷および送電電圧)のみをその情報が必要となる送電端側の隣の変電所に対して伝達し、伝達を受けた変電所が伝達された情報に必要の都度新たな情報を加えることで、関連する箇所のみで計算を行う。その結果、複数の停電箇所が発生した場合や故障前とは別の電力系統に接続変更する際にも、関連する箇所で必要な計算のみを行えるため、複数の故障が発生しても復旧に関する計算が単純なルールでおよそ同時に可能となる。また、中央に相当する部分がないため、計算が集中しない。
また、各変電所の分散制御では情報を個別に管理するので、各変電所の制御装置の複雑化を防ぐことができる。また、各変電所の制御装置はおよそ同じものになる。
このため、各変電所運用の自動化をし、各変電所運用コストの低減を図り、電力系統の故障復旧の高速化および電力システムのロバスト性の向上を図ることができる。
さらに、請求項2記載の発明によれば、請求項1記載の発明の効果とともに、速やかに各変電所の送電電圧を所定の範囲に収めることができる場合がある。
さらに、請求項3記載の発明によれば、電力系統の各変電所の必要となる情報(負荷および送電電圧)のみを必要となる各変電所に対して伝達し、その情報に必要の都度新たな情報を加えて関連する箇所のみで計算を行う。その結果、複数の停電箇所が発生した場合や故障前とは別の電力系統に接続変更する際にも、関連する箇所で必要な計算のみを行えるため、複数の故障が発生しても復旧に関する計算が単純なルールでおよそ同時に可能となる。また、中央に相当する部分がないため、計算が集中しない。
また、各変電所の分散制御では情報を個別に管理するので、各変電所の制御装置の複雑化を防ぐことができる。また、各変電所の制御装置はおよそ同じものになる。
このため、各変電所運用の自動化をし、各変電所運用コストの低減を図り、電力系統の故障復旧の高速化および電力システムのロバスト性の向上を図ることができる。
さらに、電力系統の各変電所の負荷を増減する場合に、その負荷の増減が可能かどうか事前に検討することができる。
According to the first aspect of the present invention, only necessary information (load and transmission voltage) of each substation in the power system is transmitted to the adjacent substation on the power transmission end side where the information is necessary, and transmitted. in Rukoto added new information whenever necessary on information substation is transmitted that received, performs calculations only with the relevant location. As a result, when multiple power outages occur or when changing the connection to a power system different from that before the failure, only necessary calculations can be performed at the relevant locations, so even if multiple failures occur, Calculations are possible at the same time with simple rules. In addition, since there is no portion corresponding to the center, calculation is not concentrated.
Moreover, since information is managed individually in the distributed control of each substation, it is possible to prevent complication of the control device of each substation. In addition, the control devices of each substation are approximately the same.
Therefore, the operation of each substation can be automated, the operation cost of each substation can be reduced, the failure recovery of the power system can be speeded up, and the robustness of the power system can be improved.
Further, according to the invention described in claim 2, in addition to the effect of the invention described in claim 1, there is a case where the transmission voltage of each substation can be quickly kept within a predetermined range.
Furthermore, according to the invention described in claim 3, only the necessary information (load and transmission voltage) of each substation of the power system is transmitted to each necessary substation, and the information is updated whenever necessary. Add only relevant information and perform calculations only at relevant locations. As a result, when multiple power outages occur or when changing the connection to a power system different from that before the failure, only necessary calculations can be performed at the relevant locations, so even if multiple failures occur, Calculations are possible at the same time with simple rules. In addition, since there is no portion corresponding to the center, calculation is not concentrated.
Moreover, since information is managed individually in the distributed control of each substation, it is possible to prevent complication of the control device of each substation. In addition, the control devices of each substation are approximately the same.
Therefore, the operation of each substation can be automated, the operation cost of each substation can be reduced, the failure recovery of the power system can be speeded up, and the robustness of the power system can be improved.
Furthermore, when increasing or decreasing the load of each substation in the power system, it is possible to examine in advance whether the load can be increased or decreased.

以下、本発明における実施の形態を図面に基づいて説明する。
図1は本発明の実施の形態に係る電力系統の概略を示す配線図であり、図2は図1の電力系統における変電所の回路図である。さらに、図3は図1の詳細を示す配線図であり、図4は本発明の各変電所の制御方法を示すフローチャートであり、図5は異常電圧や復旧操作等のときのフローチャートを示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a wiring diagram schematically showing a power system according to an embodiment of the present invention, and FIG. 2 is a circuit diagram of a substation in the power system of FIG. Further, FIG. 3 is a wiring diagram showing details of FIG. 1, FIG. 4 is a flowchart showing a control method of each substation of the present invention, and FIG. 5 shows a flowchart at the time of abnormal voltage, recovery operation or the like.

図1に示す複数の変電所A、B、C、S、Tを送電端側から受電端側まで接続した電力系統10の各変電所A、B、C、S、Tの分散制御方法は、以下のとおりである。なおここで、変電所S、Tは送電端側の変電所であり、変電所A、B、Cは受電側の変電所である。変電所Sの変圧器20sの二次側は開閉器22s、送電線41および開閉器21aを順次経由して変電所Aの変圧器20aの一次側に接続されている。さらに、変電所Aの変圧器20aの一次側は開閉器22a、送電線42および開閉器21bを順次経由して変電所Bの変圧器20bの一次側に接続されている。さらに、変電所Bの変圧器20bの一次側は開閉器22b、送電線43および開閉器21cを順次経由して変電所Cの変圧器20cの一次側に接続されている。
また、変電所Tの変圧器20tの二次側は開閉器21t、送電線44および開閉器22cを順次経由して変電所Cの変圧器20cの一次側に接続されている。
また、変圧器20aには調相装置23a(例えばコンデンサ)が接続され、変圧器20cには調相装置23c(例えばコンデンサ)が接続されている。
The distributed control method of each substation A, B, C, S, T of the electric power system 10 in which a plurality of substations A, B, C, S, T shown in FIG. 1 are connected from the power transmission end side to the power receiving end side is It is as follows. Here, the substations S and T are substations on the power transmission end side, and the substations A, B, and C are substations on the power receiving side. The secondary side of the transformer 20s in the substation S is connected to the primary side of the transformer 20a in the substation A via the switch 22s, the power transmission line 41, and the switch 21a in this order. Furthermore, the primary side of the transformer 20a of the substation A is connected to the primary side of the transformer 20b of the substation B via the switch 22a, the power transmission line 42, and the switch 21b in order. Furthermore, the primary side of the transformer 20b of the substation B is connected to the primary side of the transformer 20c of the substation C via the switch 22b, the power transmission line 43, and the switch 21c in order.
The secondary side of the transformer 20t at the substation T is connected to the primary side of the transformer 20c at the substation C via the switch 21t, the power transmission line 44, and the switch 22c in this order.
Further, a phase adjusting device 23a (for example, a capacitor) is connected to the transformer 20a, and a phase adjusting device 23c (for example, a capacitor) is connected to the transformer 20c.

そして、複数の変電所A、B、C、S、Tの各々に制御装置30(図2参照)を付加し、各変電所A、B、C、S、Tの送電端における有効電力Pおよび無効電力Qを各変電所A、B、C、S、Tの負荷とし、制御装置30が各変電所A、B、C、S、Tの負荷を受電端側から順次送電端側まで算出する。
ついで、各変電所A、B、C、S、Tにおいて前記算出した負荷を供給できる送電電圧(実効値)を算出し、さらに、前記算出した各変電所A、B、C、S、Tの送電電圧が所定の範囲から外れるときに、各変電所A、B、C、S、Tの制御装置30が電圧調整および調相設備の調整を行い前記送電電圧を所定の範囲に収めようとするが、これができない場合、各変電所A、B、C、S、Tの隣の変電所に対し電圧調整および調相設備23a、23cの調整運転を依頼して前記送電電圧を前記所定の範囲に収める。具体的には、例えば変電所Bの隣の変電所は変電所Aおよび変電所Cである。
And the control apparatus 30 (refer FIG. 2) is added to each of several substation A, B, C, S, T, and the active electric power P in the transmission end of each substation A, B, C, S, T and The reactive power Q is set as the load of each substation A, B, C, S, T, and the control device 30 calculates the load of each substation A, B, C, S, T from the power receiving end side to the power transmitting end side sequentially. .
Next, a transmission voltage (effective value) that can supply the calculated load at each substation A, B, C, S, T is calculated, and further, each of the calculated substations A, B, C, S, T is calculated. When the transmission voltage is out of the predetermined range, the control devices 30 of the substations A, B, C, S, and T try to adjust the voltage and the phase adjusting equipment so as to keep the transmission voltage within the predetermined range. However, if this is not possible, the substations adjacent to each substation A, B, C, S, T are requested to perform voltage adjustment and adjustment operation of the phase adjusting equipment 23a, 23c to bring the transmission voltage within the predetermined range. Fit. Specifically, for example, substations next to substation B are substation A and substation C.

さらに、前記受電端側の変電所A、B、Cの負荷を増減する場合に事前に、前記受電端側の変電所A、B、Cの制御装置30により、前記受電側の変電所A、B、Cの負荷並びに送電側の変電所(S、T等)と受電側の変電所A、B、Cとを接続する送電線41、42、43、44の電気定数を基にして、前記受電端側の変電所A、B、Cに送電する送電側の変電所(S、T等)の送電端における負荷を算出する。なお、送電線41、42、43、44の電気定数は抵抗R、インダクタンスLおよび静電容量Cである。
そして、算出した負荷の値を送電側の変電所(S、T等)の制御装置30に通報し、前記負荷の算出並びに通報を順次前記送電端側の変電所S、Tまで繰り返し、つぎに、送電端側の変電所(S、T等)の制御装置30により、前記通報された負荷を供給できる送電端側の変電所(S、T等)の送電端の電圧を受電側の変電所A、B、Cの制御装置30に通報し、前記電圧の通報を受電端側の変電所A、B、Cまで繰り返す。
Further, when the load of the substations A, B, and C on the power receiving end side is increased or decreased, the control device 30 of the substations A, B, and C on the power receiving end side beforehand controls the substation A, Based on the electrical constants of the transmission lines 41, 42, 43, 44 connecting the load of B, C and the substation (S, T, etc.) on the power transmission side and the substations A, B, C on the power receiving side, The load at the power transmission end of the substation (S, T, etc.) on the power transmission side that transmits power to the substations A, B, and C on the power receiving end side is calculated. The electric constants of the power transmission lines 41, 42, 43, and 44 are a resistance R, an inductance L, and a capacitance C.
Then, the calculated load value is reported to the control device 30 of the power transmission side substation (S, T, etc.), and the calculation and notification of the load are sequentially repeated up to the power transmission end side substations S, T. The voltage at the power transmission end of the power transmission end side substation (S, T, etc.) that can supply the reported load is controlled by the control device 30 of the power transmission end side substation (S, T, etc.). A, B, and C control devices 30 are notified, and the voltage notification is repeated up to substations A, B, and C on the receiving end side.

具体的には図2に示すように、例えば変電所Aにおいては,送電線41、47はそれぞれ複数の送電線を並列に配設したものである。なお、送電線47は変電所Aの負荷に送電する送電線である。このため、変圧器20aも複数の変圧器を並列に配設したものである。このようにすると、電力系統10の故障時の復旧が容易なり、また、送電先が異なる場合に対応することが容易になる。送電線41を構成する複数の送電線は一次母線41aで互いに接続され、送電線47を構成する複数の送電線は二次母線47aで互いに接続されている。そして、開閉器21aは一次母線41aの両側の開閉器21au、21av、21ax、21ayからなり、送電線47の開閉器24u、24v、24x、24yは二次母線47aの両側に配設されている。また、計器用変流器51、52、55、56が一次母線41aの両側において送電線41に配設され、計器用変流器53、54、57、58が二次母線47aの両側において送電線47に配設されている。さらに、一次母線41aには計器用変圧器61が接続され、二次母線47aには計器用変圧器62が接続されている。また、二次母線47aには開閉器23xを介して調相設備23aが接続され、調相設備23aに流れる電流を検出する計器用変流器59が配設されている。   Specifically, as shown in FIG. 2, in substation A, for example, power transmission lines 41 and 47 are each configured by arranging a plurality of power transmission lines in parallel. The power transmission line 47 is a power transmission line that transmits power to the load of the substation A. For this reason, the transformer 20a also includes a plurality of transformers arranged in parallel. If it does in this way, restoration at the time of failure of electric power system 10 will become easy, and it will become easy to cope with when a power transmission place differs. A plurality of power transmission lines constituting the power transmission line 41 are connected to each other by a primary bus 41a, and a plurality of power transmission lines constituting the power transmission line 47 are connected to each other by a secondary bus 47a. The switch 21a is composed of switches 21au, 21av, 21ax, 21ay on both sides of the primary bus 41a, and the switches 24u, 24v, 24x, 24y of the power transmission line 47 are arranged on both sides of the secondary bus 47a. . Also, the instrument current transformers 51, 52, 55, 56 are arranged on the power transmission line 41 on both sides of the primary bus 41a, and the instrument current transformers 53, 54, 57, 58 are sent on both sides of the secondary bus 47a. The electric wire 47 is disposed. Further, an instrument transformer 61 is connected to the primary bus 41a, and an instrument transformer 62 is connected to the secondary bus 47a. Further, the secondary bus 47a is connected to the phase adjusting equipment 23a via the switch 23x, and an instrument current transformer 59 for detecting the current flowing through the phase adjusting equipment 23a is provided.

変電所Aに付設された制御装置30は、制御回路本体31、第1開閉器操作回路32、第2開閉器操作回路33、第3開閉器操作回路34、第1入力回路35、第2入力回路36、変圧器タップ制御回路37および通信回路38を備えている。
制御回路本体31は制御用コンピュータと同様のものであり、入力手段、演算手段、記憶手段および表示手段を有し、前記入力手段はプログラムおよび送電線と変電所の機器に関する各種データ(定格容量、定格電圧、タップ数等、制御する機器の特性と送電線の許容電流、電気的特性になる。なお、条件により送電線の電気的特性は相対する変電所と同期計算して得ることもできる。)を記憶手段に入力し、前記記憶手段はプログラムおよび各種データを記憶し、前記演算手段は前記記憶手段に記憶されたプログラムおよび各種データにしたがって演算する。また、前記表示手段は必要に応じて各種演算結果等を表示する。前記演算結果にしたがって、制御回路本体31は第1開閉器操作回路32、第2開閉器操作回路33、第3開閉器操作回路34、第1入力回路35、第2入力回路36、変圧器タップ制御回路37および通信回路38を制御する。
The control device 30 attached to the substation A includes a control circuit body 31, a first switch operating circuit 32, a second switch operating circuit 33, a third switch operating circuit 34, a first input circuit 35, and a second input. A circuit 36, a transformer tap control circuit 37, and a communication circuit 38 are provided.
The control circuit main body 31 is the same as the control computer, and has input means, calculation means, storage means, and display means, and the input means is a program and various data (rated capacity, The characteristics of the device to be controlled, the allowable current of the transmission line, and the electrical characteristics, such as the rated voltage and the number of taps, etc. Depending on the conditions, the electrical characteristics of the transmission line can also be obtained by synchronous calculation with the opposing substation. ) To the storage means, the storage means stores a program and various data, and the calculation means calculates according to the program and various data stored in the storage means. The display means displays various calculation results and the like as necessary. According to the calculation result, the control circuit body 31 includes a first switch operating circuit 32, a second switch operating circuit 33, a third switch operating circuit 34, a first input circuit 35, a second input circuit 36, and a transformer tap. The control circuit 37 and the communication circuit 38 are controlled.

なお、第1開閉器操作回路32が開閉器21au、21axを操作し、第2開閉器操作回路33が開閉器21av、24u、21ay、24xを操作し、第3開閉器操作回路34が開閉器24v、24y、23xを操作する。また、第1入力変換器35が計器用変流器51、52、55、56の出力を受けて送電線41を流れる電流を検出し、第2入力変換器36が計器用変流器53、54、57、58の出力を受けて送電線42を流れる電流を検出する。なお、各入力変換器35、36は、測定した電圧と電流を制御回路本体31で用いられる大きさに変換するとともに、有効電力および無効電力に変換する機能も有する。なお、前記有効電力および無効電力に変換する機能は制御回路本体31内での演算で行うこともできる。
また、変圧器タップ制御回路37が変圧器20aのタップ値を制御する。さらに、通信回路38が他の変電所の制御装置30と負荷および送電電圧のデータの通信(専用線、IP網、LAN等による)をし、さらに必要に応じて隣の変電所にその変圧器タップの調整、調相設備の運転を依頼する。
The first switch operating circuit 32 operates the switches 21au and 21ax, the second switch operating circuit 33 operates the switches 21av, 24u, 21ay and 24x, and the third switch operating circuit 34 is the switch. 24v, 24y, 23x are operated. In addition, the first input converter 35 receives the output of the instrument current transformers 51, 52, 55, 56 and detects the current flowing through the power transmission line 41, and the second input converter 36 detects the current transformer 53, The current flowing through the power transmission line 42 is detected in response to the outputs 54, 57, and 58. Each of the input converters 35 and 36 has a function of converting the measured voltage and current into a size used in the control circuit main body 31 and converting it into active power and reactive power. The function of converting into active power and reactive power can also be performed by calculation in the control circuit body 31.
The transformer tap control circuit 37 controls the tap value of the transformer 20a. Further, the communication circuit 38 communicates data of the load and transmission voltage with another control device 30 of the substation (by a dedicated line, IP network, LAN, etc.), and further, if necessary, the transformer to the adjacent substation. Request tap adjustment and operation of phase adjusting equipment.

図3は図1をさらに具体化した系統を示す。(なお、図1の開閉器22cまたは開閉器21tをオフにした状態である。)図3にて、例えば変電所Sは154kVの電圧を受電し、77kVに電圧を下げている。変電所Sは77kVの送電電圧を送電線41により変電所Aに送電線45により変電所Eにそれぞれ送電している。変電所Aは77kVで受電するとともに、送電線42により変電所Bへ77kVで送電している。同様に、変電所Bは送電線43により変電所Cへ送電線46により変電所Dへそれぞれ77kVで送電している。なお、変電所Sから変電所Eの図に等しく記している「各変負荷」11、12、13、14、15、16は、各変電所S、A、B、C、D、Eに変圧器があり、その変圧器を経由して77kV以外の電圧で送っている負荷を示す。   FIG. 3 shows a system that further embodies FIG. (The switch 22c or the switch 21t in FIG. 1 is turned off.) In FIG. 3, for example, the substation S receives a voltage of 154 kV and lowers the voltage to 77 kV. The substation S transmits a 77 kV transmission voltage to the substation A via the transmission line 41 and to the substation E via the transmission line 45. Substation A receives power at 77 kV and transmits power to substation B at 77 kV via transmission line 42. Similarly, substation B transmits power to substation C via power transmission line 43 at 77 kV to substation D via power transmission line 46. In addition, “each load” 11, 12, 13, 14, 15, 16 shown in the figure of the substation S to the substation E is transformed into each substation S, A, B, C, D, E. Indicates a load that is being sent at a voltage other than 77 kV through the transformer.

変電所Sから変電所A〜Eに送られる定格電圧は77kVであるが、実際には送電線41〜46上の電圧分布は異なる。この電圧分布は各変電所A〜Eの負荷、変電所Sの変圧器20sのタップと変電所A〜Eの調相設備(コンデンサ、リアクトル等)の投入および開放で決まる。例えば、変電所Cの電圧は、変電所Cの負荷と変電所Bを経由して到達する電位により決まり、変電所Bの電圧は変電所Cおよび変電所Dへ77kVで送電している負荷と変電所Bの負荷、変電所Aを経由して到達する電位で決まる。
変電所Cはさらに77kVで送電する先がないので、77kVの電圧は、規制する電圧の範囲(ここではとりあえず「定格電圧+10%」〜「定格電圧−10%」とする。)にあればよい。しかし、変電所Bは変電所Cの電圧が規制する範囲にあるとともに、変電所B自らの電圧も規制の範囲内にしなければならない。同時に変電所Bの電圧は変電所Cの負荷にも左右されるので、変電所Cの負荷および電圧の状態を変電所Bに伝え、変電所Bではそれらの情報を元に自らが入るべき電圧の範囲を決めなければならない。
Although the rated voltage sent from the substation S to the substations A to E is 77 kV, the voltage distribution on the transmission lines 41 to 46 is actually different. This voltage distribution is determined by the load of each substation A to E, the tap of the transformer 20s of the substation S, and the introduction and release of the phase adjusting equipment (capacitor, reactor, etc.) of the substations A to E. For example, the voltage at substation C is determined by the load at substation C and the potential reached via substation B, and the voltage at substation B is the load transmitting to substation C and substation D at 77 kV. It is determined by the load at substation B and the potential reached via substation A.
Since the substation C has no further power transmission at 77 kV, the voltage of 77 kV may be in the regulated voltage range (here, “rated voltage + 10%” to “rated voltage−10%”). . However, the substation B is within the range regulated by the voltage at the substation C, and the voltage of the substation B itself must be within the regulated range. At the same time, since the voltage at substation B depends on the load at substation C, the load and voltage status of substation C is communicated to substation B, and substation B is the voltage that it should enter based on that information. You must decide the range.

つぎに、図4は、図3の各変電所S〜Eにおける電圧の範囲を求める基本的なアルゴリズムを示すフローチャートであり、各変電所の制御動作を示す。
「開始」(ステップS1)は負荷の変更(調相設備の投入および開放、故障復旧等に起因する負荷の追加および減少等)の際や、負荷の変動に起因する電圧の変更をトリガーとする。
Next, FIG. 4 is a flowchart showing a basic algorithm for obtaining a voltage range in each of the substations S to E in FIG. 3, and shows a control operation of each substation.
“Start” (step S1) is triggered by a change in the load (such as addition and reduction of loads caused by turning on and off phase-adjusting equipment, failure recovery, etc.) or a change in voltage caused by fluctuations in the load. .

図3を基にして図4のフローチャートの説明を以下のように行う。なお、図4のフローチャートを実行するプログラムは制御装置30の制御回路本体31の記憶手段に記憶されている。
1.制御装置30の動作を開始して(ステップS1)、各変電所S〜Eが同一電圧で別の変電所に送電しているか判断する(ステップS2)。ここで、「同一電圧」とは、この例では変電所Sの変圧器20s(図1参照)で77kVをつくり、途中に変圧器を介さずに変電所A〜Eへ送電し受電される77kVを示す。変電所S、A、Bは同一電圧で送電している。一方、変電所C、D、Eは同一電圧で送電していない。
変電所Sで154kVから77kVに降圧した電圧は、変電所S以外の変圧器を介さずに変電所A〜Eの電源となるので、基本的には変電所Sから変電所A〜Eへ送電される。そのため、変電所Eは変電所Sから、変電所Cと変電所Dは変電所Bから受電し、変電所Bは変電所Aから、変電所Aは変電所Sからそれぞれ受電する。すなわち、変電所S、A、Bは同一電圧で別の変電所に送電しているが、変電所C、D、Eは自所の変圧器を介した負荷しか送電していないので、同一電圧で別の変電所に送電していない。
The flowchart of FIG. 4 will be described as follows based on FIG. The program for executing the flowchart of FIG. 4 is stored in the storage means of the control circuit body 31 of the control device 30.
1. The operation of the control device 30 is started (step S1), and it is determined whether each substation S to E transmits power to another substation with the same voltage (step S2). Here, the “same voltage” means 77 kV which is generated by 77 kV in the transformer 20 s (see FIG. 1) of the substation S and is transmitted to the substations A to E and not received through the transformer in the middle. Indicates. Substations S, A, and B are transmitting at the same voltage. On the other hand, substations C, D, and E do not transmit power at the same voltage.
Since the voltage stepped down from 154 kV to 77 kV at the substation S becomes the power source of the substations A to E without passing through any transformer other than the substation S, basically, power is transmitted from the substation S to the substations A to E. Is done. Therefore, substation E receives power from substation S, substation C and substation D receive power from substation B, substation B receives power from substation A, and substation A receives power from substation S. That is, substations S, A, and B transmit power to another substation at the same voltage, but substations C, D, and E transmit only the load through their own transformer, so the same voltage The power is not transmitted to another substation.

2.同一電圧で別の変電所に送電していない場合には、受電側電圧を最大および最小とも規制値とする(ステップS3)。
変電所C、D、Eはそれぞれ自所の変圧器を介して異なる電圧の負荷14、15、16を持つのみのため、同一電圧で送電する先のない「末端の」変電所となる。そのため、自らの変電所の電圧が規制値にあればよい。解説のため、とりあえず決めた値から、最小電圧は「定格電圧−10%」、最大電圧は「定格電圧+10%」となる。
変電所Bに着目して解説すると、同一電圧で送る変電所(下流の変電所)は変電所Cと変電所Dになる。変電所Cと変電所Dは末端の変電所であり、変電所Cおよび変電所Dの規制の範囲における最小電圧は変電所Cおよび変電所Dでは「定格電圧−10%」となり、最大電圧は「定格電圧+10%」となる。変電所Bは、変電所C、Dまでの送電線43、46での電圧変化値を見越した値で電圧が規制される。
2. When power is not transmitted to another substation with the same voltage, the power receiving side voltage is set to a regulation value for both maximum and minimum (step S3).
Since the substations C, D, and E only have loads 14, 15, and 16 having different voltages through their own transformers, they are “terminal” substations that have no destination to transmit at the same voltage. Therefore, the voltage of its own substation should just be in a regulation value. For the sake of explanation, the minimum voltage is “rated voltage−10%” and the maximum voltage is “rated voltage + 10%” from the determined value for the time being.
If we focus on substation B and explain it, substations sent at the same voltage (downstream substation) are substation C and substation D. Substation C and substation D are the terminal substations. The minimum voltage within the limits of substation C and substation D is “rated voltage −10%” at substation C and substation D, and the maximum voltage is “Rated voltage + 10%”. The voltage of the substation B is regulated by a value that allows for a voltage change value in the transmission lines 43 and 46 to the substations C and D.

3.同一電圧で別の変電所に送電している場合には、送電している変電所からのデータを待つ(ステップS4)。
変電所S、A、Bは別の変電所へ同一電圧で送電している。そのため、自所の電圧の範囲を定めるには、送電している先の電圧の範囲が必要である。この電圧の範囲のデータが伝えられるまで待つ。
3. If power is being transmitted to another substation at the same voltage, data from the transmitting substation is awaited (step S4).
Substations S, A, and B transmit power to another substation with the same voltage. Therefore, in order to determine the range of the voltage at the site, the range of the voltage to which the power is transmitted is necessary. Wait until data in this voltage range is transmitted.

4.下流の変電所から送られた電圧と規制値の最大値(複数の最大値のうち最も小さい値を選定する)および最小値(複数の最小値のうち最も大きい値を選定する)を選定する(ステップS5)。
先にも述べたように、変電所Cおよび変電所Dの規制の範囲における最小電圧は、変電所Cおよび変電所Dは「定格電圧−10%」となる。変電所Cと変電所Dにはそれぞれの負荷がある。この負荷により変電所Bからの送電線により電圧が低下すると仮に考えると、変電所Bから送り出すべき電圧は、負荷から計算できる(後出の式(1)参照)。そのため、変電所Cと変電所Dの最小電圧を保つために、変電所Bに要求する最小電圧がそれぞれ計算でき、変電所Cもしくは変電所Dが変電所Bに要求する最小電圧のうち、高い電圧が変電所Bに要求される最小電圧となる。同様にして、変電所Bに要求される最大電圧も考える。
4). Select the maximum voltage (select the smallest value among the multiple maximum values) and the minimum value (select the largest value among the multiple minimum values) sent from the downstream substation (select the largest value) Step S5).
As described above, the minimum voltage in the regulation range of the substation C and the substation D is “rated voltage −10%” in the substation C and the substation D. Substation C and substation D have their own loads. Assuming that the voltage drops due to the transmission line from the substation B due to this load, the voltage to be sent from the substation B can be calculated from the load (see Equation (1) below). Therefore, in order to maintain the minimum voltage of substation C and substation D, the minimum voltage required for substation B can be calculated, and the minimum voltage required by substation C or substation D for substation B is the highest. The voltage is the minimum voltage required for substation B. Similarly, consider the maximum voltage required for substation B.

5.上位は異電圧か判断する(ステップS6)。
変電所Sは異電圧となる。変電所A〜Eは異電圧とならない。同一電圧以外から受電しているか否かを判断する。変電所Sの場合、154kVから77kVへ降圧し、77kVで送電しているので該当する。(変電所A〜Eは77kVで受電し、それ以外の電圧でさらに負荷へ送電する。)上位が異電圧である場合、図4のフローチャートは終了する。
5. It is determined whether the higher voltage is a different voltage (step S6).
The substation S has a different voltage. Substations A to E do not have different voltages. It is determined whether the power is received from other than the same voltage. In the case of the substation S, the voltage falls from 154 kV to 77 kV and is transmitted at 77 kV. (Substations A to E receive power at 77 kV, and further transmit power to the load at other voltages.) When the upper level is a different voltage, the flowchart of FIG. 4 ends.

6.上位が異電圧でない場合、受電しているPQを元に、送電端の電圧を計算する(ステップS7)。
当該変電所の最大、最小電圧となる送電端の電圧を、それそれ後述する式(1)などを用いて計算する。(ここで、行う内容は4項の説明のためにすでに記述している)。
6). If the higher voltage is not a different voltage, the voltage at the power transmission end is calculated based on the received PQ (step S7).
The voltage at the power transmission end that is the maximum and minimum voltage of the substation is calculated using Equation (1) described later. (Here, the contents to be performed have already been described for the explanation of the item 4).

7.上位の変電所に送電端の最大電圧および最小電圧を送信する(ステップS8)。
送電端となる変電所に対し、当該変電所として必要な最小電圧および最大電圧となる電圧を図2の通信回路38が送信する。
このフローチャートにより、末端となる変電所(図3における変電所C、変電所D、変電所E)から電源となる変電所(図3における変電所S)までの電圧の許容範囲が定まる。それぞれの変電所でこの電圧の許容範囲を逸脱する場合、同一系統内の自らの変電所よりも負荷側で電圧が規定の範囲から外れている可能性が高いことがわかることになる。(末端の変電所の最大電圧および最小電圧は規定の範囲の上限と下限になる。)
7). The maximum voltage and the minimum voltage at the power transmission end are transmitted to the upper substation (step S8).
The communication circuit 38 in FIG. 2 transmits the minimum voltage and the maximum voltage necessary for the substation to the substation serving as the power transmission end.
With this flowchart, the allowable range of voltage from the substation (substation C, substation D, substation E in FIG. 3) to the substation (substation S in FIG. 3) serving as a power source is determined. When each substation deviates from this allowable voltage range, it is understood that the voltage is more likely to be out of the specified range on the load side than the own substation in the same system. (The maximum and minimum voltages of the terminal substation are the upper and lower limits of the specified range.)

自らの変電所で電圧が規定の範囲を逸脱した場合、自らの変電所にある調相設備を調整操作して規定の範囲に収めるように動作するが、その結果自らの変電所の調相設備のみでは電圧を規定の範囲に収めることができなければ、隣の変電所へ電圧が前述の許容範囲に入るよう、調整操作を依頼する。
操作を依頼された変電所は、操作可能な調相設備を有する場合、調相操作を行う調相設備に対して後述の電力機器操作の可否判定を行い、その結果、操作可能の判定が出るが現状よりも改善するとの判定が出ればその操作を実行する。操作不可ならば、さらに隣の変電所へ電圧調整の依頼を行う。
操作の依頼を解除する方法。操作を依頼した変電所の電圧が規定の範囲に入ると共に、依頼により行った操作と拮抗する操作を行っても、電圧が許容範囲内に収まることが、後述の電力機器の可否判定により判った場合、依頼は解除されたとする。
この結果、依頼により操作された設備は、依頼とは無関係に設備を有する変電所が操作可能となる。
If the voltage at your own substation deviates from the specified range, it operates to adjust the phase adjustment equipment at your own substation to fall within the specified range. As a result, the phase adjustment equipment at your own substation If the voltage cannot be kept within the specified range, the adjustment operation is requested to the adjacent substation so that the voltage falls within the above-mentioned allowable range.
When the substation requested to operate has phase control equipment that can be operated, the phase control equipment that performs the phase adjustment operation is subjected to the power device operation determination described later, and as a result, the operation is determined to be possible. If it is determined that is improved from the current state, the operation is executed. If operation is impossible, request voltage adjustment to the next substation.
How to cancel an operation request. The voltage of the substation that requested the operation is within the specified range, and even if an operation that competes with the operation performed by the request is performed, the voltage is within the allowable range. In this case, it is assumed that the request has been canceled.
As a result, the facility operated by the request can operate the substation having the facility regardless of the request.

(変電所で許容できる最小電圧および最大電圧の計算)
例えば、制御装置30が次の計算式を用いて送電線の受電側から送電側の電圧を求めることができる。この計算式は近似式であるが、厳密な式などでもよい。

Figure 0005269524

ここで、Vrは受電端の電圧、Vsは送電端の電圧、Xは送電線のインダクタンス、Rは送電線のレジスタンス、Qrは受電端における無効電力、Prは受電端における有効電力である。 (Calculation of minimum and maximum voltage allowable at substation)
For example, the control device 30 can obtain the voltage on the power transmission side from the power reception side of the power transmission line using the following calculation formula. This calculation formula is an approximate formula, but may be a strict formula.
Figure 0005269524

Here, Vr is the voltage at the receiving end, Vs is the voltage at the transmitting end, X is the inductance of the transmission line, R is the resistance of the transmission line, Qr is the reactive power at the receiving end, and Pr is the active power at the receiving end.

(送電線の両端のPQおよび電圧の計算)
例えば、制御装置30が次の式を用いて受電端電力(Sr=Pr+jQr)から送電端電力(Ss=Ps+jQs)を求める。

Figure 0005269524

ここで、Vrは受電端電圧、Zは送電線のインピーダンス(Z=R+jX)を示す。
なお、電圧が変化するとPQも変化するが、この例では定電力負荷として扱う(これは、実情に合わせて変更することができる。)。 (Calculation of PQ and voltage at both ends of transmission line)
For example, the control device 30 obtains the power transmission end power (Ss = Ps + jQs) from the power reception end power (Sr = Pr + jQr) using the following equation.
Figure 0005269524

Here, Vr represents the receiving end voltage, and Z represents the impedance (Z = R + jX) of the transmission line.
When the voltage changes, PQ also changes, but in this example, it is treated as a constant power load (this can be changed according to the actual situation).

定電力負荷の場合、電圧が変わることで電流が変わり、その結果、電圧低下量も変化する。そのため、送電端のPQを求め、そのPQを元に受電端の電圧Vrを計算する。この手法の場合、電圧と電力それぞれが変化するため、値が収束するまで繰り返し計算を要するが、実用上は往復もしくは2往復程度でよいと考えている。電圧計算は、例えば次のように行う。

Figure 0005269524

Vsは送電端電圧(式(2)で計算したもの)、Vrは送電線の受電端側電圧、Ssは送電線の送電端電力(潮流)で式(2)で計算したものである。
この結果、図1の場合、変電所Cから変電所Sまで電力(負荷)を合計し、その電力を元に変電所Sから変電所Cに対して逐次電圧を返す。 In the case of a constant power load, the current changes as the voltage changes, and as a result, the amount of voltage drop also changes. Therefore, the PQ at the power transmission end is obtained, and the voltage Vr at the power reception end is calculated based on the PQ. In the case of this method, since voltage and power each change, repeated calculation is required until the value converges. However, in practice, it is considered that round trip or two round trips are sufficient. The voltage calculation is performed as follows, for example.
Figure 0005269524

Vs is a power transmission end voltage (calculated by Expression (2)), Vr is a power receiving end side voltage of the transmission line, and Ss is a power transmission end power (tidal current) of the transmission line, which is calculated by Expression (2).
As a result, in the case of FIG. 1, the power (load) is totaled from the substation C to the substation S, and the voltage is sequentially returned from the substation S to the substation C based on the power.

(電力機器操作の可否判定)
図5のフローチャートは異常電圧や復旧操作等のときの電力機器操作の可否判定の基本操作のフローチャートを示す。なお、図5のフローチャートを実行するプログラムは制御装置30の制御回路本体31の記憶手段に記憶されている。また、異常電圧は各変電所に設置した計器用変圧器61、62(図2参照)で測定できる。
すなわち、1つの操作(調相設備の投入、負荷設備の投入)を行う際に、事前にその操作を行った場合に電圧が適切な範囲にできるかを確認する方法を述べる。
基本的な動作は、図3を例にして、変電所Bに着目すると次のようになる。変電所Bは変電所Cおよび変電所Dから電圧の確認の問い合わせを受け、もしくは、電圧異常や復旧操作の発生により自ら必要に応じて電圧確認の問い合わせが発生した場合に開始する(ステップS11)(問い合わせの条件は後述図5の説明に記述)。
その際、すでに別の問い合わせがでていない場合(ステップS12)、または、すでに別の問い合わせがでていても優先度が競合しない場合(ステップS13)には、前記操作によるPQの変化量を入手する(ステップS15)。
また、すでに別の問い合わせがでていて(ステップS12)、優先度が競合する場合(ステップS13)には待機する(ステップS14)。そして、待機の条件が解消した後に前記操作によるPQの変化量を入手する(ステップS15)。
つぎに、受電端でのPQの積算をし(ステップS16)、補助操作によるQの調整をする(ステップS17)。ここで、補助操作は調相設備の投入等である。
つぎに、送電端におけるPQの計算をし(ステップS18)、上位の変電所へのPQの通知(問い合わせ)をし(ステップS19)、上位の変電所からの回答を待つ(ステップS20)。
(Evaluation of power device operation)
The flowchart of FIG. 5 shows a flowchart of the basic operation for determining whether or not the power device can be operated at the time of abnormal voltage, recovery operation, or the like. A program for executing the flowchart of FIG. 5 is stored in the storage means of the control circuit body 31 of the control device 30. The abnormal voltage can be measured with instrument transformers 61 and 62 (see FIG. 2) installed at each substation.
That is, a method for confirming whether or not the voltage can be in an appropriate range when performing one operation (turning on the phase adjusting equipment and turning on the load equipment) in advance will be described.
The basic operation is as follows when attention is paid to substation B by taking FIG. 3 as an example. The substation B starts when a voltage confirmation inquiry is received from the substation C and the substation D or when a voltage confirmation inquiry is generated as necessary due to a voltage abnormality or a recovery operation (step S11). (Inquiry conditions are described in the description of FIG. 5 below).
At this time, if another inquiry has not already been made (step S12), or if another inquiry has already been made and the priority does not conflict (step S13), the amount of change in PQ due to the above operation is obtained. (Step S15).
If another inquiry has already been made (step S12) and the priorities conflict (step S13), the process waits (step S14). Then, after the standby condition is resolved, the amount of change in PQ due to the above operation is obtained (step S15).
Next, the PQ is accumulated at the power receiving end (step S16), and the Q is adjusted by the auxiliary operation (step S17). Here, the auxiliary operation includes the introduction of phase adjusting equipment.
Next, the PQ at the power transmission end is calculated (step S18), the PQ is notified (inquiry) to the upper substation (step S19), and a reply from the upper substation is waited (step S20).

例えば、変電所Bは変電所Aへ条件となる「変電所Aから変電所Bへの送電線の送電端での電力」を問い合わせとして通知し、その通知された電力を元に、変電所Aは変電所Sから変電所Aへの送電端の電力を計算、変電所Sへ問い合わせとして通知する。
変電所Sまで到達すると、通知されてきた電力と現状の電圧を基準として変電所Sの電圧を問い合わせ元に対して回答する。変電所Sに問い合わせをした変電所Aでは、送電端電圧である変電所Sの電圧から、問い合わせを行った際の電力を用いて自所の電圧を計算し、変電所Aへの問い合わせ元である変電所Bに自所の電圧(変電所Bから見ると送電端電圧になる。)を回答する。
このように繰り返し、問い合わせ元に電圧を返し(ステップS24)、待機している問い合わせを差し戻す(ステップS25)。
For example, the substation B notifies the substation A of “power at the transmission end of the transmission line from the substation A to the substation B” as an inquiry, and the substation A is based on the notified power. Calculates the power at the power transmission end from the substation S to the substation A and notifies the substation S as an inquiry.
When it reaches the substation S, the voltage of the substation S is answered to the inquiry source based on the notified power and the current voltage. In the substation A that inquired the substation S, the voltage at the substation S, which is the transmission end voltage, is calculated using the power at the time of the inquiry, and the source of the inquiry to the substation A A certain substation B is answered with its own voltage (when viewed from substation B, it becomes the transmission end voltage).
In this manner, the voltage is returned to the inquiry source (step S24), and the waiting inquiry is returned (step S25).

なお、回答を行う際に、回答する電圧が図4のフローチャートで求めた自所の最大および最小電圧を越えた場合は(ステップS21)、自所の電圧を回答するのではなく、「操作不可」として、問い合わせを行うトリガとなった操作を行わないようにする(同様に、送電線等の送電容量を超過する電力を問い合わせとして受けた場合も「操作不可」として回答する)(ステップS22)。
つぎの順位の待機データを処理し(ステップS23)、操作によるPQの変化量を入手する(ステップS15)。
When the answer is made, if the answer voltage exceeds the maximum and minimum voltages obtained in the flowchart of FIG. 4 (step S21), the answer is not “response to the own voltage”. "Do not perform the operation that triggered the inquiry (similarly, reply as" inoperable "when power exceeding the transmission capacity such as a transmission line is received as an inquiry) (step S22) .
The standby data of the next rank is processed (step S23), and the amount of change in PQ due to the operation is obtained (step S15).

なお、上記実施の形態において、変電所の数は図1および図3に示されたものに限定されない。
また、制御装置30は各変電所に付設されている。
また、調相設備は各変電所の全てに配備する必要はなく、必要に応じて配備すればよい。前記調相設備は、コンデンサ、リアクトル、同期調相機(ロータリーコンデンサ)、静止型無効電力補償装置(SVC)等である。
In the above embodiment, the number of substations is not limited to that shown in FIGS.
Moreover, the control apparatus 30 is attached to each substation.
In addition, the phase adjusting equipment does not need to be provided at all of the substations, and may be provided as necessary. The phase adjusting equipment is a capacitor, a reactor, a synchronous phase adjuster (rotary capacitor), a static reactive power compensator (SVC), or the like.

本発明の実施の形態に係る電力系統の概略を示す配線図である。It is a wiring diagram which shows the outline of the electric power system which concerns on embodiment of this invention. 図1の電力系統における変電所の回路図である。It is a circuit diagram of the substation in the electric power system of FIG. 図1の詳細を示す配線図である。It is a wiring diagram which shows the detail of FIG. 本発明の各変電所の制御方法を示すフローチャートである。It is a flowchart which shows the control method of each substation of this invention. 異常電圧や復旧操作等のときのフローチャートである。It is a flowchart at the time of abnormal voltage, recovery operation, etc.

符号の説明Explanation of symbols

10 電力系統
A、B、C、S、T 変電所
P 有効電力
Q 無効電力
20a〜20t 変圧器
23a、23c 調相設備
30 制御装置
37 変圧器タップ制御回路
38 通信回路
41〜47 送電線
DESCRIPTION OF SYMBOLS 10 Electric power system A, B, C, S, T Substation P Active power Q Reactive power 20a-20t Transformer 23a, 23c Phase-adjusting equipment 30 Control apparatus 37 Transformer tap control circuit 38 Communication circuit 41-47 Transmission line

Claims (3)

複数の変電所を送電端側から受電端側まで接続した電力系統において、
前記複数の変電所の各々に制御装置を付加し、
前記各変電所の送電端における有効電力および無効電力を前記各変電所の負荷とし、
前記受電端側の末端となる変電所において、前記制御装置が記変電所の負荷を供給できる送電電圧を算出し、算出した送電電圧のデータを送電端側の隣の変電所に送信し、ついで、送電電圧のデータが送信された各変電所において、前記制御装置が、送信された送電電圧のデータに対応して前記変電所の負荷を算出し、記変電所において前記算出した負荷を供給できる送電電圧を算出し、この送電電圧の算出が行われた変電所が送電端側の端の変電所でない場合には、算出した送電電圧のデータを送電端側の隣の変電所に送信し、
さらに、前記算出した各変電所の送電電圧が所定の範囲から外れるときに、前記各変電所の隣の変電所に対し電圧調整および調相設備の調整運転を依頼して前記送電電圧を前記所定の範囲に収めることを特徴とする電力系統の各変電所の分散制御方法。
In an electric power system connecting multiple substations from the power transmission end side to the power receiving end side,
Adding a control device to each of the plurality of substations;
The active power and reactive power at the transmission end of each substation as the load of each substation,
Transmitted in substations the end of the receiving end, the control device calculates a transmission voltage that can supply the load before Symbol variable power stations, the data of the calculated transmission voltage next to the substations of the transmission end and, then, at each substation to the data of the transmission voltage is transmitted, the controller, in response to data transmitted transmission voltage to calculate the load of the substation, the calculated before Symbol substation If the substation where the transmission voltage is calculated is not the substation at the end of the transmission end, the calculated transmission voltage data is used for the substation next to the transmission end. Send to
Further, when the calculated transmission voltage of each substation is out of a predetermined range, the substation next to each substation is requested to perform voltage adjustment and adjustment operation of the phase adjusting equipment to set the transmission voltage to the predetermined The distributed control method of each substation of the electric power system characterized by staying in the range of.
請求項1記載の電力系統の各変電所の分散制御方法において、
前記算出した各変電所の送電電圧が所定の範囲から外れるときに、前記各変電所の制御装置が前記各変電所の電圧調整および調相設備の調整を行うと共に、前記調整が前記各変電所内のみで実施できない場合、前記各変電所の隣の変電所に対し電圧調整および調相設備の調整運転を依頼し、依頼を受けた前記変電所は、依頼された調整運転が可能である場合は当該調整運転を実行することによって、依頼された前記調整運転が不可である場合はさらに隣の変電所へ依頼を行うことによって前記送電電圧を前記所定の範囲に収めることを特徴とする電力系統の各変電所の分散制御方法。
In the distributed control method of each substation of the electric power system according to claim 1,
When the calculated transmission voltage of each substation is out of a predetermined range, the control device of each substation performs voltage adjustment of each substation and adjustment of the phase adjusting equipment, and the adjustment is performed in each substation. If the substation next to each substation is requested to perform voltage adjustment and phase adjustment equipment adjustment operation, the substation that has received the request can perform the requested adjustment operation. by executing the adjustment operation, power, characterized in that to accommodate the transmission voltage by the performing the further request to the next substation case is impossible is requested by said adjustment operation in the predetermined range Distributed control method for each substation in the grid.
複数の変電所を送電端側から受電端側まで接続した電力系統において、
前記複数の変電所の各々に制御装置を付加し、
前記各変電所の送電端における有効電力および無効電力を前記各変電所の負荷とし、
前記制御装置が前記各変電所の負荷を受電端側から順次送電端側まで算出し、ついで、前記各変電所において前記算出した負荷を供給できる送電電圧を算出し、
さらに、前記算出した各変電所の送電電圧が所定の範囲から外れるときに、前記各変電所の隣の変電所に対し電圧調整および調相設備の調整運転を依頼して前記送電電圧を前記所定の範囲に収め、
さらに、前記受電側の変電所の負荷を増減する場合に事前に、前記受電側の変電所の制御装置により、前記受電側の変電所の負荷並びに送電側の変電所と前記受電側の変電所とを接続する送電線の電気定数を基にして、前記受電側の変電所に送電する送電側の変電所の送電端における負荷を算出し、算出した負荷の値を前記送電側の変電所の制御装置に通報し、
前記負荷の算出並びに通報を順次前記送電端側の変電所まで繰り返し、
つぎに、前記送電端側の変電所の制御装置により、前記通報された負荷を供給できる前記送電端側の変電所の送電端の電圧を受電側の変電所の制御装置に通報し、前記電圧の通報を前記負荷を増減する受電側の変電所まで繰り返すことを特徴とする電力系統の各変電所の分散制御方法。
In an electric power system connecting multiple substations from the power transmission end side to the power receiving end side,
Adding a control device to each of the plurality of substations;
The active power and reactive power at the transmission end of each substation as the load of each substation,
The control device calculates the load of each substation sequentially from the power receiving end side to the power transmission end side, and then calculates a transmission voltage that can supply the calculated load at each substation,
Further, when the calculated transmission voltage of each substation is out of a predetermined range, the substation next to each substation is requested to perform voltage adjustment and adjustment operation of the phase adjusting equipment to set the transmission voltage to the predetermined Within the range of
Further, when increasing or decreasing the load on the power receiving side substation, the power receiving side substation load and the power transmitting side substation and the power receiving side substation are controlled in advance by the power receiving side substation control device. The load at the power transmission end of the power transmission side substation that transmits power to the power receiving side substation is calculated based on the electrical constant of the transmission line that connects to the power transmission side, and the calculated load value is calculated for the power transmission side substation. Report to the control device,
Repeat the load calculation and notification sequentially to the substation on the power transmission end side,
Next, the control device of the substation on the power transmission end side reports the voltage at the power transmission end of the substation on the power transmission end side that can supply the reported load to the control device of the substation on the power reception side, and the voltage The distribution control method for each substation of the power system is characterized in that the notification is repeated up to the substation on the power receiving side that increases or decreases the load.
JP2008221349A 2008-08-29 2008-08-29 Distributed control method for each substation in the power system Expired - Fee Related JP5269524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008221349A JP5269524B2 (en) 2008-08-29 2008-08-29 Distributed control method for each substation in the power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008221349A JP5269524B2 (en) 2008-08-29 2008-08-29 Distributed control method for each substation in the power system

Publications (2)

Publication Number Publication Date
JP2010057311A JP2010057311A (en) 2010-03-11
JP5269524B2 true JP5269524B2 (en) 2013-08-21

Family

ID=42072643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008221349A Expired - Fee Related JP5269524B2 (en) 2008-08-29 2008-08-29 Distributed control method for each substation in the power system

Country Status (1)

Country Link
JP (1) JP5269524B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039818A (en) * 2010-08-10 2012-02-23 Hitachi Ltd Voltage reactive power control system
WO2014122930A1 (en) 2013-02-07 2014-08-14 日本電気株式会社 Power control system
US10074984B2 (en) 2013-04-09 2018-09-11 Nec Corporation Electric power control system
JP5710082B1 (en) * 2013-08-12 2015-04-30 三菱電機株式会社 Transformer type voltage control device, reactive power adjustment type voltage control device, and distribution system voltage control system
CN103715694B (en) * 2013-12-06 2015-12-09 南京南瑞集团公司 Voltage security based on synchro measure information stablizes self adaptation emergency control method
CN105656203B (en) * 2016-01-29 2018-01-12 国网山东省电力公司青岛供电公司 A kind of Loop Closing Operation control method and device
CN105552903B (en) * 2016-01-29 2018-03-30 国网山东省电力公司青岛供电公司 A kind of method, apparatus and system for reducing Alloy White Iron
JP6627560B2 (en) * 2016-02-18 2020-01-08 富士電機株式会社 Autonomous decentralized voltage control system and method for detecting neighboring devices in the system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3594781B2 (en) * 1997-12-11 2004-12-02 ティーエム・ティーアンドディー株式会社 Power system stabilizer and power system stabilization method
JP2006325380A (en) * 2005-05-17 2006-11-30 Keiichi Sato Voltage and reactive power control system, and voltage and reactive power control method
JP2007053866A (en) * 2005-08-19 2007-03-01 Chugoku Electric Power Co Inc:The Method of operating distributed power supply system and distributed power supply system

Also Published As

Publication number Publication date
JP2010057311A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP5269524B2 (en) Distributed control method for each substation in the power system
US11652365B2 (en) Highly flexible electrical distribution grid edge energy manager and router
US20230291230A1 (en) Highly flexible, electrical distribution grid edge energy manager and router
EP2522065B1 (en) A method and system for power management in substations
Baran et al. A multiagent-based dispatching scheme for distributed generators for voltage support on distribution feeders
Bahramipanah et al. A decentralized adaptive model-based real-time control for active distribution networks using battery energy storage systems
AU2015275290B2 (en) Method and apparatus for control of a commodity distribution system
Elmitwally et al. A fuzzy-multiagent service restoration scheme for distribution system with distributed generation
US20220231538A1 (en) Power distribution systems and methods
JP2008061417A (en) Cooperation system of power system
CN108701999B (en) Power control of a microgrid
JP6356517B2 (en) System monitoring and control device
JP2009278834A (en) Control method for power supply system, and power supply system
WO2008023141A1 (en) Electrical distribution networks
JP6540053B2 (en) Electric power system operating device, electric power system operating method and electric power system operating system
JP2005261152A (en) Distribution system monitoring and controlling system and watt-hour meter with system monitoring function
Murphy et al. Optimised voltage control for distributed generation
US11163281B2 (en) Resiliency determination in a microgrid
JP7376213B2 (en) Distribution grid power control system
JP6536002B2 (en) Ampere breaker and power management system
Hollingworth et al. Demonstrating enhanced automatic voltage control for today's low carbon network
Kulmala et al. Handling exceptional situations in a distribution network congestion management algorithm
JP2019057974A (en) Energy management device, energy management method, and computer program
JP2019083662A (en) Power distribution system management support system and power distribution system management support method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5269524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees